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Introduction

We consider the scalar conservation law in d dimensions

∂tw + ∇ · q(w) = 0, (E)

with w(x, t) ∈ R, x ∈ Rd, q(w) ∈ Rd.

• We use a kinetic relaxation scheme DdQnv which approximates (E)
with nv equations and nv unknowns. Kinetic models are efficient
numerical schemes which use transport at constant velocities.
However, it can be difficult to analyze them directly.
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Introduction

• The solution given by the kinetic model can be approximated by an
equivalent equation with one unknown w, for example in
[Dub08,Gra14].

• In this project, we have proposed an equivalent system of nv

variables: w and nv − 1 additional variables.

• We will compare the subcharacteristic stability condition given by
the analysis of the equivalent equation and the hyperbolicity
condition given by the equivalent system.
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Kinetic approximation

∂tw + ∇ · q(w) = 0 (E)

We consider the BGK kinetic model

∂tfi + ∇ · (λifi) = 1
ε

(feq
i − fi) , for i = 1, . . . , nv, (K)

where
• λi are the kinetic velocities,
• f = (fi) is the kinetic unknown,
• f eq = (feq

i ) is the equilibrium kinetic vector which satisfies the
consistency relations

w =
nv∑
i=1

feq
i and q(w) =

nv∑
i=1

λif
eq
i .

In the limit ε → 0,
∑nv

i=1 fi tends to the solution w.
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Splitting method
To solve in time the kinetic model

∂tfi + λi · ∇fi = 1
ε

(feq
i − fi), (K)

we apply a splitting method:

• Transport step :
∂tfi + λi · ∇fi = 0. (T )

We solve exactly these transport equations with the translation

f∗
i (x, t + ∆t) = fi(x − ∆tλi, t).

• Relaxation step :
∂tfi = 1

ε
(feq

i − fi). (Rω)

We do the relaxation

fn+1
i = f∗

i + ω
(
f∗,eq

i − f∗
i

)
, with ω ∈ [1, 2].
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The kinetic velocities
• In the D1Q2 model, we have nv = 2 opposite kinetic velocities :

λ1 = (λ), λ2 = (−λ).
• In the D2Q3 model, we have nv = 3 kinetic velocities :

λ1 =
(

λ
0

)
, λ2 =

(
−λ

2
λ

√
3

2

)
, λ3 =

(
−λ

2
−λ

√
3

2

)
.

• In the D2Q4 model, we have nv = 4 velocities along the Cartesian
axes :

λ1 =
(

λ
0

)
, λ2 =

(
−λ
0

)
, λ3 =

(
0
λ

)
, λ4 =

(
0

−λ

)
.

λ1λ2

λ3

λ4

λ1

λ2

λ3

λ1λ2

λ3

λ4
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Equilibrium vectors

The consistency conditions gives us the system
w

q1(w)
q2(w)
zeq

3

 =


1 1 1 1

λ1,1 λ2,1 λ3,1 λ4,1
λ1,2 λ2,2 λ3,2 λ4,2
m1,3 m2,3 m3,3 m4,3


︸ ︷︷ ︸

M


feq

1
feq

2
feq

3
feq

4

 .

With the D2Q4 model, we are free to choose the third moment and its
equilibrium. We choose:

mi,3 = (λi,1)2 − (λi,2)2 and zeq
3 = 0.

By inverting the matrix M , we obtain the expression of the equilibrium
kinetic functions feq

i .
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Flux errors
We define the approximated fluxes as

zk =
nv∑
i=1

λi,kfi, for 1 ⩽ k ⩽ d,

and the flux errors as

yk = zk − qk(w), for 1 ⩽ k ⩽ d.

For the D2Q4 model, we add a fourth variable

z3 =
nv∑
i=1

(λ2
i,1 − λ2

i,2)fi.

We will compute the equivalent system in the

(w, y) =
(
w, y1, y2, z3

)
variables.
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Change of variables

The transport step can be rewritten in these variables by


w∗(x, t + ∆t)
y∗

1(x, t + ∆t)
y∗

2(x, t + ∆t)
z∗

3(x, t + ∆t)

 = MD(∆t)M−1


w

y1 + q1(w)
y2 + q2(w)

z3

 (x, t) −


0

q1(w)
q2(w)

0

 (x, t)

where D is a diagonal matrix where Dii is a translation operator in the λi

direction. And the relaxation step is
w(x, t + ∆t)
y1(x, t + ∆t)
y2(x, t + ∆t)
z3(x, t + ∆t)

 =


w∗(x, t + ∆t)

(1 − ω)y∗
1(x, t + ∆t)

(1 − ω)y∗
2(x, t + ∆t)

(1 − ω)z∗
3(x, t + ∆t)

 .
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Computation of the equivalent system

We compute the Taylor expansion of

∂t

(
w(t)
y(t)

)
=

(
w
y

)
(t + ∆t) −

(
w
y

)
(t − ∆t)

2∆t
+ O(∆t2).

We obtain an equivalent system on (w, y) of the form

∂t

(
w
y

)
− α

∆t

(
0
y

)
+

d∑
i=1

Ai∂i

(
w
y

)
+ ∆t

d∑
i,j=1

Bij∂ij

(
w
y

)
= O(∆t2).
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Computation of the equivalent substitution equation

∂t

(
w
y

)
− α

∆t

(
0
y

)
+

d∑
i=1

Ai∂i

(
w
y

)
+ ∆t

d∑
i,j=1

Bij∂2
ij

(
w
y

)
= O(∆t2).

Now, we assume that y = O(∆t), i.e. y = ∆tỹ. By replacing y in the
system, we obtain

yk = ∆t

α

d∑
i=1

Ai[k, 1]∂xiw + O(∆t2).

Then, by replacing the yk in the first equation of the system, we retrieve
the equivalent equation on w given in [Dub08,Gra14].

∂tw +
d∑

i=1
ai∂iw + ∆t

d∑
i,j=1

bij∂2
ijw = O(∆t2).
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Study of the scheme

(E) DdQnv
Equivalent

system
Equivalent
equation

w ⇝


f1
f2
f3
f4

 ↔


w
y1
y2
z3

 −→
y=O(∆t)

w

↓ ↓
Hyperbolic

stability
condition

Diffusive
stability

condition
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Equivalent system for the D1Q2 model

For a linear flux q(w) = cw, we have the equivalent system

∂t

(
w
y

)
− 1

∆t

ω(2 − ω)(ω2 − 2ω + 2)
2(ω − 1)2

(
0
y

)

+

 c (ω−2)2(ω2−2ω+2)
8(ω−1)2

(λ2−c2)(ω−2)2(ω2−2ω+2)
8(ω−1)2 −cω4−4ω3+6ω2−4ω+2

2(ω−1)2

∂x

(
w
y

)
= O(∆t).
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Hyperbolicity condition

The matrix
P =

(
1 0
0 λ2 − c2

)
,

symmetrize the equivalent system when

|c| < λ.

Therefore, the equivalent system is hyperbolic if

|c| < λ.
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Equivalent equation of the D1Q2 model

By considering y = O(∆t), we obtain

y = ∆t
(λ2 − c2)(ω − 2)

4ω
∂xw,

which gives us the equivalent equation on w

∂tw + c∂xw + ∆t

2

( 1
ω

− 1
2

)
(λ2 − c2)∂xxw = O(∆t2).

When ω ̸= 2, the substitution equation is stable under the
subcharacteristic condition:

|c| < λ.
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Comparative study of the two models
We consider monochromatic exact solutions(

w

ye−α t
∆t

)
=
(

w0
y0

)
eikx+γt, with k ∈ N and γ ∈ C.

We obtain the following dispersion relation by injecting this solution

• in the equivalent equation on w

(γeq + aikeq − ∆tbk2
eq)w = 0,

• in the equivalent system on
(
w, ye−α t

∆t

)
(
γsysI2 + Aiksys − ∆tBk2

sys

)( w

ye−α t
∆t

)
= 0.

For the equivalent system, we obtain two γsys. We choose the one that
makes the solution w decrease slowly.
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Comparison of the solutions

ω = 1.9 ω = 1.7

ω = 1.5 ω = 1.3
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Comparative study of the two equivalent equations

We computed the relative errors
∑Nx

i=0
∑Nt

n=0(wi,n
LB − wi,n

eq )2∑Nx
i=0

∑Nt
n=0(wi,n

LB)2
:

• For little values of ω, the substitution equation appears to be the
most accurate.

• For greater values of ω, the equivalent system is more relevant.
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Numerical validation of y = O(∆t)
When we compute the equivalent equation from the system, we suppose
that y = O(∆t), and it leads to

y(t) = (λ2 − c2)(ω − 2)
4ω

∆t∂xw.

We can verify if the solution
(

w
y

)
given by the Lattice-Boltzmann method

verifies this equation, according to the value of ω. We obtain the following
error
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Equivalent system when ω = 2

When ω = 2, the equivalent system of the D2Q3 model is

∂t

w
y1
y2

+

q′
1(w) 0 0
0 λ

2 − q′
1(w) 0

0 −q′
2(w) −λ

2


︸ ︷︷ ︸

A1

∂x1

w
y1
y2



+

q′
2(w) 0 0
0 0 −λ

2 − q′
1(w)

0 −λ
2 −q′

2(w)


︸ ︷︷ ︸

A2

∂x2

w
y1
y2

= O(∆t2).

▶ In green, we retrieve the initial equation (E).
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Numerical validation of the equivalent equation

We can compare
• yvf : solution of the equivalent equation with a finite volume method,
• ykin =

∑3
i=1 λifi − q(

∑3
i=1 fi), with f the solution of (E) with the

D2Q3 model.

We choose Ω = [0, 1] × [0, 1] with a mesh of size 800 × 800,
q′(w) = (1, 1), λ = 3, Tf = 0.06 and a Gaussian initialization

w(x, 0) = exp
(

−∥x − xw
0 ∥2

2σ2

)
and yk(x, 0) = exp

(
−∥x − xy

0∥2

2σ2

)
,

with σ = 0.05, xw
0 = (0.25, 0.25) and xy

0 = (0.5, 0.5).
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Validation of the equivalent equation
ykin yvf ∥ykin − yvf ∥

y1

y2

∥ykin
1 − yvf

1 ∥ = 5.64567 × 10−4 and ∥ykin
2 − yvf

2 ∥ = 1.95625 × 10−3

▶ The equivalent equation is a good approximation of the scheme, and
therefore it gives useful information in its behavior.
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Equivalent system of the D2Q3 model
Now, let us consider any relaxation parameter ω ∈ [1, 2] and a linear flux

q(w) =
(

aw
bw

)
. We have

∂t

w
y1
y2

− 1
∆t

ω(ω − 2)(ω2 − 2ω + 2)
4(ω − 1)2

 0
y1
y2


+

 a −2γ1 0
γ1(2a + λ)(a − λ) γ2(−a + λ

2 ) 0
γ1b(2a + λ) −γ2b −γ2

λ
2

 ∂x1

w
y1
y2


+

 b 0 −2γ1
γ1b(2a + λ) 0 −γ2(a + λ

2 )
γ1(aλ + 2b2 − λ2) −γ2

λ
2 −γ2b

 ∂x2

w
y1
y2

 = O(∆t),

with γ1 = − (ω2−2ω+2)(ω−2)2

16(ω−1)2 and γ2 = ω4−4ω3+6ω2−4ω+2
2(ω−1)2 .
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Hyperbolicity condition

We consider a system of the form

∂tv + A1∂1v + A2∂2v = 0.

• This system is hyperbolic if for all unit vector n = (n1, n2), the
matrix n1A1 + n2A2 is diagonalizable in R.

• This system is symmetrizable if it exists a symmetric positive
definite matrix P such as for all unit vector n = (n1, n2), the matrix
P (n1A1 + n2A2) is symmetric, or, more simply, such as PA1 and
PA2 are symmetric.

A symmetrizable system is hyperbolic.
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Hyperbolicity condition of the D2Q3 model

The matrix

P =

 1
2 λ(a2−2aλ−3b2+λ2)(2a+λ) 0 0

0 −(aλ+2b2−λ2) b(2a+λ)
0 b(2a+λ) −(a−λ)(2a+λ)

 ,

verifies that PA1 and PA2 are symmetric.

Therefore, the equivalent system is hyperbolic if

λ2 − a2 − b2 −
√

(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2) > 0.
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Equivalent equation on w
If we assume that y = O(∆t), we obtain

y1 = ∆t

2

( 1
ω

− 1
2

)
(2a + λ) ((a − λ) ∂1w + b∂2w) + O(∆t2),

and

y2 = ∆t

2

( 1
ω

− 1
2

)(
(2ba + bλ) ∂1w +

(
λa + 2b2 − λ2

)
∂2w

)
+ O(∆t2).

By reinjecting these expressions of the yi in the equivalent system, we
retrieve the equivalent equation on w

∂tw + ∇ · q(w) = ∆t

2

( 1
ω

− 1
2

)
∇ · (D3∇w) + O(∆t2),

with the diffusion matrix

D3 =
(

λ
2 (λ + a) − a2 −λ

2 b − ab

−λ
2 b − ab λ

2 (λ − a) − b2

)
.
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Subcharacteristic stability condition
The model is stable if the diffusion matrix is positive.

When ω ̸= 2, the equivalent equation is stable if

λ2 − a2 − b2 −
√

(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2) > 0.

▶ We retrieve exactly the
hyperbolicity condition.
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Equivalent system of the D2Q4 model when ω = 2

When ω = 2, the equivalent equation of the D2Q4 model is

∂t


w
y1
y2
z3

+


q′

1(w) 0 0 0
0 −q′

1(w) 0 1
2

0 −q′
2(w) 0 0

0 λ2 0 0


︸ ︷︷ ︸

A1

∂x1


w
y1
y2
z3



+


q′

2(w) 0 0 0
0 0 −q′

1(w) 0
0 0 −q′

2(w) −1
2

0 0 −λ2 0


︸ ︷︷ ︸

A2

∂x2


w
y1
y2
z3

= O(∆t2).
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Numerical validation of the equivalent equation

ykin yvf ∥ykin − yvf ∥

y1

y2

∥ykin
1 − yvf

1 ∥ = 1.21999 × 10−5 and ∥ykin
2 − yvf

2 ∥ = 1.57384 × 10−5

▶ The equivalent equation is a good approximation of the scheme, and
therefore it gives useful information in its behavior.
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Equivalent system for the D2Q4 system

∂t


w
y1
y2
z3

− 1
∆t

ω(ω − 2)(ω2 − 2ω + 2)
4(ω − 1)2


0
y1
y2
z3



+


a 2γ1 0 0

γ1(λ2−2a) −aγ2 0 γ2
2

−2abγ1 −bγ2 0 0
2λ2aγ1 λ2γ2 0 0

 ∂x1


w
y1
y2
z3



+


b 0 2γ1 0

−2abγ1 0 −aγ2 0
γ1(λ2−2b2) 0 −bγ2 − γ2

2

−2λ2bγ1 0 −λ2γ2 0

 ∂x2


w
y1
y2
z3

 = O(∆t)

with γ1 = (ω−2)2(ω2−2ω+2)
16(ω−1)2 and γ2 = ω4−4ω3+6ω2−4ω+2

2(ω−1)2 .
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Hyperbolicity condition for the D2Q4 model

The matrix

P =


λ2(4a2−λ2)(4b2−λ2) 0 0 0

0 −2λ2(4b2−λ2) 0 2a(4b2−λ2)
0 0 −2λ2(4a2−λ2) −2b(4a2−λ2)
0 2a(4b2−λ2) −2b(4a2−λ2) −2a2−2b2+λ2

 ,

verifies that PA1 and PA2 are symmetric.

The equivalent system is hyperbolic if
max(|a|, |b|) <

λ

2 .
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Equivalent equation on w

If we assume that the y = O(∆t), then we obtain an expression of y that
we can reinject in the equivalent system.

Then, we retrieve the equivalent equation on w

∂tw + ∇ · q(w) = ∆t

2

( 1
ω

− 1
2

)
∇ · (D4∇w) + O(∆t2),

with the diffusion matrix

D4 =
(

λ2

2 − a2 −ab

−ab λ2

2 − b2

)
.
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Subscharacteristic stability condition
When ω ̸= 2, the subcharacteristic diffusive stability condition is

a2 + b2 ⩽
λ2

2 .

▶ This condition is less
restrictive than the
hyperbolicity condition.

What happens when the
diffusive stability condition is
satisfied but not the
hyperbolicity condition ?
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ω = 2

We choose the velocity
{

a = 1,
b = 0.

Diffusive stability condition: λ >
√

2(a2 + b2) =
√

2
Hyperbolic stability condition: λ > 2 max(|a|, |b|) = 2

λ = 1.6 λ = 2.2
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ω = 1.6

We choose the velocity
{

a = 1,
b = 0.

Stability condition: λ >
√

2(a2 + b2) =
√

2
Hyperbolicity condition: λ > 2 max(|a|, |b|) = 2

λ = 1.6 λ = 2.2
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ω = 1.2

We choose the velocity
{

a = 1,
b = 0.

Stability condition: λ >
√

2(a2 + b2) =
√

2
Hyperbolicity condition: λ > 2 max(|a|, |b|) = 2

λ = 1.6 λ = 2.2
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Conclusion and perspectives

• We have shown that the classical stability condition does not give a
stable solution in some case.

• We have computed an equivalent system on nv variables that gives us
a more restrictive condition to choose λ. This condition gives us
stable solution.

• We have compared the domains of validity of the equivalent equation
and the equivalent system, and we would like now to find a
quantitative criterion which gives us the best choice according to ω.
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Thank you for your attention !
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