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Abstract

The goal of this article is to show a local exact controllability to smooth (C?) trajecto-
ries for the density dependent incompressible Navier-Stokes equations. Our controllability
result requires some geometric condition on the flow of the target trajectory, which is re-
manent from the transport equation satisfied by the density. The proof of this result uses
a fixed point argument in suitable spaces adapted to a Carleman weight function that
follows the flow of the target trajectory. Our result requires the proof of new Carleman
estimates for heat and Stokes equations.
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1 Introduction

The goal of this article is to discuss the local exact controllability property for the non-
homogeneous Navier Stokes equations.

Setting and main results. Let Q be a smooth bounded domain of R?, d € {2,3},
T > 0 and denote (0,7) x Q by Qr. Let us consider a trajectory (¢,y) of the non-
homogeneous Navier-Stokes equations:

0 +div(ey) = f, in Qr,
GOy +a(¥y-V)y—vAy+Vg = fy in Qr, (1.1)
dlvy = 0 in QT,
(@(0),¥(0)) = (G0,¥,) inQ.

Here, v > 0 is the viscosity parameter and the source terms (f,,fy) are assumed to be
known.

We will focus on the local exact controllability problem around the trajectory (7,¥) with
a control exerted on the boundary (0,T) x 9Q: Given (po, up) small, find control functions
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(ho,hy) on (0,T) x 0 such that the solution (o,y) of

oo +div(ey) = ZU in Qr,
ooy +o(y-V)y—vAy+Vqg = fy in Qr, (1.2)
divy = 0 in Qr, '
(0—(0)7 y(O)) = (EO + Poayo + 110), in Qv

with the boundary conditions:
o = T+he for (t,z) € (0,T) x 990, with y(¢,z) - n(z) <0, (1.3)
= y+hyon (0,7) x 09, (1.4)

satisfies

(o(T),y(T)) = (@(T),¥(T)). (1.5)

Our goal is to present a positive answer to this control problem under suitable assumptions
on the target trajectory (7,¥), and in particular one of hyperbolic nature on the flow
corresponding to y. Besides, in the 2-dimensional case, our strategy will yield a control
acting on some suitable subsets of the boundary which correspond, roughly speaking, to
the complement of the part of the boundary in which the scalar product of the target
velocity ¥ with the normal vector n is positive for all time ¢ € [0, T7.
Going further requires some notations. We denote by L*(Q), L°°(Q), H"(Q), H§() etc
for r > 0, the usual Lebesgue and Sobolev spaces of scalar functions, and we write in bold
the spaces of vector-valued functions: L2(Q) = (L*(Q))?, H(Q) = (H"(Q))?, etc. We
also define

Vo (Q) = {v e Hy(Q) | divv =0 in Q}.
In the following, we will always assume that the target velocity ¥ belongs to C?(Qr). It can
thus be extended into a C2([0, T] x R?) function, still denoted the same for simplicity but
not necessarily divergence free outside Q. This allows to define the flow X = X (¢,7,x)
associated to that velocity y:

V(t,7,x) € [0,T)? xR, 8. X(t,7,2)=5(t, X(t,7,z)), X(r,7,z)=uz. (1.6)
Thus we define the outgoing subset of Q for the flow X as follows:
QF, o {m €Q|3te(0,7T) st. X(t,0,2) € Rd\ﬁ} . (1.7)
One of our main assumptions is the following one:
=07, (1.8)

Note that this assumption does not depend on the extension ¥ on [0, T] x R* and is intrinsic.
This assumption is of hyperbolic nature as it requires the time 7' to be large enough to
guarantee that all the particles that were in © at time ¢ = 0 have been transported by
the flow outside  in a time strictly smaller than 7. Of course, this is remanent from the
density equation (1.2)(1> in which the density is transported along the flow corresponding
to the velocity of the fluid.

As we said, in dimension 2, we will not require the control to be supported on the whole
boundary (0,7") x 9%, but only on some part of it (0,7) x I'c where I'. = 9Q\I'p and T'g
(the part without control) is an open subset of 99 satisfying the following conditions:

(i). T has a finite number of connected components,

R _ (1.9)
(ii). infy purgy -1 > 0.

Note that the above condition guarantees the existence of v > 0 such that ¥(¢,z) -n(z) > v
for all (t,x) € (0,T) x I'g. It also implies that I'c is non-empty due to the divergence free
condition divy = 0.

Our main result states as follows:



Theorem 1.1. Let Q be a smooth bounded domain of R2. Assume that the target trajectory
(@,¥) solution of (1.1) satisfies
(@,5) € C*([0,T] x Q) x C*([0,T] x Q) and inf 7> 0. (1.10)
[0,T1xQ
Assume that the condition (1.8) is satisfied for the time T'.
Then there exists € > 0 such that for all (po, o) € L™ () x V§(Q) satisfying

lollzoe @) + lluollay ) < & (1.11)
there exists a controlled trajectory
(0,y) € L¥(Qr) x H'(0,T;L(2)) N L*(0, T; H*(2)) (1.12)

solution of (1.2)—(1.4) satisfying the control requirement (1.5).

Besides, if Ty denotes an open subset of the boundary satisfying (1.9), we may further
imposey =y on (0,T) xTo. In particular, in that case, no boundary condition is imposed
on the density on I'o.

Actually, we will only prove Theorem 1.1 when I'g # . When I'g = (), the proof is the
same as for Theorem 1.2 below dealing with the 3-d case.

Indeed, when the control acts on the whole boundary, Theorem 1.1 can be extended
to the 3-dimensional case:

Theorem 1.2. Let Q) be a smooth bounded domain of R®. Assume that the target trajectory
(T,y) solution of (1.1) satisfies (1.10). Assume that the condition (1.8) is satisfied for
the time T'.

Then there exists € > 0 such that for all (po,uo) € L>=(Q) x V§(Q) satisfying (1.11),
there exists a controlled trajectory (o,y) solution of (1.2)—(1.4) and satisfying the control
requirement (1.5) and the regularity (1.12).

We refer to Appendix C for the proof of Theorem 1.2 which can be done similarly as
Theorem 1.1 up to some minor changes. Therefore, in the following, except in Appendix
C, we will only discuss Theorem 1.1, i.e. the 2-dimensional case.

Strategy of the proof. The proof of Theorem 1.1 is based on a technical fixed-point
procedure, and we briefly explain below its general strategy.
Setting
_def def —

p:=0—0, u:=y-y, (1.13)

and
f(p,u) = —p(du+ (¥ +u) - V)u+ (u-V)y) —a(u-Vyu—p(@y + (v V)y), (1.14)
equations (1.2)—(1.5) rewrite

Op+(F+u)-Vp = —u-Ve inQr,
cou+o(y-Viu+ao(u-V)y—vAu+Vp = f£(p,u) in Qr,
. . (1.15)
divau = 0 in Qrp,
(p(0),u(0)) = (po,wo) inQ,
with the boundary conditions
u=0 on (0,7)x7To, (1.16)
and with the requirement
(p(T),u(T)) = (0,0) in Q. (117)

To construct a solution of (1.15)—(1.17), the strategy consists in finding a fixed-point to
some mapping %, ug) : U+ u defined in such a way that u = ., v,) (1) is a suitable
solution of:

Op+(y+1u)-Vp = —-u-Vo in Qr,
cou+o(y-V)u+ao(u-V)y—vAu+Vp = f(p,u) in Qr,
divu = 0 in Qp,

u = 0 on (0,7) x Ty, (118
(p(0),u(0) = (po,uo) nQ
(D)) = (0,0 wo



The mapping Z(,, u,) is defined in two steps. First, for a given 0, we define .%, (4, po) L

p, where p will be constructed as a suitable solution of the following control problem for
the equation of the density:

Btp+(?+ﬁ)-Vp = —-u-Vo in QT7
p(0) = po in Q, (1.19)
p(T) = 0 in Q.

Then, we define F(f,uo) e u, where u is a suitable solution of the following control

problem for the equation of the velocity:

cgou+o(y-Viutou-V)y—vAu+Vp = f in Qr,
diva = 0 in Qr,
u = 0 on (0,T) x Iy, (1.20)
u0) = wuy inQ,
uwT) = 0 in Q.
The mapping #(,,,u,) is then defined as follows:
Flpomo) (@) := u,  where p = Z1(TQ, po), and u = F(f(p, Q), uo). (1.21)

Hence our strategy decouples the control problem (1.2)—(1.5) into two control problems,
(1.19) for the equation of the density, and (1.20) for the equation of the velocity, each of
which having different behaviors.

Indeed, on one hand, the control problem (1.20) is of parabolic type, and it will be
handled by using global Carleman estimates following the general approach of Fursikov
and Imanuvilov [17] for the heat equations: in the case of Navier-Stokes equations, this
approach has already been successfully implemented in the works [22, 14].

On the other hand, the control problem (1.19) involves a transport equation. This can
be easily controlled provided the time T' > 0 is large enough to allow all the particles in
Q to go outside the domain, i.e. when condition (1.8) is satisfied.

But the problem is that we want the above mapping #(,, u,) to map some convex set
into itself. In order to do this, we should be able to get estimates on the above control
problems in spaces that behave suitably with respect to both of them. In particular,
this will lead us to introduce Carleman weights that follow the dynamics of the transport
equation, that is weight functions which are transported by the flow. This strategy then
follows the one recently developed in [11] for deriving local exact controllability results for
the 1d compressible Navier-Stokes equations around constant non-vanishing velocities.

Actually, the Carleman estimates we develop in this article also present the feature
of not vanishing at time ¢ = 0. This allows us to construct a solution (p,u) of (1.15)
without using any property of the Cauchy problem for the non-homogeneous Navier-Stokes
equations.

Related references and comments. To our knowledge, control properties for non-
homogeneous Navier-Stokes equations have only been studied in [12], which proves several
optimal control results in that context for various cost functions.

For the homogeneous Navier-Stokes equations, the density is assumed to be constant
and thus the equations reduce to the equations on the velocity. In that case, several local
exact controllability results have been established in [22, 14] based on parabolic Carleman
estimates, see e.g. [17, 13]. Later on, several different strategies have been proposed,
see for instance [15, 21, 24]. We also point out that these results also use the Carleman
estimate derived in [23] for non-homogeneous elliptic problems in order to handle the
pressure term.

Let us also quote the work [8] showing the global exact controllability for the 2-d
homogeneous Navier-Stokes equations on a manifold without boundary, the work [16]
showing the global exact controllability for the 3-d homogeneous Navier-Stokes equations
on a torus, and the work [6] focusing on the case of Fourier boundary conditions and
showing global approximate controllability in that case. These works actually rely on a
similar strategy as the one developed in the context of homogeneous Euler equations [7, 20]



based on the well-known return method. The case of Boussinesq equations, introducing a
coupling between a heat equation and the Navier-Stokes equations, has also been widely
studied [18, 16, 15].

But our problem also involves some transport phenomenon, and therefore also shares
some features of the thermoelasticity equations [1], the viscoelasticity models [26, 5], and
the compressible Navier-Stokes equations [11]. Our approach is actually close to the one
developed in [11]. Though, the divergence free condition in the model we consider here
requires a specific treatment.

In this article, we will not use any result on the Cauchy problem for (1.2), as our
strategy will automatically construct a trajectory (o,y) solving the equations (1.2). How-
ever, several results are available in the literature. We refer to the work [12] for several
results and comments on the Cauchy problem for the non-homogeneous incompressible
Navier-Stokes equations and to the references therein.

Let us also note that we will need a precise understanding of the transport equation
when transported by a flow entering the domain. More precisely, we will use in an essential
way the compactness result in [3, Theorem 4], obtained as a consequence of [2].

We also underline that Theorem 1.1 does not state the uniqueness of the controlled
trajectory (o,y). This is due to the lack of regularity for the density o which only belongs
to L (Qr), see [9] for the uncontrolled case.

In our results, the control set can be reduced to some part of the boundary only in the
2-d case. The reason comes from the fact that, to handle the boundary terms, we use the
stream function of the velocity, see Section 2, and that the gradient of this stream function
is bounded by the velocity pointwise, which is not true in dimension 3. Nevertheless, the
results in [24] seem to indicate that such use of the stream function could be avoided.
But this would require significant developments on the Carleman estimate we use, in
particular to improve the powers of the Carleman parameters in front of the boundary
terms in Theorem 2.4.

Our result also allows the use of non-trivial trajectories. For instance, if I'g = () and
(@,¥) = (1,0), one may consider the trajectory (*(¢),y"(¢)) = (1,n(t/T)U) for constant
vector fields U and n = n(t) € [0,1] a bump function taking value 0 at ¢ = 0 and ¢ = 1
and with n = 1 on [1/3,2/3]. Note that (¢*(¢),¥"(¢)) = (1,0) at time ¢ = 0 and at time
t =T. But for T > 0 and large U, (¢"(¢),y"(t)) satisfies (1.8) and all the assumptions of
Theorem 1.1, while whatever the time T' > 0 is, the trajectory (5(¢),y(¢t)) = (1,0) clearly
does not satisfy (1.8). This suggests that the geometric condition (1.8) may be avoided
in some cases using “return method” type ideas, see e.g. [6, 8].

The regularity conditions (1.10) seem strong but are required in our approach. The
condition ¥ € C2([0,T] x Q) is used to construct the weight function for our Carleman
estimate, thus requiring the C? regularity. On the density, we need at least V& €
Whe2(0,T; L>=(2)) to apply Theorem 2.4 to w solution of (2.18).

The geometric condition (1.8) is very likely optimal in general. However, there are
some geometric cases of interest in which, though it cannot be satisfied, we expect some
results to hold. For instance, when considering a target trajectory (7,y) corresponding
to a constant density o = cst, one can easily adapt our proof to show that if the initial
perturbation (po, uo) satisfies (1.11) and the density po satisfies Supppo € QL, then there
exists a controlled trajectory (o,y) solution of (1.2)—(1.4) and the control requirement (1.5)
(indeed in that case, as V& = 0, the backward density py in (3.7) simply vanishes, so that
we can simply take p = py in Section 3.2). Another case of interest arises for instance
when considering the stabilization of a (non-trivial) Poiseuille flow in a channel. Even
thought this flow cannot satisfy the geometric condition (1.8) due to Dirichlet boundary
conditions, it is natural to expect that it can be stabilized. But such case requires more
work.

One can also ask if our result can be generalized to compressible fluids. Though we
expect similar geometric conditions as the one in (1.8) to be needed, the coupling between
the density and the fluid velocity is stronger and the question thus requires more work.
This issue is currently under investigation.

Outline. This article is organized as follows. Section 2 explains how to solve the
control problem (1.20) by the use of Carleman estimates for the Stokes operator. Section



3 shows how to construct a controlled density satisfying (1.19) and to derive weighted
estimates on it. Section 4 then focuses on the proof of Theorem 1.1 by putting together
the arguments developed in Sections 2 and 3. Appendix A and B present some technical
proofs. Appendix C proves Theorem 1.2.

Acknowledgements. The authors thank O. Glass, E. Zuazua and the anonymous
referee for valuable comments on the preliminary version of this work.

2 Controlling the velocity

This section is dedicated to the construction of a solution of (1.20).

2.1 Statement of the result

In order to solve the control problem (1.20), we will consider (1.20) in an extended domain
O as follows: O is a smooth bounded domain of R? satisfying

QC O, 00isofclass C?, 90NN DO Iy. (2.1)
We then extend (7,y) on [0,7] x O, still denoted the same for simplicity, such that

(@,5) € C*([0,T] x O) x C*([0,T] x O)  and [ ir}lf@&(t, z) > 0. (2.2)

Remark that this is possible due to the assumption (1.10). As up € V§(Q), extending it
by zero outside {2, we get an extension, still denoted the same, such that

w € HY(O) and divup=0 inO. (2.3)

By also extending f by zero outside 2 and setting Or = (0,7) x O, I'r = (0,T) x 00 we
then consider the following system

GO+ (y-V)u+(u-V)y) —vAu+Vp = f+hlyg inOr,
divu = 0 in Or,
u = 0 on I'p, (24)
u(0) = w in O.

Here, 155 is the characteristic function of O \ Q and h € L?(Or) is a control function.
Note that the presence of 15, in (2.4) implies that the action of the control is supported
in O\ Q.
We thus intend to solve the following control problem: Given uo € H{(O) satisfying (2.3)
and a source term f in some suitable space, find a control function h € L?(Or) such that
the solution u of (2.4) satisfies

uw(T)=0 inO. (2.5)
Indeed, if we are able to solve this control problem, the restriction of the solution u to 2
would yield a solution of the control problem (1.20). In order to solve the control problem
(2.4)—(2.5), as it is classical by now, we are going to establish a suitable observability
estimate for the adjoint problem

—0i(ov) — D(ev)y —ovdivy —vAv+Vp = g in Or,
divy = 0 inOr, (2.6)
v = 0 onlrp,

where Dv := Vv 4+ 'Vv is the symmetrized gradient. At this step, note that, though
divy vanishes in the set (0,7") x , there is no reason to further assume that it vanishes
in Or, as we do not assume that the domain €2 is simply connected.



To state our result precisely, let us introduce the weight functions we will use in the
Carleman estimate. We assume that we have a function ¢ = (¢, z) € C*(Or) such that

V(t,z) € Or, (t,x) € [0,1],
Y(t,z) € I'r, 8,,1/?(75,30) <0,

vt € [0, 7], qz)(t)m@ is constant,
vt e[0,T], infod(t,-) =P(t)s0-

7 def

¢ = (t,x) such that (2.7)

We also assume the existence of two open subsets Gr € wr of [0,T] x (O\ Q) (here and in
the following, the symbol € means that there exists a compact set K7 of [0,7] x (O \ )
such that wr C K1 C wr) and a constant o > 0 such that

inf {|V3[} > a > 0. (2.8)
Or\@r
For m > 1, we set
O(t, @) (¢, z) 4 6m. (2.9)

We then set Tp > 0 and 71 > 0 such that 71 < 1/4 and To + 271 < T and choose a weight
function in time 6,,,(¢) depending on the parameters m > 1 and p > 2 defined by

m
YVt € [0,To), Omn(t) = 1+ (1 - Ti) :
0
Vt € [To,T — 2T1], O p(t) = 1,
def
Om.p := Om,u(t) such that ¢, €T =T1,T), O (t) = (T_lt)n“ (2.10)

Om, . is increasing on [T — 2141, T — T1],
O, € C*([0, 7).

For simplicity of notations in the following we omit the dependence on m and p and we
simply write 6 :<' 6,,,. u- We will then take the following weight functions ¢ = (¢, z) and

§=&(tx):
p(t,@) 2 0(1) (A —expO(t2)) s €t ) 0 expe(t @), (211)
where s, A are positive parameters with s > 1, A > 1 and p is chosen as
p= sA2e e (2.12)

which is always bigger than 2, thus being compatible with the condition 6 € C?([0,T)).
Note that the weight functions ¢ and £, depend on s, A, m, and should rather be denoted
by ©s,x,m, resp. &s,a,m, but we drop these indexes for simplicity of notations.

Remark that, due to the definition of ¢ in (2.9) and the conditions (2.7), we have, for all
A>1and (t,2) € Or,

ie(t)xew’"“) < o(t, z) < (AN, (2.13)
Finally, we introduce
B(t) = min p(t, ), " (t) = max o(t, ) = ppoo(t), (2.14)
zeO zeO
£(t) = max§(t, ), () = ming(t, ) = Eoo (1) (2.15)
zeO xzeO

Using these weight functions, we prove the following Carleman estimate for the Stokes
system (2.6):
Theorem 2.1. Assume that O is a smooth bounded domain extending 2 as in (2.1), let w,
@ be two subdomains of O\ such that & € w and set wr = [0,T] xw and &y = [0, T] x &.
Let 1 as in (2.7)—(2.8) and ¢, 0, ¢, & as in (2.9)-(2.10)—(2.11).



Then, for m > 5, there exist some constants so > 1, Ao > 1 and C > 0 such that for all
smooth solution v of (2.6) with source term g € Lz(OT), for all s > so and A > o,

81/2)\71/2/(6*)472/m|v(07')|2672s¢*(0)+SA2/ §4|V|2672s<p
o Or

T
+S—1/O §2|Vvl2e—2scp+51/2>\—1/2/ (&-*)4—2/7716—2&;2 HVH?—ﬂ(O) (216)

T 0
< C (55/2A2 // é\G‘V|262s<p*—4s¢ + 81/2)\—1/2 // (g)4—2/m|g|26—25¢>) )
wr Or

Remark 2.2. Estimate (2.16) can be completed with higher norms on v in the left-hand
side of (2.16). Namely, looking carefully at the proof of Theorem 2.1, in particular in
(2.52), we can add in the left-hand side of (2.16) the terms

§—1/2)-3/2 H (5*)3/273/(21%)‘1673@*(1&) 2

L2(0,T;H2(0))

Lo 1/2)\ 32 H(5*)3/273/(2m)vp675¢*(t) 2

L2(0,T5L2(0))

and also, thanks to mazimal reqularity results for the equation satisfied by the pair
873/2)\72(5*)71/(3m)675cp (t) (V,p),

373A74 H (5*)—1/(3m)vefs<p*(t) 2

H(0,T5L2(0))

The proof of Theorem 2.1 is done in Sections 2.2 and 2.3. We are first going to prove a
slightly improved version of the Carleman estimates (2.16) for solutions v of the simplified
version of the adjoint problem (2.6):

—oov —VvAv+Vp=g in Or,
divv=0 in Or, (2.17)
v=0 onlI7.

Our approach then consists first in taking the curl of the equation (2.17) and consider the
equation of w = curlv:

—50w —vAw = curlg + 8,v- V5 in Or. (2.18)

Thus, in Section 2.2, we derive estimates on w solution of (2.18) in terms of the right hand
side of the equation of (2.18) and the boundary terms. It turns out that the boundary
conditions and source terms strongly depend on v itself. Hence in Section 2.3, we explain
how to estimate v in terms of w by using the stream function ¢ associated to u, which is
given by

Al(t) =w() inOr and ((t)=c(t) on[0,T]x~ for i=1,...,K, (2.19)

where {v;, i = 1,..., K} is the family of connected components of O and ¢;(t), i =
1,..., K are some constants characterizing ¢(t) which are chosen such that, for some
Lipschitz subdomain & of O\ satisfying © € & € w,

/A ¢(t) =0. (2.20)

Among the new features of the Carleman estimate of Theorem 2.1 with respect to
those in the literature, let us point out the following facts:

e The weight function in time 6,, ,, in (2.10) does not blow up as the time ¢ goes to 0.
However, our proof requires a strong convexity property close to t = 0, tuned by the
choice of the parameter y in (2.10) as a suitable function of the parameters s and A,
see (2.12).



e The weight function 1 depends on both the time and space variables. As we shall
explain, this is not a big issue as long as we guarantee that for all ¢t € [0,T7], ¥(¢)
is constant on the boundary 9O, thus allowing to apply the Carleman inequality of
[23] for elliptic equations.

Based on Theorem 2.1, following standard duality arguments, we prove the following
control result:

Theorem 2.3. Within the setting and assumptions of Theorem 2.1, there exists a constant
C > 0 such that for all s > so and X > Ao, if uo verifies (2.3) and £ € L2(Or) satisfies

/ EEPe* < oo, (2.21)
Or

there exists a control function h € L?(Or) supported in wr and a controlled trajectory
u € L3(Or) such that u solves the control problem (2.4)~(2.5) and (u,h) satisfies the
estimate

”e%%*UHiZ(H%mHl(LZ)+81/2>‘5/2/ fz/m_4|u\262w—|—s_3/2/ g—6|h‘2e4s¢—2w*
Or wr

<C (/ 5—4|f‘2€25kp + e%SyJ*(O,-)”uO”f_I[l)(O)) . (2.22)
Or

The proof of Theorem 2.3 is given in Section 2.4.

2.2 Carleman estimates for the heat equation

The goal of this section is to show the following estimate:

Theorem 2.4. Let &7 be an open subset of Op satisfying &r € wr and let ¥ as in (2.7)-
(2.8) and ¥, 0, p, £ as in (2.9)—(2.10)—(2.11).

For all M > 0, there exist constants C > 0, so and Ao such that for all s > so and X\ > Ao,
for all smooth functions w in Or, such that

d
—c0iw — vAw = apw + A1 - Vw + go + Z b:0:gi + ba+10¢gar1  in Or,

i=1

with ag € L>®(Or), A1 € L=(0,T; WH>®(0)), go, g: € L*(Or), and coefficients b; €
L0, T; WH(0)), bar1 € WH2(0,T; L™=(0)) satisfying

llaolloe (07) + A1l Lo (0,7w1.00 (0))
d

+ Z 166l oo (0,75w 1.0 (0) + [[Bas1llwroo 0,30 0)) < M, (2.23)
im1

we have

83)\4/ 63"U)|2€728W S C// |go|26725<p
Or Or
d
restx [[ @SNl e v osin [ ¢lganfee
or = or

+COs°\° ¥ lw|’e™?% + Css)\4/ Ew?e7. (2.24)
wr

Tr
The proof of Theorem 2.4 is long and is divided in three steps:

1. a Carleman estimate for the heat equation with homogeneous boundary conditions
and source terms in L?(Or); see Theorem 2.5;

2. energy estimates on controlled trajectories of a heat equation with a source term in
L?*(Or); see Theorem 2.6;



3. a duality argument.

This proof is inspired by the ones in [25], see also [13]. Below, we only state Theorems 2.5-
2.6, whose proofs are postponed to the appendix. Let us also emphasize that Theorems
2.4-2.6 hold in any dimension d.

Proof of Theorem 2.4. As said above, the proof is done in three steps.
An L?-Carleman estimate. The first result is the following L?-Carleman estimate
for the heat equation:

Theorem 2.5. Assume the setting of Theorem 2.4. For all m > 1, there exist constants
Co >0, so > 1 and Ao > 1 such that for all smooth functions z on Or satisfying z = 0
on U'r, for all s > so, A > o, we have

/|VZ(O)|26—25¢(0)+82>\362>\(6m+1)/ |Z(0)|26—23<p(0)
(@] (@]
+SA2/ £|vz|2e—2sw+s3)\4/ §3|Z|26—23¢
Or Or

<Co // (=50 — vA)z|?e ™% + C’oss)\4/ zPe>%.  (2.25)
or o

wr

The proof of Theorem 2.5 is given in Section A.1. It is rather classical except for the
weight function ¢, which does not blow up as ¢ — 0 and for the weight function ¢) which
depends on both time and space variables. This introduces in the proof of Theorem 2.5
several new technical issues, though our proof follows the lines of [17].

Estimates on a control problem. We then analyze the following control problem:
for f € L?(Or), find a control function h € L?(&7) such that the solution y of

Oi(oy) —vAy = f4+hlgz, inOr,
y = 0, onI'r, (2.26)
y(07 ) = Oa in 07

solves the control problem:
y(T,-)=0, inO. (2.27)

We claim the following result:

Theorem 2.6. Assume the setting of Theorem 2.4. For all m > 1, there exist positive
constants C > 0, so > 1 and Ao > 1 such that for all s > so and X > Ao, for all f
satisfying

/ E0f17e**? < o0, (2.28)
Or

there exists a solution (Y, H) of the control problem (2.26)—(2.27) which furthermore sat-
isfies the following estimate:

83)\4 // |Y|262$<p+/ 573‘H|2e2s¢+s)\2 // 572|VY‘2625¢+

Or wr Or
1// 5*4(\atY|2+|AY\2)eQW+A/ £%0nY 26> 50// e F2e2 . (2.29)
s Or rp Or

The proof of Theorem 2.6 is given in Section A.2. Again, the proof is rather clas-
sical and is based on the duality between the Carleman estimates, which are weighted
observability estimates, and controllability, and then on energy estimates. Note how-
ever that these energy estimates have to be derived using the weight functions defined in
(2.7)—(2.11), and this introduces some novelties in the computations.

A duality argument. The proof of Theorem 2.4 then relies upon the estimate (2.29)
on the solution (Y, H) of the control problem (2.26)-(2.27) for f = &3we™2°¢. Indeed, if
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(Y, H) solves (2.26)—(2.27) for some f satisfying (2.28), multiplying the equation satisfied
by Y by w, we obtain

//O w(f“rng]:)-‘r/F wrdnY

= // (ao’LUY — wdiv (A1Y) + goY — Zgz&(sz) — gn+18t (bn+1Y)) (230)
Or

i=1

In particular, as f = £3we 2% satisfies

// 573‘f|2625<p _ / £3|w‘26725¢'
)
Or Or

according to (2.29) we can construct (Y, H) solution of

0:(@Y) —vAY = we ¥ 4 Hlg:, in Or,
Y = 0, on I'r,
Y(0,) = o in 0, (2.31)
Y(T,) = 0, in O,

for which we have the estimate:

83)\4 // |Y|2625<p+/ 573‘H|2e2s<p+s)\2 // 672|VY‘262,S¢+

Or wr Orp
1// 5*4(\aty|2+|vy|2)e28¢+A/ £7310nY|2e2* gc// SlwPe %, (2.32)
S Or T'r Or

Using then the identity (2.30), we infer

/ §3|w|2672sap
Or
1 2 2 —2sp 12 2 —2 2 2\ 2s¢ 12
< Cl =3 f lw|”e sA (YT +I[VY[Te
SA or
—2 1z 34 2 2 12
+ c( . // lgol’e ) (SA Il mew)
s3A or or
d 1/2 1/2
+ c( Zgﬂ)e?“’) <5A2// §*Q(|Y|2+|VY\2)62W)
y Or

=1

12 /4 1/2
e (s ff eaarer) T (L[ e )
s JJoy
1 1/2 1/2
o5 ) e ) (3] e tlonvpe)
A Iy
1/2 1/2
+ C (/ £3|w|2672s<p> (/ 573‘H|2e25<p> ,
wr wr
which immediately yields the claimed result by (2.32). O

2.3 Proof of Theorem 2.1

This section aims at proving Theorem 2.1. This will be done in two steps.
We first prove the following Carleman estimate for v solution of (2.17):

Theorem 2.7. Within the setting and assumptions of Theorem 2.1, for any m > 5, there
exist some constants so > 1, Ao > 1 and C > 0 such that for all solution v of (2.17) with

11



source term g € L2(Or), for all s > so and A > Ao,
81/2>\71/2/ (f*)472/m|v(0’ .)|26725<p*(0) 4 s)\z/ §4|v\26725“"
o

T
I [y e o [ Elemivie e [ i

< C( 5/2>\2 // |V|2 2sp* —4sp +871)\ // g ‘g|2 —2s¢p
wr

+51/2A71/2A (g )4 2/7n —25p™ HgHH 10 +s” 1/2)\ 3/2//;9 3 3/'m|g|2 —25p™ >
T
(2.33)

The proof of Theorem 2.7 is done below in Section 2.3.1. In Section 2.3.2 we then
explain how Theorem 2.7 implies Theorem 2.1.

2.3.1 Proof of Theorem 2.7

Let v be a solution of (2.17) with source term g. As w = curlv satisfies (2.18), the
Carleman estimate (2.24) applies to w: for all s > so and A > Ao,

J[ dwrer <o ([ emresras [ e
Or wr
A7t £3|w|26_25‘p+s_1/\_2// 52\g|26_2w>. (2.34)
' or

Here and in the following &r = [0,7] x & where @ is a Lipschitz subdomain O\Q such
that @ € @ € w. Note in particular that Wr € O € wr.
Next, because v is divergence free we also have, for all ¢ € (0,T),

—Av(t) = curlw(t) in O, v(t)=0 on 90. (2.35)

Thus, using elliptic Carleman estimates with source term in H~'(0) with weight e~ **(*")
and integrating in time, see [23], we immediately get

871/ €2|VV|26725LP+8A2/ 54‘V|2672s<p
Op Orp

g()(/ §3|w|2e‘23“’+s/\2/ evlPe ‘23“’). (2.36)
Or

Combined with (2.34), and using the fact that w = curl v is bounded by d,v on I'r (recall
that v =0 on I'7) and that £* = £ and ¢* = p on (0,7) x 00, we immediately have that
for some sg > 1 and Ao > 1, for all s > sg and A > Ao,

8_1/ £2|vv|2e—2sgo+/ 53‘w|26—25¢+5)\2/ §4|v|2e—2sgo
or Or Or
S C (/ §3|’LU|2 —2sp +S)\2/ £4|V|2 —2s¢p
wr wr
7 [ @l s // £lge —23“’). (2.37)

We then introduce the stream function ¢ associated to v, i.e. v = V¢, which can be
computed explicitly as the solution of (2.19) for some constants ¢;(t) due to the dimension
d = 2, see e.g. [19, Corollary 3.1]. Note that, by adding a constant to ¢ if necessary,
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without loss of generality we can assume that (2.20) is also satisfied. Applying the elliptic
Carleman estimate to the equation (2.19) (see e.g. [17]), we obtain that

83)\4/ £6‘4‘2672sap+8)\2/ £4|VC|26723¢
Or Or

gc(/ g3|w|2e—25*"+s3x4/ 56|g|26—2w). (2.38)
Or wr

Note that the Carleman estimate of [17] is obtained for homogeneous Dirichlet boundary
conditions. But it is easily seen that it remains true for a boundary data whose tangential
derivative at the boundary vanishes, which is the case for (.

Of course, estimate (2.34) requires an observation term in ¢ in @r. But Poincaré
Wirtinger inequality (recall here that & is assumed to be a domain, i.e. a connected open
set) and condition (2.20) implies, for all ¢ € [0,T7],

Liewar <o [1vewor = [ jemceor = [ v,

and in particular:
/ e <C / / lv[?e . (2.39)
= T

Let us stress the fact that the 2-d assumption is also used at this stage since (2.39) relies
on the identity |V¢(¢,-)|* = |curl ¢(¢, -)|?.

Next, we use (2.38) to derive suitable weighted energy estimates for v, hence for dnv
on the boundary 00O. But since we do not have any estimate on the pressure in the Stokes
equation (2.17), we are reduced to derive energy estimates for v with weight functions
independent of x.

Estimates in L?(0,T; H'(0)). We set (va,pa) := 61(t)(v, p) with

91(t) :d:ef 81/4>\—1/4(€*)2—1/me—8¢*(t).

Using
D™ < CAE)™™ in Op. (2.40)

and explicit computations, we get
0, > —Cs®/ AN (e )BemseT ) (2.41)

The pair (vq,pe) satisfies

—00tva — VAV, + Vpa 01g —o0iv  in Or,

divve, = 0 in Or,
voe = 0 on I'p, (2.42)
vo(T) = 0 in O.

We want to obtain an estimate of the L2 (H(l))-norm of v,, so we multiply the partial
differential equation in (2.42) by v, we integrate in O and we integrate by parts. This
yields:

1 —
SIVF0 v 0. a0 + vIVelEaormgion = [[ 18- ve
T

—// 591v~va—1// 7 [val®.  (2.43)
Or 2 Or

T
14
= Z// |V"a‘2+c/ 16112 |gll31-1 (0)- (2.44)
Or 0

First, we remark that

v
Or
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We then focus on the second term of (2.43) and use (2.41)
— // EG/IV “ Vg
Or
< Cs3/2)\1/2 // (f*)Bfl/mv ) v¢<6725¢*(t)
Or

= _sP/2)\L/2 // (€)™ curlv Ce 259" ®
Or

2y—1/2
Cs%/2)\3/2 // mz —2s0* (t) I vs'/ /\ / // 4 Q/M\Vv|2 —25p™ (t)
Or
< Cs 5/2)\3/2 // ‘C‘Q —2s5p™*(t) + - // |vvd|
Or Or
The last term can be handled similarly:
1 *
‘5/ 8 |Val ’<C /2y~ 1/2// 4 2/m |2€725cp
Or
< Os7/2)312 // VPlcPe 20 ® 4 ¥ // Vval?.

Plugging these three last estimates in (2.43), we obtain
[va (0, )IE2(0y + IVallZ2(0 THE(0))
<o (s [ @™ 4 loaltornon) - 249)
Or
Estimate in L*(0,T; H?(0)). Let us now set (vy,ps) := 6a(t)(v, p) with
02(t) def 5—1/4/\—3/4(5*)3/2—?>/(27>“L)e—ssf>"(t)7

for which explicit computations yield:

0, > —Cs¥/ AV (e") 3 mm oo (2.46)
This pair (v, pp) satisfies
—00ve — Avy +Vpy, = bag—504v  in Or,
R
w(T) = 0 in O.

We then multiply the partial differential equation in (2.47) by (—Avy + Vps) /7, we inte-
grate in Or and we integrate by parts:

1
2/|va |+// L -Av,+vpf?

[
:/ Zg(—Avy + V) // 0205V v|?.  (2.48)
Or o Or

Using (2.2) we can estimate the first term as follows:

0
‘// Zg(—Avy + Vi)
or 9

For the second term, remark that by (2.46), we have

1 1
< Z// =| —Avb+Vpb|2+0||92g\|i2(oﬂ. (2.49)
or 9

0205 > —C's' 2NV (g 2mem2eT — _op?,
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thus yielding

—/ 029'2|Vv\2 <C HelVH?ﬂ(O,T;Hl(O)) =C Hva||i2(0,T;H1(O)) .
Or

Therefore, using the above estimate and (2.49) into (2.48), we obtain

c// | — Avy + Vs |2
Or

C (1628120, + IVallZ2(0,r:11 (0))) 5 (2.50)

IN

||Vb”%2(o,T;H2(O))

IN

where we have used the classical H>-estimate for the stationary Stokes system, see e.g.
[4, Theorem IV.5.8].

Global Estimate on v and its normal derivative. Since v = 0 on I'r, classical
estimates yield

2 2
102, ) 00y < € (1908 Veryco IV(E g + 1908y o)
and in particular, using the fact that 62(t) < 61(t) for all t € (0,7,

5 2

7 *
H“”(s*ﬂ*wnvew (t)

L2(90)
< C (1029t gy o) 1029t lggz o) + 10 (1) as o ) -
Putting together (2.45) and (2.50) with this last estimate, using (2.38) and (2.39) to

estimate the term in ¢ and taking into account that m > 5, we deduce that

% |12
(g*)S/Zanve—stp ‘
L2(T'r)

[Iva (0, ')Hi2(0)+H91VHQL2<0,T;H5(@))+H92V||2L2(0,T;H2(O))+)\_1

S C <871/2)\75/2/ §3|w|26725¢ +85/2)\3/2 // é\6|v|2672s$
Or wr
Hl1&l2 0 151-1(0y) + 1028l1E2 (00 ) - (251)

Elimination of the boundary term. We come back to the Carleman inequality
(2.37) and we combine it with (2.51): for s large enough,

2 2 2
[Iva (O, ‘)HL2(O> + HelVHL?(O,T;Hé(O)) + H92V||L2(0,T;H2(O))

S—l/ £2|VV|26—23¢+// £3|w|26—234p+8)\2 // £4|V|2e—2.sgp
Or Or Or
S C (/ 53‘w|2€723¢ +85/2A2 // é\6‘v|28725$
o or
Horel om0 +0aelzcon +5707 [ €lale™e). (252
T

Removing the observation on w. We now estimate the local term in |w|?. For
this purpose, we recall that &7 = [0,7] x & € wr = [0,T] x w and we consider a positive
function x € C?(O) such that

x=1ina, x=0in O\ w.

[ eureres [[ @upe, (2.53)
wr wr

Using
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we are reduced to estimate the right hand side of (2.53):

J[ Ewpe< [[ @upei< [ @vvpe
or wp wT
—// x& EAvve 2% 1 5/ Axf |V‘26725¢.
w w
_6871/2)\73/2 // (6*)373/m|Av‘2672sap*
o

T
+C 1/2>\3/2 // 3+3/m |v‘262mp*—4s$7
wr

where the last estimate follows from Young’s identity and where £ > 0.
Using the last above inequality in (2.52) with € small enough and recalling the definition
of 03, we get in particular

T
S1/2)\71/2/0(6*)472/m|v(07 _)|26725(p +81/2)\71/2/ (5*)472/777,6725@ ||V||?{1(O)
0

S—l/ 52‘vv|26—23<p+5)\2/ £4|v|2€—2sg}
Oor Or

+/ 53|levl26725gp <c (55/2)\2 // ga|v|2egs<p*,4s$
O wr

o0 [ glgre e v [ €rme gl

_1/2)\—3/2 // 3 S/m ‘2 —2s5p™ ) (254)
Or

This concludes the proof of Theorem 2.7.

2.3.2 Proof of Theorem 2.1

Let v be a smooth solution of (2.6) with source term g. Then v is a solution of (2.17)
with source term

g=g+0ov+D(Ev)y+ovdiv(y).
Applying Theorem 2.7 to v with source term g, for all s > so and A > Ao we get

31/2A—1/2/(£*)4—2/m|v(0’ ')|2€_2S¢*(0)+S)\2/ §4|v‘2e—25w
o

Or

T
+Sl/2)\_1/2/ (5*)4—2/7116—2550 ||V||?-Il(@)+// £3|Curlv‘2e—23¢+s—l/ £2|Vv|26—25¢
0 Or Or

< C (85/2)\2 // g-\6|vl2625<p*745$ + 571)\72/ 52‘g|2672sap
w Or

T
+Sl/2A71/2/0 (f )4 2/m —2sp™ HgHH 10 +s 1/2A 3/2// 3 3/'m,|g|267254p)
(2.55)

and we are thus reduced to estimate the last terms of the inequality.
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But we have

871)\72/‘ £2|g|2€728w SC(871A72 // 52‘g|2672s¢
Or Or

+S_l>\_2/ 52‘V|26—23¢+8—1>\—2/ 52‘VV|26—23¢)7

Or Or

871/2)\73/2 // (5*)373/m|g|26725<p* S 0(871/2)\73/2 // (5*)373/m|g‘26725¢*
Orp Orp

+371/2A73/2// (5*)373/771“/'26725(,0* +871/2)\73/2 // (é—*)?»f?)/rn|vv‘2ef2sap*)7
Or Or

in which all the terms in v, Vv can be absorbed by the left-hand side of (2.55) for s and
A large enough.
We also have, for all ¢ € (0,7T),

Hé(t)Hirl(cQ) < Cllg(t, ')||i2(0) + Clv(t, ')||i2(0)-

Hence
1/2y—1/2 r 4-2/ 2s0* 2 1/2y—1/2 4-2/ 2s0% | |2
SNV [yt et g o < 08N [ (gttimem g
0 Or

—|—C’51/2)\_1/2// (€)Y mem29 |y 2. (2.56)
Or

Plugging these last estimates in (2.55), we obtain (2.16) for s and A large enough.

2.4 Proof of Theorem 2.3

We use the following simplified form of (2.16): for all s > so and A > A\¢ and all smooth
solutions v of (2.6) with source term g:

/(6*)472/’m|v(07.)|2€725Ap*(0)+sl/2)\5/2/ §4|v‘26725¢
o

Or

< C <82)\5/2 // 5\6|V|2e2sap*74s<ﬁ+/ 5472/m‘g|2672s¢) )
wT Or

Easy density arguments then show that this result extends to all solutions v of (2.6) with
source term g € L?(Or) and final data v(T) = vr € V§(Q).
We then follow the proof of Theorem 2.6 and introduce the functional Js; defined by

def 1 4-2/m| (2 —2sp s2\°/2 6. 12 2sp*—4sF
Jsitvrg) L[ gaimigpenzee L TAT [ @y
O wp

- //OT fve /o uo(+) - v(0,-), (2.58)

defined for data (vr,g) € V§(Q) x L*(Or), where v solves (2.6) with v(T') = vr.

We then need to define the functional Js; on the set X ops i thﬁobsn'”&"’bs, where

(2.57)

X100 = {(vr,g) € V§(Q) x L*(Or)} (2.59)

and the norm [|(vr, )|l g, o5, is defined by

2 def 4—2/m 2 —2s 215/2 <6 2 2sp*—4s3
(v )13 1y //@ gormigletee g X2 [ @,
T wT

where v is the corresponding solution to (2.6).
According to (2.57), the functional Js: can be extended by continuity on Xg¢ ops if
f satisfies (2.21). The functional Js: then has a unique minimizer on Xg¢ ops, that we
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denote (Vr, G) and which corresponds to a solution V of (2.6). We get, for all smooth
solution v of (2.6) corresponding to a source term g,

0= / MG ge 9P 4 g2)\5/2 // OV . ye2ew” s?
Or wr

_/OTf‘V_/OuO(~)~v(O, ). (2.60)

In particular, setting
u= "GP, b= SNV TP, (2.61)

we obtain a solution in the sense of transposition of the control problem (2.4)—(2.5) with
a control term acting only on wr.

Besides, using again the Carleman estimate (2.57) and the fact that Js:(Vr,G) <
Js+(0,0) = 0, one immediately derives that

C — s * m— sp™
H(VT,G)HibS < 4‘91/2/\5/2 //O £ 4|f|262 Y4+ CL(& )2/ 4|u0|262 ® (0). (2.62)
T

Hence, using (2.61), the controlled trajectory (u,h) satisfies

m— s 1 -6 2 4s3—2sp™
S R ) B
/OT s2X°/2 [ [
C - E] * m— sp*
Sw// §MEle” “"+/(£ )/ o™ (2.63)
Or o0

Finally, we can then derive H*(L?®) N L?(H?) estimates on u by applying regularity

results for Stokes equations to the system satisfied by e1°¢"u. The computations are left
to the reader.

3 Controlling the density

This section is devoted to explain how to solve the control problem (1.19). As we said
in the introduction, the main difficulty is that we need to provide a controlled trajectory
that can be estimated with the use of the weight functions introduced in Section 2.

3.1 Basic properties of the flow

Let ¥ be an extension of ¥ on [0,7] x R? and X the corresponding flow, defined in
(1.6). As ¥ € C*([0,T] x R?), the flow X is continuous with respect to the variables
(t,7,x) € [0, T)* x R2.

We first discuss the stability of property (1.8):

Lemma 3.1. Assume that y € C2([0,T] x R?), and that the flow X defined by (1.6)
satisfies (1.8).

There exist € > 0, T§ > 0 and T7 > 0 such that for all Ty € (0,1y), for all Ty € (0,T7)
and for all x € Q, there exists t € [To, T — 2T4] such that d(X (t, T, x),2) > 2¢.

Proof. 'The proof is done by contradiction. Assume it is false. Then for all € > 0, there
exist T5 > 0 and Tt such that T§, Tt converge to 0 as € — 0, and an z. in €2 such that

Vi e [T5, T —2T5),  d(X(t,T¢,x.),Q) < 2. (3.1)

But z. is bounded in €. Hence, up to a subsequence, it converges to some T in Q. As
the flow X is continuous in [0, 7] x R? and the distance function is continuous, for each
t € (0,T), one could then pass to the limit in (3.1):

vt € (0,T), d(X(t,0,%),Q)=0.

This is of course in contradiction with (1.8). O
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For @ € L?(0, T; H?(R?)) we denote by X the flow defined by

-~

o X(t,7,z) = (y+0)(t, X(t,7,2)), X(r,7,2)==1. (3.2)

Note that in dimension 2, the flow X associated to a velocity field in L?(0, T} H?(R?)) is
well-defined in the classical sense thanks to Osgood’s condition, see [28].

We then show that, provided u is small enough, the property (1.8) also holds for X:
Lemma 3.2. Under the setting of Lemma 3.1, there exists ¢ > 0 such that for all U €
L?(0,T; H?(R?)), satisfying

14l L2 (0, 7100 r2)) < 26, (3.3)
the flow X defined by (3.2) satisfies the following property: for all Ty € (0,1y), for all
T1 € (0,T7) and for all z € Q, there exists t € [Ty, T —2T4] such that d(X (¢, To, x), Q) > €.

Proof. Set L = ||V¥||L=(0,1:L=(0)). For 7,t € [0,T]> with ¢t > 7 and = € R?, we have:
X(t,7,2) = X(t,7,2)| = |X (¢, 7, 2) — X(7,7,2) + X (7,7, 2) = X (8,7, )]

t
/ (&X(t',T7 z) — o X(t,T, x)) dt’

t
/ 8, R (7, 2) + ¥ K () — 3, X ()t
T t ~ B
<t = 71218l g2 (7, psmoe m2y) + L/ Xt 7 2) = X(t, @)t

Then Gronwall’s Lemma yields for all ¢ € [0, T] and = € R?:
1X(t,72) — X(t,7,2)| < T2 (|8 12 (1 pimoe (22)) - (3.4)

According to Lemma 3.1, Lemma 3.2 thus holds by setting ¢ = T~'/2e"7¢/2in (3.3). O

3.2 Construction of the controlled density

In this section, we assume that
ue L2(0>T§ H2(R2)) and ||ﬁ||L2(O,T;L°°(R2)) <2, (35)

where ¢ is given by Lemma 3.2. We then choose Ty € (0,7y) and T3 € (0,77), where T,
Tt are given by Lemma 3.2.

The construction of the controlled density p solution of (1.19) is then done as in [11]:
we construct a forward solution p; and a backward solution py of the transport equation
in (1.19) and we glue these two solutions according to the characteristics of the flow.
Indeed, we define ps as the solution of

Ops+ (¥ +10)-Vpy = —u-Vo inQr,
pr(t,z) = 0 for t € (0,T), x € 99, (3.6)
with (¥(t,2) + 6(t,2)) -n(z) <0,
pf(o) = po in €,
and pp as the solution of
atpb-i-(y—l— ﬁ)-vpb = —-u-Vo in QT,
o = 0 for t € (0,T), x € 89, (3.7)
with (¥(t,2) +0(t,2) -n@) >0,
pb(T) = 0 in Q.
We also introduce x the solution of
Odx+F+u)-Vx = 0 in Qr,
X = 1t€(0,To)(t) for t € (O,T), S GQ, (3 8)
with (¥(t,2) +6(t,2)) -n(@) <0,
x(0) = 1 in Q.
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We finally define p(t,x) as follows,

p(t, ) = (1 - X(t7 l’))pb(t, z) + x(t, l‘)pf (tv x) (3'9)

It is easy to check that this function p satisfies the transport equation (1.19)<1) and the
required initial condition (1.19) ). The final condition p(T) = 0 in (1.19) 4 is satisfied
due to the properties of the flow proved in Lemma 3.2, which guarantees that x(7') = 0.
In the next subsections, we describe how to get estimates on the function p constructed
in (3.9) in the weighted spaces adapted to the Carleman estimates derived in Section 2.

3.3 Explicit description of the density
To begin with, let us remark that the function x is explicitly given by:

1 if t <Tp
x(t,z) =<9 1 ift>Tp and X(7,t,z) € Q for all 7 € [To, ], (3.10)
0 else,

so that from Lemma 3.2 we have in particular
x(t,z) =0 and p(t,z) = pp(t,z) for (¢t,z) € [T —2T1,T] x Q. (3.11)

We also give explicit expressions for py and p,. In order to do that, for ¢t € [0,T], we
introduce

Qu(t) E {z e Q| X(r,t,x) €Q  forall T € [0,4]}

B ~ (3.12)
Q) = {z e Q| X(1,t,z) € forall 7€ [t,T]}
and for all (¢,x) € [0,T] x Q:
tin(t, T X sup{r € 0,t )?T,t,x € 00N},
(t,z) p{r € [0,1) | X(7,1,2) } (3.13)

tour(t,z) < inf{r € (t,T] | X(7,t, ) € OQ}.

In the above definitions, we use the convention supf = 0 and inf() = 7. This way,
tin(t,x) = 0 iff z € Qo) (t) and tous(t, ) = T iff x € Qpry(t).
Using these notations, py and p, are explicitly given by

po()?(o,t,a;))—/ (@ -Vo)(r, X (7, t,2))dr if 2 € Q(t), 1
¢ o 3.14

(@-vVo)(r, X(r,t,x))dr else,

pf(t7 J})

tin (t,2)

po(t,z) = /t (- Vo) (r, X (r,t,z))dr for z € Q. (3.15)

out (t,z)

We are now in position to derive weighted estimates on p.

3.4 Weighted estimates on the density

In order to derive weighted estimates on p based on the Carleman weights 9, 0, p, &
described in (2.7)—(2.9)—(2.10)—(2.11), we will need some further assumptions.
Assumptions on the weights. We assume that Ty and 73 in the definition of 6 in
(2.10) satisfy
To € (0, Tg)7 T € (O,Tl*)7 (3.16)
where Ty and T; are given by Lemma 3.1.
We also assume that the function 1 in (2.7) can be extended in [0, 7] x R? such that

peCH([0,T] xR?) and Op+y-V¥=0 in(0,T) x R% (3.17)
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Assumptions on u. In order to derive estimates on p, we shall assume that U is in
a weighted Sobolev space. According to Theorem 2.3, it is natural to assume

£7%0e* € L*(0,T;L%(Q)), divi=0in Qr, (3.18)

Ge /Y € L2(0, T H2(Q)) with Haew*/“‘ (3.19)

L2(0,T;H2(Q))

Extension of . To fit into the setting of Section 3.2, we extend U on [0, 7] x R? that
we still denote the same: 1i = E(1i), where E denotes an extension from H?(Q) to H?(R?)
such that [[E(V)|lg2 g2y < 2||[V]lg2q) for all v € H?(Q). This allows us to define the flow

X by (3.2) for (t,7,2) € [0,T]? x R2.
Note that, for s large enough, this last assumption is stronger than (3.5) and is thus
perfectly compatible with the construction of Section 3.2, as it implies in particular that

~ —cosA
HeuHL2(O,T;L°°(JR2)) < cgem 0, (3.20)

where ¢p > 0 is independent of s and A. For the following we suppose that s > so and
A > 1 with sg large enough such that (3.5) and (3.20) are satisfied.
On the flows X and X. We first establish a lemma, on the closeness of X to X.

Lemma 3.3. There exists ¢ > 0 independent of s and X such that for all (1,t) € [0,T)?
and x € R?: N o
|X (,t,2) — X (7,t,2)| < cce™ 0>, (3.21)

Moreover, if To <t <7 < T, we also have
0(t)| X (7, t,x) — X(7,t,2)| < cge™ 0%, (3.22)

Proof. Estimate (3.21) is an immediate consequence of (3.4) and (3.20). From (3.4), we
also have R o
()| X (r,t,2) = X(7,t,2)] < T2 00|l 21 rinoe (82))

where L = ||[V¥|| oo (0, 1;L00 r2))- Using the fact that 0 is increasing on [To, T},
0()|X (7, t,2) = X(r,t,2)] < T2 (108 121, moe 2))
for all To <t <7 < T, which concludes the proof of Lemma 3.3 by (3.20). O

On the weight functions. Here, we shall deeply use the fact that v is assumed to
solve the transport equation (3.17), thus implying in particular that

Y(t,T,x) € [O,T]2 x R?, W(t, X(t,7,2)) = Y(7, ).

We then show the following lemma:

Lemma 3.4. There exist c1 > 0, ca > 0 and c3 > 0 independent of s and A\, and so > 1
such that for all s > so, A > 1, the following inequalities hold:

1. Forallt € [0,T —2Ty], 7 € [0,t] and = € R?,

o(t,x) - o(r ):((T,t,x)) < e (3.23)
O < 2 520
2. For allt € [Ty, T], T € [t,T] and x € R?,
o(t,x) — p(r, X (1, t,2)) < e 2™ —es(8(1) — O(1)), (3.25)
£(r, )Ai(rg,x» - % (3.26)
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Proof. We focus on the proof of item 2, the first one being similar and easier because 6
takes value in [1, 2] close to t = 0. Estimate (3.25) follows from the following computations:
for To <t <7<T,

p(t,x) — (1, X (1,t,z))
0(t) (AeeA(mH) _ e)\w(t,:c)) —0(7) ()\eGA(erl) _ e)\dz(-r,)?(-r,t,z)))

0(t) (6)\1/)(7',)?(7',1&,1)) . 6>\1/)(t,a:)) +(0(t) — (7)) (/\em(mH) . ew(f,)?(f,t,m))

H(t) (e)\w(‘r,)?(ﬂ',t,z)) _ e/\w(t,a:)) _ 03(9(7_) _ G(t)),

IN

for some c3 > 0, where we used in the last estimate that @ is increasing on [To,7T]. We
then use (3.4) and (3.22):

16(t) (eww,f((m,x)) _ ewu,x)) | = 6(t) ‘ew(n?w,x)) _ X ()

< DONVlleoe™ ™V |X (7, t,0) = X (7,8, 2)] < crce” 2,

for s large enough, as announced in (3.25). Next, by construction we have

ErX(nta)) _ 00 2@rR(r ) —v (X (rte)
£(t,z) 0(t)
0(T) MVlool R (rt.2) X (7, t,)]
< oo X (72, ot 2
< ¢ ; (3.27)
which immediately yields (3.26) by (3.22). O

We immediately deduce from Lemma 3.4 the following:

Proposition 3.5. Introducing the weight function
N(t, @) = (€(t @) e, (3.28)

there exist so > 1 and ¢ > 0 independent of s and A such that for all A > 1, s > so, for
all (7,t,2) € [0,T] x [0,T] x Q satisfying T <t <T —2Ty orTo <t <,
N(t, z) < X(r, X (1, t,2)). (3.29)
Proof. If 7 <t < T — 2T then (3.29) follows immediately from (3.23) and (3.24).
If To < ¢ < 7 then (3.29) follows from (3.25) and (3.26):

92 (7_)6—0339(7) ey R
N(t, Q;) < (W ecl§<s+2)€ N(T7 X(T, t, flf))

But, for s > 2/cs, the function x ~— x%e™°** is decreasing on [1, +00) and then, since

is increasing on [Ty, T7, 92(7_)6—C359(T) < 92(t)e—6359(t). 0

On the controlled trajectory p. We now derive estimates on the controlled trajec-
tory p given by Section 3.2:
Theorem 3.6. Let 1, 0, ¢, & are defined in (2.7)—(2.9)—(2.10)—(2.11) and assume (3.16),
(3.17). Further assume that U satisfies (3.18) and (3.19) with s > so, A > 1 and so large
enough such that (3.5) and (3.20) are satisfied.

There exists ¢ > 0 independent of s, A and U such that the solution p given by Section
3.2 satisfies

~ sp™ (0
HNPHL2(QT) <cC (HNUHL2(O,T;L2(Q)) +e ||PO||L2(Q)) ) (3.30)

where X is given by (3.28), and

saeBX(m+1)
‘ AN g(t)/sz <cC (’ e
L (Qr)

sxem(m“)o(t)/zﬁ’

L2(0,T;L°° ()

s eﬁ)x('rn+1)
+e HpOHLOO(Q))' (3.31)
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Proof. The proof of Theorem 3.6 follows from the precise description of py and pp given
in (3.14)~(3.15).

Let us begin with the proof of estimate (3.31). On one hand, as t — sAeS*(™TV4(1) is
non-increasing on (0,7 — 271), from (3.14) we get, for all (¢,z) € (0,7 — 2T1) x Q

sAeBA(mA1) gy

sAeBA(mE1)
e Dlps(t,)* < 2e lpoll7

o t s EG)\(TVL+1) )1~
+ 295 ) / e OO (7, ) [Zoo ey T
(0]

On the other hand, using that t — sAeS*(™*1g(t) is non-decreasing on (Tp,T), from
(3.15), similarly, we have, for all (¢,z) € (To,T) x £,

T
6A(mA1) o 6A(MmA+1) (1)~
O 4 ) < [Ty [T, oy
t

Together with the fact that the solution x of (3.8) takes value in [0,1] on Q7 and the
properties (3.10), these two estimates easily yield (3.31).

We then focus on the proof of (3.30), that mainly relies on the two following estimates:
for all time t € (0,7 — 2T1), we get

/|pf(t)|2N2(t)dx§ c (623*’“0)/ |p0\2dx+// \ﬁ|2N2dxdT>, (3.32)
Q Q Qp

and for all time t € (To,T),
/ oo (8)|*N?(t)da < c// [a|*R*dadr. (3.33)
Q Qp

Indeed, once estimates (3.32)—(3.33) are proved, we can bound the L?(Q7)-norm of Rp by
the sum of the L>((0,T — 2T1); L*(Q))-norm of p; and of the L>((Tp, T); L*(Q))-norm
of py, and estimate (3.30) immediately follows.

Let us first present the proof of (3.32). We fix t € [0, T — 2T1]. From (3.14) and (3.29)
we deduce that, for 2 € Qg (1),

s (t,2)|*R* (¢, 2)

<C (|p0()?(o,t,x))|2m2(o,)?(o,t,x)) +/0 |a(T,)?(T,t,x))|%:2(7,)?(T,t,x))dT) ,

whereas for x € Q\Qg(t),
¢
los (t,2)PR*(t,2) < C [6(r, X (7, t,2))"R*(7, X (7, t, 2))dr.

tin (t,2)

Combining these two estimates, for all ¢t € (0,7 — 271) we get:
/ s (8, 2) X (t, 2)da < C / 1p0(X(0,£,2))|*8*(0, X(0, ¢, z))dz
2 Qo1 (1)

t
e / / Ly (1. () B(7, X (7, 6, 2)) PR3 (7, X (7, £, 2))dwdr.  (3.34)
(0] Q

Since ¥ + 4 is divergence free in Qr, the Jacobian of  — X (t,7,z) equals 1 identically.
Therefore,

/ 10 (R0, 1,2))2R2(0, K (0, £,2))dz = / 10 ()| 2R2(0, 2)da
Qo1 (1) X(0,8,201 (1))

IN

/Q |po(2)|*R?(0, z)dz.
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Similarly, we get

t ¢
/ / 1, (b2),0 (T)|U(T, X (7, 8, :c))|2N2(7'7 X(1,t,z))dzdr < / / [u(r, :c)|2N2(7'7 z)drdz
o Ja o Ja

Estimate (3.32) then follows from (3.34).
The proof of (3.33) is based on (3.15) and follows the same lines. It is therefore left
to the reader. O

4 Proof of Theorem 1.1

We are now in position to prove Theorem 1.1. The idea is to construct suitable convex
sets which are invariant by the mapping # = %(,,u,) in (1.21) and relatively compact
for a topology making % continuous. In all this section, we assume the assumptions of
Theorem 1.1.

4.1 Main steps of the proof of Theorem 1.1

In the introduction, we introduced formally a mapping .%. We are now in position to
define it precisely.

In order to do this, the first step in the proof of Theorem 1.1 is to construct a weight
function ¢ which is suitable for both Section 2 and Section 3, i.e. suitable in the same
time for controlling the velocity equation and the density equation. We claim the following
result, proved in Section 4.2:

Lemma 4.1. Let Q) be a smooth bounded domain. Further assume the regularity condition
(1.10) on (v,y), the geometric condition (1.8) and condition (1.9).

Then one can find a smooth (C?) bounded domain O satisfying (2.1) such that there
exists a C2([0,T] x R?)-function 1 satisfying the transport equation (3.17) for some ex-
tension ¥ of ¥ in [0,T] x R? and satisfying assumptions (2.7)~(2.8) for wr = [0,T] x w
and &7 =[0,T] X & where w, & are two subdomains of O\Q such that & € w.

We then consider the extension ¥ given by Lemma 4.1. Next, we take 75, 77" and ¢ > 0
given by Lemma 3.2 and fix Ty € (0,7y) and T1 € (0,77). We then use the function v, 0,
¢ and ¢ given by (2.9), (2.10), (2.11) for m > 5, s > so, A > Ao, and the notations given
in (2.14)—(2.15). Moreover, we suppose that sg, Ao are large enough given by Theorem
2.3 and Theorem 3.6. Now, we define the spaces X, x and Y; x depending on positive
parameters s > sp and A > Ao as follows:

def

X = {u el’(Qr), with div(u) =0 in Qr, (4.1)
51/461/m—268<pu c LQ(QT),
e /fu e L0, T; H*(Q)) N H' (0, T; L2(Q))},

endowed with the norm

2 def | BapT/4 2 1/2 H 1/m—2 se ‘ 2
Hu”x&A = le uHL2(H2)mH1(L2) +s 1 e’u L2@p)’
and
def oo . -2 s 2 s/\e(")‘("H’l)G/Q oo
Yo = {p€ L=(Qr), with & “e’?p e L (Qr) and e p € L>”(Qr)},
endowed with the norm
def |2 s ‘ AN De/2 ‘
lelly, , 2 Il pll 2ap + ||e o
We also introduce the space F; » defined by
F. = {f € L*(0, T; L*(Q)), with £ *fe’® e L*(0,T;L*(Q))}
endowed with the norm [|f[|g Lt ’{72fewHL2(L2) .

24



Note that, in the above definitions as well as in the following results, we keep the depen-
dence in both parameters A and s to be consistent with notations of Section 2. However,
only the dependence in s will be needed in this section.

We then derive the following results.

Theorem 4.2 (On the mapping #1). Fiz po € L™ (). For allu € X, x with [|U]lx | <

s, the construction in Section 3.2 yields p = F1(4, po) solution of the control problem
(1.19). Besides, p € Ys x and for some constant C independent of s > so and A > Ao,

1 =~ so* (0
”WKJSC(QﬁWM&A+€¢(Wme@)- (4.2

Furthermore, the application %1 satisfies the following compactness property: If U, is a
sequence of functions in Xsx with [[tn|x_ < ¢ which weakly converges to some U in
X a, the corresponding sequence p, = Fi (ﬁn,po) strongly converges to %1(U, po) in all
LY(Qr) for g € [1,00).

The proof of Theorem 4.2 is done in Section 4.3. Let us point out that the compactness
property stated in Theorem 4.2 is of primary importance for our result and follows from
[3, Theorem 4].

We then focus on the study of the mapping Fs:

Theorem 4.3 (On the mapping %#2). We can define a bounded linear mapping Fo :
Fsa % V(l)(Q) — X,,a such that for all ug € V(l)(Q) and £ € F, x, u = Z2(f,ug) solves
the control problem (1.20) and satisfies, for some constant C > 0 independent of s > so
and A > Ao,

5 g%
lallx, , <€ (Ifle,, + €7 uollgy g ) - (4.3)

Theorem 4.3 is a direct consequence of Theorem 2.3: the mapping %2 is obtained by
restricting the controlled trajectory given by Theorem 2.3 to (0,7) x €. Of course, this
depends on the extension O of Q, but this choice is done once for all. Estimate (4.3) is
then a rewriting of Theorem 2.3 by taking into account that f and uo are extended by
zero outside 2.

We are then able to derive the following properties on the mapping % in (1.21), whose
proof is postponed to Section 4.4:

Theorem 4.4. Let py € L™=(Q) and up € V§(9).

Then for all s > so and X > Ao the mapping F in (1.21) is well-defined for all U € X, x
with |[dllx_, <<. Besides, for alld € X\ with [[Uf|x_, <<, u=.7(4) belongs to X, x,
and satisﬁés, for some constant Cy independent of s and A,

1 ~2
.., <6 (o e, + R,
s0*(0 25¢™ (0 2 250*(0
+e* ) lpoll poe () + € © llpoll700 ) + €1 ( >||u0||Hé(Q)) - (44)

Moreover, if U, is a sequence of functions in X x with ||Un|x_ . << which weakly con-
verges to some U in X x, the corresponding sequence u, = F(Uy,) strongly converges to
u=7(1) in L*(0,T;L*(Q)).

We may then conclude the proof of Theorem 1.1. For R € (0,¢), we introduce the

closed convex set
X\ ={ueX,, with |ullx <R}

We then choose R small enough such that CoR < 1/4, where Cj is the constant in (4.4),
A= )Xo and s > sp large enough to guarantee Cp < 51/4/4. We then get from (4.4) that
for all i € X, |, u= .7 (1) satisfies

S$,A0?
ik . <24 G (7 o] + 27O o2 g + €75 Jlug
Xang = 9 o\¢ pollpeo (o) T € Pollpes (@) T € Yolleg (o) ) -

Thus, choosing € > 0 sufficiently small in (1.11), we can guarantee that the mapping %
maps XZ, to itself.

s,20
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We then check that the set X, is compact in L*(0,7;L*(2)) as H'(0,T;L*(2)) N
L?(0,T; H*(Q)) is compactly embedded in L?(0,T;L?(2)) due to Rellich’s compactness
theorem and Aubin-Lions’ theorem.

Besides, the mapping .# is continuous on Xf,,\o endowed with the L?(0,T;L?*(Q))-
topology from Theorem 4.4. Indeed, if U, is a sequence of functions in Xff Ao Which
strongly converges to U in L?(0, T; L?(£2)), it necessarily weakly converges in XSR”AO. Thus,
from the last item of Theorem 4.4, u,, = % (1i,,) strongly converges to u in L(0, T; L*(Q)).

Schauder’s fixed point theorem then implies the existence of a fixed point to the map-

ping %, and concludes the proof of Theorem 1.1.

4.2 Proof of Lemma 4.1

We do it in several steps.

Construction of O. In a neighborhood of I'¢, according to Assumption (1.9), there
exists a C? extension O of Q such that

e () C O

e 'y CINNOO and for all t € (0,T) and x € NN OO, y(t,z) - n > v/2;

e 00NN and O\ Q have a finite number of connected components.

Let w, & be two subdomains of O\Q such that & € w and fix do = dist(, 2).
Construction of an extension y, of ¥ in [0,7] x R®. We then construct an
extension ¥, € C%([0,T] x R?) of ¥ outside Qr (i.e ¥, =¥ in Qr) satisfying

‘|yeHC2([O,T]><5) < 09, [O,Ii"?faoye -n >0, (4.5)
and y,=0 in (0,7)x . (4.6)

Before going into the detailed construction of ¥, let us remark that y, cannot be diver-
gence free as it would not be compatible with the condition infjy 17xs0 ¥, - n > 0.

In order to construct such extension y,, we proceed as follows. First, we consider any
extension of ¥ in C*([0,T] x R?). By continuity, there exists d; > 0 such that for all
(t,z) € (0,T) x 00 with d(z,Q) < di1, y(t,z) - n > /3. We also introduce a function m
in C2([0,T] x R?) such that m - n = 1 on the whole boundary 90 and m = 0 in &, and
a smooth non-negative cut-off function = n(z) taking value 1 in  and 0 for all z € O
with d(z, ) > min{do, d1}, and we then consider

Ye(t,x) = n(@)y(t, ) + (1 — n(z))m(z).

This function indeed belongs to C?([0,T] x R?). Besides,

Ye

inf ¥y -anin{l,l},
[0,T]x80 " © 3

and (4.6) is trivially satisfied as m =0 and n =0 in @.
Construction of ¢ in [0,7] x O. We then construct a function ¢r = ¥r(z) such
that

e tr is a non-negative C2 (O) function;
e The critical points of ﬂJ\T all belong to @;

e 1 satisfies the following conditions on the boundary dO:

Yr(z) =0 on 90,
Ve(T,z) - Vipr(z) = =1 on 90, R (4.7
Y (T, x) - V() — (¥.(T, ) - V)*¢dr(z) = 0 on HO.

L] il’lfo ’lZT = (QZT)WO =0.
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Note that such function exists according to the construction of Fursikov and Imanuvilov

in [17] suitably modified to handle the conditions on the first and second order derivatives

on the boundary of O. This can be done easily following the lines of [27, Appendix I1I].
We then consider the solution 1} of

8ﬂ$+ye-V@E:0 in Or,

Y(t,x)y=t—-T on 'y, (4.8)

~

O(T) = tr in O.

Note that this problem is well-posed as, by construction, y,(¢,z) -n > 0 for all (¢,z) €
(0,T) x 9O. We then want to check that

Aat(t,z) <0 for (t,z) € (0,T) x HO;

L]

e 1 belongs to C?([0,T] x O);

e For all t € [0, 7], the critical points of 12;(26, -) belong to &;
e For all t € [0,77], info 12(157 )= @(t)wo;

Using the equation (4.8) and the fact that tangential derivatives of 121\ vanish due to
the boundary conditions, we get, for all (¢,z) € (0,T) x 00,

V.(t,2) noat(t,z) = —0ib(t,x) = —1.
Using (4.5), we thus deduce that

—~ —1
< . .
V(t,z) € (0,T) x 00, duth(t,z) < —— .o n S 0 (4.9)
[0,T)x80

To describe more precisely the function 12, we will introduce the flow X, corresponding
to ¥, i.e. the solution of

V(t: T, x) € [Oa T]2 X RQa aty&(tv T, IE) = ye(tvye(t7 T, J"))v YE(Tv Ty CC) =x. (4'10)

The fact that 121\ € C*([0,T] x O) follows from the following lemma, whose proof is
postponed to Appendix B:

Lemma 4.5. Under the above assumptions, ) € C%([0,T] x O).

We then have to check that the critical points of (¢, ) all belong to .
We first remark that (4.9) implies that there is no critical point on the boundary 90.
We then remark that V1 solves the equation

OV + (¥, V)V + Dy, Vi) =0 in Or. (4.11)

From the equation (4.11), if the point z. is a critical point for 12)\(15C7 -), then for all ¢ in a
neighborhood around t., X.(t,tc, z.) is a critical point for J(t, -). This neighborhood ac-
tually corresponds to the set I. of time ¢ € [0, 7] such that the trajectory 7 — X¢(7, tc, zc)
stays in O for T between ¢ and t..

Since there is no critical point on the boundary 90O and thanks to conditions (4.5),
for all time t. € [0, 7], the critical points z. of 9(t.,-) are linked by a trajectory 7
Xe(7,te, ) to a critical point z.r of QZT, that is . = Xe(te, T, %c,r). By construc-
tion of @T, Ze,7 necessarily belongs to @. But, according to condition (4.6), as long as
)(e(i'7 T, .TC,T) €,

0 Xe (t, T, :L’C7T) =0,
so that X(t,T,2c,r) = e, for all t € [0,T]. This implies that the set of critical points
of 1(t,-) is invariant through the flow X, and is then included in @.

We finally check the condition info zZ(t, )= ’(Z(t)wo for all ¢t € [0, 7] by contradiction.
If this were wrong, there would exist ¢t € [0,7] and z: € O such that z; € Argmin{/;(t, .
Thus, ¢ would be a critical point, and as above, X.(T,t,z:) would belong to O and be
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a critical point of JJ\T. Following, zZ(t, Te) = &T(YE(T,t,It)) would be larger than 0 due
to the assumption on {/;T. But from the boundary conditions, it follows that infp ";Z(t)
cannot be strictly smaller than J(t)‘ao, which is negative for all time ¢ € [0, 7).

Construction of ¢ in [0,T] x R?. As O may share some boundary with ©, we need
to explain that {/; can be extended as a C? function in [0,T] x RZ2. In order to do that, we
extend 121\(0, -) as a C? function of R?, denoted 12)\0, and we solve

O +y, Vi =0in (0,T) x R?, (0,-) = ¢ in R?. (4.12)

Of course, this is consistent with the definition of ¢ in (4.8), and the solution % if (4.12)
obviously is C2([0,T] x R?) as ¢ € C2(R?).

One can then suitably choose a > 0 and b € R such that ¥ = a1 + b satisfies P(t,z) €
[0,1] for all (¢,z) € Or. Then 1 satisfies all the required properties with y = y,. This
completes the proof of Lemma 4.1.

4.3 Proof of Theorem 4.2

According to Section 3, the construction in Section 3.2 yields p = %1 (U, po) solution of
the control problem (1.19) for U satisfying (3.5). This condition is indeed satisfied for
u € X, \ with [[uflx_, <<, see (3.18)-(3.19)-(3.20).

Theorem 3.6 immediately provides estimate (4.2), as Ae® ™ +1g/2 < 3% /4, see (2.13).
We then focus on the proof of the compactness property. According to the construction
in Section 3.2, we introduce py , the solution of

atpf,n + (y+ ﬁn) . fo,n = *ﬁn -Vo in QT,
pra(t,z) = 0 for t € (0,T), = € 09, (4.13)
with (¥(¢,z) + Un(¢t,z)) -n(z) <0, ’
pf,n(O) = po in Q:
po,n the solution of
Opon + (¥ +Un) Vppn = —Un-Vo in Qr,
Pon = 0 for t € (0,T), z € 99, (4.14)
with (¥(¢,2) 4+ dn(t,z)) - n(z) > 0, '
() = 0 in Q,
and x, the solution of
Otxn+ (F+Un) Vxn = 0 in Qr,
Xn = licom)(t) forte(0,T), z €09, (4.15)
with (¥(¢,z) + Un(t,z)) - n(z) <0, '
xn(0) = 1 in Q.

Since 1, is a bounded sequence of H*(0,T;L?(Q)) N L?(0, T; H?(Q)), which is compact in
L?(0,T;L%(Q)), up to a subsequence still denoted the same for simplicity, i, converge to
i weakly in H'(0,T;L?(Q)) N L?(0, T; H?(Q)) and strongly in L?(0,T;L?*(Q)). Then [3,
Theorem 4] applies and for all ¢ € [1,4+00) the sequence X, strongly converges towards x
in LY(Qr) solution of (3.8).

Next, to pass to the limit in (4.13), we notice that o, e p#,n solves

atO'fm + (§+ ﬁn) . VO’ﬁn = 0 in QT,
orn(t,z) = 0  forte(0,T), z €09, (4.16)
with (¥(¢,z) +Un(t,z)) -n(z) <0, '
O'fm(O) = £o in Q

Thus, by applying again [3, Theorem 4] we deduce that, for all ¢ € [1, +00), the sequence
0¢,n is strongly convergent in L?(€r) to the solution o of

oo+ (¥+u)-Voy = 0 inQp,
of(t,z) = 0 forte (0,T), z € R, (4.17)
with (¥(t,z) + U(t,z)) - n(z) <0, '
o¢(0) = po in Q.
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It follows that py,, strongly converges in all LY(Qr) for ¢ € [1,00) to py = o5 — &, which
solves (3.6) by construction.

Of course, the same can be done to show that pp., strongly converges in all L(Qr)
for g € [1,00) to the solution p, of (3.7). Consequently, the sequence p, = Z1(Un, po)
converges to p = .Z#1(U, po) in LI(Qr) for all ¢ € [1,00).

4.4 Proof of Theorem 4.4

Let po € L%(Q), uo € V() and @ € X,,» with [[u]lx | <.

According to Theorem 4.2, p = %1 (1, po) belongs to Y . and is bounded in that space
by (4.2). Thus, according to Theorem 4.3, for .# to be well-defined, we have to check that
f(p,u) given in (1.14) belongs to F , and we will get estimates on u = .% (1) from an
estimate of f(p, 1) in F,  according to (4.3). We thus estimate f(p,u) in F, \ term by
term from estimates on p € Y; ) and U € X, x.

We easily check

€2 p(@t + (v + @) - Vi + - VF)]| 202,

sAeOX(mF1) g /o —2 sp—sxebMmt1)g /o ~ — =5 =
<’e’\ ‘ H e’ 0:u + +1)-V)u+u-Vv ‘
< e § ( t ((y ) ) y) L2(L2)
<Cllply, , [ R s [
S, L2(H2)QH1(L2) Lo
where we used that
¥+, 00, <C  and HeSS*"*/“vaH <c He&”’*/“ﬁ’ :
Iy HL’A’(L ) = Loo(L2) — L2(H2)nH1(L2)

According to (2.13), s¢ — sAe®Mm /2 — 3s50% /4 < —s¢p/4, and thus there exists some
constant C' independent of s and X such that

"€—Qesap—s)\es>‘(m+l)8/2—334/3*/4H < C.

Following,
e (@8 + (7 +0) - V)| 1o ) < C lolly, , 8lx, - (4.18)

Next, we estimate (U - V)u. Similarly as above, we write

2 R i 3sp™ /4/\ 3s¢™ Jdos —2 sp—3sp*/2
€% 7a8- Vallsqs) <Ol 0] o v, e
<CIlal., - (4.19)
Last, we estimate p(0;y + (¥ - V)¥):
1672007 + (7 - VI Loy S ClE7% 0 < Cllplly, , - (4.20)

Putting estimates (4.18)—(4.20) together, we obtain:
1800 Dle, | = 1€ 80, | agge) < Cllelly, .+l , + 80, ). (42D)

Combined with estimates (4.2) and (4.3), this yields the well-posedness of the mapping
F for U € X, with [[d]lx_ | << and the estimate (4.4).

We now focus on the last part of Theorem 4.4. Let U, is a sequence of X, » with
[ Hx < ¢ which weakly converges to u. Note that this weak convergence implies that
14l x N < ¢, so that .# (1) is well-defined.

Besides that, according to Theorem 4.2, the sequence p, = F1(Un, po) strongly con-
verges in all LY(Qr) with ¢ < oo to p = Z1(U, po) and the sequence p, is uniformly
bounded in Y x.

We then have to check that f(p,,U,) weakly converges in F, \ to f(p,u). But (4.21)
shows that the sequence f(pn,U,) is bounded in Fj , and thus we only need to prove
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that the sequence f(p,,U,) weakly converges in D'(Qr) to f(p,1). To obtain this con-
vergence result in D'(2r), as p, strongly converges to p in all LY(Qr) with ¢ < oo
and U, weakly converges to G in H*(0,T;L*(Q)) N L*(0,T; H*(Q)), we only have to fo-
cus on the convergence of the term (¢ + p,)Un, - VU,. But, using the compactness of
H'(0,T;L%(Q)) N L*(0, T; H3(R)) in L*(0, T; L*(Q)), we have the convergences

T+pn — T+p strongly in LY(Qr), ¢ € [1,00),
n— o0
u, — u strongly in L4(0,T; L4(Q)),
n— o0
Vi, — Vi weakly in L?(0,T;L*(Q)),
n— oo

so that, choosing ¢ = 4 for instance, we obtain the weak convergence of (¢ + pn)u, - VU,
to (@ + p)u - Vu.

Following, f(pn, ) weakly converges in F; » to f(p, i) and, since F» : F5 x x V§(Q) —
X, » is a linear bounded operator, we obtain that u, = #(U4,) = F2(f(pn,Un), wo)

~

weakly converges to Z2(f(p,0),ug) = F(U) = u in X, . Finally, as X, x is compact in
L*(0,T;L%(Q)), u, strongly converges to u in L2(0, T; L*(Q)).

A Proofs of Theorems 2.5 and 2.6

For simplicity, we make the proof of Theorems 2.5 and 2.6 for v of equal to 1.This can be
done without loss of generality by replacing o and f by o/v and f/v if needed.

A.1 Proof of Theorem 2.5

Let z be a smooth function on [0, T] x O satisfying z = 0 on (0,T) x 0 and set

[ 50z — Az, (t,z) € (0,T) x O, (A1)

Set then

w=¢e °¢

z. (A.2)
According to the definition of 6 in (2.10), w satisfies

w(T,z) =0, Vw(T,z)=0, z€O, (A.3)

in addition to the conditions w(t,z) = 0 on (0,7) x 9O.
Besides, with f as in (A.1), w satisfies

e f=e?(—00iz — Az) = e °7 (=70 (e’Fw) — A(e’*w)) = Pyw,
where the operator P, is given by
Pow = —50yw — s50ypw — Aw — 25V - Vw — 87|V w — sApuw. (A.4)

We now set Pi, P> and R the operators:

Pw = —-cow— ZSV(,O -Vw + 25>\2|V¢|2£w7 (AS)
Pw = —Aw-— sc0ipw — 32\V<p|2w, (A.6)
Rw = sAAp&w — sA?|Vy|2ew, (A7)

so that
P,=Pi+ P+ R.

We then use that Piw + Pow = fe™ *¥ — Rw and then

// |P1w|2—|—// |P2w|2+2/ PrwPow
Or Or Or
:// |fe *¢ — Rw|* < 2// |f\26*25¢+2// |Rw|®.  (A.8)
Or Or Or
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The main part of the proof then consists in computing the scalar product of Pyw with
Pow and estimate it from below.
Computations. We write

3
/ lePgw = Z L,‘j,
Or

ij=1
where I; ; is the scalar product of the i-th term of Pyw with the j-th term of Pow.
Computation of I11.

//OT FowAw = — //OT 50, ('Vw|2) /OT wVE - Vu
- 5/@ #(0)|Vw(O) + & / 05|Vl f/OT oV Vw.  (A9)

Computation of 1.

[0 = 5// E2atw8tcpw
Or
-3 [ #00ewOF -5 [[ douelul ~s [[ aosoeul. (110
2 o 2 Orp Or

Computation of I13.

s> // Fow|Vol*w
Or
- ——/ 0)[Vip(0) (0 |—f// 50 ((Vol) [w? (A1)

S —
—*/ 07| Vep|*|w].
2 /o,

Computation of I21.

113

Iy = 25/ V- VwAw
Or

23/ Onp|Onw|® — 23/ V (Ve - V) - Vw

I'p Or

= 25/ Onp|Onw|® — 25/ D?*p(Vw, Vw) — 5/ VeV ([Vul?)
I'r Or Or

= s Bng0|8nw|2 — 28/

I'r

2o(Vw, Vw) + s/ Ap|Vwl|?. (A.12)
Or

Or

Computation of I2z.

Ly = 2§ // TV - Vwdpw = —s° // div (30, V)|w|?
Or Or
= -5 // 7 div (DspV)|w|* — 32/ V7 - Vpdyo|w|®. (A.13)
Or Or
Computation of Is.
Inz = 283/ Ve - Vw|Ve|*w = —s° // div (V| V) [w]?. (A.14)
Or Or

Computation of Iz.

I = —2s)\° // V| éwAw
Or

— 2s)? // |Vz/)|2§|Vw|2+23)\2/ V(VELe)w - Vo, (A.15)
Oor Or
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Computation of Iza.

I3p = —25°\° // 7|V |*Edip|w|’. (A.16)
Or
Computation of Iss.
I3z = —25°\? // V2|Vl |w|?. (A17)
Or
Combining the above computations (A.9)—(A.17), we obtain the following:
/ PiwPw
Or
1 [ _ 1 _ _
=3 [ 7OV + 5 [ [w@)F50) (< 1Ve0F —m0as0) (a1
723/ DQ@(Vw,Vw)JrS// (Ap + 227 |Vy|*€)|Vw|? (A.19)
Or Or
I < (—div (|Vl*Vp) — 207V P Vi) (A.20)
Or
+5°7 (=0, (IVel?) — (Ap +2X° | VY[ *6)drp) (A21)
o 1
+ so (*iatt@> ) (A22)
+ s/ Onp|Onw|® + Ix, (A.23)
rr

where

Ig = 1// v |Vw|? + 2s\? // V(|V¢|2§)w-Vw—s// 50170 0| w|?
2 Or Or Or

2
-2 // 23| V|’ lw|* — s° // VaVpdielw|® — // OwVa - Vw. (A.24)
2 Or Or Or

Positivity. Our main goal now is to check that the coefficients in the above integrals
are positive, except perhaps on the observation set wr. At this step, we will strongly rely
upon the choice of the weight function ¢ in (2.11), and on the formula

9 0
O = %w —AOE,  BE = %g + AOE. (A.25)

In the following, to simplify notations, we will denote by C' generic positive large con-
stants that do not depend on s or A and by ¢ generic positive small constants independent
of s and A. The constants may change from line to line.

Positivity of the terms (A.18) at t = 0. Explicit computations yield

—0ip(0) = Tﬂo(xe“("”” — ™) L 2X9,1p(0)e™ ) > 312 E2)

whereas
‘VQO(O)'Z < C)\2|€(0)‘2 < C\2e2A (6mt1)

Thus, with (2.2), for some A1 > 0, taking A > A\ > 1,
inf {—s*|V(0)]* — s5(0)0rp(0)} > cs? A3 Em D) (A.26)
o

and, following,

% / 7(0)[w(0)* (=5°|V(0)|* = s7(0)2ip(0)) > es?A%2 O™+ / jw(0)]*. (A.27)
(@] (@]
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Positivity of the terms (A.19) involving the gradient. For n € RY, we have

—2sD%p(n,n) + s(Ap + 2X%|V|*€)|n|?
= 2sN%¢|VY - | + sAP VY n]? + 2sAED%p(n, m) — sAEAY|n[®. (A.28)

Using (2.8), we get the existence of A2 = Aa(a, |[D*%]|oc) > A1 such that for all A > X»
and n € RY,

Y(t,z) € Or \&or, —2sD*0(n,n) + s(Ap + 2X|VY|*E)|n> > esA?|n|’, (A.29)
whereas there exists a positive constant C' = C(a, || D*9| ) such that
¥n € RN, V(t,w) € Gr, = 25D%p(n, 1) +s(Ap+2X°[VHEI* > esX*gln]” — CsX*€¢lnl*,

Hence we obtain, for all A > A1,
- 23/ D?p(Vw, Vw) +s// (Ap + 222 | V|28 |[Vw|?
Op Or
> cs)\Q/ E|Vw|® — Cs>\2/ £|Vw|®.  (A.30)
Or @

Positivity of the terms (A.20) involving w with scale s>. Using Vi = —AVy€, we have
—div (|Ve[* V) = 3A V' + A°¢P div (V9P Vy),
NIVePE Vel = M vel'e.
Hence

= div (IVe["Vip) = 22| Vel*¢|Vil” = N Vo'’ + X’ div (IVe’Ve). (A31)
Using (2.8), we thus get the existence of A3 = A3(a, || D?9]|oc) > A2 such that for A > As,
Y(t,z) € Or \wr, —div(|Ve|*Ve) =227 |VY|*¢|Vp|* > er’e’. (A.32)

whereas there exists a positive constant C' = C(a, || D*9| ) such that
V(t,z) € or, —div(|[Ve|*Ve) — 222V [2E[Vp|® > eX’e® — Oa*e®. (A.33)

We thus obtain, for all A > A3,
[l (i (96T - 202190l VoP)
T
> 083)\4/ £ |w|? —033/\4/ Elw®.  (A.34)
Or @7

Terms (A.21) involving w in the scale s>. We have to estimate
=0 (IVel’) = (Ap + 2X° VY[ 2€)drep.
Explicit computations yield:

—8: (|Ve[?) = (Ap + 2X3|VY|*€)drp

= N0V — 222V - Vo — X220 Ay (A.35)
+ 20 (Neplvul + aedve — 202 VuP) (A.36)

Before going further, let us remark that, using & > 1, there exists a positive constant C,
only depending on the C*-norm of 1 such that for all A > 1, for all (t,z) € (0,T) x O,

[=X€20up|V|* — 202V - Vo — N 20, Ap — 202 |V | < ON°€°.
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This estimate is sufficient to handle the terms in (A.35).

We will then focus on the terms in (A.36). First remark that on (To, T —2T1), 8,0 = 0,
so the term in (A.36) simply vanishes.

On (T —2T1,T), we use the fact that there exists a constant C' > 0 such that

vt € (T — 2T, T), |0:0] < CH°.
Hence there exists C = C(||VY ||, ||A%||oo) such that for all (¢,z) € (T'—2T1,T) x O,

0 (~Nepl Vol + X6t — 2NEIVOP)| < ONBEp < ONE, (ABD)

where for the last inequality we have used |fp| < A¢?, which is a consequence of (2.13).

On (0,T)), we are going to use that 9.0 < 0 and 6 € [1,2] and thus the term in (A.36)
has the good sign outside @r. Indeed, using (2.8), we can find Ay = M(e, |A¢Y]|0) > A3
such that for all A > A4, for all (¢,z) € (0,Tp) x O such that (¢,z) ¢ o,

— (=N€p|VY|? + XA — 237 Vy[*) > eXP€p,

whereas it is bounded by CA%£¢ everywhere in Or. We thus derive, for all A > A4,
2 2 2 2 2 22 [T 2
[l (<0, (6l) - (B + 2N VuLOA) = es'3 [ [ jostleetw
Or o Jo

—032)\3/ Ewf? — O\ // 0010w, (A.38)
Or opn{te(0,Tp)}

Term (A.22) involving w in the scale s. We have to estimate —0 .

Ot 0
0

Let us first remark that we immediately have

O = ©— QA%atwg — ADuhE — N2 (D)€ (A.39)
|=A0rp€ — A2 () €] < CA?E”.
For t € (0,Tp), we further have
Vi€ (0,To), |0uf] < Cs*A* 28 19,0 < CsAZe o™=
so that, on (0,Tp)
|8ip| < Cs?APMIEMTE) EAMAD) L O3 AOm=D e L ONZe® < O8N5,
For t € (T — 2T}, T), we have
Vt e (T — 2T, T), |8.60] <CO> and |9:0] < CH°.
Hence, using (2.13) and 0 < A2, for some positive constant C' = C(||9s1)||c0),
V(t,x) € (T =211, T) X O, |Oup| < CO*p + CAOE + CA°E* < ON*E°.

Combining all these estimates, we get

s// 7| (—1amp> > —053)\2/ . (A.40)
Or 2 Or

Positivity of the terms (A.20)—(A.21)—(A.22) involving w. Here we combine the esti-
mates in (A.34), (A.38), (A.40) in order to derive suitable estimates for the sum of the
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terms in (A.20)-(A.21)-(A.22). To simplify notations, let us set I,, the sum of the terms
in (A.20)—(A.21)—(A.22):

1, // ] (33 (= div (|Ve|* V) — 202 Vo2 Vel?)
Or

+s%F (—0: (|V¢|2) —(Ap + 2>\2|v¢|2§)at¢) + so° <_%att¢> > (A.41)

Putting together (A.34), (A.38), (A.40), we deduce that there exist s; > 1 and As > A4
such that for s > s; and A > As,

To
Iy 2033/\4/ §3|w\2+032/\2/ / |8:6|€ 0| w|? (A.42)
or o Jo

- CSS)\4/ Ew|? — Cs222 // O0lcolwl. (A43)
@ @rn{te(0,To)}

Positivity of the boundary terms (A.23). Here, we only have to remark that dnp > 0
since On1) < 0 by construction, see (2.7).

A bound on Iz in (A.24) We also provide an upper bound on Ir.

First, we shall of course use the immediate estimate

1/ 05| Vul? < c// V.
2 Or Or

Using V(|V1)|2€) < CAE, one easily checks that

2 2 . 244 3142 2 2
25\ //OT V(IVY[" w Vw’ < Cs*A /OTf |w|* + CA //OT EVwl®. (A.44)

Using (A.25), we have

CXE on (To, T — 2T1),

sAZAOm=D N OANmED) L ON¢ on (0,To),
|0rp] <
IS 4 Ong on (T —211,T),

so that |9:p| < CsA&® everywhere. Hence

s// 70,50, p|w|? SCS2>\// 3 wl|?. (A.45)
Or Or

Moreover, using |[Ve| < CA¢, (A.25) and 8p < A2 we also obtain

52

5] Vel
Or

s / VoVedip|lw|?
Or

S 082)\2/ §2|w|2’
Or

To
SCSQ/\/ /fnp\at9||w|2+032)\2 // £ uwl?.
0 o Or

Finally, we also have

'/ OwVaT - Vw‘ < C’i/ 1|(9tw|2 + CsA // £|Vw|?, (A.46)
Or sA Or 3 Or

and combining all the above estimates,

|I7z| < —C 71|8tw\2 + C'sA §|Vw\2
A
S Or 3 Or

To
+Cs2)\/0 /Og|ate|¢|w|2+032A4/o Elw®.  (A.47)
T

35



A lower bound for the cross-product [[ PywPw. This step simply consists in putting
together all the above estimates: for all s > s;1 and A > s,

2/ PrwPw 2/ |Vw(0)|2—|—652)\3612)‘m+2/ lw(0)[?
or o o
+cs)\2/ £|Vw|® - C’s)\Q/ |Vl
Or wr
To
+esPA\! Ewl? +cs2)\2/ / |0:0)Ep|w]?
or o Jo
—053A4/ Ew|* — Cs*\? // 10:0)E0w]? — |Ir].
o7 @rn{te(0,To)}
Thus, using (A.47), for some s2 > s1 and Ag > As, for all s > so and A > Ag
// leP2w>/ |Vw(0)]® + cs*Xe 12)‘m+2/ |w(0
Or
+es\? / E|lVw|> — Cs\? / EVuw|* + 683)\4/ Ew)?
o &7 Or

To .
tes?A2 / / 1040 fw]? — Cs®A* / £ wf? (A.48)
0 (@] QT

7csw// 18:0)€0|w|? f—/ / |Osw]
Srn{te(0,T0)} €

Conclusion. We first derive a Carleman estimate on w with observations on the
gradient, and then explains how to remove this term using a suitable multiplier.
A Carleman estimate on w with observations on the gradient. According to estimates

(A.8) and (A.48), for all s > s2 and A > A,
// (\le\2+|P2w|2)—|—c/ |Vw(0)|2+052x3612*m+2/ l(0)?
or o
+cs)\2/ §|Vw|2+053)\4/ Ew|? + s N\ / / |0:0] € |w]?
<c// ]2 *2W+c// | Ru? +05A2/ £Vl
Or wr
+Cs )\4/ Ew|? + Cs*\? // 18:0)E0|w]? _,_7// —|0ww|
o @pn{te(0,Tp)}

To handle the term ||Rw]||22, we recall that Rw is given by (A.7), hence

// | Ru|? §032A4/ Jul?.
Or Or

where C' = C(|| V¥ ||, ||A¥||s) is a positive constant.
Also note that

i/ Liouuf? < 9// |P1w|2+Cs)\/ §|Vw\2+C's)\3/ wl.
SA Or 13 SA Or Or Or

In particular, for some s3 > ss, for all s > s3 and A > g,

// (|Prw]® + |Pow]?) + c/ |Vw(0)|* + 082)\3612>\m+2/ lw(0)|?
Or o o
To
+cs)\2/ §|Vw|2+053/\4/ §3|w\2+csg)\2/ / |9:0|&o|w|?
Or Or 0 (@)
< c// |f|?e " +Cs)\2/ €|Vl (A.49)
Or or

+Cs3/\4/ Eluwf? + Cs?A2 // 10401 |w]?.
Q7 orN{te(0,Tp)}
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n (A.49), the observation is done on @7 and concerns both w and Vw. Below, we shall
explain that this observation can be done only on w provided we take an observation set
slightly larger.

A Carleman estimate on w without observations on the gradient. Recall that W € wr,
then there exists a nonnegative smooth function n = (¢, z) taking value in [0, 1] such that
n=1on&r,and n =0 in (0,7) x O\ &r. We then compute the scalar product of Pow
and nsAZ&w:

/OTPzw(nsA £w) = s\? //OTn£|V f—// AWl
- [ deeu — X /I RACEER

In particular, using (A.25) and (2.13),

To
ox? // D[ Vwl? + esA2 / / n|06|E |l
or 0 o

2 2 2
< / [ PuG¥ew) + / NI

Or

T
1 22T / / | DublE wf? + $A° // 0|2 ol
T—2T, JO Or
+sx [ el
Or

Of course, this implies that

o [ gvap s [[ Fnlu6lEplul?
o @rn{te(0,To)}

—f//oT'PQ“" NSRTIY // 7P€2lw|? + 2CsX? // A

4205203 6/\(m+1)/ /matg\g\w| +205° 7\ // 1|0|€* w]®
—2T

+205°\* //A |V 263 lw]?.
wT

But there exists a constant C' = C(||n]| o2y, [|V¥loo, [|AY]0o, |0:%]| o) such that

A@e)| < CN€, sup {'iff'} <,

[T—2T1,T)

hence, using the fact that 7 is supported on wr,

2, // ETLI. // A®E)||w]? +3A3// n| ol wl?
gcs‘“’)\“/a & luwl?,

whereas

T
82)\366)\<m+1)/ / n|8:0|€|w|?
T—21, JO

IN

52 \3 BN m+1) /7792§\w|2
T—217; JO

033)\4/ £ w|?.
@7

IN
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Hence, by combining the above estimates with (A.49), for some s4 > s3 and A7 > Ag,
there exists a constant C' such that for all s > s4 and A > A7,

/|Vw(0)|2+52A3€>\(12m+2)/ |w(0)|2+SA2 // £|vw|2
o o Or
) To
et [ g et [7 [ ool
or 0 o

gc// |f|2e—2”+053,\4/ Elw>.  (A.50)
Or @r

Back to the function z. We now go back to the function z = we®¥. For that, let us first
remark that there exists a constant C = C(||V||) such that for all (¢,z) € (0,T) x O,

e = |

|Vz|?e 2% < 2|Vw|? + 25°|Vo|*|w|® < 2|Vw|® + 205° X2 |wl|?.

2
wl’,

We immediately deduce from (A.50) that for all s > s4 and A > A7, for some positive
constant C,

/|VZ(O)|26—2550(O)+82)\36A(12m+2)/ |Z(O)|26—234p(0)+8>\2/ £|VZ|26—2590
(@] (@] Or
To
+53)\4/ 53‘Z|26—23ap+52)\2/ /|8t0|§§0|2|26_25(p
Or 0 (@]

< C// |fIPe % + Cs3>\4/ €z%e %%, (A.51)
Or wr

We conclude the proof of Theorem 2.5 by setting so = s4 and Ao = A7.

A.2 Proof of Theorem 2.6

We divide the proof in several steps.

A duality approach. To solve the control problem (2.26)—(2.27), we first rewrite the
control problem under a weak form. Multiplying y solution of (2.26) by smooth functions
z on [0,7T] x O such that z =0 on [0,T] x 00, we get:

/OE(T)y(T)z(T) + //OT y(—00z — Az) = //OT fz+ //@T hz. (A.52)

In particular, since 7(7") > 0, the null-controllability requirement (2.27) is satisfied if
and only if for all smooth functions z on [0,7] x O such that z =0 on [0,T] x 90,

//OTZJ(*E&Z*AZ)://OT fz+//QT hz. (A.53)

The trick now is to introduce a functional J whose Euler Lagrange equation coincide
with (A.53): For smooth functions z on [0,7] x O such that z = 0 on [0,7] x 90, we
define

() = %//@ |(—58t—A)z\26_2‘w+¥//a g3|z|26—2w—/0 fe (A54)

But the set of smooth functions z on [0, 7] x O such that z = 0 on [0,T] x O is not
a Banach space. We thus introduce

I
-lobs

Xops = {2z € C>=([0,T] x O) such that z =0 on [0,T] x 90} (A.55)

where |||, . is the Hilbert norm defined by

41 = [ tm0 - s stxt [[ et aso)
T wT

obs
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The set Xops is then endowed with the Hilbert structure given by |-||,,,. Note that here
we use the fact that ||-|| ,. is a norm, which is a consequence of the Carleman estimate
(2.25). Also note that X,ps and |||, strongly depends on s and X and we shall follow
these dependences carefully in the sequel.

The functional J can be extended as a continuous functional on X, provided (2.28)
holds. Indeed, due to (2.25), we easily have, for some constant C' > 0 independent of s

and A,
1 -3 2 2 1z
‘// 2 < Cllzll, (Tw [ e w) . (A57)
or or

It follows that, if condition (2.28) is satisfied, the functional J can be uniquely extended as
a continuous functional (still denoted the same) on Xps. Besides, (A.57) also implies the
coercivity of J on Xops. Since it is also strictly convex on Xops since ||-| is an Hilbert
norm, J admits a unique minimizer Z on Xops.

Setting

obs

Y = (00 — A)Ze *¥  and H = —s’\'¢Ze **%15,, (A.58)

writing the Euler Lagrange equation of J at Z, for all smooth functions z on [0,T] x O
such that z =0 on [0,7] x 90,

0= / [ vionz-a2) —/QT Hz— / [ = (A.59)

which coincides with (A.53).

In particular, (A.59) holds for all smooth functions z on [0, 7] x O such that z = 0 on
[0,T] x 00 with z(T) = 0, which implies that Y solves the equation (2.26) with h = H
in the sense of transposition. By uniqueness of solutions in the sense of transposition,
this is the solution of (2.26) in the classical sense. In particular, since H € L*(Or), Y
is C([0,T]; L*(0)). Then, using again (A.59), we remark that it coincides with (A.53),
hence Y solves the control requirement (2.27).

Besides, using (A.57) and the fact that J(Z) < J(0) =0,

s34 // |Y\262W+/ £ H|?e*? < C// 3| f P (A.60)
or o Or

Estimates on VY. In the previous step, we found (Y, H) satisfying the equations

o(@Y)—-AY = f+Hlg,, inOr,
Yy = 0, in I'r,
Y©0,) = o, in 0, (A.61)
Y(T,) = 0, in O.

and the estimates (A.60).
Our goal now is to obtain an estimate on VY. In order to do this, for ¢ > 0, we
introduce

et ) 22 0.(t) (Aew’”“) - ewtvz)) () S o (1)er )

and 0. is given by:

7
Vi€ [0,To], 0-() = 1 + <1 - i) ,
To
0- = 0.(t) suchthat { Vt€ [To,T —2T1 +¢], 0(t) =1,
Vte [T —2T1 +¢&,T), 0:(t) = 0(t — ¢),

was in (2.12).
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We then multiply the equation (A.61) by £72Y e5%=:

—1// [Y|?0; (5€%e*%7) +// |V ?0,56 %€ e
2 Or Or
[ emwvpee <[] vraete)
Or 2 Or

- / fET2Y e + / HET?Y e5%¢
Or @r

Following, multiplying by sAZ,
2 2 2 2 sA? [To 2 -2 2
X [ erwypere 2 [ [ qvie (e
O 2 Jo Jo

sA2 T _ _ s D% o s
= T/T /(90—|Y‘28t (fs 262 A'DE) + 7 //(\9 ‘Y|2A (65 262 A'05)
0 T
2
+5\? / FE2ePPY 4 A / HET?Y ™% — % / / [Y[P0i56 %< (A.62)
Or o Or

We then compute explicitly:

281595 6t98

e+ 2
0. 7=,
On (0,Ty), we remove the dependence in € > 0 as 6. = 0 on (0,7p). Using (2.13), 9:0 <0
and 0 € [1,2] in [0, To] we have, for all s > sg and ¢ € (0, Tp),

—20:0 0l —
—25€77mp 2767 2 es|DlE e,

— e 0, (€2%e%°97) = 25N 1O — 2sEC T2+ 200pE22. (AL63)

whereas

|25XE1 0 + 2X0mpE 2| < CsAE .

Hence

sA2 [To 2 —2 2s 242 To — -2 2 2s
- 7/ /E|Y| O (£77€e™°%%) > es™A / /0|8t9|§ olY|7e™*?
0 o 0 o
To
sz2>\3/ /\Y|2625‘p. (A.64)
0 O

On (T, T), from the identity (A.63), using |0,0:| < C62, we derive

2520 — 25552’6;95 o+ 28505 72 4 200pET?| < CsA
‘We thus obtain
2 T T
i/ /a|y|28t (£7%e*%7) §032A3/ /|Y|2625%. (A.65)
2 Ty JO Ty JO

Straightforward computations yield |A (§;262W€) < Cs?A%e?*%= | from which we get

2
i // |Y|2A (56—2625475) < 053)\4 // ‘Y|26234p5. (A66)
2 Or Or
Using Cauchy-Schwarz estimates,
sA? // ((f + Hlgp ) 2e*%) Y‘ (A.67)
Or

- S C — S
< axt [[ e S erpen L C [ gnmpee
Or & Or & @r
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Since we obviously have

S)\Q // |Y|28tE€E—2623¢5 S 053)\4 // ‘Y|26234p57 (A68)
Or Or
combining estimates (A.64)—(A.65)—(A.66)—(A.67)—(A.68) and plugging (A.62), we obtain

To
SAQ/ ET3|VY |Pe*57e +52>\2/ /E|8t9|£_2\Y|262”
Or 0 @)

S CS3>\4 // |Y|2625§a5 + C 6;3|H‘2625¢5 + C// 5;3|f‘262s¢5.
Op o7 Or

Since the constant C' is independent of € > 0, we can pass to the limit £ — 0, and using
(A.60) and the fact that & is bounded from below away from 0, we get:

To .
sv/O g—2|v1/|262w+52x2/ /O|ate|g—2<p\y|2e2w < C//o €73 [17%°. (A.69)
T 0 T

Estimates on AY, 8,Y. Multiplying the equation (A.61) by —£-*AYe?*%< /s, we
obtain

B i/ On(GE ) VY + / QY VY - V(7 %)
2s or S or

+ 1/ ETHAY et = ! // (f + Vg, — 0aY)ET AY > <. (A.70)
S Or S Or

As in (A.63), we compute explicitly —;(£2%e?*%¢). Arguing as in (A.64), we get

1 To 4 2 2 To 4 2 2
L / F0u(62 12| VY|P > c/ /5\@9\5— O VY 2627
(@) 0 (@)

25 /o
To
fC/\/ /g*g\vyfem. (A.71)
0 O

Besides, arguing as in (A.65), we get

1 (T r_ —4 2sp, 2
o [ [ maete vy
SJry, Jo

One can also easily check that
)
2s

< csA2/o £ |VY Pe? e (A.72)
T

/ da(E- 20 ) VY 2
Or

< CsA? / ET2|VY Pe57e (A.73)
Or

We then estimate the cross-term of (A.70):

1 / DY VY - V(e te9)
Or

S

—2
< Tmin // €0 Y [Pe® % + OsA? // VY|P, (AT4)
8s or or
where min (et min@i From the equation (A.61),

oY = i (AY + f+ Hl,, — O0Y), (A.75)
g

and thus we deduce

2
) _ 1 3 .
O min / §E 4‘8ty|26284p5 < / 55 4|AY‘2€2\ Pe + g ﬂ ‘Y|2623<P5
8s or 4s or s or

w S e © [ ermpen a)
s JJo, s JJo=

wr
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And of course,
‘71 J[ e —oongtaver| < L[| etavpe
s o, 4s [ Jo,

C _ R C _ s C s
+ ¢ / e?|f2eee + / / e0| 2 e 4 © / / Y2eee. (A7)
s or s o s or

Combining all the above estimates, we get

i// ECHAY e < OsN // ECIVY e + Os° A // [V |2e?%e
2s Or Or Or

v [[erppere e [ etmpe.
Or wr

Since the constant C does not depend on € > 0, we can pass to the limit € — 0:

i/ EHAY P < CSAQ/ EP|IVY P + Os* ! // [V |2e??
2s JJo, or Or
+ C/ 5—3|f‘2€234p + C/ 5_3|H|2623w.
Or @
Using now estimates (A.60), (A.69) and (A.76), we get
L[ etavr v sy <c [ eryppe. (AT9)
S Or Or

Estimates on 9,Y in L*(I'r). Let n: O — R? such that n € C*(O;R?) and n = 7
on 00. Since Y vanishes on I'r, we have the following identity: for all € > 0,

1/ §;3|any|2e"’s%:// €AY VY er¥e
2 T'r Or
[ pletme ey vy - g [[ ety
Or Or

Hence
s . 1 - s - s
A E30aY )P < f/ Y AY PP 4 Cs)\Q/ E2|VY e e,
T'r S Or Or

Passing to the limit in € — 0 and using (A.69) and (A.78) we thus obtain
A €730aYPe*? < c/ 0 f)Pe* 7. (A.79)
Ir Or

Conclusion. Estimates (A.60), (A.69), (A.78) and (A.79) yield (2.29).

B Regularity of the weight function

Proof of Lemma 4.5. The first remark is that the flow X, is C*([0,T] x [0, T] x R?) since
¥, € C*([0,T] x R?).

In order to study the regularity of {p\, we will introduce the function tout = tout (¢, )
defined for (t,z) € (0,7) x O as the supremum of the time 7 € (¢,7T] for which V¢’ €

(t,7), Xe(t',t,z) € O. Tt is not difficult to check that this time ¢,y can also be charac-
terized as the solution of

Ottout +¥. - Vioww = 0 in Or,
tout (t) =t on FT, (Bl)
tout (T) - T in O.
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For convenience, we also set

Zout(t, ) = Xe(tout (¢, ), t, ). (B.2)

We first prove that tout is continuous in Or. In ordeL to do that, let us remark that X,
is C2([0, 7] x [0,T] x R?) and for all (t,7) € [0,T]?, Xc(t,7,-) is a C? diffeomorphism of
R2. In particular, Or can be decomposed into

Or =071 U012 UXr,

Or1 = {(t,z)€(0,T)x 0,z X(t,T,0)},
with ¢ Orp, = {(t,z) €(0,T)x O,z € Xc(t,T,R*\ O)}, (B.3)
Sr = {(t,2) €(0,T) x O, v € Xc(t,T,00)}.

In (B.3), Or,1 and O are open sets whereas X = mﬂm is closed and of dimension
2. For (t,z) € Op1UXr, tout(t,2) = T and tous is thus continuous on Or ;. The continuity
on Ory is more involved. If (¢,2) € Or,2, then Zout(t, ) belongs to 0. Due to the
condition (4.5), for any € > 0, there exists a neighborhood ¥ of (tout(t, ), Tout (¢, z)) in
[0, T] x O such that [tou (t',2") — tout(t, )| < € for all (¢',z') € .. In particular, for some
te € (0,T) close to tous(t,z), ¥ is a neighborhood of (ta,ye(tg,tout(t, x), Tout (t,x))) =
(te, Xe(te,t,x)). Following, {X.(t —t. + t',t',2'), (t,2') € ¥} is a neighborhood of
(t, Xe(t,te, Xe(te,t,))) = (t,x) on which toys is at distance at most & of tous (¢, x).
Thus, tous is continuous in Or. As 1} solution of (4.8) can be written as

~ [ Pr(ou(t,x))  if tow(t, ) =T,
U(t, ) f{ tout(t,xt) U tout(m) <T (B.4)

the continuity of @E in Or follows from the first compatibility condition in (4.7). Also note
that 1) is obviously C? in Or ;.

We then focus on the C* regularity of 1Z In order to do this, we remark that Viout
solves

8tVtout + (ye . V)Vtout + DyEVtout = O il’l OT,
n(z)
outly i — r s .
Viou(t:) V.o n@ LT (B
View(T) = 0 in 0.

In particular, Vo can be computed for any (¢,x) € Or,2 by solving for T between ¢t and
tous (t, ) the ODE

i (VtOUt(T7 Yﬁ(’rv t7 ,’.E))) = 7Dye(7—7 Yﬁ(’rv t7 x))VtOUt(Tv YE(Ta t7 ZE)), TE (ta tout(t7 :E)),

dr
_ n(Tout (¢, x))
ye(tOHt(tv $)7 Lout (t7 :C)) ) n(mout(tv x)) -
One then easily obtains that Viout is C° on Or,2 and from the equation (B.1) we deduce
that fou is C' in Ors. From there, we derived immediately from (B.4) that ¢ is C* on
Or,2 and that it can be extended as a C' funtion on 07” as follows: V{p\ can be computed

for any (t,z) € X1 by solving for 7 between ¢ and T' the ODE:

% (v@(r,x(r, ¢, :r))) = DY, (1, Xo(r,t,2))VO(r, Xo(r,t,2)), 7 € (t,T),  (B.6)

with Viout (tout (t, J]‘), Tout (tv z)) =

n(X.(T,t,x))

with V(T, X (T, t,z)) = _yE(T,Ye(T,t,m)) n(X.(T.0.2)

(B.7)

On the other hand, ¥ solves the equation (4.11), and can be extended as a C* function
on Op,. For (t,x) € Sr, this yields Vi(t, ) as the solution of the ODE (B.6) with
V{/;(T,YE(T,t,m)) given. But, as J(T) is constant on the boundary and satisfies the
second compatibility condition in (4.5), we get again (B.7) for (t,z) € 7. Following, Vi)
is continuous across Y7, hence on Or. Using the equation (4.8), ¥ belongs to C" (Or).
The proof of the C? regularity follows the same path and is left to the reader. O

43



C Proof of Theorem 1.2

The proof of Theorem 1.2 follows the one of Theorem 1.1. The main difference is that we
assume that we control on the whole boundary (0,7) x 9. In that case, the set £ can
be embedded into a large torus O = Ty, where L is a large number corresponding to the
size of the torus.

The control problem (2.4)—(2.5) for the velocity field u can then be set on a domain
without boundary. Therefore, if we choose 1 satisfying

V(t,z) € [0,T] x Ty, (t,x) € [0,1], 1)
inf{|V(t, z)|, (t,z) € [0,T] x Ty, s.t.d(z, Q) <3} > a >0, '

the same strategy as the one developed for Theorem 2.1 applies, except that no boundary
terms appear. In particular, estimate (2.37) holds without the presence of the boundary
term. This means that, for all smooth v solution of (2.17), setting w = curlv, for all
s> so and A > Ao,

T T
871/ 52‘vv|26725(p+/ §3|w|26725(p+s)\2 // 64‘V|26725(p
o Jrg o JTp Or

T

S C (/ §3|w|26725<p +S)\2/ £4|V|26725<p +871A72/ §2|g‘26725w) ) (CZ)
wr wT 0 JTg

where wr = (0,T) x {x € Ty, s.t.d(z,) > 2}. As in the proof of Theorem 2.1, one can

then remove the observation in w and express it in terms of an observation in v. This

easily yields Theorem 2.1 with wr = (0,T) x {z € Ty, s.t.d(z,2) > 1} and the control

result corresponding to Theorem 2.3.

Concerning the controllability of the density done in Section 3, one can basically do
the same thing as in the 2-d case thanks to the Sobolev embedding L?(0,T; H*(R?)) C
L2(0,T; L>=(R?)). However, one needs to be careful as the flow X defined in (3.2) is not
defined in the classical sense for a velocity field only in L2(0,T; H*(R%)). One needs to
consider the flow defined in the sense of [10], which solves the equation (3.2) only almost
everywhere. To avoid this technical difficulty, given @ € L?(0,T; H?(Q)) satisfying (3.18)—
(3.19), we approximate it by a sequence U, of L?(0,T;H?*(Q)) of divergence free vector
fields satisfying (3.18)—(3.19) and such that £ 2@,e*? is strongly convergent to £ 2tie®?
in L2(0, T; L2(Q)) and U,e**? /% strongly converges to te**# /% in L2(0,T; H(12)). The
construction of Section 3 then applies without any change for any u,,, yielding a sequence
of controlled densities p, solving the controlled problem (1.19) with the velocity field 4,
satisfying the estimates of Theorem 3.6. Thanks to the convergence results in [2, 3] and
following the proof in Section 4.3, this construction shows the existence of a controlled
density p solving the controlled problem (1.19) with the estimates of Theorem 3.6. Besides,
thanks to the convergence results in [2, 3], this controlled density p coincides with the one
in (3.9).

One can therefore conclude as in Section 4. The construction of 1 satisfying (C.1) can
be done as in the proof of Lemma 4.1: one can then simply take an extension y. of the
velocity field vanishing for « € T with d(x,) > 3, and choose an initial data ¢r in (4.8)
having its critical points localized in the set {z € Tyr, s.t.d(z,Q) > 3}. The rest of the
proof of the fixed point argument is left unchanged.
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