Equivalent systems of kinetic relaxation schemes

Kévin Guillon, Romane Hélie, Philippe Helluy

November 24, 2022

Workshop Schémas numériques de type Boltzmann

Introduction

We consider the scalar conservation law in d dimensions

$$\partial_t w + \nabla \cdot \boldsymbol{q}(w) = 0,$$
 (\mathcal{E}

with $w(\boldsymbol{x},t) \in \mathbb{R}$, $\boldsymbol{x} \in \mathbb{R}^d$, $\boldsymbol{q}(w) \in \mathbb{R}^d$.

We use a kinetic relaxation scheme DdQn_v which approximates (E) with n_v equations and n_v unknowns. Kinetic models are efficient numerical schemes which use transport at constant velocities. However, it can be difficult to analyze them directly.

Introduction

- The solution given by the kinetic model can be approximated by an **equivalent equation** with one unknown *w*, for example in [Dub08,Gra14].
- In this project, we have proposed an **equivalent system** of n_v variables: w and $n_v 1$ additional variables.
- We will compare the **subcharacteristic stability condition** given by the analysis of the equivalent equation and the **hyperbolicity condition** given by the equivalent system.

Kinetic scheme

- Kinetic approximation
- Splitting method
- Kinetic velocities
- Flux errors

Derivation and comparison of the equivalent equations

- Computation of the equivalent system and the equivalent equation
- The D1Q2 model
- The D2Q3 model
- The D2Q4 model

Plan

Kinetic scheme

- Kinetic approximation
- Splitting method
- Kinetic velocities
- Flux errors

Derivation and comparison of the equivalent equations

- Computation of the equivalent system and the equivalent equation
- The $D1Q2 \mod$
- The D2Q3 model
- The D2Q4 model

Kinetic approximation

$$\partial_t w + \nabla \cdot \boldsymbol{q}(w) = 0 \tag{2}$$

We consider the BGK kinetic model

$$\partial_t f_i + \nabla \cdot (\boldsymbol{\lambda}_i f_i) = \frac{1}{\varepsilon} \left(f_i^{eq} - f_i \right), \quad \text{for } i = 1, \dots, n_v, \quad (\mathcal{K})$$

where

- λ_i are the kinetic velocities,
- $f = (f_i)$ is the kinetic unknown,
- $f^{eq} = (f_i^{eq})$ is the equilibrium kinetic vector which satisfies the consistency relations

$$w = \sum_{i=1}^{n_v} f_i^{eq}$$
 and $q(w) = \sum_{i=1}^{n_v} \lambda_i f_i^{eq}$.

In the limit $\varepsilon \to 0$, $\sum_{i=1}^{n_v} f_i$ tends to the solution w.

Splitting method

To solve in time the kinetic model

$$\partial_t f_i + \boldsymbol{\lambda}_i \cdot \boldsymbol{\nabla} f_i = \frac{1}{\varepsilon} (f_i^{eq} - f_i),$$
 (K)

we apply a splitting method:

• Transport step :

$$\partial_t f_i + \boldsymbol{\lambda}_i \cdot \boldsymbol{\nabla} f_i = 0.$$
 (7)

We solve exactly these transport equations with the translation

$$f_i^*(\boldsymbol{x}, t + \Delta t) = f_i(\boldsymbol{x} - \Delta t \boldsymbol{\lambda}_i, t).$$

• Relaxation step :

$$\partial_t f_i = \frac{1}{\varepsilon} (f_i^{eq} - f_i). \tag{\mathcal{R}_{ω}}$$

We do the relaxation

$$f_i^{n+1} = f_i^* + \omega \left(f_i^{*,eq} - f_i^* \right), \quad \text{ with } \omega \in [1,2].$$

The kinetic velocities

• In the D1Q2 model, we have $n_v = 2$ opposite kinetic velocities :

$$\boldsymbol{\lambda}_1 = (\lambda), \quad \boldsymbol{\lambda}_2 = (-\lambda).$$

• In the D2Q3 model, we have $n_v = 3$ kinetic velocities :

$$\boldsymbol{\lambda}_1 = \begin{pmatrix} \lambda \\ 0 \end{pmatrix}, \quad \boldsymbol{\lambda}_2 = \begin{pmatrix} -\frac{\lambda}{2} \\ \frac{\lambda\sqrt{3}}{2} \end{pmatrix}, \quad \boldsymbol{\lambda}_3 = \begin{pmatrix} -\frac{\lambda}{2} \\ -\frac{\lambda\sqrt{3}}{2} \end{pmatrix}.$$

• In the $D2Q4 \mbox{ model},$ we have $n_v=4$ velocities along the Cartesian axes :

$$\boldsymbol{\lambda}_{1} = \begin{pmatrix} \lambda \\ 0 \end{pmatrix}, \quad \boldsymbol{\lambda}_{2} = \begin{pmatrix} -\lambda \\ 0 \end{pmatrix}, \quad \boldsymbol{\lambda}_{3} = \begin{pmatrix} 0 \\ \lambda \end{pmatrix}, \quad \boldsymbol{\lambda}_{4} = \begin{pmatrix} 0 \\ -\lambda \end{pmatrix}.$$

$$\underbrace{\boldsymbol{\lambda}_{2}}_{\lambda_{2}} \xrightarrow{\lambda_{1}}_{\lambda_{3}} \underbrace{\boldsymbol{\lambda}_{1}}_{\lambda_{3}} \underbrace{\boldsymbol{\lambda}_{2}}_{\lambda_{3}} \underbrace{\boldsymbol{\lambda}_{2}}_{\lambda_{4}} \underbrace{\boldsymbol{\lambda}_{2}}_{\lambda_{4}} \underbrace{\boldsymbol{\lambda}_{2}}_{\lambda_{4}}$$

Equilibrium vectors

The consistency conditions gives us the system

$$\begin{pmatrix} w \\ q_1(w) \\ q_2(w) \\ z_3^{eq} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 \\ \lambda_{1,1} & \lambda_{2,1} & \lambda_{3,1} & \lambda_{4,1} \\ \lambda_{1,2} & \lambda_{2,2} & \lambda_{3,2} & \lambda_{4,2} \\ m_{1,3} & m_{2,3} & m_{3,3} & m_{4,3} \end{pmatrix}}_{M} \begin{pmatrix} f_1^{eq} \\ f_2^{eq} \\ f_3^{eq} \\ f_4^{eq} \end{pmatrix}$$

With the D2Q4 model, we are free to choose the third moment and its equilibrium. We choose:

$$m_{i,3} = (\lambda_{i,1})^2 - (\lambda_{i,2})^2$$
 and $z_3^{eq} = 0.$

By inverting the matrix M, we obtain the expression of the equilibrium kinetic functions f_i^{eq} .

Flux errors

We define the approximated fluxes as

$$z_k = \sum_{i=1}^{n_v} \lambda_{i,k} f_i, \quad \text{for } 1 \leqslant k \leqslant d,$$

and the flux errors as

$$y_k = z_k - q_k(w),$$
 for $1 \le k \le d$.

For the D2Q4 model, we add a fourth variable

$$z_3 = \sum_{i=1}^{n_v} (\lambda_{i,1}^2 - \lambda_{i,2}^2) f_i.$$

We will compute the equivalent system in the

$$(w, \boldsymbol{y}) = \left(w, y_1, y_2, z_3\right)$$

variables.

Romane Hélie

Change of variables

The transport step can be rewritten in these variables by

$$\begin{pmatrix} w^*(\boldsymbol{x}, t + \Delta t) \\ y_1^*(\boldsymbol{x}, t + \Delta t) \\ y_2^*(\boldsymbol{x}, t + \Delta t) \\ z_3^*(\boldsymbol{x}, t + \Delta t) \end{pmatrix} = MD(\Delta t)M^{-1} \begin{pmatrix} w \\ y_1 + q_1(w) \\ y_2 + q_2(w) \\ z_3 \end{pmatrix} (\boldsymbol{x}, t) - \begin{pmatrix} 0 \\ q_1(w) \\ q_2(w) \\ 0 \end{pmatrix} (\boldsymbol{x}, t)$$

where D is a diagonal matrix where D_{ii} is a translation operator in the λ_i direction. And the relaxation step is

$$\begin{pmatrix} w(\boldsymbol{x}, t + \Delta t) \\ y_1(\boldsymbol{x}, t + \Delta t) \\ y_2(\boldsymbol{x}, t + \Delta t) \\ z_3(\boldsymbol{x}, t + \Delta t) \end{pmatrix} = \begin{pmatrix} w^*(\boldsymbol{x}, t + \Delta t) \\ (1 - \omega)y_1^*(\boldsymbol{x}, t + \Delta t) \\ (1 - \omega)y_2^*(\boldsymbol{x}, t + \Delta t) \\ (1 - \omega)z_3^*(\boldsymbol{x}, t + \Delta t) \end{pmatrix}$$

Plan

Kinetic scheme

- Kinetic approximation
- Splitting method
- Kinetic velocities
- Flux errors

Derivation and comparison of the equivalent equations

- Computation of the equivalent system and the equivalent equation
- The $D1Q2 \mod$
- The D2Q3 model
- The D2Q4 model

Computation of the equivalent system

We compute the Taylor expansion of

$$\partial_t \begin{pmatrix} w(t) \\ \boldsymbol{y}(t) \end{pmatrix} = \frac{\begin{pmatrix} w \\ \boldsymbol{y} \end{pmatrix} (t + \Delta t) - \begin{pmatrix} w \\ \boldsymbol{y} \end{pmatrix} (t - \Delta t)}{2\Delta t} + O(\Delta t^2).$$

We obtain an equivalent system on (w, y) of the form

$$\partial_t \begin{pmatrix} w \\ \boldsymbol{y} \end{pmatrix} - \frac{\alpha}{\Delta t} \begin{pmatrix} 0 \\ \boldsymbol{y} \end{pmatrix} + \sum_{i=1}^d A_i \partial_i \begin{pmatrix} w \\ \boldsymbol{y} \end{pmatrix} + \frac{\Delta t}{\sum_{i,j=1}^d B_{ij} \partial_{ij} \begin{pmatrix} w \\ \boldsymbol{y} \end{pmatrix}} = O(\Delta t^2).$$

Computation of the equivalent substitution equation

$$\partial_t \begin{pmatrix} w \\ y \end{pmatrix} - \frac{\alpha}{\Delta t} \begin{pmatrix} 0 \\ y \end{pmatrix} + \sum_{i=1}^d A_i \partial_i \begin{pmatrix} w \\ y \end{pmatrix} + \frac{\Delta t}{\sum_{i,j=1}^d} B_{ij} \partial_{ij}^2 \begin{pmatrix} w \\ y \end{pmatrix} = O(\Delta t^2).$$

Now, we assume that $y = O(\Delta t)$, i.e. $y = \Delta t \tilde{y}$. By replacing y in the system, we obtain

$$y_k = \frac{\Delta t}{\alpha} \sum_{i=1}^d A_i[k, 1] \partial_{x_i} w + O(\Delta t^2).$$

Then, by replacing the y_k in the first equation of the system, we retrieve **the equivalent equation on** w given in [Dub08,Gra14].

$$\partial_t w + \sum_{i=1}^d a_i \partial_i w + \Delta t \sum_{i,j=1}^d b_{ij} \partial_{ij}^2 w = O(\Delta t^2).$$

Study of the scheme

Equivalent system for the D1Q2 model

For a linear flux q(w) = cw, we have the equivalent system

$$\begin{split} \partial_t \begin{pmatrix} w \\ y \end{pmatrix} &- \frac{1}{\Delta t} \frac{\omega(2-\omega)(\omega^2 - 2\omega + 2)}{2(\omega - 1)^2} \begin{pmatrix} 0 \\ y \end{pmatrix} \\ &+ \begin{pmatrix} c & \frac{(\omega - 2)^2(\omega^2 - 2\omega + 2)}{8(\omega - 1)^2} \\ \frac{(\lambda^2 - c^2)(\omega - 2)^2(\omega^2 - 2\omega + 2)}{8(\omega - 1)^2} & -c\frac{\omega^4 - 4\omega^3 + 6\omega^2 - 4\omega + 2}{2(\omega - 1)^2} \end{pmatrix} \partial_x \begin{pmatrix} w \\ y \end{pmatrix} &= O(\Delta t). \end{split}$$

Hyperbolicity condition

The matrix

$$P = \begin{pmatrix} 1 & 0 \\ 0 & \lambda^2 - c^2 \end{pmatrix},$$

symmetrize the equivalent system when

 $|c| < \lambda.$

Therefore, the equivalent system is hyperbolic if

 $|c| < \lambda.$

Equivalent equation of the D1Q2 model

By considering $y = O(\Delta t)$, we obtain

$$y = \Delta t \frac{(\lambda^2 - c^2)(\omega - 2)}{4\omega} \partial_x w,$$

which gives us the equivalent equation on \boldsymbol{w}

$$\partial_t w + c \partial_x w + \frac{\Delta t}{2} \left(\frac{1}{\omega} - \frac{1}{2} \right) (\lambda^2 - c^2) \partial_{xx} w = O(\Delta t^2).$$

When $\omega \neq 2$, the substitution equation is **stable** under the subcharacteristic condition:

$$|c| < \lambda.$$

Comparative study of the two models

We consider monochromatic exact solutions

$$\begin{pmatrix} w \\ y e^{-\alpha \frac{t}{\Delta t}} \end{pmatrix} = \begin{pmatrix} w_0 \\ y_0 \end{pmatrix} e^{ikx + \gamma t}, \qquad \text{ with } k \in \mathbb{N} \text{ and } \gamma \in \mathbb{C}$$

We obtain the following dispersion relation by injecting this solution

• in the equivalent equation on w

$$(\gamma_{eq} + aik_{eq} - \Delta t b k_{eq}^2)w = 0,$$

• in the equivalent system on $\left(w, \boldsymbol{y}e^{-lpha rac{t}{\Delta t}}
ight)$

$$\left(\gamma_{sys}I_2 + Aik_{sys} - \Delta tBk_{sys}^2\right) \begin{pmatrix} w\\ ye^{-\alpha \frac{t}{\Delta t}} \end{pmatrix} = 0.$$

For the equivalent system, we obtain two γ_{sys} . We choose the one that makes the solution w decrease slowly.

Romane Hélie

Comparison of the solutions

- Lattice-Boltzmann
- Transport
- Equivalent equation

Equivalent system/

$\omega = 1.9$	$\omega = 1.7$
$\omega = 1.5$	$\omega = 1.3$
$\omega = 1.5$	$\omega = 1.3$
$\omega = 1.5$	$\omega = 1.3$
$\omega = 1.5$	$\omega = 1.3$
$\omega = 1.5$	$\omega = 1.3$
$\omega = 1.5$	$\omega = 1.3$

Comparative study of the two equivalent equations

We computed the relative errors $\frac{\sum_{i=0}^{Nx} \sum_{n=0}^{Nt} (w_{LB}^{i,n} - w_{eq}^{i,n})^2}{\sum_{i=0}^{Nx} \sum_{n=0}^{Nt} (w_{LB}^{i,n})^2}:$

- For little values of ω, the substitution equation appears to be the most accurate.
- For greater values of ω , the equivalent system is more relevant.

Numerical validation of $y = O(\Delta t)$

When we compute the equivalent equation from the system, we suppose that $y = O(\Delta t)$, and it leads to

$$y(t) = \frac{(\lambda^2 - c^2)(\omega - 2)}{4\omega} \Delta t \partial_x w.$$

We can verify if the solution $\begin{pmatrix} w \\ y \end{pmatrix}$ given by the Lattice-Boltzmann method verifies this equation, according to the value of ω . We obtain the following error

Equivalent system when $\omega = 2$

When $\omega = 2$, the equivalent system of the D2Q3 model is

$$\partial_t \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} + \underbrace{\begin{pmatrix} q_1'(w) & 0 & 0 \\ 0 & \frac{\lambda}{2} - q_1'(w) & 0 \\ 0 & -q_2'(w) & -\frac{\lambda}{2} \end{pmatrix}}_{A_1} \partial_{x_1} \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} + \underbrace{\begin{pmatrix} q_2'(w) & 0 & 0 \\ 0 & 0 & -\frac{\lambda}{2} - q_1'(w) \\ 0 & -\frac{\lambda}{2} & -q_2'(w) \end{pmatrix}}_{A_2} \partial_{x_2} \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} = O(\Delta t^2).$$

ln green, we retrieve the initial equation (\mathcal{E}) .

Numerical validation of the equivalent equation

We can compare

• $oldsymbol{y}^{vf}$: solution of the equivalent equation with a finite volume method,

• $y^{kin} = \sum_{i=1}^{3} \lambda_i f_i - q(\sum_{i=1}^{3} f_i)$, with f the solution of (\mathcal{E}) with the D2Q3 model.

We choose $\Omega = [0,1] \times [0,1]$ with a mesh of size 800×800 , q'(w) = (1,1), $\lambda = 3$, $T_f = 0.06$ and a Gaussian initialization

$$w(\boldsymbol{x},0) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}_0^w\|^2}{2\sigma^2}\right) \text{ and } y_k(\boldsymbol{x},0) = \exp\left(-\frac{\|\boldsymbol{x} - \boldsymbol{x}_0^y\|^2}{2\sigma^2}\right),$$

with $\sigma = 0.05, \, \pmb{x}_0^w = (0.25, 0.25)$ and $\pmb{x}_0^y = (0.5, 0.5).$

Validation of the equivalent equation

$$\| \boldsymbol{y}_1^{kin} - \boldsymbol{y}_1^{vf} \| = 5.64567 \times 10^{-4}$$
 and $\| \boldsymbol{y}_2^{kin} - \boldsymbol{y}_2^{vf} \| = 1.95625 \times 10^{-3}$

The equivalent equation is a good approximation of the scheme, and therefore it gives useful information in its behavior.

Romane Hélie

Equivalent systems of kinetic relaxation schemes

Equivalent system of the D2Q3 model

Now, let us consider any relaxation parameter $\omega \in [1, 2]$ and a linear flux $q(w) = \begin{pmatrix} aw \\ bw \end{pmatrix}$. We have

$$\begin{split} \partial_t \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} &- \frac{1}{\Delta t} \frac{\omega(\omega - 2)(\omega^2 - 2\omega + 2)}{4(\omega - 1)^2} \begin{pmatrix} 0 \\ y_1 \\ y_2 \end{pmatrix} \\ &+ \begin{pmatrix} a & -2\gamma_1 & 0 \\ \gamma_1(2a + \lambda)(a - \lambda) & \gamma_2(-a + \frac{\lambda}{2}) & 0 \\ \gamma_1b(2a + \lambda) & -\gamma_2b & -\gamma_2\frac{\lambda}{2} \end{pmatrix} \partial_{x_1} \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} \\ &+ \begin{pmatrix} b & 0 & -2\gamma_1 \\ \gamma_1b(2a + \lambda) & 0 & -\gamma_2(a + \frac{\lambda}{2}) \\ \gamma_1(a\lambda + 2b^2 - \lambda^2) & -\gamma_2\frac{\lambda}{2} & -\gamma_2b \end{pmatrix} \partial_{x_2} \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} = O(\Delta t), \end{split}$$
with $\gamma_1 = -\frac{(\omega^2 - 2\omega + 2)(\omega - 2)^2}{16(\omega - 1)^2} \quad \text{and} \quad \gamma_2 = \frac{\omega^4 - 4\omega^3 + 6\omega^2 - 4\omega + 2}{2(\omega - 1)^2}. \end{split}$

Hyperbolicity condition

We consider a system of the form

$$\partial_t v + A_1 \partial_1 v + A_2 \partial_2 v = 0.$$

- This system is hyperbolic if for all unit vector $\boldsymbol{n} = (n_1, n_2)$, the matrix $n_1A_1 + n_2A_2$ is diagonalizable in \mathbb{R} .
- This system is symmetrizable if it exists a symmetric positive definite matrix P such as for all unit vector $\mathbf{n} = (n_1, n_2)$, the matrix $P(n_1A_1 + n_2A_2)$ is symmetric, or, more simply, such as PA_1 and PA_2 are symmetric.

A symmetrizable system is hyperbolic.

Hyperbolicity condition of the D2Q3 model

The matrix

$$P = \begin{pmatrix} \frac{1}{2}\lambda(a^2 - 2a\lambda - 3b^2 + \lambda^2)(2a + \lambda) & 0 & 0\\ 0 & -(a\lambda + 2b^2 - \lambda^2) & b(2a + \lambda)\\ 0 & b(2a + \lambda) & -(a - \lambda)(2a + \lambda) \end{pmatrix},$$

verifies that PA_1 and PA_2 are symmetric.

Therefore, the equivalent system is hyperbolic if

$$\lambda^2 - a^2 - b^2 - \sqrt{(a^2 + b^2)^2 + \lambda(-2a^3 + 6ab^2) + \lambda^2(a^2 + b^2)} > 0.$$

Equivalent equation on w

If we assume that $\boldsymbol{y} = O(\Delta t)$, we obtain

$$y_1 = \frac{\Delta t}{2} \left(\frac{1}{\omega} - \frac{1}{2} \right) (2a + \lambda) \left((a - \lambda) \partial_1 w + b \partial_2 w \right) + O(\Delta t^2),$$

and

$$y_2 = \frac{\Delta t}{2} \left(\frac{1}{\omega} - \frac{1}{2} \right) \left((2ba + b\lambda) \partial_1 w + \left(\lambda a + 2b^2 - \lambda^2 \right) \partial_2 w \right) + O(\Delta t^2).$$

By reinjecting these expressions of the y_i in the equivalent system, we retrieve the **equivalent equation on** w

$$\partial_t w + \nabla \cdot \boldsymbol{q}(w) = \frac{\Delta t}{2} \left(\frac{1}{\omega} - \frac{1}{2} \right) \nabla \cdot (\mathcal{D}_3 \nabla w) + O(\Delta t^2),$$

with the diffusion matrix

$$\mathcal{D}_3 = \begin{pmatrix} \frac{\lambda}{2}(\lambda+a) - a^2 & -\frac{\lambda}{2}b - ab\\ -\frac{\lambda}{2}b - ab & \frac{\lambda}{2}(\lambda-a) - b^2 \end{pmatrix}.$$

Romane Hélie

Subcharacteristic stability condition

The model is stable if the diffusion matrix is positive.

When $\omega \neq 2$, the equivalent equation is **stable** if

 $\lambda^2 - a^2 - b^2 - \sqrt{(a^2 + b^2)^2 + \lambda(-2a^3 + 6ab^2) + \lambda^2(a^2 + b^2)} > 0.$

 We retrieve exactly the hyperbolicity condition.

Equivalent system of the D2Q4 model when $\omega=2$

$$\partial_t \begin{pmatrix} w \\ y_1 \\ y_2 \\ z_3 \end{pmatrix} + \underbrace{\begin{pmatrix} q_1'(w) & 0 & 0 & 0 \\ 0 & -q_1'(w) & 0 & \frac{1}{2} \\ 0 & -q_2'(w) & 0 & 0 \\ 0 & \lambda^2 & 0 & 0 \end{pmatrix}}_{A_1} \partial_{x_1} \begin{pmatrix} w \\ y_1 \\ y_2 \\ z_3 \end{pmatrix} + \underbrace{\begin{pmatrix} q_2'(w) & 0 & 0 & 0 \\ 0 & 0 & -q_1'(w) & 0 \\ 0 & 0 & -q_2'(w) & -\frac{1}{2} \\ 0 & 0 & -\lambda^2 & 0 \end{pmatrix}}_{A_2} \partial_{x_2} \begin{pmatrix} w \\ y_1 \\ y_2 \\ z_3 \end{pmatrix} = O(\Delta t^2).$$

Numerical validation of the equivalent equation

$$\| \boldsymbol{y}_1^{kin} - \boldsymbol{y}_1^{vf} \| = 1.21999 \times 10^{-5}$$
 and $\| \boldsymbol{y}_2^{kin} - \boldsymbol{y}_2^{vf} \| = 1.57384 \times 10^{-5}$

The equivalent equation is a good approximation of the scheme, and therefore it gives useful information in its behavior.

Romane Hélie

Equivalent systems of kinetic relaxation schemes

Equivalent system for the D2Q4 system

$$\begin{split} \partial_t \begin{pmatrix} w \\ y_1 \\ y_2 \\ z_3 \end{pmatrix} &- \frac{1}{\Delta t} \frac{\omega(\omega - 2)(\omega^2 - 2\omega + 2)}{4(\omega - 1)^2} \begin{pmatrix} 0 \\ y_1 \\ y_2 \\ z_3 \end{pmatrix} \\ &+ \begin{pmatrix} a & 2\gamma_1 & 0 & 0 \\ \gamma_1(\lambda^2 - 2a) & -a\gamma_2 & 0 & \frac{\gamma_2}{2} \\ -2ab\gamma_1 & -b\gamma_2 & 0 & 0 \\ 2\lambda^2 a\gamma_1 & \lambda^2\gamma_2 & 0 & 0 \end{pmatrix} \partial_{x_1} \begin{pmatrix} w \\ y_1 \\ y_2 \\ z_3 \end{pmatrix} \\ &+ \begin{pmatrix} b & 0 & 2\gamma_1 & 0 \\ -2ab\gamma_1 & 0 & -a\gamma_2 & 0 \\ \gamma_1(\lambda^2 - 2b^2) & 0 & -b\gamma_2 & -\frac{\gamma_2}{2} \\ -2\lambda^2 b\gamma_1 & 0 & -\lambda^2\gamma_2 & 0 \end{pmatrix} \partial_{x_2} \begin{pmatrix} w \\ y_1 \\ y_2 \\ z_3 \end{pmatrix} = O(\Delta t) \\ \end{split}$$
 with $\gamma_1 = \frac{(\omega - 2)^2(\omega^2 - 2\omega + 2)}{16(\omega - 1)^2} \text{ and } \gamma_2 = \frac{\omega^4 - 4\omega^3 + 6\omega^2 - 4\omega + 2}{2(\omega - 1)^2}. \end{split}$

Hyperbolicity condition for the D2Q4 model

The matrix

$$P = \begin{pmatrix} \lambda^2 (4a^2 - \lambda^2)(4b^2 - \lambda^2) & 0 & 0 & 0 \\ 0 & -2\lambda^2 (4b^2 - \lambda^2) & 0 & 2a(4b^2 - \lambda^2) \\ 0 & 0 & -2\lambda^2 (4a^2 - \lambda^2) & -2b(4a^2 - \lambda^2) \\ 0 & 2a(4b^2 - \lambda^2) & -2b(4a^2 - \lambda^2) & -2a^2 - 2b^2 + \lambda^2 \end{pmatrix},$$

verifies that PA_1 and PA_2 are symmetric.

The equivalent system is hyperbolic if $\max(|a|,|b|) < \frac{\lambda}{2}.$

Equivalent equation on w

If we assume that the $y = O(\Delta t)$, then we obtain an expression of y that we can reinject in the equivalent system.

Then, we retrieve the equivalent equation on w

$$\partial_t w + \nabla \cdot \boldsymbol{q}(w) = \frac{\Delta t}{2} \left(\frac{1}{\omega} - \frac{1}{2} \right) \nabla \cdot (\mathcal{D}_4 \nabla w) + O(\Delta t^2),$$

with the diffusion matrix

$$\mathcal{D}_4 = \begin{pmatrix} \frac{\lambda^2}{2} - a^2 & -ab\\ -ab & \frac{\lambda^2}{2} - b^2 \end{pmatrix}.$$

Subscharacteristic stability condition

When $\omega \neq 2$, the subcharacteristic diffusive stability condition is

 $a^2 + b^2 \leqslant \frac{\lambda^2}{2}.$

 This condition is less restrictive than the hyperbolicity condition.

What happens when the diffusive stability condition is satisfied but not the hyperbolicity condition ?

 $\omega = 2$

We choose the velocity $\begin{cases} a = 1, \\ b = 0. \end{cases}$

Diffusive stability condition: Hyperbolic stability condition: $\lambda > 2 \max(|a|, |b|) = 2$

 $\lambda > \sqrt{2(a^2 + b^2)} = \sqrt{2}$

$\lambda = 1.6$	$\lambda = 2.2$

 $\omega = 1.6$

We choose the velocity $\begin{cases} a = 1, \\ b = 0. \end{cases}$

Stability condition: Hyperbolicity condition:

$$\lambda > \sqrt{2(a^2 + b^2)} = \sqrt{2}$$
$$\lambda > 2\max(|a|, |b|) = 2$$

$\lambda = 1.6$	$\lambda = 2.2$

 $\omega = 1.2$

We choose the velocity $\begin{cases} a = 1, \\ b = 0. \end{cases}$

Stability condition: Hyperbolicity condition:

$$\lambda > \sqrt{2(a^2 + b^2)} = \sqrt{2}$$
$$\lambda > 2\max(|a|, |b|) = 2$$

$\lambda = 1.6$	$\lambda = 2.2$

Conclusion and perspectives

- We have shown that the classical stability condition does not give a stable solution in some case.
- We have computed an equivalent system on n_v variables that gives us a more restrictive condition to choose λ . This condition gives us stable solution.
- We have compared the domains of validity of the equivalent equation and the equivalent system, and we would like now to find a quantitative criterion which gives us the best choice according to ω.

Thank you for your attention !

References

- ADN00 Denise Aregba-Driollet and Roberto Natalini. *Discrete kinetic schemes for multidimensional systems of conservation laws.* SIAM Journal on Numerical Analysis, 37(6):1973–2004, 2000.
 - Bou99 François Bouchut. Construction of bgk models with a family of kinetic entropies for a given system of conservation laws. Journal of Statistical Physics, 95(1):113–170, 1999.
- DFHN19 Florence Drui, Emmanuel Franck, Philippe Helluy, and Laurent Navoret. An analysis of over-relaxation in a kinetic approximation of systems of conservation laws. Comptes Rendus Mécanique, 347(3):259–269, 2019.
 - Dub08 François Dubois. *Equivalent partial differential equations of a lattice boltzmann scheme*. Computers and Mathematics with Applications, 55(7):1441–1449, 2008.
 - Gra14 Benjamin Graille. Approximation of mono-dimensional hyperbolic systems: A lattice boltzmann scheme as a relaxation method. Journal of Computational Physics, 266:74–88, 2014.