Equivalent systems of kinetic relaxation schemes

Kévin Guillon, Romane Hélie, Philippe Helluy

November 24, 2022
Workshop Schémas numériques de type Boltzmann

Introduction

We consider the scalar conservation law in d dimensions

$$
\begin{equation*}
\partial_{t} w+\nabla \cdot \boldsymbol{q}(w)=0 \tag{E}
\end{equation*}
$$

with $w(\boldsymbol{x}, t) \in \mathbb{R}, \boldsymbol{x} \in \mathbb{R}^{d}, \boldsymbol{q}(w) \in \mathbb{R}^{d}$.

- We use a kinetic relaxation scheme $D d Q n_{v}$ which approximates (\mathcal{E}) with n_{v} equations and n_{v} unknowns. Kinetic models are efficient numerical schemes which use transport at constant velocities. However, it can be difficult to analyze them directly.

Introduction

- The solution given by the kinetic model can be approximated by an equivalent equation with one unknown w, for example in [Dub08,Gra14].
- In this project, we have proposed an equivalent system of n_{v} variables: w and $n_{v}-1$ additional variables.
- We will compare the subcharacteristic stability condition given by the analysis of the equivalent equation and the hyperbolicity condition given by the equivalent system.
(1) Kinetic scheme
- Kinetic approximation
- Splitting method
- Kinetic velocities
- Flux errors
(2) Derivation and comparison of the equivalent equations
- Computation of the equivalent system and the equivalent equation
- The $D 1 Q 2$ model
- The $D 2 Q 3$ model
- The $D 2 Q 4$ model

Plan

(1) Kinetic scheme

- Kinetic approximation
- Splitting method
- Kinetic velocities
- Flux errors
(2) Derivation and comparison of the equivalent equations
- Computation of the equivalent system and the equivalent equation
- The D1Q2 model
- The D2Q3 model
- The D2Q4 model

Kinetic approximation

$$
\begin{equation*}
\partial_{t} w+\nabla \cdot \boldsymbol{q}(w)=0 \tag{E}
\end{equation*}
$$

We consider the BGK kinetic model

$$
\begin{equation*}
\partial_{t} f_{i}+\nabla \cdot\left(\boldsymbol{\lambda}_{i} f_{i}\right)=\frac{1}{\varepsilon}\left(f_{i}^{e q}-f_{i}\right), \quad \text { for } i=1, \ldots, n_{v} \tag{K}
\end{equation*}
$$

where

- $\boldsymbol{\lambda}_{i}$ are the kinetic velocities,
- $\boldsymbol{f}=\left(f_{i}\right)$ is the kinetic unknown,
- $\boldsymbol{f}^{e q}=\left(f_{i}^{e q}\right)$ is the equilibrium kinetic vector which satisfies the consistency relations

$$
w=\sum_{i=1}^{n_{v}} f_{i}^{e q} \quad \text { and } \quad \boldsymbol{q}(w)=\sum_{i=1}^{n_{v}} \boldsymbol{\lambda}_{i} f_{i}^{e q}
$$

In the limit $\varepsilon \rightarrow 0, \sum_{i=1}^{n_{v}} f_{i}$ tends to the solution w.

Splitting method

To solve in time the kinetic model

$$
\begin{equation*}
\partial_{t} f_{i}+\boldsymbol{\lambda}_{i} \cdot \nabla f_{i}=\frac{1}{\varepsilon}\left(f_{i}^{e q}-f_{i}\right) \tag{K}
\end{equation*}
$$

we apply a splitting method:

- Transport step :

$$
\begin{equation*}
\partial_{t} f_{i}+\boldsymbol{\lambda}_{i} \cdot \nabla f_{i}=0 \tag{T}
\end{equation*}
$$

We solve exactly these transport equations with the translation

$$
f_{i}^{*}(\boldsymbol{x}, t+\Delta t)=f_{i}\left(\boldsymbol{x}-\Delta t \boldsymbol{\lambda}_{\boldsymbol{i}}, t\right)
$$

- Relaxation step :

$$
\partial_{t} f_{i}=\frac{1}{\varepsilon}\left(f_{i}^{e q}-f_{i}\right)
$$

We do the relaxation

$$
f_{i}^{n+1}=f_{i}^{*}+\omega\left(f_{i}^{*, e q}-f_{i}^{*}\right), \quad \text { with } \omega \in[1,2] .
$$

The kinetic velocities

- In the $D 1 Q 2$ model, we have $n_{v}=2$ opposite kinetic velocities:

$$
\boldsymbol{\lambda}_{1}=(\lambda), \quad \boldsymbol{\lambda}_{2}=(-\lambda) .
$$

- In the $D 2 Q 3$ model, we have $n_{v}=3$ kinetic velocities:

$$
\boldsymbol{\lambda}_{1}=\binom{\lambda}{0}, \quad \boldsymbol{\lambda}_{2}=\binom{-\frac{\lambda}{2}}{\frac{\lambda \sqrt{3}}{2}}, \quad \boldsymbol{\lambda}_{3}=\binom{-\frac{\lambda}{2}}{-\frac{\lambda \sqrt{3}}{2}} .
$$

- In the $D 2 Q 4$ model, we have $n_{v}=4$ velocities along the Cartesian axes :

$$
\boldsymbol{\lambda}_{1}=\binom{\lambda}{0}, \quad \boldsymbol{\lambda}_{2}=\binom{-\lambda}{0}, \quad \boldsymbol{\lambda}_{3}=\binom{0}{\lambda}, \quad \boldsymbol{\lambda}_{4}=\binom{0}{-\lambda} .
$$

Equilibrium vectors

The consistency conditions gives us the system

$$
\left(\begin{array}{c}
w \\
q_{1}(w) \\
q_{2}(w) \\
z_{3}^{e q}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
\lambda_{1,1} & \lambda_{2,1} & \lambda_{3,1} & \lambda_{4,1} \\
\lambda_{1,2} & \lambda_{2,2} & \lambda_{3,2} & \lambda_{4,2} \\
m_{1,3} & m_{2,3} & m_{3,3} & m_{4,3}
\end{array}\right)}_{M}\left(\begin{array}{c}
f_{1}^{e q} \\
f_{2}^{e q} \\
f_{3}^{e q} \\
f_{4}^{e q}
\end{array}\right) .
$$

With the $D 2 Q 4$ model, we are free to choose the third moment and its equilibrium. We choose:

$$
m_{i, 3}=\left(\lambda_{i, 1}\right)^{2}-\left(\lambda_{i, 2}\right)^{2} \quad \text { and } \quad z_{3}^{e q}=0
$$

By inverting the matrix M, we obtain the expression of the equilibrium kinetic functions $f_{i}^{e q}$.

Flux errors

We define the approximated fluxes as

$$
z_{k}=\sum_{i=1}^{n_{v}} \lambda_{i, k} f_{i}, \quad \text { for } 1 \leqslant k \leqslant d
$$

and the flux errors as

$$
y_{k}=z_{k}-q_{k}(w), \quad \text { for } 1 \leqslant k \leqslant d
$$

For the $D 2 Q 4$ model, we add a fourth variable

$$
z_{3}=\sum_{i=1}^{n_{v}}\left(\lambda_{i, 1}^{2}-\lambda_{i, 2}^{2}\right) f_{i}
$$

We will compute the equivalent system in the

$$
(w, \boldsymbol{y})=\left(w, y_{1}, y_{2}, z_{3}\right)
$$

variables.

Change of variables

The transport step can be rewritten in these variables by

$$
\left(\begin{array}{c}
w^{*}(\boldsymbol{x}, t+\Delta t) \\
y_{1}^{*}(\boldsymbol{x}, t+\Delta t) \\
y_{2}^{*}(\boldsymbol{x}, t+\Delta t) \\
z_{3}^{*}(\boldsymbol{x}, t+\Delta t)
\end{array}\right)=M D(\Delta t) M^{-1}\left(\begin{array}{c}
w \\
y_{1}+q_{1}(w) \\
y_{2}+q_{2}(w) \\
z_{3}
\end{array}\right)(\boldsymbol{x}, t)-\left(\begin{array}{c}
0 \\
q_{1}(w) \\
q_{2}(w) \\
0
\end{array}\right)(\boldsymbol{x}, t)
$$

where D is a diagonal matrix where $D_{i i}$ is a translation operator in the $\boldsymbol{\lambda}_{i}$ direction. And the relaxation step is

$$
\left(\begin{array}{c}
w(\boldsymbol{x}, t+\Delta t) \\
y_{1}(\boldsymbol{x}, t+\Delta t) \\
y_{2}(\boldsymbol{x}, t+\Delta t) \\
z_{3}(\boldsymbol{x}, t+\Delta t)
\end{array}\right)=\left(\begin{array}{c}
w^{*}(\boldsymbol{x}, t+\Delta t) \\
(1-\omega) y_{1}^{*}(\boldsymbol{x}, t+\Delta t) \\
(1-\omega) y_{2}^{*}(\boldsymbol{x}, t+\Delta t) \\
(1-\omega) z_{3}^{*}(\boldsymbol{x}, t+\Delta t)
\end{array}\right) .
$$

Plan

(1) Kinetic scheme

- Kinetic approximation
- Splitting method
- Kinetic velocities
- Flux errors
(2) Derivation and comparison of the equivalent equations
- Computation of the equivalent system and the equivalent equation
- The $D 1 Q 2$ model
- The D2Q3 model
- The D2Q4 model

Computation of the equivalent system

We compute the Taylor expansion of

$$
\partial_{t}\binom{w(t)}{\boldsymbol{y}(t)}=\frac{\binom{w}{\boldsymbol{y}}(t+\Delta t)-\binom{w}{\boldsymbol{y}}(t-\Delta t)}{2 \Delta t}+O\left(\Delta t^{2}\right)
$$

We obtain an equivalent system on (w, \boldsymbol{y}) of the form

$$
\partial_{t}\binom{w}{\boldsymbol{y}}-\frac{\alpha}{\Delta t}\binom{0}{\boldsymbol{y}}+\sum_{i=1}^{d} A_{i} \partial_{i}\binom{w}{\boldsymbol{y}}+\Delta t \sum_{i, j=1}^{d} B_{i j} \partial_{i j}\binom{w}{\boldsymbol{y}}=O\left(\Delta t^{2}\right)
$$

Computation of the equivalent substitution equation

$$
\partial_{t}\binom{w}{\boldsymbol{y}}-\frac{\alpha}{\Delta t}\binom{0}{\boldsymbol{y}}+\sum_{i=1}^{d} A_{i} \partial_{i}\binom{w}{\boldsymbol{y}}+\Delta t \sum_{i, j=1}^{d} B_{i j} \partial_{i j}^{2}\binom{w}{\boldsymbol{y}}=O\left(\Delta t^{2}\right) .
$$

Now, we assume that $\boldsymbol{y}=O(\Delta t)$, i.e. $\boldsymbol{y}=\Delta t \tilde{\boldsymbol{y}}$. By replacing \boldsymbol{y} in the system, we obtain

$$
y_{k}=\frac{\Delta t}{\alpha} \sum_{i=1}^{d} A_{i}[k, 1] \partial_{x_{i}} w+O\left(\Delta t^{2}\right)
$$

Then, by replacing the y_{k} in the first equation of the system, we retrieve the equivalent equation on w given in [Dub08,Gra14].

$$
\partial_{t} w+\sum_{i=1}^{d} a_{i} \partial_{i} w+\Delta t \sum_{i, j=1}^{d} b_{i j} \partial_{i j}^{2} w=O\left(\Delta t^{2}\right)
$$

Study of the scheme

$$
\begin{aligned}
& (\mathcal{E}) \\
& w
\end{aligned} \quad \rightsquigarrow \quad \begin{aligned}
& D d Q n_{v} \\
& \left(\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4}
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{cc}
\boldsymbol{y}=\overrightarrow{O(\Delta t)} & w \\
& \\
& \downarrow \\
& \begin{array}{c}
\text { Diffusive } \\
\text { stability }
\end{array}
\end{array}
$$

Equivalent equation
 condition

Equivalent system for the $D 1 Q 2$ model

For a linear flux $q(w)=c w$, we have the equivalent system

$$
\begin{aligned}
& \partial_{t}\binom{w}{y}-\frac{1}{\Delta t} \frac{\omega(2-\omega)\left(\omega^{2}-2 \omega+2\right)}{2(\omega-1)^{2}}\binom{0}{y} \\
& +\left(\begin{array}{cc}
c & \frac{(\omega-2)^{2}\left(\omega^{2}-2 \omega+2\right)}{8(\omega-1)^{2}} \\
\frac{\left(\lambda^{2}-c^{2}\right)(\omega-2)^{2}\left(\omega^{2}-2 \omega+2\right)}{8(\omega-1)^{2}} & -c \frac{\omega^{4}-4 \omega^{3}+6 \omega^{2}-4 \omega+2}{2(\omega-1)^{2}}
\end{array}\right) \partial_{x}\binom{w}{y}=O(\Delta t)
\end{aligned}
$$

Hyperbolicity condition

The matrix

$$
P=\left(\begin{array}{cc}
1 & 0 \\
0 & \lambda^{2}-c^{2}
\end{array}\right)
$$

symmetrize the equivalent system when

$$
|c|<\lambda .
$$

Therefore, the equivalent system is hyperbolic if

$$
|c|<\lambda .
$$

Equivalent equation of the $D 1 Q 2$ model

By considering $y=O(\Delta t)$, we obtain

$$
y=\Delta t \frac{\left(\lambda^{2}-c^{2}\right)(\omega-2)}{4 \omega} \partial_{x} w
$$

which gives us the equivalent equation on w

$$
\partial_{t} w+c \partial_{x} w+\frac{\Delta t}{2}\left(\frac{1}{\omega}-\frac{1}{2}\right)\left(\lambda^{2}-c^{2}\right) \partial_{x x} w=O\left(\Delta t^{2}\right) .
$$

When $\omega \neq 2$, the substitution equation is stable under the subcharacteristic condition:

$$
|c|<\lambda .
$$

Comparative study of the two models

We consider monochromatic exact solutions

$$
\binom{w}{y e^{-\alpha \frac{t}{\Delta t}}}=\binom{w_{0}}{y_{0}} e^{i k x+\gamma t}, \quad \text { with } k \in \mathbb{N} \text { and } \gamma \in \mathbb{C} .
$$

We obtain the following dispersion relation by injecting this solution

- in the equivalent equation on w

$$
\left(\gamma_{e q}+a i k_{e q}-\Delta t b k_{e q}^{2}\right) w=0
$$

- in the equivalent system on $\left(w, \boldsymbol{y} e^{-\alpha \frac{t}{\Delta t}}\right)$

$$
\left(\gamma_{s y s} I_{2}+A i k_{s y s}-\Delta t B k_{s y s}^{2}\right)\binom{w}{y e^{-\alpha \frac{t}{\Delta t}}}=0
$$

For the equivalent system, we obtain two $\gamma_{\text {sys }}$. We choose the one that makes the solution w decrease slowly.

Comparison of the solutions

- Lattice-Boltzmann - Transport

Equivalent equation Equivalent system
(

Comparative study of the two equivalent equations

We computed the relative errors $\frac{\sum_{i=0}^{N x} \sum_{n=0}^{N t}\left(w_{L B}^{i, n}-w_{e q}^{i, n}\right)^{2}}{\sum_{i=0}^{N x} \sum_{n=0}^{N t}\left(w_{L B}^{i, n}\right)^{2}}$:

- For little values of ω, the substitution equation appears to be the most accurate.
- For greater values of ω, the equivalent system is more relevant.

Numerical validation of $y=O(\Delta t)$

When we compute the equivalent equation from the system, we suppose that $y=O(\Delta t)$, and it leads to

$$
y(t)=\frac{\left(\lambda^{2}-c^{2}\right)(\omega-2)}{4 \omega} \Delta t \partial_{x} w
$$

We can verify if the solution $\binom{w}{y}$ given by the Lattice-Boltzmann method verifies this equation, according to the value of ω. We obtain the following error

Equivalent system when $\omega=2$

When $\omega=2$, the equivalent system of the $D 2 Q 3$ model is

$$
\begin{aligned}
\partial_{t}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2}
\end{array}\right) & +\underbrace{\left(\begin{array}{ccc}
q_{1}^{\prime}(w) & 0 & 0 \\
0 & \frac{\lambda}{2}-q_{1}^{\prime}(w) & 0 \\
0 & -q_{2}^{\prime}(w) & -\frac{\lambda}{2}
\end{array}\right)}_{A_{1}} \partial_{x_{1}}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2}
\end{array}\right) \\
& +\underbrace{\left(\begin{array}{ccc}
q_{2}^{\prime}(w) & 0 & 0 \\
0 & 0 & -\frac{\lambda}{2}-q_{1}^{\prime}(w) \\
0 & -\frac{\lambda}{2} & -q_{2}^{\prime}(w)
\end{array}\right)}_{A_{2}} \partial_{x_{2}}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2}
\end{array}\right)=O\left(\Delta t^{2}\right) .
\end{aligned}
$$

- In green, we retrieve the initial equation (\mathcal{E}).

Numerical validation of the equivalent equation

We can compare

- $\boldsymbol{y}^{v f}$: solution of the equivalent equation with a finite volume method,
- $\boldsymbol{y}^{k i n}=\sum_{i=1}^{3} \boldsymbol{\lambda}_{i} f_{i}-q\left(\sum_{i=1}^{3} f_{i}\right)$, with \boldsymbol{f} the solution of (\mathcal{E}) with the D2Q3 model.

We choose $\Omega=[0,1] \times[0,1]$ with a mesh of size 800×800, $\boldsymbol{q}^{\prime}(w)=(1,1), \lambda=3, T_{f}=0.06$ and a Gaussian initialization

$$
w(\boldsymbol{x}, 0)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}^{w}\right\|^{2}}{2 \sigma^{2}}\right) \quad \text { and } \quad y_{k}(\boldsymbol{x}, 0)=\exp \left(-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}^{y}\right\|^{2}}{2 \sigma^{2}}\right),
$$

with $\sigma=0.05, \boldsymbol{x}_{0}^{w}=(0.25,0.25)$ and $\boldsymbol{x}_{0}^{y}=(0.5,0.5)$.

Validation of the equivalent equation

	$y^{\text {kin }}$	$\boldsymbol{y}^{v f}$	$\boldsymbol{y}^{k i n}-\boldsymbol{y}^{v f} \\|$
y_{1}			"c\|im
y_{2}		\|ran	

$$
\left\|\boldsymbol{y}_{1}^{k i n}-\boldsymbol{y}_{1}^{v f}\right\|=5.64567 \times 10^{-4} \quad \text { and } \quad\left\|\boldsymbol{y}_{2}^{k i n}-\boldsymbol{y}_{2}^{v f}\right\|=1.95625 \times 10^{-3}
$$

- The equivalent equation is a good approximation of the scheme, and therefore it gives useful information in its behavior.

Equivalent system of the $D 2 Q 3$ model

Now, let us consider any relaxation parameter $\omega \in[1,2]$ and a linear flux

$$
\boldsymbol{q}(w)=\binom{a w}{b w} . \text { We have }
$$

$$
\partial_{t}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2}
\end{array}\right)-\frac{1}{\Delta t} \frac{\omega(\omega-2)\left(\omega^{2}-2 \omega+2\right)}{4(\omega-1)^{2}}\left(\begin{array}{c}
0 \\
y_{1} \\
y_{2}
\end{array}\right)
$$

$$
+\left(\begin{array}{ccc}
a & -2 \gamma_{1} & 0 \\
\gamma_{1}(2 a+\lambda)(a-\lambda) & \gamma_{2}\left(-a+\frac{\lambda}{2}\right) & 0 \\
\gamma_{1} b(2 a+\lambda) & -\gamma_{2} b & -\gamma_{2} \frac{\lambda}{2}
\end{array}\right) \partial_{x_{1}}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2}
\end{array}\right)
$$

$$
+\left(\begin{array}{ccc}
b & 0 & -2 \gamma_{1} \\
\gamma_{1} b(2 a+\lambda) & 0 & -\gamma_{2}\left(a+\frac{\lambda}{2}\right) \\
\gamma_{1}\left(a \lambda+2 b^{2}-\lambda^{2}\right) & -\gamma_{2} \frac{\lambda}{2} & -\gamma_{2} b
\end{array}\right) \partial_{x_{2}}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2}
\end{array}\right)=O(\Delta t)
$$

with $\gamma_{1}=-\frac{\left(\omega^{2}-2 \omega+2\right)(\omega-2)^{2}}{16(\omega-1)^{2}} \quad$ and $\quad \gamma_{2}=\frac{\omega^{4}-4 \omega^{3}+6 \omega^{2}-4 \omega+2}{2(\omega-1)^{2}}$.

Hyperbolicity condition

We consider a system of the form

$$
\partial_{t} v+A_{1} \partial_{1} v+A_{2} \partial_{2} v=0
$$

- This system is hyperbolic if for all unit vector $\boldsymbol{n}=\left(n_{1}, n_{2}\right)$, the matrix $n_{1} A_{1}+n_{2} A_{2}$ is diagonalizable in \mathbb{R}.
- This system is symmetrizable if it exists a symmetric positive definite matrix P such as for all unit vector $\boldsymbol{n}=\left(n_{1}, n_{2}\right)$, the matrix $P\left(n_{1} A_{1}+n_{2} A_{2}\right)$ is symmetric, or, more simply, such as $P A_{1}$ and $P A_{2}$ are symmetric.

A symmetrizable system is hyperbolic.

Hyperbolicity condition of the $D 2 Q 3$ model

The matrix

$$
P=\left(\begin{array}{ccc}
\frac{1}{2} \lambda\left(a^{2}-2 a \lambda-3 b^{2}+\lambda^{2}\right)(2 a+\lambda) & 0 & 0 \\
0 & -\left(a \lambda+2 b^{2}-\lambda^{2}\right) & b(2 a+\lambda) \\
0 & b(2 a+\lambda) & -(a-\lambda)(2 a+\lambda)
\end{array}\right)
$$

verifies that $P A_{1}$ and $P A_{2}$ are symmetric.

Therefore, the equivalent system is hyperbolic if

$$
\lambda^{2}-a^{2}-b^{2}-\sqrt{\left(a^{2}+b^{2}\right)^{2}+\lambda\left(-2 a^{3}+6 a b^{2}\right)+\lambda^{2}\left(a^{2}+b^{2}\right)}>0
$$

Equivalent equation on w

If we assume that $\boldsymbol{y}=O(\Delta t)$, we obtain

$$
y_{1}=\frac{\Delta t}{2}\left(\frac{1}{\omega}-\frac{1}{2}\right)(2 a+\lambda)\left((a-\lambda) \partial_{1} w+b \partial_{2} w\right)+O\left(\Delta t^{2}\right)
$$

and

$$
y_{2}=\frac{\Delta t}{2}\left(\frac{1}{\omega}-\frac{1}{2}\right)\left((2 b a+b \lambda) \partial_{1} w+\left(\lambda a+2 b^{2}-\lambda^{2}\right) \partial_{2} w\right)+O\left(\Delta t^{2}\right)
$$

By reinjecting these expressions of the y_{i} in the equivalent system, we retrieve the equivalent equation on w

$$
\partial_{t} w+\nabla \cdot \boldsymbol{q}(w)=\frac{\Delta t}{2}\left(\frac{1}{\omega}-\frac{1}{2}\right) \nabla \cdot\left(\mathcal{D}_{3} \nabla w\right)+O\left(\Delta t^{2}\right)
$$

with the diffusion matrix

$$
\mathcal{D}_{3}=\left(\begin{array}{cc}
\frac{\lambda}{2}(\lambda+a)-a^{2} & -\frac{\lambda}{2} b-a b \\
-\frac{\lambda}{2} b-a b & \frac{\lambda}{2}(\lambda-a)-b^{2}
\end{array}\right) .
$$

Subcharacteristic stability condition

The model is stable if the diffusion matrix is positive.
When $\omega \neq 2$, the equivalent equation is stable if

$$
\lambda^{2}-a^{2}-b^{2}-\sqrt{\left(a^{2}+b^{2}\right)^{2}+\lambda\left(-2 a^{3}+6 a b^{2}\right)+\lambda^{2}\left(a^{2}+b^{2}\right)}>0 .
$$

- We retrieve exactly the hyperbolicity condition.

Stability and hyperbolicity condition

Equivalent system of the $D 2 Q 4$ model when $\omega=2$

When $\omega=2$, the equivalent equation of the $D 2 Q 4$ model is

$$
\begin{aligned}
\partial_{t}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2} \\
z_{3}
\end{array}\right) & +\underbrace{\left(\begin{array}{cccc}
q_{1}^{\prime}(w) & 0 & 0 & 0 \\
0 & -q_{1}^{\prime}(w) & 0 & \frac{1}{2} \\
0 & -q_{2}^{\prime}(w) & 0 & 0 \\
0 & \lambda^{2} & 0 & 0
\end{array}\right)}_{A_{1}} \partial_{x_{1}}^{\left(\begin{array}{l}
w \\
y_{1} \\
y_{2} \\
z_{3}
\end{array}\right)} \\
& +\underbrace{\left(\begin{array}{cccc}
q_{2}^{\prime}(w) & 0 & 0 & 0 \\
0 & 0 & -q_{1}^{\prime}(w) & 0 \\
0 & 0 & -q_{2}^{\prime}(w) & -\frac{1}{2} \\
0 & 0 & -\lambda^{2} & 0
\end{array}\right)}_{A_{2}} \partial_{x_{2}}^{\left(\begin{array}{c}
w \\
y_{1} \\
y_{2} \\
z_{3}
\end{array}\right)=O\left(\Delta t^{2}\right)}
\end{aligned}
$$

Numerical validation of the equivalent equation

	$\boldsymbol{y}^{\text {kin }}$	$\boldsymbol{y}^{v f}$	$\mid \boldsymbol{y}^{k i n}-\boldsymbol{y}^{v f} \\|$
y_{1}			
y_{2}		(en	(emmen

$$
\left\|\boldsymbol{y}_{1}^{k i n}-\boldsymbol{y}_{1}^{v f}\right\|=1.21999 \times 10^{-5} \quad \text { and } \quad\left\|\boldsymbol{y}_{2}^{k i n}-\boldsymbol{y}_{2}^{v f}\right\|=1.57384 \times 10^{-5}
$$

- The equivalent equation is a good approximation of the scheme, and therefore it gives useful information in its behavior.

Equivalent system for the $D 2 Q 4$ system

$$
\begin{aligned}
\partial_{t}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2} \\
z_{3}
\end{array}\right) & -\frac{1}{\Delta t} \frac{\omega(\omega-2)\left(\omega^{2}-2 \omega+2\right)}{4(\omega-1)^{2}}\left(\begin{array}{c}
0 \\
y_{1} \\
y_{2} \\
z_{3}
\end{array}\right) \\
& +\left(\begin{array}{cccc}
a & 2 \gamma_{1} & 0 & 0 \\
\gamma_{1}\left(\lambda^{2}-2 a\right) & -a \gamma_{2} & 0 & \frac{\gamma_{2}}{2} \\
-2 a b \gamma_{1} & -b \gamma_{2} & 0 & 0 \\
2 \lambda^{2} a \gamma_{1} & \lambda^{2} \gamma_{2} & 0 & 0
\end{array}\right) \partial_{x_{1}}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2} \\
z_{3}
\end{array}\right) \\
& +\left(\begin{array}{cccc}
b & 0 & 2 \gamma_{1} & 0 \\
-2 a b \gamma_{1} & 0 & -a \gamma_{2} & 0 \\
\gamma_{1}\left(\lambda^{2}-2 b^{2}\right) & 0 & -b \gamma_{2} & -\frac{\gamma_{2}}{2} \\
-2 \lambda^{2} b \gamma_{1} & 0 & -\lambda^{2} \gamma_{2} & 0
\end{array}\right) \partial_{x_{2}}\left(\begin{array}{l}
w \\
y_{1} \\
y_{2} \\
z_{3}
\end{array}\right)=O(\Delta t)
\end{aligned}
$$

with $\gamma_{1}=\frac{(\omega-2)^{2}\left(\omega^{2}-2 \omega+2\right)}{16(\omega-1)^{2}}$ and $\gamma_{2}=\frac{\omega^{4}-4 \omega^{3}+6 \omega^{2}-4 \omega+2}{2(\omega-1)^{2}}$.

Hyperbolicity condition for the $D 2 Q 4$ model

The matrix

$$
P=\left(\begin{array}{cccc}
\lambda^{2}\left(4 a^{2}-\lambda^{2}\right)\left(4 b^{2}-\lambda^{2}\right) & 0 & 0 & 0 \\
0 & -2 \lambda^{2}\left(4 b^{2}-\lambda^{2}\right) & 0 & 2 a\left(4 b^{2}-\lambda^{2}\right) \\
0 & 0 & -2 \lambda^{2}\left(4 a^{2}-\lambda^{2}\right) & -2 b\left(4 a^{2}-\lambda^{2}\right) \\
0 & 2 a\left(4 b^{2}-\lambda^{2}\right) & -2 b\left(4 a^{2}-\lambda^{2}\right) & -2 a^{2}-2 b^{2}+\lambda^{2}
\end{array}\right),
$$

verifies that $P A_{1}$ and $P A_{2}$ are symmetric.

The equivalent system is hyperbolic if

$$
\max (|a|,|b|)<\frac{\lambda}{2} .
$$

Equivalent equation on w

If we assume that the $\boldsymbol{y}=O(\Delta t)$, then we obtain an expression of \boldsymbol{y} that we can reinject in the equivalent system.

Then, we retrieve the equivalent equation on w

$$
\partial_{t} w+\nabla \cdot \boldsymbol{q}(w)=\frac{\Delta t}{2}\left(\frac{1}{\omega}-\frac{1}{2}\right) \nabla \cdot\left(\mathcal{D}_{4} \nabla w\right)+O\left(\Delta t^{2}\right)
$$

with the diffusion matrix

$$
\mathcal{D}_{4}=\left(\begin{array}{cc}
\frac{\lambda^{2}}{2}-a^{2} & -a b \\
-a b & \frac{\lambda^{2}}{2}-b^{2}
\end{array}\right)
$$

Subscharacteristic stability condition

When $\omega \neq 2$, the subcharacteristic diffusive stability condition is

$$
a^{2}+b^{2} \leqslant \frac{\lambda^{2}}{2}
$$

- This condition is less restrictive than the hyperbolicity condition.

What happens when the diffusive stability condition is satisfied but not the hyperbolicity condition?

Stability condition
Hyperbolicity condition
$\omega=2$
We choose the velocity $\left\{\begin{array}{l}a=1, \\ b=0 .\end{array}\right.$
Diffusive stability condition: $\quad \lambda>\sqrt{2\left(a^{2}+b^{2}\right)}=\sqrt{2}$
Hyperbolic stability condition: $\quad \lambda>2 \max (|a|,|b|)=2$

$\omega=1.6$
We choose the velocity $\left\{\begin{array}{l}a=1, \\ b=0 .\end{array}\right.$
Stability condition: $\quad \lambda>\sqrt{2\left(a^{2}+b^{2}\right)}=\sqrt{2}$
Hyperbolicity condition: $\lambda>2 \max (|a|,|b|)=2$

$\omega=1.2$

We choose the velocity $\left\{\begin{array}{l}a=1, \\ b=0 .\end{array}\right.$
Stability condition: $\quad \lambda>\sqrt{2\left(a^{2}+b^{2}\right)}=\sqrt{2}$
Hyperbolicity condition: $\quad \lambda>2 \max (|a|,|b|)=2$

Conclusion and perspectives

- We have shown that the classical stability condition does not give a stable solution in some case.
- We have computed an equivalent system on n_{v} variables that gives us a more restrictive condition to choose λ. This condition gives us stable solution.
- We have compared the domains of validity of the equivalent equation and the equivalent system, and we would like now to find a quantitative criterion which gives us the best choice according to ω.

Thank you for your attention!

References

ADN00 Denise Aregba-Driollet and Roberto Natalini. Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM Journal on Numerical Analysis, 37(6):1973-2004, 2000.

Bou99 François Bouchut. Construction of bgk models with a family of kinetic entropies for a given system of conservation laws. Journal of Statistical Physics, 95(1):113-170, 1999.

DFHN19 Florence Drui, Emmanuel Franck, Philippe Helluy, and Laurent Navoret. An analysis of over-relaxation in a kinetic approximation of systems of conservation laws. Comptes Rendus Mécanique, 347(3):259-269, 2019.
Dub08 François Dubois. Equivalent partial differential equations of a lattice boltzmann scheme. Computers and Mathematics with Applications, 55(7):1441-1449, 2008.

Gra14 Benjamin Graille. Approximation of mono-dimensional hyperbolic systems: A lattice boltzmann scheme as a relaxation method. Journal of Computational Physics, 266:74-88, 2014.

