Université de Bordeaux

L3 MIASHS - UE : Econométrie et Séries Chronologiques

Année 2016-2017

TD2

A la fin de certains exercices, il vous sera demandé de simuler à l'aide du logiciel \mathbf{R} quelques trajectoires des séries chronologiques étudiées. Pour chaque trajectoire simulée de longueur n, on pourra également une estimation $\hat{\rho}(\cdot)$ de la vraie fonction d'autocorrélation $\rho(\cdot)$ à l'aide de la fonction acf de \mathbf{R} , et l'on comparera graphiquement les résultats de l'estimation.

Exercice 1. Soient (X_t) et (Y_t) les processus MA définis, pour tout $t \in \mathbb{Z}$, par

$$X_t = 3 + \varepsilon_t + 2 \varepsilon_{t-1}$$
 et $Y_t = \eta_t - \frac{1}{2} \eta_{t-1} + \frac{1}{3} \eta_{t-2}$

où (ε_t) est un bruit blanc de variance 1 et (η_t) est un bruit blanc de variance 2. On appelle ρ_X et ρ_Y leur ACF respective.

- 1. Calculer $\mathbb{E}[X_t]$, $\mathbb{E}[Y_t]$ ainsi que $\rho_X(h)$ et $\rho_Y(h)$, pour tout $h \in \mathbb{Z}$.
- 2. Tracer l'autocorrélogramme de (X_t) et celui de (Y_t) .
- 3. Montrer que, si (ε_t) et (η_t) sont mutuellement indépendants, alors le processus $(X_t + Y_t)$ est stationnaire.
- 4. Calculer $\rho_{X+Y}(h)$, pour tout $h \in \mathbb{Z}$.

Exercice 2. Soient (ε_t) et (η_t) deux bruits blancs de variance respective σ^2 et $\delta^2 \sigma^2$ avec $0 < |\delta| < 1$. On considère les processus MA(1) donnés, pour tout $t \in \mathbb{Z}$, par

$$X_t = \varepsilon_t + \delta \varepsilon_{t-1}$$
 et $Y_t = \eta_t + \frac{1}{\delta} \eta_{t-1}$.

- 1. Montrer que (X_t) et (Y_t) ont la même ACV.
- 2. Ont-ils également la même ACF?

Exercice 3. Soit (X_t) une série chronologique définie pour tout $t \in \mathbb{Z}$ et satisfaisant, pour $0 < |\delta| < 1$, la relation

$$X_t = -\sum_{k=1}^{\infty} \delta^k X_{t-k} + \varepsilon_t$$

où (ε_t) est un bruit blanc.

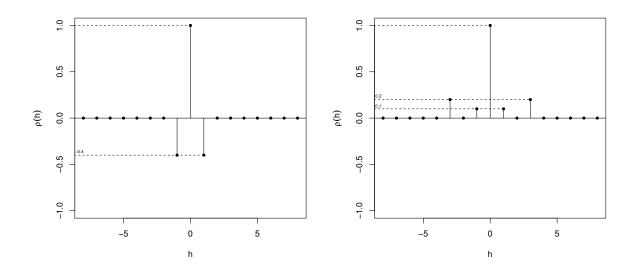
1. Montrer que (X_t) est un processus MA(1) centré de paramètre $-\delta$.

Exercice 4. Soit (X_t) une série chronologique que l'on modélise par un processus MA(2) de paramètres $\mu = 3$, $b_1 = -1/2$ et $b_2 = 1/3$.

- 1. Écrire le modèle, puis simuler l'observation d'une trajectoire sur l'intervalle $\{1, \ldots, 300\}$.
- 2. Utiliser la fonction arima du logiciel R pour estimer les paramètres μ , b_1 et b_2 par maximum de vraisemblance à partir des 200 premières observations.
- 3. Ecrire un algorithme pour prédire les valeurs de X_t pour $t \in \{201, \dots, 300\}$, et comparer les valeurs obtenues à celles de la vraie trajectoire observée.

4. Comparer vos prédictions aux temps t=201,202,203,204 avec celles obtenues par la fonction predict du logiciel R qui se base uniquement sur les 200 premières valeurs effectivement observées pour l'estimation.

Exercice 5. Soient (X_t) et (Y_t) deux processus stationnaires définis sur \mathbb{Z} , tels que $\mathbb{E}[X_t] = 1$, $\mathbb{E}[Y_t] = 0$, $\mathbb{V}(X_t) = 5/2$ et $\mathbb{V}(Y_t) = 5$. On a représenté leur autocorrélogramme respectif cidessous $(\rho_X$ à gauche, ρ_Y à droite).



- 1. Proposer une modélisation chronologique pour (X_t) et en déterminer les paramètres.
- 2. Proposer une modélisation chronologique pour (Y_t) et en déterminer les paramètres.