Etude du système d'Euler bi-température avec champ magnétique transverse

Xavier Lhébrard¹, Stéphane Brull², Bruno Dubroca³,

¹LMPA, Université du Littoral et de la Côte d'Opale

² IMB, Université de Bordeaux

³LCTS, Université de Bordeaux

Schémas de type Boltzmann 23 novembre 2022

Introduction

Travail au Centre de Lasers Intenses et Applications (CELIA). Diagnostics pour le Laser Megajoule (CEA). Application : Fusion par confinement inertiel.

Transport thermique des électrons Système Euler bi-température

- Approche classique Coquel, Marmignon,1998.
- Nouvelle aproche Aregba, Brull et al., 2017 Modèle cinétique sous-jacent avec champs électrique

Prise en compte de champ magnétiques ?

Polarisation transverse magnétique

$$E = \begin{pmatrix} E_1 \\ E_2 \\ 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ B_3 \end{pmatrix}$$

Elaboration du modèle

Cas d'une espèce

f(t, x, v): fonction de disctribution

 ρ , *u T* : masse, vitesse et température

$$\rho = \int_{\mathbb{R}^3} m f \, dv, \qquad u = \frac{1}{\rho} \int_{\mathbb{R}^3} m \, v f \, dv, \qquad \frac{3}{2} k_B T = \frac{1}{\rho} \int_{\mathbb{R}^3} |v - u|^2 f \, dv.$$

Obtention de modèles fluides.

- Etat d'équilibre : $C(f, f) = 0 \iff f = \mathcal{M}_f$
- *f* = *M_f* et prendre les moments de l'équation par rapport à (1, *v*, *v*²) ⇒ système Euler
- *f* = M_f + ε*f*₁ et prendre les moments de l'équation par rapport à (1, *v*, *v*²) ⇒ système Navier-Stokes

Cas plusieurs espèces

Mélange d'une espèce d'ions et d'une espèce d'électron.

Espèce α . f_{α} : fonction de distribution de l'espèce α

$$\begin{split} n_{\alpha} &= \int_{\mathbb{R}^{3}} f_{\alpha} dv, \ u_{\alpha} = \frac{1}{n_{\alpha}} \int_{\mathbb{R}^{3}} v f_{\alpha} dv, \\ \mathcal{E}_{\alpha} &= \frac{3}{2} \rho_{\alpha} \frac{k_{B}}{m_{\alpha}} T_{\alpha} + \frac{1}{2} \rho_{\alpha} |u_{\alpha}|^{2} = \int_{\mathbb{R}^{3}} m_{\alpha} \frac{v^{2}}{2} f_{\alpha} dv. \end{split}$$

Quantités associées au mélange

$$\begin{split} \mathbf{u} &= \frac{\rho_e u_e + \rho_i u_i}{\rho_e + \rho_i}, \quad \frac{3}{2} n k_B \mathbf{T} = \sum_{\alpha} \frac{1}{2} \rho_{\alpha} (u_{\alpha}^2 - u^2) + \frac{3}{2} \sum_{\alpha} n_{\alpha} k_B T_{\alpha}.\\ \overline{\rho} &= \int_{\mathbb{R}^3} (q_e f_e + q_i f_i) d\mathbf{v} = n_e q_e + n_i q_i,\\ \mathbf{j} &= \int_{\mathbb{R}^3} \mathbf{v} (q_e f_e + q_i f_i) d\mathbf{v} = n_e q_e u_e + n_i q_i u_i \end{split}$$

Modèle cinétique plusieurs espèces

BGK pour l'espèce $\alpha = e, i$

$$\partial_{t}f_{\alpha} + \mathbf{v}_{1}\partial_{x_{1}}f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}}\left(E_{1} + B_{3}\mathbf{v}_{2}\right)\frac{\partial f_{\alpha}}{\partial \mathbf{v}_{1}} + \frac{q_{\alpha}}{m_{\alpha}}\left(E_{2} - B_{3}\mathbf{v}_{1}\right)\frac{\partial f_{\alpha}}{\partial \mathbf{v}_{2}}$$
$$= \frac{1}{\varepsilon}\left(\mathcal{M}_{\alpha} - f_{\alpha}\right) + \frac{1}{\tau_{\alpha\beta}}\left(\overline{\mathcal{M}_{\alpha\beta}} - f_{\alpha}\right).$$

$$\mathcal{M}_{\alpha}(f_{\alpha}) = \frac{n_{\alpha}}{(2\pi k_{B} T_{\alpha}/m_{\alpha})^{3/2}} \exp(-\frac{|v - u_{\alpha}|^{2}}{2k_{B} T_{\alpha}/m_{\alpha}})^{3/2}}$$
$$\overline{\mathcal{M}_{\alpha}}(f_{e}, f_{i}) = \frac{n_{\alpha}}{(2\pi k_{B} T/m_{\alpha})^{3/2}} \exp(-\frac{|v - u|^{2}}{2k_{B} T/m_{\alpha}})^{3/2}}$$

Couplage avec les équations de Maxwell

$$\begin{cases} \partial_x E_1 = \frac{\bar{\rho}}{\varepsilon^2}, & \partial_t E_1 = -\frac{j_1}{\varepsilon^2}, \\ \partial_t B_3 + \partial_x E_2 = 0, & \partial_t E_2 + \frac{1}{\varepsilon^2} \partial_x B_3 = -\frac{j_2}{\varepsilon^2}, \end{cases}$$

On choisit $f_{\alpha} = \mathcal{M}_{\alpha}$ et on prend les moments de l'équation par rapport à $(1, v, v^2)$.

Limite quasi-neutre pour les équations de Maxwell

$$q=0, \quad j_1=0, \quad j_2=-\partial_x B_3$$

Difficulté pour les moments d'ordre 2 :

$$\partial_t \mathcal{E}_{\alpha} + \partial_x (u_1(\mathcal{E}_{\alpha} + p_{\alpha})) + q_{\alpha} n_{\alpha} (u_1 \mathcal{E}_1 + u_{2,\alpha} \mathcal{E}_2) = \mathcal{S}_{\alpha\beta}.$$

Fermeture du système? Loi d'Ohm généralisée

$$q_e n_e(E_1 + u_2 B_3) = \frac{c_i \partial_x p_e - c_e \partial_x p_i}{E_2 = B_3 u_1} + (c_i - c_e) \partial_x (B_3^2/2),$$

Résultat : Le système cinétique converge formellement vers le système d'équations suivant :

$$\begin{array}{ll} \partial_t \rho & +\partial_x (\rho u_1) = 0, \\ \partial_t (\rho u_1) & +\partial_x (\rho u_1^2 + p_e + p_i + B_3^2/2) = 0, \\ \partial_t (\rho u_2) & +\partial_x (\rho u_1 u_2) = 0, \\ \partial_t \overline{B_3} & +\partial_x (u_1 B_3) = 0, \\ \partial_t \overline{\mathcal{E}_e} & +\partial_x (u_1 (\overline{\mathcal{E}_e} + p_e + c_e B_3^2/2)) - u_1 (c_i \partial_x p_e - c_e \partial_x p_i) = S_{ei}, \\ \partial_t \overline{\mathcal{E}_i} & +\partial_x (u_1 (\overline{\mathcal{E}_i} + p_i + c_i B_3^2/2)) + u_1 (c_i \partial_x p_e - c_e \partial_x p_i) = -S_{ei}, \end{array}$$

Deux lois de pression et deux températures :

$$p_{\alpha} = (\gamma_{\alpha} - 1)\rho_{\alpha}\varepsilon_{\alpha} = n_{\alpha}k_{B}T_{\alpha}, \quad \alpha = e, i.$$

Système non conservatif avec sources.

Systèmes conservatifs :

- existence de solutions discontinues (ondes de choc)
- relations de Rankine Hugoniot
- solution admissible ↔ inégalité d'entropie

Systèmes non-conservatifs :

- Définition des solutions faibles?
- Admissibilité des solutions faibles ? Conditions d'entropie ?
- Approximation numérique?

Résultat :

• Schéma robuste et satisfaisant une inégalité d'entropie

Méthode numérique

Schéma de type Godunov

Forme condensée

$$\partial_t U + \partial_x F(U) + B(U) \partial_x U = 0.$$

Discrétisation constante par maille

$$U_i^n \simeq \frac{1}{\Delta x} \int_{C_i} U(t_n, x) dx.$$

On note $R(\xi, U_l, U_r)$ un solveur de Riemann approché.

Schéma de type Godunov

Condition CFL 1/2

$$A(U_i, U_{i+1}) \Delta t \leq \frac{1}{2} \Delta x, \quad \forall i$$

Avec A(.,.) la vitesse maximale de propagation définie par :

$$\mathsf{A}(U_l, U_r) = \max\left(|\Sigma_1|, \cdots, |\Sigma_{\rho}|
ight),$$

où $\Sigma_1, \dots, \Sigma_p$ sont les vitesses du solveur de Riemann.

Différents type de solveurs de Riemann approchés

$$\partial_t u + \partial_x F(u) = 0, \quad t \in \mathbb{R}, x \in \mathbb{R},$$

 $u(t, x) \in \mathbb{R}^p, \quad F(u(t, x)) \in \mathbb{R}^p$

- Solutions bornées mais discontinues,
- Les non-linéarités de F induisent une non-unicité des solutions.

Idées de relaxation

- Construire une solution comme limite u(t, x) = lim u_ε(t, x), u_ε(t, x) = Lf_ε(t, x), obtenue à partir de solutions f_ε d'un autre système (plus simple) de lois de conservations,
- Cette solution f_ε(t, x) est forcée, par un système de relaxation, de rester dans une variété d'équilibre f_ε(t, x) ∈ M
- Cette variété M peut être paramétrisée par $u \equiv Lf$, i.e. on a

$$f \in \mathcal{M}$$
 sssi $f = M(u)$, and $LM(u) = u$.

Exemple : modèle Jin Xin

Le modèle le plus simple (ε ommis) :

$$\partial_t f_1 - c \partial_x f_1 = \frac{M_1(u) - f_1}{\varepsilon},$$

$$\partial_t f_2 - c \partial_x f_2 = \frac{M_2(u) - f_2}{\varepsilon},$$

avec $f(t, x) = (f_1(t, x), f_2(t, x)) \in \mathbb{R}^p \times \mathbb{R}^p, u(t, x) = Lf(t, x), c > 0,$

$$M(u) = \left(\frac{Lf = f_1 + f_2,}{2}, \frac{u + F(u)/c}{2}\right)$$

- On a $\partial_t u + c \partial_x (f_2 f_1) = 0$,
- Le second membre impose $f M(u) \rightarrow 0$, i.e. $f \rightarrow M(u)$, donc $c(f_2 f_1) \simeq c(M_2(u) M_1(u)) = F(u)$.

Cadre général :

$$\partial_t f + \partial_x \mathcal{R}(f) = \frac{Q(f)}{\varepsilon}$$

 $f(t, x) \in \mathbb{R}^q, q > p, \quad L : \mathbb{R}^q \to \mathbb{R}^p$ linéaire

L'équibilibre maxwellien vérifie les relations de c

$$LM(u) = u,$$

$$L\mathcal{A}(M(u)) = F(u)$$

$$LQ(f) = 0,$$

$$Q(f) = 0 \quad \text{sssi} \quad f = M(u)$$

Exemple : relaxation BGK terme de relaxation Q(f) = M(Lf) - f.

Modèles de relaxation cinétique

- L'espace ℝ^q = (ℝ^p)^Θ est un espace de fonctions, f = f(ξ), ξ ∈ Θ, avec ξ ∈ Θ avec un espace mesurable de mesure positive dξ.
- La non-linéarité est $\mathcal{A}(f)(\xi) = a(\xi)f(\xi)$ pour une certaine fonction $a(\xi) \in \mathbb{R}$,
- L'opérateur linéaire est $Lf = \int_{\Theta} f(\xi) d\xi$,
- La maxwellienne devient $M(u) = M(u, \xi)$, et les relations de consistances :

$$\int M(u,\xi)d\xi = u, \quad \int a(\xi)M(u,\xi)d\xi = F(u).$$

Commentaires :

- Ce sont des modèles de type semi-linéaires diagonaux, potentiellement de dimension infinie,
- Ces modèles interviennent naturellement en théorie cinétique des gaz, comme l'équation de Boltzmann.

Comment justifier la limite de relaxation $\varepsilon \rightarrow 0$?

Quand la limite u est régulière (dans un espace de Sobolev).
 Méthode : méthode d'entropie relative pour estimer la distance à la solution limite

N. Masmoudi, Some recent developments on the hydrodynamic limit of the Boltzmann equation, 2002.

- Lorsque l'équation limite n'est pas trop fortement non linéaire (ex. Navier-Stokes, avec viscosité)
 Méthode : contrôler la compacité et la taille de la solution
 F. Golse, L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, 2004.
- Lorsque la limite *u* est une solution faible discontinue.
 Méthode : obtenir des bornes L[∞] sur la solution, et obtenir compacité (estimations BV, compacité compensée).

F. Berthelin, F. Bouchut, *Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics*, 2002.

L'idée est d'écrire des conditions nécessaires/suffisantes pour que la limite de relaxation soit assurée.

Exemple : Pour le modèle de Jin-Xin, une condition de stabilité est la condition sous-charactéristique

 $\operatorname{Sp}(F'(u)) \subset [-c, c]$

Plusieurs conditions de stabilité existent. Nous allons nous concentrer sur deux conditions :

- la condition d'entropie étendue (CEE)
- la condition de dissipation de Chapman-Enskog (DCE)

Entropie

La notion d'entropie est utilisée pour les lois de conservation hyperboliques pour

- sélectionner les solutions admissible (Lax)
- établir des estimations a priori
- prouver compacité (DiPerna)

Pour la loi de conservation

$$\partial_t u + \partial_x F(u) = 0$$

une *entropie* est une fonction scalaire $\eta(u)$, elle qu'il existe une fonction scalaire G(u), appelée flux d'entropie, satisfaisant

$$G'(u) = \eta'(u)F'(u)$$

Intérêt : les solutions régulières satisfont $\partial_t \eta(u) + \partial_x G(u) = 0$. Si η est une entropie convexe, une solution faible est dîte entropique si

$$\partial_t \eta(u) + \partial_x G(u) \leq 0.$$

Systèmes de relaxation : condition d'entropie étendue (CEE)

Cette condition a été donné dans

G.Q. Chen, C.D. Levermore, T.-P. Liu, *Hyperbolic conservation laws with stiff relaxation terms and entropy*, 1994.

Levemore, Liu, 1994]. Cadre relaxation hyperbolique

 $\partial_t u + \partial_x F(u) = 0, \qquad \partial_t f + \partial_x \mathcal{A}(f) = Q(f)/\varepsilon.$

Définition : Étant donné une entropie convexe η , on dit que (CEE) est vraie si il existe une entropie convexe $\mathcal{H}(f)$ avec flux d'entropie $\mathcal{G}(f)$, tels que

 $\begin{aligned} \mathcal{H}(M(u)) &= \eta(u) + cst, \\ \mathcal{G}(M(u)) &= G(u) + cst, \end{aligned}$

et tel qu'on ait le principe de minimisation

$$\mathcal{H}(M(u)) \leq \mathcal{H}(f)$$
 dès que $u = Lf$.

Dissipation de Chapman-Enskog (DCE)

Cadre relaxation hyperbolique

$$\partial_t u + \partial_x F(u) = 0, \qquad \partial_t f_{\varepsilon} + \partial_x \mathcal{A}(f_{\varepsilon}) = Q(f_{\varepsilon})/\varepsilon.$$

avec une relaxation de type BGK $Q(f_{\varepsilon}) = M(Lf_{\varepsilon}) - f_{\varepsilon}$. Alors, formellement, avec $u_{\varepsilon} = Lf_{\varepsilon}$,

$$\partial_t u_{\varepsilon} + \partial_x F(u_{\varepsilon}) = \partial_x \left(D(u_{\varepsilon}) \partial_x u_{\varepsilon} \right),$$
(1)

jusqu'au termes en ε^2 , avec

$$D(u) = L\mathcal{A}'(M(u))^2M'(u) - F'(u)^2$$

Définition Soit η une entropie convexe. On dit que (DCE) est vraie si (1) est η -dissipative, i.e. D(u) est symétriquement positive pour $\eta''(u)$. Cela implique que

$$\partial_t \eta(u) + \partial_x G(u) - \varepsilon \partial_x (\eta'(u) D(u) \partial_x u) = -\varepsilon D(u)^t \eta''(u) \cdot \partial_x u \cdot \partial_x u \le 0$$

Commentaire :

entropie étendue (CEE)⇒ Chapman-Enskog (DCE)

Xavier Lhebrard

Hot Plasmas III

L'approche par relaxation permet de construire des **schémas numériques** pour les lois de conservations $\partial_t u + \partial_x F(u) = 0$, par une approche de **transport-projection**. On peut la résumer de la manière suivante :

- On commence avec $u^n(x)$ constant par morceaux,
- On définit $f^n(x) = M(u^n(x))$, qui est constant par morceaux,
- On résoud le problème de relaxation ∂_tf + ∂_x ℋ(f) = 0 pour tⁿ < t < tⁿ⁺¹
- On définit uⁿ⁺¹(x) par des projections constantes par morceaux de Lf(tⁿ⁺¹, x)

Quelques commentaires sur ce type de schémas

- On construit un solveur de Riemann approché, qui génère un schéma conservatif de type volumes finis
- En particulier, les modèles cinétiques de relaxation génèrent des schémas cinétiques,
- Si la condition d'entropie étendue (CEE) est satisfaite, alors le schéma numérique sera stable, sous condition CFL, il satisfera une inégalité d'entropie discrète.

Solveur de Riemann approché par relaxation

Système de lois de conservation

$$\partial_t U + \partial_x F(U) = 0$$
, *p* variables.

Système de relaxation

$$\partial_t f + \partial_x \mathcal{A}(f) = \frac{Q(f)}{\varepsilon}, \quad q > p \text{ variables.}$$

 $LM(U) = U$
 $L\mathcal{A}(M(U)) = F(U)$

Solveur de Riemann approché pour le système de relaxation

 $\mathcal{R}(x/t, f_l, f_r)$

Solveur de Riemann approché pour le système de lois de conservation

 $R(x/t, U_l, U_r) = L \mathcal{R}(x/t, M(U_l), M(U_r)).$

Exemple de système de relaxation LD

Système d'Euler isentropique

$$U = \begin{pmatrix} \rho \\ \rho u \end{pmatrix}, \quad F(U) = \begin{pmatrix} \rho u \\ \rho u^2 + \mathbf{P} \end{pmatrix}$$

Système de relaxation Suliciu

$$f = \begin{pmatrix} \rho \\ \rho u \\ \rho \pi \end{pmatrix}, \quad \mathcal{A}(f) = \begin{pmatrix} \rho u \\ \rho u^2 + \pi \\ \rho \pi u + c^2 u \end{pmatrix}$$
$$L \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad M(U) = \begin{pmatrix} \rho \\ \rho u \\ \rho \mu \end{pmatrix}$$

On vérifie que

$$LM(U) = U$$
$$L\mathcal{A}(M(U)) = F(U)$$

Problème de Riemann pour des systèmes LD

On considère un système hyperbolique

 $\partial_t U + \partial_x (F(U)) = 0.$

Soit $\lambda(U)$ une valeur propre de F'(U) and $E_{\lambda}(U) := \text{Ker}(F'(U) - \lambda(U)Id)$.

 $\lambda(U)$ est linéairement dégénérée (LD) $\longleftrightarrow \forall U, \forall r \in E_{\lambda}(U), \quad \partial_{U}\lambda(U).r = 0$

w(U) est un invariant de Riemann $\longleftrightarrow \forall U, \forall r \in E_{\lambda}(U), \quad \partial_{U}w(U).r = 0$

Si U_1 , U_2 sont reliés par une discontinuité de contact alors $w(U_1) = w(U_2)$ Solution du problème de Riemann pour des systèmes LD \rightarrow uniquement des discontinuité de contact.

relations de Rankine Hugoniot ←→invariants de Riemann

Exemple de système LD : un système diagonal

$$W = (w_1, w_2, w_3) \in \mathbb{R}^3, \quad \partial_t W + D\partial_x W = 0$$

$$x/t = \Sigma_2$$

$$x/t = \Sigma_1$$

$$x/t = \Sigma_3$$

$$U_l = \begin{pmatrix} w_{1,l} \\ w_{2,l} \end{pmatrix}, \quad U_l^* = \begin{pmatrix} w_{1,r} \\ w_{1,l} \end{pmatrix}, \quad U_r^* = \begin{pmatrix} w_{1,r} \\ w_{2,r} \end{pmatrix}, \quad U_r = \begin{pmatrix} w_{1,r} \\ w_{2,r} \end{pmatrix}$$

$$U_{l} = \begin{pmatrix} w_{1,l} \\ w_{2,l} \\ w_{3,l} \end{pmatrix}, \quad U_{l}^{*} = \begin{pmatrix} w_{1,r} \\ w_{1,l} \\ w_{1,l} \end{pmatrix}, \quad U_{r}^{*} = \begin{pmatrix} w_{1,r} \\ w_{2,r} \\ w_{3,l} \end{pmatrix}, \quad U_{r} = \begin{pmatrix} w_{1,r} \\ w_{2,r} \\ w_{3,r} \end{pmatrix}$$

Mult. Invariants de Riemann Valeurs propres λ_1 1 W2, W3 1 λ2 W_1 , W₃ λ_3 1 W_1 , W_2

Autre système LD : relaxation de type Suliciu

Système d'Euler isentropique

$$\partial_t \rho + \partial_x (\rho u) = 0,$$

 $\partial_t \rho u + \partial_x \left(\rho u^2 + \mathbf{p} \right) = 0.$

Équation sur pp

$$\partial_t \frac{\rho p}{\rho} + \partial_x (\rho p u) + \frac{\rho^2 p'(\rho)}{\rho^2 u} \partial_x u = 0,$$

Système non linéairement dégénéré

$$u - \sqrt{p'(\rho)}$$
; $u + \sqrt{p'(\rho)}$

Système de relaxation Nouvelle variable π

$$\partial_t \rho + \partial_x (\rho u) = 0,$$

$$\partial_t \rho u + \partial_x \left(\rho u^2 + \pi \right) = 0$$

Définition de π

$$\partial_t \rho \pi + \partial_x (\rho p u) + \frac{c^2}{c^2} \partial_x u = 0,$$

Système linéairement dégénéré

$$u - \sqrt{
ho^{-2} \ c^2}$$
 ; $u + \sqrt{
ho^{-2} \ c^2}$

Résolution pb de Riemann

V. P. Mult. Invariants de Riemann

$$\lambda_1 = u_l - \frac{a_l}{\rho_l}$$
 1 $\frac{1}{\rho} + \frac{\pi}{a^2}$, $\pi + au$
 $\lambda_2 = u_l^* = u_r^r$ 1 π
 $\lambda_3 = u_r + \frac{a_r}{\rho_r}$ 1 $\frac{1}{\rho} + \frac{\pi}{a^2}$, $\pi - au$

 $V = (\rho, \mu, \pi) \in \mathbb{R}^3$

$$\begin{aligned} u_l^* &= u_r^* := u^* & \pi_l^* &= \pi_r^* := \pi^* \\ (\pi + au)_l^* &= (\pi + au)_l & (\pi - au)_r^* &= (\pi - au)_r \\ \left(\frac{1}{\rho} + \frac{\pi}{a^2}\right)_l^* &= \left(\frac{1}{\rho} + \frac{\pi}{a^2}\right)_l & \left(\frac{1}{\rho} + \frac{\pi}{a^2}\right)_r^* &= \left(\frac{1}{\rho} + \frac{\pi}{a^2}\right)_r \end{aligned}$$

$$\pi^* + a_l u^* = \pi_l + a_l u_l$$
$$\pi^* + a_r u^* = \pi_r + a_r u_r$$

on en déduit π^* et u^* , puis $1/\rho_l^*$, $1/\rho_r^*$.

Hot Plasmas III

Relaxation type Suliciu pour le système nonconservatif MHD biT

Système MHD bi-température

$$\partial_{t}\rho + u_{1}\partial_{x}\rho + \rho\partial_{x}u_{1} = 0,$$

$$\partial_{t}u_{1} + u_{1}\partial_{x}u_{1} + \rho^{-1}\partial_{x}(\rho_{e} + \rho_{i} + \beta_{3}^{2}/2) = 0,$$

$$\partial_{t}u_{2} + u_{1}\partial_{x}u_{2} = 0,$$

$$\partial_{t}B_{3} + B_{3}\partial_{x}u_{1} + u_{1}\partial_{x}B_{3} = 0,$$

$$\partial_{t}\varepsilon_{e} + u_{1}\partial_{x}\varepsilon_{e} + \rho_{e}^{-1}\rho_{e}\partial_{x}u_{1} = 0,$$

$$\partial_{t}\varepsilon_{i} + u_{1}\partial_{x}\varepsilon_{i} + \rho_{i}^{-1}\rho_{i}\partial_{x}u_{1} = 0.$$

$$\varepsilon_{i} = quation sur \rho_{e} et \rho_{i}$$

$$\frac{\partial_t \mathbf{p}_{\theta}}{\partial_t \mathbf{p}_{\theta}} + u_1 \partial_x \mathbf{p}_{\theta} + \frac{\gamma_{\theta} \mathbf{p}_{\theta}}{\gamma_{\theta} \mathbf{p}_{\theta}} \frac{\partial_x u_1 = 0}{\partial_x u_1} = 0$$

$$\frac{\partial_t \mathbf{p}_i}{\partial_x} + u_1 \partial_x \mathbf{p}_i + \frac{\gamma_{i} \mathbf{p}_i}{\gamma_{i} \mathbf{p}_i} \frac{\partial_x u_1 = 0,$$

Système non linéairement dégénéré

$$u; u \pm \sqrt{\rho^{-2}(\gamma_e \rho p_e + \gamma_i \rho p_i + \rho B_3^2)}$$

Système de relaxation Nouvelles variables π_e et π_i

$$\begin{split} \partial_{t}\rho + u_{1}\partial_{x}\rho + \rho\partial_{x}u_{1} &= 0, \\ \partial_{t}u_{1} + u_{1}\partial_{x}u_{1} + \rho^{-1}\partial_{x}(\pi_{\theta} + \pi_{i} + B_{3}^{2}/2) &= 0, \\ \partial_{t}u_{2} + u_{1}\partial_{x}u_{2} &= 0, \\ \partial_{t}B_{3} + B_{3}\partial_{x}u_{1} + u_{1}\partial_{x}B_{3} &= 0, \\ \partial_{t}\varepsilon_{\theta} + u_{1}\partial_{x}\varepsilon_{\theta} + \rho_{\theta}^{-1}\pi_{\theta}\partial_{x}u_{1} &= 0, \\ \partial_{t}\varepsilon_{i} + u_{1}\partial_{x}\varepsilon_{i} + \rho_{i}^{-1}\pi_{i}\partial_{x}u_{1} &= 0, \end{split}$$

Définition de π_e et π_i

$$\partial_t \frac{\pi_{\theta}}{\pi_{\theta}} + u_1 \partial_x \pi_{\theta} + \frac{c_{\theta}}{\rho} (a^2 - \rho B_3^2) \partial_x u_1 = 0,$$

$$\partial_t \frac{\pi_i}{\mu} + u_1 \partial_x \pi_i + \frac{c_i}{\rho} (a^2 - \rho B_3^2) \partial_x u_1 = 0.$$

Système linéairement dégénéré

$$u; u \pm \sqrt{\rho^{-2} a^2}$$

Résolution pb de Riemann

$$V = (\rho, u_1, \varepsilon_e, \varepsilon_i, B_3, \pi_e, \pi_i) \in \mathbb{R}^7$$
Valeurs propres Mult. Invariants de Riemann
$$\lambda_1 = u_l - \frac{a_l}{\rho_l} \qquad 1 \qquad B_3/\rho, \quad w_{1,e}, \quad w_{1,i}, \quad w_{2,e}, \quad w_{2,i}$$

$$\lambda_2 = u_l^* = u_r^r \qquad 5 \qquad \pi_e + \pi_i + B_3^2/2$$

$$\lambda_3 = u_r + \frac{a_r}{\rho_r} \qquad 1 \qquad B_3/\rho, \quad w_{1,e}, \quad w_{1,i}, \quad w_{2,e}, \quad w_{2,i}$$

avec

$$w_{1,\alpha} = \pi_{\alpha} + c_{\alpha}B_3^2/2 + \frac{a^2c_{\alpha}}{\rho}, \quad w_{2,\alpha} = \varepsilon_{\alpha} + \frac{B_3^2}{2\rho} - \frac{\left(\pi_{\alpha} + c_{\alpha}B_3^2/2\right)^2}{2(c_{\alpha}a)^2}.$$

On résout explicitement les états intermédiaires.

On remarque que

$$C_i W_1 - C_e W_2 = \frac{C_i \pi_e - C_e \pi_i}{C_i \pi_e - C_e \pi_i}$$

Donc $c_i \pi_e - c_e \pi_i$ est un invariant de Riemann pour les discontinuités extrêmes.

Donc le produit nonconservatif $u \frac{\partial_x (c_i \pi_e - c_e \pi_i)}{\partial_x (c_i \pi_e - c_e \pi_i)}$ est bien défini

Robustesse du schéma

Domaine convexe d'admissibilité

$$\Omega = \left\{ \left(\rho, \rho u, B_3, \widetilde{\mathcal{E}_e}, \widetilde{\mathcal{E}_i} \right) \in \mathbb{R}^5, \ \rho \ge 0, \epsilon_e \ge 0, \epsilon_i \ge 0 \right\}$$

 U_i^{n+1} est une combinaison convexe des états intermédiaires. Condition suffisante

 $U_l^*, U_r^* \in \Omega$.

condition sous-caractéristique sur la vitesse de relaxation speed a

$$a^2 \ge
ho B_3^2 +
ho \max(a_e^2, a_i^2), \quad a_lpha = \sqrt{rac{\gamma_lpha p_lpha}{
ho_lpha}}$$

implique $\rho_l^* \ge 0$, $\rho_r^* \ge 0$.

$$a \geq \max\left(\frac{|\pi_e + c_e B_3^2/2|}{2c_e \sqrt{\varepsilon_e}}, \frac{|\pi_i + c_i B_3^2/2|}{2c_i \sqrt{\varepsilon_i}}\right)$$

 $\text{implique } \varepsilon^*_{i,l} \geq 0, \, \varepsilon^*_{e,l} \geq 0, \, \varepsilon^*_{i,r} \geq 0, \, \varepsilon^*_{e,l} \geq 0.$

Inégalité d'entropie

$$\partial_t \eta(U) + \partial_x G(U) \leq 0$$

MHD bitempérature

$$\eta(U) = -\rho c_e s_e - \rho c_i s_i$$
$$s_e = \ln\left(\frac{\rho_e}{\rho_e^{\gamma}}\right), \quad s_i = \ln\left(\frac{\rho_i}{\rho_i^{\gamma}}\right),$$
$$G(U) = u_1 \eta(U)$$

Résultat : Inégalité d'entropie discrète

$$\frac{1}{\Delta t}\left(\eta(U_i^{n+1})-\eta(U_i^n)\right)+\frac{1}{\Delta x}\left(G(U_i^n,U_{i+1}^n)-G(U_{i-1}^n,U_i^n)\right)\leq 0$$

avec flux d'entropie numérique satisfaisant G(U, U) = G(U).

Cadre général

Inégalité de Jensen :

$$\eta(U_i^{n+1}) \leq \frac{1}{\Delta x} \int_0^{\Delta x/2} \eta(R(x/\Delta t, U_{i-1}, U_i)) dx$$

+ $\frac{1}{\Delta x} \int_{-\Delta x/2}^0 \eta(R(x/\Delta t, U_i, U_{i+1})) dx$
= $\eta(U_i^n) - \frac{\Delta t}{\Delta x} (G_i(U_i, U_{i+1}) - G_r(U_{i-1}, U_i))$

On dit que le sovleur est entropique si

 $G_r(U_l, U_r) \leq G_l(U_l, U_r).$

Dans ce cas pour tout flux numérique $G(U_l, U_r)$ tel que

```
G_r(U_l, U_r) \leq G(U_l, U_r) \leq G_l(U_l, U_r),
```

le schéma vérifie une inégalité d'entropie discrète.

Entropie étendue pour les modèles de relaxation

On dit que $\mathcal{H}(U)$ est une entropie étendue de $\eta(U)$ s'il exsite $\mathcal{G}(U)$ telle que

 $\begin{aligned} \mathcal{G}'(U) &= \mathcal{H}'(U)\mathcal{R}'(U) \\ \mathcal{H}(M(U)) &= \eta(U) \\ \mathcal{G}(M(U)) &= G(U) \end{aligned}$

Principe du minimum d'entropie

$$\mathcal{H}(M(U)) \leq \mathcal{H}(f), \quad \forall U = Lf$$

Propriété :

Soit \mathcal{H} une entropie étendue de η ,

 $\mathcal R$ solveur du système de relaxation,

 $R = L\mathcal{R}(., M(U_l), M(U_r))$ solveur du système de départ

 $\begin{array}{ll} \text{Si} & \mathcal{R} \text{ est } \mathcal{H} \text{ - entropique } & (\mathcal{G}_r - \mathcal{G}_l \leq 0) \\ \text{Alors } & \mathcal{R} \text{ est } \eta \text{ - entropique } & (\mathcal{G}_r - \mathcal{G}_l \leq 0). \end{array}$

- 1994, [Chen, Levermore, Liu]
- 1999, 2004, [Bouchut]
- 2011, [Bouchut, Klingenberg, Waagan]
- 2012, 2015, [Berthon, Dubroca, Sangam]
- 2013, [Bouchut, Boyaval]
- 2016 [Bouchut, L]

Etapes de la preuve

 condition sous-caractéristique suffisante pour effectuer localement un changement de variable sur les invariants de Riemann

$$\begin{split} \varphi_e(\tau, \varepsilon_e, B_3, \pi) &= \pi + c_e B_3^2/2 + a^2 c_e \tau \\ \phi_e(\tau, \varepsilon_e, B_3, \pi) &= \varepsilon_e + \tau B_3^2/2 - \frac{(\pi + c_e B_3^2/2)^2}{2(c_e a)^2} \\ \psi_e(\tau, \varepsilon_e, B_3, \pi) &= \tau B_3 \end{split}$$

 ce changement de variable permet de prouver l'existence d'une entropie étendue

$$\max_{\pi\in\mathbb{R}}\mathcal{S}_{\alpha}\left(\phi(\Sigma),\varphi(\Sigma),\psi(\Sigma)\right)=\mathcal{S}_{\alpha}\left(\phi(\Sigma),\varphi(\Sigma),\psi(\Sigma)\right)|_{\pi=\rho_{\alpha}(\tau,\varepsilon_{\alpha})}=\boldsymbol{s}_{\alpha}(\tau,\varepsilon_{\alpha}).$$

Sous condition sous-caractérique, on peut définir

$$\begin{split} \mathbf{S}(\Sigma) &= \mathbf{s}_{\alpha} \left(\bar{\tau} \left(\phi(\Sigma), \varphi(\Sigma), \psi(\Sigma) \right), \bar{\varepsilon}_{\alpha} \left(\phi(\Sigma), \varphi(\Sigma), \psi(\Sigma) \right) \right), \\ \text{avec} \ \bar{\tau} \left(\phi(\Sigma), \varphi(\Sigma), \psi(\Sigma) \right) |_{\pi = p(\tau, \varepsilon_{\alpha})} &= \tau \ \text{ et } \ \bar{\varepsilon}_{\alpha} \left(\phi(\Sigma), \varphi(\Sigma), \psi(\Sigma) \right) |_{\pi = p(\tau, \varepsilon_{\alpha})} = \varepsilon_{\alpha}, \end{split}$$

On veut montrer que $\pi \mapsto \frac{\partial S}{\partial \pi}(\Sigma)$ admet un unique maximum en $\pi = p$. Après quelques calucls, on obtient

$$\frac{\partial S}{\partial \pi}(\Sigma) = \frac{\left(p_{\alpha}(\bar{\tau},\bar{\varepsilon}_{\alpha}) + \bar{B}_{3}^{2}/2\right) - \left(\pi + B_{3}^{2}/2\right)}{a^{2}\bar{\varepsilon}_{\alpha}},$$

On obtient donc bien que $\pi = p$ est un extremum. Est-il l'unique maximum? Oui et pour le vérifier on dérive une deuxième fois !

Tests numériques

Test avec solution régulière analytique

Conditions initiales

$$\begin{aligned} \rho(x,0) &= 1, & u_1(x,0) = 10, \\ T_e(x,0) &= 1 + \exp(-200(x-1/2)^2), & T_i(x,0) = 2 - T_e(x,0), \\ B_3(x,0) &= \exp(-50(x-1/2)^2). \end{aligned}$$

Résultats au temps t = 0.5.

Problèmes de Riemann

Référence pour Euler mono-température conservatif

E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics : A Practical Introduction, 1997.

Nouveaux cas tests bitempérature nonconservatif

Test	ρ	u	B_3	T_e	T_i
Test 1 left	1	0.75	0.8164966	0.3336667	0.3336667
Test 1 right	0.125	0	0.2581989	0.2669333	0.2669333
Test 2 left	1	-2	0.5163978	0.1334667	0.1334667
Test 2 right	1	2	0.5163978	0.1334667	0.1334667
Test 3 left	1	0	14.142136	100.10000	100.1
Test 3 right	1	0	0.2581989	0.0333667	0.0333667
Test 4 left	5.9999924	19.5975	17.528909	25.630859	25.630860
Test 4 right	5.9999242	-6.19633	5.5434646	2.5634264	2.5634266
Test 5 left	1	-19.5975	8.1649658	33.366665	33.366667
Test 5 right	1	-19.5975	0.2581989	0.0333667	0.0333667
Test 6 left	1.4	0	0.8164966	0.2383333	0.2383333
Test 6 right	1	0	0.8164966	0.3336667	0.3336667
Test 7 left	1.4	0.1	0.8164966	0.2383333	0.2383333
Test 7 right	1	0.1	0.8164966	0.3336667	0.3336667

Discrétisation naïve pour comparaison

Les termes non-conservatifs s'écrivent

$$u\partial_x(c_ip_e-c_ep_i)$$

Schéma HLL non conservatif (ncHLL)

HLL partie flux conservatif + approximation terme NC avec u = cst sur chaque maille.

$$F_l^{\mathcal{E}_e}(U_l, U_r) = F_{HLL}^{\mathcal{E}_e}(U_l, U_r) - u_r(\phi_r - \phi_l)$$
$$F_r^{\mathcal{E}_e}(U_l, U_r) = F_{HLL}^{\mathcal{E}_e}(U_l, U_r) - u_l(\phi_r - \phi_l)$$

avec $\phi = c_i p_e - c_e p_i$.

Est-ce que le code renvoie un résultat, sur un maillage 1D assez grossier N = 300 ?

	Suliciu	ncHLL
Test 1	\checkmark	\checkmark
Test 2	\checkmark	Ø
Test 3	\checkmark	\checkmark
Test 4	\checkmark	\checkmark
Test 5	\checkmark	Ø
Test 6	\checkmark	\checkmark
Test 7	\checkmark	\checkmark

right shock wave, a right travelling contact and a left sonic rarefaction wave

two symmetric rarefaction waves travelling in opposite direction and a trivial contact wave

a strong wave of shock, a contact surface and a left rarefaction wave

Test 4 Suliciu

three strong discontinuities travelling to the right

left rarefaction rarefaction wave, a right-travelling shock wave and a stationary contact discontinuity

right shock wave, a right travelling contact and a left sonic rarefaction wave

a right strong wave of shock, a right contact surface and a left rarefaction wave

three strong discontinuities travelling to the right

Test 6 et 7 Suliciu et ncHLL

On the left, test 6 is an isolated stationary contact wave. On the rigt, test 7 is an isolated contact moving slowly to the right.

- A partir d'un modèle cinétque conservatif couplé aux équations de Maxwell, on obtient par limite hydrodynamique un modèle MHD bi-température non-conservatif.
- Construction d'un schéma volumes finis grâce à la résolution d'un système de relaxation LD.

Pour ce système de relaxation les produits non-conservatifs deviennent bien définis.

- Sous conditions CFL sous-charactéristiques
 - le schéma préserve la positivité des densités et des énergies internes électroniques et ioniques
 - le schéma satisfait une inégalité d'entropie discrète.
- Comparaison avec une discrétisation nc HLL
 - si le schéma positif entropique, observe CV numérique,
 - si le schéma n'est pas positif entropique, pas de CV numérique.

MERCI POUR VOTRE ATTENTION !