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Abstract. It is by now well-known that one can recover a potential in the wave equation from the
knowledge of the initial waves, the boundary data and the flux on a part of the boundary satisfying
the Gamma-conditions of J.-L. Lions. We are interested in proving that trying to fit the discrete
fluxes, given by discrete approximations of the wave equation, with the continuous one, one recovers,
at the limit, the potential of the continuous model. In order to do that, we shall develop a Lax-type
argument, usually used for convergence results of numerical schemes, which states that consistency
and uniform stability imply convergence. In our case, the most difficult part of the analysis is the
one corresponding to the uniform stability, that we shall prove using new uniform discrete Carleman
estimates, where uniform means with respect to the discretization parameter. We shall then deduce
a convergence result for the discrete inverse problems. Our analysis will be restricted to the 1-d
case for space semi-discrete wave equations discretized on a uniform mesh using a finite differences
approach.
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1. Introduction. The goal of this article is to study the convergence of an
inverse problem for the 1-d wave equation. Before introducing that problem, we shall
present which inverse problem we are dealing with in the continuous setting.

1.1. The continuous inverse problem. For T > 0, we consider the following
continuous 1-d wave equation:







∂tty − ∂xxy + qy = g, (t, x) ∈ (0, T )× (0, 1),
y(t, 0) = g0(t), y(t, 1) = g1(t), t ∈ (0, T ),
y(0, ·) = y0, ∂ty(0, ·) = y1.

(1.1)

Here, y = y(t, x) is the amplitude of the waves, (y0, y1) is the initial datum, q =
q(x) is a potential function, g is a distributed source term and (g0, g1) are boundary
source terms.

Of course, this problem is well-posed in some functional spaces, for instance: If
(y0, y1) ∈ H1(0, 1) × L2(0, 1), g ∈ L1(0, T ;L2(0, 1)), gi ∈ H1(0, T ) for i = 1, 2, with
the compatibility conditions y0(0) = g0(0) and y0(1) = g1(0) and q ∈ L∞(0, 1), the
solution y of (1.1) belongs to C([0, T ];H1(0, 1)) ∩ C1([0, T ], L2(0, 1)). Such result
is well-known except perhaps for the condition on the boundary data, which is a
consequence of a hidden regularity result and a duality argument, giving a solution of
(1.1) in the sense of transposition - see [31], detailed for instance in [29]. Under this
class of regularity, using again a hidden regularity result in [31], we can prove that
∂xy(t, 1) belongs to L

2(0, T ).
We can therefore ask if, given (y0, y1), g, (g0, g1), the knowledge of the addi-

tional information ∂xy(t, 1) for a certain amount of time allows to characterize the
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potential q. We emphasize here that the data (y0, y1), g, (g0, g1) are supposed to be
known a priori.

It has been proved in [1] that this question has a positive answer provided that
T is large enough (T > 1 here) and y ∈ H1(0, T ;L∞(0, 1)). Of course, to guarantee
this regularity without any knowledge on q, we may impose some stronger conditions
on the data (y0, y1), g, (g0, g1), see e.g. in Remark 1 below.

Let us precisely recall the results in [1]. For m ≥ 0, we introduce the set

L∞
≤m(0, 1) = {q ∈ L∞(0, 1), s.t. ‖q‖L∞(0,1) ≤ m}.

It will also be convenient to denote by y[q] the solution y of (1.1) with potential q.
Assuming that p ∈ L∞

≤m(0, 1) is a given potential, we are concerned with the stability
of the map q 7→ ∂xy[q](·, 1) around p. Then we have the following local Lipschitz
stability result:

Theorem 1.1 ([1]). Let m > 0, K > 0, γ > 0 and T > 1.
Let p in L∞

≤m(0, 1). Assume that the corresponding solution y[p] of equation (1.1)
is such that

‖y[p]‖H1(0,T ;L∞(0,1)) ≤ K. (1.2)

Assume also that the initial datum y0 satisfies

inf
{
|y0(x)|, x ∈ (0, 1)

}
≥ γ. (1.3)

Then for all q ∈ L∞
≤m(0, 1), ∂txy[p](·, 1) − ∂txy[q](·, 1) ∈ L2(0, T ) and there exists a

constant C > 0 that depends only on the parameters (T,m,K, γ) such that for all
q ∈ L∞

≤m(0, 1),

‖∂txy[p](·, 1)− ∂txy[q](·, 1)‖L2(0,T ) ≤ C ‖p− q‖L2(0,1) , (1.4)

‖q − p‖L2(0,1) ≤ C ‖∂txy[p](·, 1)− ∂txy[q](·, 1)‖L2(0,T ) . (1.5)

Estimate (1.5) gives the Lipschitz stability of the inverse problem and (1.4) states
the continuous dependence of the derivative of the flux of the solution with respect to
the potential. Together, these two estimates indicate that the result is sharp. Note
however that estimate (1.4) is, by far, the easiest one to obtain.

Remark 1. The hypotheses (1.2) and (1.3) are technical ones, and we do not
know if they are needed. The condition (1.3) relies on the method we use (that takes its
roots in [9]) and is still not lifted in the literature. However, one can partially justify
this assumption (1.3) by remarking that if the data (y0, y1), g and (g0, g1) all vanish,
then the solution of (1.1) would be identically equal to zero, thus making impossible
to recover the potential from the flux.

Also note that the condition (1.2) can be guaranteed uniformly for p ∈ L∞
≤m(0, 1)

with more constraints on the data (y0, y1), g, (g0, g1) in (1.1), for instance:

(y0, y1) ∈ H2(0, 1)×H1(0, 1),

g ∈ W 1,1(0, T ;L2(0, 1)), (g0, g1) ∈ (H2(0, T ))2,

under the compatibility conditions

g0(0) = y0(0), g1(0) = y0(1), ∂tg
0(0) = y1(0) and ∂tg

1(0) = y1(1). (1.6)
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Indeed, under these assumptions, ∂ty[p] ∈ C0([0, T ];H1(0, 1)) ∩ C1([0, T ];L2(0, 1))
(see [29]), with estimates depending only on m and the norms of (y0, y1), g, (g0, g1)
in the above spaces. Therefore, due to Sobolev’s imbedding, y[p] satisfies (1.2) for
some constant K > 0 that can be chosen uniformly with respect to p ∈ L∞

≤m(0, 1).
The proof of Theorem 1.1 is based on a global Carleman estimate and is very close

to the approach of [24], that concerns the wave equation with Neumann boundary
condition and Dirichlet observation for the inverse problem of retrieving a potential.
Actually, it also closely follows the approach of [37] but the work [1] requires less
regularity conditions on y.

The use of Carleman estimates to prove uniqueness in inverse problems was intro-
duced in [9] by A. L. Bukhgĕım and M. V. Klibanov. Concerning inverse problems for
hyperbolic equations with a single observation, we can also refer to [33], [34] or [38],
where the method relies on uniqueness results obtained by local Carleman estimates
(see e.g. [22], [28]) and compactness-uniqueness arguments based on observability
inequalities (see also [39]). Related references [24], [23] and [25] use global Carleman
estimates, but rather consider the case of interior or Dirichlet boundary data obser-
vation. Here, we take the terminology of [30], among many others, for distinguishing
local from global Carleman estimates: they are called local if they apply to func-
tions with compact support, global otherwise. Of course, these are closely related as
explained in the parabolic context in [30].

Let us also point out that the aforementioned results are not restricted to 1-
d situations and hold under various geometric assumptions on the observation set,
typically the Gamma-condition of Lions. Let us also mention the important case of
non-constant velocities, studied e.g. in the work by O.Y. Imanuvilov and M. Ya-
mamoto [25] or in the recent work by P. Stefanov and G. Uhlmann [35], and the case
in which no geometric condition is fulfilled, case in which logarithmic stability results
can be proved [5] through suitable local Carleman estimates for elliptic operators and
a FBI transform.

In the present work, we will follow the approach of O. Y. Imanuvilov and M.
Yamamoto in [24]. This will already restrict our results to the case of constant velocity.
We will furthermore restrict ourselves to the 1-d case for sake of simplicity, even though
we expect that our results can be extended in higher dimension.

1.2. Discrete inverse problems. In this article, we would like to address the
question of the numerical computation of an approximation of the potential p ∈
L∞(0, 1), on which we assume the additional knowledge that its L∞(0, 1)-norm is
bounded by some constant m > 0.

For N ∈ N, set the discretization parameter h = 1/(N+1) and let us now consider
the following semi-discrete wave equation:







∂ttyj,h − (∆hyh)j + qj,hyj,h = gj,h, t ∈ (0, T ), j ∈ {1, . . . , N},
y0,h(t) = g0h(t), yN+1,h(t) = g1h(t), t ∈ [0, T ],
yj,h(0) = y0j,h, ∂tyj,h(0) = y1j,h, j ∈ {1, . . . , N},

(1.7)

where

(∆hyh)j =
1

h2
(yj+1,h − 2yj,h + yj−1,h)

denotes the classical finite-difference discretization of the Laplace operator and where
(y0j,h, y

1
j,h) are the initial sampled data (y0, y1) at xj = jh, gih ∈ L2(0, T ), i = 0, 1 and

gh ∈ L1(0, T ;RN) are the boundary and source sampled data.
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The parameter h > 0 represents the size of the mesh. In particular, all the discrete
quantities are to be understood as functions of h > 0 and we are interested in their
convergence as h→ 0.

In the following, it will be important to sometimes underline the dependence of
yh in (1.7) with respect to the potential qh. This will be done using the notation
yh[qh].

A natural approach for the computation of an approximation of the potential we
want to determine in our inverse problem is to find ph ∈ L∞

≤m(0, 1), or rather in a
discrete version of it denoted by L∞

h,≤m(0, 1) - see below (1.12) for a rigorous definition
- , such that

∂t
(
∂−h yh[ph]

)

N+1
(t) ≃ ∂t∂xy[p](t, 1), t ∈ (0, T ), (1.8)

where yh[ph] is the solution of (1.7) with potential ph and

(∂−h yh[ph])N+1 =
yN+1,h[ph]− yN,h[ph]

h
=
g1h(t)

h
− yN,h[ph]

h

is the natural approximation of the normal flux at the boundary x = 1. Of course,
the meaning of (1.8) also has to be clarified. The question is then the following: Does
(1.8) imply ph ≃ p ? Or, to be more precise, can we guarantee the convergence of the
discrete potentials ph toward the continuous one p when h→ 0 ?

Our analysis will focus on this precise convergence issue. To sum up in a very
informal way our results, we will show that the convergence indeed holds true (Theo-
rem 4.1), provided a Tychonoff regularization process is introduced. The key estimate
is a stability estimate for the discrete inverse problem (Theorem 3.1), given by appro-
priate global discrete Carleman estimates (Theorem 2.2, Corollary 2.3 and Lemma
2.11).

To state our results properly, we will need several notations that are given here-
after.

1.3. Notations.

Discrete integrals and spaces Lph. By analogy with the continuous case, if we de-
note by fh = (fj,h)j∈{0,...,N+1} a discrete function, we will use the following notations:

∫

(0,1)

fh = h
N∑

j=1

fj,h,

∫

[0,1)

fh = h
N∑

j=0

fj,h,

∫

(0,1]

fh = h
N+1∑

j=1

fj,h, . (1.9)

One should notice that if these symbols are applied to continuous functions or products
of discrete and continuous functions, they have to be understood as the corresponding
Riemann sums.

Note that it also defines in a natural way a discrete version of the Lp(0, 1)-norms
as follows: for p ∈ [1,∞), we introduce Lph(0, 1) (respectively L

p
h([0, 1))) the space of

discrete functions fh = (fj,h)j∈{1,...,N}, (respectively j ∈ {0, . . . , N}) endowed with
the norms

‖fh‖pLp

h
(0,1) =

∫

(0,1)

|fh|p (resp. ‖fh‖pLp

h
([0,1)) =

∫

[0,1)

|fh|p ), (1.10)

and, for p = ∞,

‖fh‖L∞

h
(0,1) = sup

j∈{1,...,N}

|fj,h| (resp. ‖fh‖L∞

h
([0,1)) = sup

j∈{0,...,N}

|fj,h|). (1.11)
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By analogy with L∞
≤m(0, 1), we also define, for m > 0,

L∞
h,≤m(0, 1) =

{

qh = (qj,h)j∈{1,...,N} ∈ L∞
h (0, 1), s.t. ‖qh‖L∞

h
(0,1) ≤ m

}

. (1.12)

Discrete operators. Let us also introduce the following discrete operators:

(mhvh)j =
vj+1,h + 2vj,h + vj−1,h

4
; (m+

h vh)j = (m−
h vh)j+1 =

vj+1,h + vj,h
2

;

(∂hvh)j =
vj+1,h − vj−1,h

2h
; (∂+h vh)j = (∂−h vh)j+1 =

vj+1,h − vj,h
h

;

(∆hvh)j =
vj+1,h − 2vj + vj−1,h

h2
.

The operators mh,m
+
h ,m

−
h stand for discrete approximations of the identity, ∂h, ∂

+
h ,

∂−h for discrete approximations of the derivative and ∆h for the discrete approximation
of the Laplace operator ∂xx. These discrete operators will be of constant use along
the article.

Convergence issues. Finally, we shall explain how to compare discrete functions
with continuous ones. In order to do so, we introduce two extension operators.

The first one extends discrete functions by continuous piecewise affine functions.
To be more precise, if fh is a discrete function (fj,h)j∈{0,··· ,N+1}, the extension eh(fh)
is defined on [0, 1] by

eh(fh)(x) = fj,h+

(
fj+1,h − fj,h

h

)

(x−jh) on [jh, (j+1)h], j ∈ {0, . . . , N}. (1.13)

This extension presents the advantage of being naturally in H1(0, 1).

The second one is the piecewise constant extension e0h(fh), defined for discrete
functions (fj,h)j∈{1,...,N} by

e0h(fh) = fj,h on [(j − 1/2)h, (j + 1/2)h[, j ∈ {1, . . . , N},
e0h(fh) = 0 on [0, h/2[∪[(N + 1/2)h, 1].

(1.14)

Of course, this one is more natural when dealing with functions lying in L2(0, 1). In
particular, we have

∥
∥e0h(fh)

∥
∥
L2(0,1)

= ‖fh‖L2

h
(0,1) . (1.15)

Also note that easy (but tedious) computations show that eh(fh) converge to f in
L2(0, 1) if and only if e0h(fh) converge to f in L2(0, 1).

We finally introduce the restriction operator rh defined for continuous functions
f ∈ C([0, 1]) by

rh(f) = fh given by fj,h = f(jh), ∀j ∈ {1, · · · , N}. (1.16)

Constants. In the sequel, C or Ci will denote various positive constants that
may change from line to line but that always are independent of the discretization
parameter h.
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1.4. Convergence of the inverse problem. In order to prove the convergence
of the inverse problem, we shall develop a Lax-type argument for the convergence of
the numerical schemes that relies on:

• Consistency: For p ∈ L∞
≤m(0, 1), it consists in finding a sequence of discrete

potentials ph lying in L∞
h,≤m(0, 1) such that,

e0h(ph) −→
h→0

p in L2(0, 1), (1.17)

∂t
(
∂−h yh[ph]

)

N+1
−→
h→0

∂t∂xy[p](·, 1) in L2(0, T ), (1.18)

where y[p] satisfies (1.1) with potential p and yh[ph] satisfies (1.7) with potential ph.
• Uniform stability: It consists in showing the existence of a constant C and

a time T independent of h > 0 such that for all (qh, ph) ∈ L∞
h,≤m(0, 1)

2,

‖qh − ph‖L2

h
(0,1) ≤ C

∥
∥
∥∂t

(
∂−h yh[qh]

)

N+1
− ∂t

(
∂−h yh[ph]

)

N+1

∥
∥
∥
L2(0,T )

. (1.19)

where yh[qh], respectively yh[ph], satisfies (1.7) with potential qh, respectively ph.
Of course, the consistency is the easiest part of the argument and will be detailed in
Section 4. The most difficult one comes from the stability estimate (1.19). Actually,
as we shall explain below, we will not get (1.19), but we shall rather prove, for T > 1,

‖qh − ph‖L2

h
(0,1) ≤ C

∥
∥
∥∂t

(
∂−h yh[qh]

)

N+1
− ∂t

(
∂−h yh[ph]

)

N+1

∥
∥
∥
L2(0,T )

+ C
∥
∥h∂+h ∂ttyh[qh]− h∂+h ∂ttyh[ph]

∥
∥
L2(0,T ;L2

h
[0,1))

, (1.20)

for some C > 0 independent of h > 0, yh[qh] and yh[ph] being the solutions of (1.7)
with potentials qh and ph respectively - see Theorem 3.1 for precise statements.

This is still compatible with the Lax argument since in some sense, the added
observation operator weakly converges to 0 as h→ 0. Indeed, the operator h∂+h is of
norm bounded by 2 on L2

h([0, 1)). Besides, it can be identified with h∂xeh since

∀fh = (fj,h)j∈{1,··· ,N},
∥
∥h∂+h fh

∥
∥
L2

h
([0,1))

= ‖h∂xehfh‖L2(0,1) ,

and the operator h∂xehrh(·) obviously converges to zero as an operator from C1([0, 1])
to L∞(0, 1). Therefore, in the limit h → 0, this term disappears and (1.20) still
yields (1.5).

Of course, this should be taken into account into the consistency argument: Given
p ∈ L∞(0, 1), one should find a sequence ph such that (1.17)–(1.18) hold and the
discrete solution yh[ph] of (1.7) satisfies

h∂xeh(∂ttyh[ph]) −→
h→0

0 in L2((0, T )× (0, 1)). (1.21)

We refer the reader to Theorem 4.2 for precise assumptions and statements concerning
the consistency.

The convergence result for the discrete inverse problems toward the continuous
one is then given in Theorem 4.1 and takes into account the previous comments.
Roughly speaking, we will prove that, given any p ∈ L∞(0, 1) and any sequence
ph ∈ L∞

h,≤m(0, 1) such that the convergences (1.18) and (1.21) hold, the discrete

potentials ph converge to p in L2(0, 1) as h→ 0 in the following sense:

e0h(ph) −→
h→0

p in L2(0, 1). (1.22)
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We refer to Section 4.1 for precise assumptions and statements.

The proof of the uniform stability estimate (1.20) (see Theorem 3.1) is based on a
discrete Carleman estimate for (1.7), which should be proved uniformly with respect
to h > 0 (see Corollary 2.3). This is the main difficulty in our work.

First, a discrete version of the continuous Carleman estimate yielding the stability
(1.5) cannot be true as it is. Indeed, that would contradict the results in [21, 27, 40, 17]
that emphasize the lack of uniform observability of the discrete wave equations. This
is due to the fact that the semi-discretization process that yields (1.7) creates spurious
high-frequency solutions traveling at velocity of the order of h, see e.g. [36, 32]. Hence,
they cannot be observed in finite time uniformly with respect to h > 0.

We shall therefore develop a discrete Carleman estimate for the discrete wave
equation (1.7) which holds uniformly with respect to the discretization parameter
h > 0. We will use the same Carleman weights as in the continuous case. Though,
the discrete integrations by parts will generate a term which cannot be handled di-
rectly. This will correspond to a term of the order of 1 at high-frequencies of the
order of 1/h, whereas it is small for frequencies of order less than 1/h, thus being
completely compatible with the continuous Carleman estimates and the analysis of
the observability properties of the discrete wave equation. One can see [40, 17] for
review articles concerning that fact.

Uniform Carleman estimates for discrete equations have not been developed ex-
tensively so far. The only results we are aware of concern the elliptic case [6, 7, 8]
for applications to the controllability of discrete parabolic equations, in particular in
[8]. More recently in [15], discrete Carleman estimates have been derived for elliptic
equations in order to prove uniform stability results for the discrete Calderón prob-
lems. The proof of the discrete Carleman estimates in Theorem 2.2 closely follows
the methodology of [6, 7] to handle the discrete computations.

Outline. The paper is organized as follows. Section 2 is devoted to the proof of
discrete Carleman estimates for a 1-d semi-discrete wave operator. A uniform stability
estimate for the related inverse problem is derived from it in Section 3. Convergence
theorems are given and proved in Section 4. Finally, Section 5 provides some further
comments and open problems.

2. Discrete Carleman estimates. In this section, we establish uniform Car-
leman estimates for the semi-discrete wave operator.

2.1. Continuous case. We recall here a global Carleman estimate for the con-
tinuous wave operator. This will make easier the comparisons with the forthcoming
discrete ones.

Let x0 < 0, s > 0, λ > 0 and β ∈ (0, 1). On [−T, T ]× [0, 1], we define the weight
functions ψ = ψ(t, x) and ϕ = ϕ(t, x) as

ψ(t, x) = |x− x0|2 − βt2 + α, ϕ(t, x) = eλψ(t,x), (2.1)

where α > 0 is such that ψ ≥ 1 on [−T, T ]× [0, 1].
We then have the following Carleman estimate:
Theorem 2.1 ([1]). Let Lw = ∂ttw − ∂xxw, T > 0 and β ∈ (0, 1).
There exist λ0 > 0, s0 > 0 and a constant C = C(s0, λ0, T, β, x

0) > 0 such that
for all s ≥ s0, λ ≥ λ0 and w satisfying







Lw ∈ L2((−T, T )× (0, 1)),
w ∈ L2(−T, T ;H1

0 (0, 1)),
w(±T, ·) = ∂tw(±T, ·) = 0,

(2.2)
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we have

sλ

∫ T

−T

∫ 1

0

ϕe2sϕ
(
|∂tw|2 + |∂xw|2

)
dxdt+ s3λ3

∫ T

−T

∫ 1

0

ϕ3e2sϕ|w|2 dxdt

≤ C

∫ T

−T

∫ 1

0

e2sϕ|Lw|2 dxdt+ Csλ

∫ T

−T

ϕ(t, 1)e2sϕ(t,1) |∂xw(t, 1)|2 dt. (2.3)

Carleman estimates for hyperbolic equations can be found in [22] and we refer the
reader to the bibliography therein for extensive references. The Carleman estimate
stated here can be seen as a more refined version of the one in [22, Theorem 1.2] but
in the case of boundary observation and with the freedom on λ. For the proof of this
Carleman estimate, we therefore refer to [1, 3].

Remark 2. Note that the above Carleman estimate holds without any condi-
tion on T . This might be surprising but this should not be since we assume that
w(±T ) = ∂tw(±T ) = 0 and therefore, the corresponding unique continuation re-
sult is: If w(±T ) = ∂tw(±T ) = 0, w ∈ L2(−T, T ;H1

0(0, 1)), ∂ttw − ∂xxw = 0 and
∂xw(·, 1) = 0, then w ≡ 0.

2.2. Statement of the result. In this section, we state uniform Carleman
estimates for semi-discrete wave operators.

Of course, since we work in a semi-discrete framework, the space variable x is now
to be considered as taking only discrete values xj = jh ∈ [0, 1] for j ∈ {0, . . . , N + 1}
(recall that h = 1/(N + 1)). Therefore, for continuous/discrete functions f/fh (e.g.
with ϕ, ψ,...), we will write indifferently f(xj)/fh(xj) or fj/fj,h. We shall also make
extensive use of the notations defined in Section 1.3. We will also add the subscript
h when we want to emphasize the dependence in the mesh size parameter h > 0, but
we shall remove it as soon as the context clearly underlines that we are working for
one particular h > 0.

One of the main results of this paper is the following discrete Carleman estimates:
Theorem 2.2. Let Lhwh = ∂ttwh−∆hwh, T > 0 and β ∈ (0, 1) be the parameter

used in the definition (2.1) of the weight function ϕ.
There exist s0 > 0, λ > 0, ε > 0, h0 > 0 and a constant C = C(s0, λ, T, ε, β) > 0
independent of h > 0 such that for all h ∈ (0, h0) and s ∈ (s0, ε/h), for all wh
satisfying







Lhwh ∈ L2(−T, T ;L2
h(0, 1)),

w0,h(t) = wN+1,h(t) = 0 on (−T, T ),
wh(±T ) = ∂twh(±T ) = 0,

we have

s

∫ T

−T

∫

(0,1)

e2sϕh |∂twh|2 dt+ s

∫ T

−T

∫

[0,1)

e2sϕh |∂+h wh|2 dt+ s3
∫ T

−T

∫

(0,1)

e2sϕh |wh|2 dt

≤ C

∫ T

−T

∫

(0,1)

e2sϕh |Lhwh|2 dt+ Cs

∫ T

−T

e2sϕh(t,1)
∣
∣(∂−h wh)N+1

∣
∣
2
dt (2.4)

+Cs

∫ T

−T

∫

[0,1)

e2sϕh |h∂+h ∂twh|2 dt

where ϕh is defined as the natural approximation of ϕ given by ϕh = rh(ϕ) (re-
call (1.16) for the definition of rh), i.e. ϕj,h(t) = ϕ(t, jh) for j ∈ {0, · · · , N} and
ϕh(t, 1) = ϕ(t, 1).
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The proof of Theorem 2.2 will be given at the end of Section 2.6.
The following remarks are in order:

• The weight function ϕ in the above discrete Carleman estimate is the same as
for the continuous one, up to the restriction operator rh.

• In Theorem 2.2, the parameter λ is fixed, whereas it is not in the continuous
Carleman estimate of Theorem 2.1. Looking carefully at the proof of Theorem 2.2,
one can prove that there exists λ0 such that, for all λ ≥ λ0, there exist ε(λ) > 0 and
C = C(λ) such that (2.4) holds for all s ≥ s0(λ) and sh ≤ ε(λ). These dependences
of ε and C on λ are very intricate and we did not manage to follow them precisely.

• The fact that C is independent of h > 0 is of major importance in the applica-
tions we have in mind. This is very similar to the observability properties of discrete
wave equations for which one should prove observability results uniformly with re-
spect to the discretization parameter(s), otherwise the discrete controls (obtained by
duality from the discrete observability properties) may diverge, see e.g. [17].

• The range of s in Theorem 2.2 is limited to s ≤ ε/h. This is a technical
assumption, that is not surprising when comparing it to [6, 7]. Indeed, for s of the
order of 1/h, esϕ is a high-frequency function of frequency of the order of 1/h and
therefore it does not reflect anymore the dynamics of the continuous wave operator.

• In comparison with the estimate (2.3), a new term appears in the right hand
side of (2.4), which cannot be absorbed by the terms in the left hand side. Though,
this term is needed and cannot be removed. Otherwise, one could obtain a uniform
observability result for the discrete wave equation, a fact which is well-known to be
false according to [27]. Besides, this extra term is of the order of one for frequencies
of the order of 1/h, whereas it can be absorbed by the left hand side for frequencies of
smaller order. According to [17], this indicates that the extra term in estimate (2.4)
has the right scale.

• It should be said that the discrete Carleman estimates (2.4) allow to recover
the continuous one (2.3), except for what concerns the dependence in the parameter
λ. Indeed, consider a smooth source term f = f(t, x) such that the solution w of
∂ttw − ∂xxw = f on (−T, T )× (0, 1) with homogeneous Dirichlet conditions at x = 0
and x = 1 with initial data w(−T ) = ∂tw(−T ) = 0 satisfies w(T ) = ∂tw(T ) = 0. For
such f , the solution w is smooth and, by consistency of the numerical schemes under
consideration, the sequence of discrete functions wh = rh(w) satisfies:

‖∂ttwh −∆hwh − rh(f)‖L2((−T,T );L2

h
(0,1)) −→h→0

0,
∥
∥(∂−h wh)N+1 − ∂xw(·, 1)

∥
∥
L2(−T,T )

−→
h→0

0.

Since w is smooth, we easily check the following strong convergences:
e0h(wh) strongly converges to w in L2((−T, T )× (0, 1)),
e0h(∂twh) strongly converges to w in L2((−T, T )× (0, 1)),
∂xehwh strongly converges to ∂xw in L2((−T, T )× (0, 1)),
h∂xeh∂twh strongly converges to 0 in L2((−T, T )× (0, 1)).

Since f is smooth, we also have the strong convergence of e0hrh(f) to f in L2((−T, T )×
(0, 1)). Therefore, plugging all these strong convergence in the Carleman estimate
(2.2) applied to wh for fixed s and passing to the limit h → 0, we readily obtain
the continuous Carleman estimate (2.3) (without the explicit dependence in the pa-
rameter λ). We can then conclude by a simple density argument that the Carleman
estimate (2.3) holds for any function w satisfying (2.2), but the dependence in the
parameter λ is lost.

Note that in the application we have in mind, we shall not use directly the Carle-
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man estimate (2.4) which involves the wave equation without a potential but rather
one in which a L∞ potential is allowed. Indeed, we have the following corollary:

Corollary 2.3. Let T > 0, β ∈ (0, 1) be the parameter used in the definition
(2.1) of the weight function ϕ and let ϕh = rh(ϕ). Let m > 0, qh ∈ L∞

h,≤m(0, 1) and
Lh[qh]wh = ∂ttwh −∆hwh + qhwh.
There exist s0 > 0, λ > 0, ε > 0, h0 > 0 and a constant C = C(s0, λ, T,m, ε, β) > 0
such that for all h ∈ (0, h0) and for all s ∈ (s0, ε/h), for all wh satisfying







Lh[qh]wh ∈ L2(−T, T ;L2
h(0, 1)),

w0,h(t) = wN+1,h(t) = 0 on (−T, T ),
wh(±T ) = ∂twh(±T ) = 0,

we have:

s

∫ T

−T

∫

(0,1)

e2sϕh |∂twh|2 dt+ s

∫ T

−T

∫

[0,1)

e2sϕh |∂+h wh|2 dt+ s3
∫ T

−T

∫

(0,1)

e2sϕh |wh|2 dt

≤ C

∫ T

−T

∫

(0,1)

e2sϕh |Lh[qh]wh|2 dt+ Cs

∫ T

−T

e2sϕh(t,1)
∣
∣(∂−h wh)N+1

∣
∣
2
dt (2.5)

+Cs

∫ T

−T

∫

[0,1)

e2sϕh |h∂+h ∂twh|2 dt.

Proof. This is a simple consequence of Theorem 2.2, since Lhwh = Lh[qh]wh −
qhwh with qh ∈ L∞

h,≤m(0, 1) leads to

∫ T

−T

∫

(0,1)

e2sϕh |Lhwh|2 dt

≤ 2

∫ T

−T

∫

(0,1)

e2sϕh |Lh[qh]wh|2 dt+ 2m2

∫ T

−T

∫

(0,1)

e2sϕh |wh|2 dt.

This last term can be absorb by the left hand side of (2.4) by choosing s large enough.
This immediately yields (2.5).

Until the end of this section, we shall work for h > 0 fix. We therefore omit the
indexes h on the discrete functions to simplify notations.

Sections 2.3 to 2.5 can be found almost integrally in the works [6, 7] but we recall
these for sake of completeness.

2.3. Basic discrete identities. Below, we list several preliminary identities
that will be extensively used in the sequel. Let us begin with easy identities left to
the reader:

Lemma 2.4. The following identities hold:

a1b1 + a2b2
2

=

(
a1 + a2

2

)(
b1 + b2

2

)

+
h2

4

(
a1 − a2
h

)(
b1 − b2
h

)

; (2.6)

a1b1 − a2b2
h

=

(
a1 − a2
h

)(
b1 + b2

2

)

+

(
a1 + a2

2

)(
b1 − b2
h

)

. (2.7)

Using these identities, one can obtain the next lemma:
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Lemma 2.5. Recall the notations of Section 1.3. The following identities hold:

m+
h = I +

h

2
∂+h ; mh = I +

h2

4
∆h = m+

hm
−
h ; (2.8)

∂h =
1

2
(∂+h + ∂−h ) = m+

h ∂
−
h = ∂−h m

+
h = m−

h ∂
+
h = ∂+hm

−
h ; (2.9)

∆h = ∂+h ∂
−
h = ∂−h ∂

+
h ; (2.10)

m+
h (uv) = (m+

h u)(m
+
h v) +

h2

4
(∂+h u)(∂

+
h v) ; (2.11)

∂±h (uv) = (∂±h u)(m
±
h v) + (m±

h u)(∂
±
h v) ; (2.12)

∆h(ρv) = (∆hρ) (mhv) + 2(∂hρ) (∂hv) + (mhρ) (∆hv). (2.13)

Proof. To begin with, one easily obtains (2.8), since






(m+
h v)j =

vj+1 + vj
2

= vj +
h

2

vj+1 − vj
h

= vj +
h

2
(∂+h v)j ,

(mhv)j =
vj+1 + 2vj + vj−1

4
= vj +

vj+1 − 2vj + vj−1

4
= vj +

h2

4
(∆hv)j .

Similar computations left to the readers yield (2.9) and (2.10).
Identities (2.11)–(2.12) are straightforward consequences of the formula of Lemma

2.4. To get (2.13), we do as follows:

∆h(ρv) = ∂−h
(
∂+h (ρv)

)

= ∂−h
(
(∂+h ρ)(m

+
h v) + (m+

h ρ)(∂
+
h v)

)

= (∂−h ∂
+
h ρ)(m

−
hm

+
h v) + (m−

h ∂
+
h ρ)(∂

−
h m

+
h v)

+ (∂−h m
+
h ρ)(m

−
h ∂

+
h v) + (m−

hm
+
h ρ)(∂

−
h ∂

+
h v)

= (∆hρ)(mhv) + 2(∂hρ)(∂hv) + (mhρ)(∆hv).

Note that this should of course be compared to the corresponding classical Leibniz
formula ∆(ρv) = v∆ρ+ 2∇ρ · ∇v + ρ∆v.

We now explain how discrete integrations by parts work:
Lemma 2.6 (Discrete integration by parts formula). Let v, f, g be discrete func-

tions such that v0 = vN+1 = 0. Then we have the following identities:

•
∫

[0,1)

g(∂+h f) = −
∫

(0,1]

(∂−h g)f + gN+1fN+1 − g0f0 ; (2.14)

•
∫

(0,1)

g(∂hf) =

∫

[0,1)

(m+
h g)(∂

+
h f)−

h

2
g0(∂

+
h f)0 −

h

2
gN+1(∂

−
h f)N+1 ; (2.15)

• 2

∫

(0,1)

gv(∂hv) = −
∫

(0,1)

|v|2 ∂hg +
h2

2

∫

[0,1)

|∂+h v|2∂+h g ; (2.16)

•
∫

(0,1)

g(∆hv) = −
∫

[0,1)

(∂+h v) (∂+h g)− (∂+h v)0g0 + (∂−h v)N+1gN+1 ; (2.17)

•
∫

(0,1)

gv(∆hv) = −
∫

[0,1)

(∂+h v)
2 (m+

h g) +
1

2

∫

(0,1)

|v|2∆hg ; (2.18)

• 2

∫

(0,1)

g∆hv∂hv = −
∫

[0,1)

|∂+h v|2∂+h g +
∣
∣(∂−h v)N+1

∣
∣
2
gN+1 −

∣
∣(∂+h v)0

∣
∣
2
g0. (2.19)
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Proof. Let us begin with (2.14):

∫

[0,1)

g∂+h f = h

N∑

j=0

gj

(
fj+1 − fj

h

)

=

N∑

j=0

gjfj+1 −
N∑

j=0

gjfj

=
N+1∑

j=1

gj−1fj −
N+1∑

j=1

gjfj + gN+1fN+1 − g0f0

= −h
N+1∑

j=1

(
gj − gj−1

h

)

fj + gN+1fN+1 − g0f0.

In order to prove (2.15), using (2.9), we do as follows:

∫

(0,1)

g∂hf =
1

2

(
∫

(0,1)

g∂−h f +

∫

(0,1)

g∂+h f

)

=
h

2

N∑

j=1

gj(∂
+
h f)j−1 +

h

2

N∑

j=1

gj(∂
+
h f)j

=
h

2

N−1∑

j=0

gj+1(∂
+
h f)j +

h

2

N∑

j=1

gj(∂
+
h f)j

=
h

2

N∑

j=0

(gj + gj+1)(∂
+
h f)j −

h

2
g0(∂

+
h f)0 −

h

2
gN+1(∂

+
h f)N .

To prove (2.16), using the fact that v0 = vN+1 = 0, and successively (2.15), (2.11),
(2.12) and (2.14), we obtain:

2

∫

(0,1)

gv∂hv = 2

∫

[0,1)

m+
h (vg)(∂

+
h v)

= 2

∫

[0,1)

(

(m+
h v)(m

+
h g) +

h2

4
(∂+h v)(∂

+
h g)

)

(∂+h v)

=

∫

[0,1)

(m+
h g)∂

+
h (|v|2) +

h2

2

∫

[0,1)

(∂+h v)
2(∂+h g)

= −
∫

(0,1]

(∂−h (m
+
h g))|v|2 +

h2

2

∫

[0,1)

(∂+h v)
2(∂+h g)

= −
∫

(0,1)

(∂hg)|v|2 +
h2

2

∫

[0,1)

(∂+h v)
2(∂+h g).

For (2.17), setting arbitrarily vN+2 = 0 or equivalently (∂+h v)N+1 = 0 and using
(2.14), we write

∫

(0,1)

g(∆hv) =

∫

(0,1)

g ∂−h ∂
+
h v

=

∫

(0,1]

g ∂−h ∂
+
h v + gN+1(∂

−
h v)N+1

= −
∫

[0,1)

(∂+h v) (∂
+
h g)− (∂+h v)0g0 + (∂−h v)N+1gN+1.
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From (2.17), we prove (2.18), using v0 = vN+1 = 0 and Lemma 2.5:

∫

(0,1)

gv∆hv = −
∫

[0,1)

(∂+h v)(∂
+
h (gv))

= −
∫

[0,1)

|∂+h v|2m+
h g −

∫

[0,1)

∂+h vm
+
h v ∂

+
h g

= −
∫

[0,1)

|∂+h v|2m+
h g −

1

2

∫

[0,1)

∂+h (|v|2)∂+h g

= −
∫

[0,1)

|∂+h v|2m+
h g +

1

2

∫

(0,1)

|v|2∆hg.

Finally, in order to prove (2.19), we first remark that, using Lemma 2.5,

(∆hv)j(∂hv)j = (∂−h (∂
+
h v))j(m

−
h (∂

+
h v))j =

1

2
(∂−h

(
|∂+h v|2

)
)j

and therefore (2.19) follows from (2.14), setting again arbitrarily (∂+h v)N+1 = 0:

∫

(0,1)

g∆hv∂hv =
1

2

∫

(0,1)

g∂−h
(
|∂+h v|2

)

=
1

2

∫

(0,1]

g∂−h
(
|∂+h v|2

)
+

1

2
gN+1|(∂−h v)N+1|2

= −1

2

∫

[0,1)

|∂+h v|2∂+h g +
1

2

∣
∣(∂−h v)N+1

∣
∣
2
gN+1 −

1

2

∣
∣(∂+h v)0

∣
∣
2
g0.

This concludes the proof of Lemma 2.6.

2.4. Computation of the conjugate operator. Set ρh = exp(−sϕh), ϕh as
in Theorem 2.2. Set also

vh(t) = ρ−1
h (t)wh(t) = esϕh(t)wh(t) and Lhvh :=

1

ρh
(∂tt −∆h) (ρhvh). (2.20)

Proposition 2.7. The conjugate operator Lh can be expanded as follows:

Lhvh = ∂ttvh + 2∂tvh
∂tρh
ρh

+ vh
∂ttρh
ρh

−
(

1 +
h2

2

∆hρh
ρh

)

∆hvh − 2∂hvh
∂hρh
ρh

− vh
∆hρh
ρh

. (2.21)

Proof. Recall that the computations below are done for h > 0 fixed, so that we
can omit the index h > 0 without confusion.
Identity (2.21) can be deduced easily by explicit computations based on Lemma 2.4.
Indeed,

Lhv =
1

ρ
[∂tt −∆h](ρv) = ∂ttv + 2∂tv

∂tρ

ρ
+ v

∂ttρ

ρ
− ∆h(ρv)

ρ
.

But, using (2.13), we get

∆h(ρv)

ρ
= ∆hv

mhρ

ρ
+ 2∂hv

∂hρ

ρ
+mhv

∆hρ

ρ
.
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Besides, from (2.8),

(
mhρ

ρ

)

= 1 +
h2

4

(
∆hρ

ρ

)

and mhv = v +
h2

4
∆hv,

which immediately yield identity (2.21).
One step of the usual way to prove a Carleman estimate is to split the operator

Lh into two operators Lh,1 and Lh,2 (detailed in Section 2.6), that, roughly speaking,
corresponds to a decomposition into a self-adjoint part and a skew-adjoint one, and
then to compute and estimate the scalar product

∫ T

−T

∫

(0,1)

Lh,1vLh,2v dt.

But we first need to give a more precise expression of Lhv, using the following equal-
ities:

Proposition 2.8. The coefficients in the expression (2.21) of Lh can be expanded
as follows:

∂tρ

ρ
= −sλϕ∂tψ,

∂ttρ

ρ
= s2λ2ϕ2 (∂tψ)

2 − sλ2ϕ (∂tψ)
2 − sλϕ∂ttψ, (2.22)

∂hρ

ρ
= −sλA1,

∆hρ

ρ
= s2λ2A2 − sλ2A3 − sλA4, (2.23)

where the coefficients A1, A2, A3, and A4 are given, for (t, x) ∈ (−T, T )×{jh}j∈{1,...,N},
by

A1(t, x) =
1

2

∫ 1

−1

[ϕ∂xψ] (t, x+ σh)
e−sϕ(t,x+σh)

e−sϕ(t,x)
dσ, (2.24)

A2(t, x) =

∫ 1

−1

(1− |σ|)
[
ϕ2(∂xψ)

2
]
(t, x+ σh)

e−sϕ(t,x+σh)

e−sϕ(t,x)
dσ, (2.25)

A3(t, x) =

∫ 1

−1

(1− |σ|)
[
ϕ(∂xψ)

2
]
(t, x+ σh)

e−sϕ(t,x+σh)

e−sϕ(t,x)
dσ, (2.26)

A4(t, x) =

∫ 1

−1

(1− |σ|) [ϕ∂xxψ] (t, x+ σh)
e−sϕ(t,x+σh)

e−sϕ(t,x)
dσ. (2.27)

Proof. Since ρ = e−sϕ and ϕ = eλψ , identities (2.22) are straightforward.
Getting (2.23) is more technical. We write

(∂hρ)j =
ρj+1 − ρj−1

2h
=

1

2h

∫ xj+h

xj−h

∂xρ(x) dx =
1

2

∫ 1

−1

∂xρ(xj + σh) dσ

and since ∂xρ = −sλρϕ∂xψ, we get (2.23)1:

(
∂hρ

ρ

)

j

(t) = −sλ
2

∫ 1

−1

[ϕ∂xψ](t, xj + σh)
ρ(t, xj + σh)

ρ(t, xj)
dσ = −sλA1,j(t).

Similarly, the proof of (2.23)2 relies on the usual Taylor formulas in integral form

f(x± h) = f(x)± hf ′(x) + h2
∫ 1

0

(1∓ σ)f ′′(x+ σh) dσ.
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Indeed, applying this identity to ρ,

ρj±1 = ρj ± h∂xρ(xj) + h2
∫ 1

0

(1∓ σ)∂xxρ(xj + σh) dσ,

and therefore,

(∆hρ)j =
ρj+1 − 2ρj + ρj−1

h2
=

∫ 1

−1

(1− |σ|)∂xxρ(xj + σh) dσ.

Since ∂xxρ = s2λ2ρϕ2(∂xψ)
2 − sλ2ρϕ(∂xψ)

2 − sλρϕ∂xxψ, we immediately deduce
(2.23)2.

Remark 3. The coefficients of Lh are intrinsically defined on the grid {jh}j∈{1,...,N}

and not for x ∈ [0, 1] as formulas (2.24)–(2.27) may imply. But it turns out that these
formula induce a natural continuous extension of these coefficients that is easier to
handle. We shall therefore identify these coefficients with their continuous extension
given by (2.24)–(2.27) without confusion.

2.5. Preliminary estimates. Before going into the proof of the Carleman es-
timate itself, done in Section 2.6, we give here several key approximations on the
coefficients Aℓ defined in (2.24)–(2.25)–(2.26)–(2.27) and their derivatives.

To begin with, we shall introduce the Landau notation Oλ(ǫ) to denote (discrete
or continuous) functions f = f(t, x) that satisfy, for some constant C independent of
ǫ > 0 but that might depend on λ, |f | ≤ Cǫ.

We are then in position to state the following basic estimates:
Lemma 2.9. For all λ > 0, s > 0 and h > 0 with sh ≤ 1, for all σ ∈ [−2, 2] and

(t, x) ∈ [−T, T ]× [0, 1],

ρ(t, x+ σh)

ρ(t, x)
=
e−sϕ(t,x+σh)

e−sϕ(t,x)
= 1 +Oλ(sh) ; (2.28)

∂x

(
ρ(t, x+ σh)

ρ(t, x)

)

= Oλ(sh) ; ∂t

(
ρ(t, x+ σh)

ρ(t, x)

)

= Oλ(sh) ; (2.29)

∂xx

(
ρ(t, x+ σh)

ρ(t, x)

)

= Oλ(sh) ; ∂tt

(
ρ(t, x+ σh)

ρ(t, x)

)

= Oλ(sh). (2.30)

Proof. Since the function ψ is smooth and bounded on (−T, T )× (0, 1), we have
ψ(t, xj + σh) = ψ(t, xj) +O(h) and therefore

ϕ(t, x+ σh) = eλψ(t,xj)+λO(h) = eλψ(t,xj)(1 +Oλ(h)) = ϕ(t, x) +Oλ(h).

Therefore, we easily get (2.28) since

ρ(t, x+ σh) = e−sϕ(t,x)+Oλ(sh) = ρ(t, x)(1 +Oλ(sh)).

Similarly,

∂x

(
ρ(t, x+ σh)

ρ(t, x)

)

= ∂x

(

e−sϕ(t,x+σh)esϕ(t,x)
)

= sλ [−ϕ(t, x+ σh)∂xψ(t, x+ σh) + ϕ(t, x)∂xψ(t, x)]
e−sϕ(t,x+σh)

e−sϕ(t,x)
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so that

∂x

(
ρ(t, x+ σh)

ρ(t, x)

)

= sλOλ(h)(1 +Oλ(sh)) = Oλ(sh),

which concludes the proof of (2.29), left.
Of course, other estimates in (2.29)–(2.30) can be proved following the same ideas.

Details are left to the reader.
We can now give good approximations of the coefficients Aj :
Lemma 2.10. Set

f1 = ϕ∂xψ, f2 = ϕ2(∂xψ)
2, f3 = ϕ(∂xψ)

2, f4 = ϕ∂xxψ.

Using the notations Aℓ defined in Proposition 2.8, for (t, x) ∈ [−T, T ] × [0, 1] and
ℓ ∈ {1, 2, 3, 4}, we have:

• On the 0th order derivation operators:

Aℓ = fℓ +Oλ(sh) = m±
h (Aℓ) +Oλ(sh) = mh(Aℓ) +Oλ(sh) ; (2.31)

• On the 1st order derivation operators:

∂hAℓ = ∂xfℓ +Oλ(sh) = ∂+h Aℓ +Oλ(sh) = ∂−h Aℓ +Oλ(sh), (2.32)

∂tAℓ = ∂tfℓ +Oλ(sh) ; (2.33)

• On the 2nd order derivation operators:

∆hAℓ = ∂xxfℓ +Oλ(sh), ∂ttAℓ = ∂ttfℓ +Oλ(sh). (2.34)

Proof. Let us first notice that all the coefficients Aℓ can be written as

Aℓ(t, x) =

∫ 1

−1

µℓ(σ)fℓ(t, x+σh)
e−sϕ(t,x+σh)

e−sϕ(t,x)
dσ, µℓ(σ) =

{
1/2 if ℓ = 1,
(1− |σ|) otherwise.

Using Lemma 2.9 and the regularity of ψ and ϕ, one can write

Aℓ(t, x) =

∫ 1

−1

µℓ(σ)fℓ(t, x+ σh)
e−sϕ(t,x+σh)

e−sϕ(t,x)
dσ

=

∫ 1

−1

µℓ(σ)(fℓ(t, x) +Oλ(h))(1 +Oλ(sh)) dσ = fℓ(t, x) +Oλ(sh).

Let us remark that it also yields the same expansion for Aℓ(t, x + h) up to an error
term of order Oλ(h), from which one easily concludes (2.31).

For the first-order derivatives (2.32), we can write

∂hAℓ(t, x) =
1

2

∫ 1

−1

∂xAℓ(t, x+ αh) dα

=
1

2

∫ 1

−1

∫ 1

−1

µℓ(σ)∂xfℓ(t, x+ (α+ σ)h)
e−sϕ(t,x+(α+σ)h)

e−sϕ(t,x+αh)
dαdσ

+
1

2

∫ 1

−1

∫ 1

−1

µℓ(σ)fℓ(t, x+ (α + σ)h)∂x

(
e−sϕ(t,x+(α+σ)h)

e−sϕ(t,x+αh)

)

dαdσ.
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But using (2.29),

1

2

∫ 1

−1

∫ 1

−1

µℓ(σ)fℓ(t, x + (α+ σ)h)∂x

(
e−sϕ(t,x+(α+σ)h)

e−sϕ(t,x+αh)

)

dαdσ = Oλ(sh).

Therefore, we only have to estimate

1

2

∫ 1

−1

∫ 1

−1

µℓ(σ)∂xfℓ(t, x + (α+ σ)h)
e−sϕ(t,x+(α+σ)h)

e−sϕ(t,x+αh)
dαdσ,

which can be done by using ∂xfℓ(t, x+(α+σ)h) = ∂xfℓ(t, x)+Oλ(h), (2.28) and the

fact that
∫ 1

−1
µℓ(σ) dσ = 1. This yields

∂hAℓ(t, x) = ∂xfℓ(t, x) +Oλ(sh).

Of course, similar computations can be done for ∂+h Aℓ, ∂
−
h Aℓ.

For (2.33), the idea is the same: we use the integral expression of the coefficients,
check that the derivatives from the ratio of exponentials are of order Oλ(sh) and can
therefore be neglected due to (2.29), and then proceed as above. Details are left to
the reader.

For the estimates on the second order derivatives (2.34), this proof applies again
and is therefore omitted, using this time the second order estimates (2.30).

To summarize the results detailed in Lemma 2.10, we have proved that

A1 ≃ ϕ∂xψ, A2 ≃ ϕ2(∂xψ)
2, A3 ≃ ϕ(∂xψ)

2, A4 ≃ ϕ∂xxψ,

up to error terms in Oλ(sh), and these expressions can be differentiated twice, still
with an error term of the order of Oλ(sh).

A more precise expression of Lhv can now be deduced from Propositions 2.7 and
2.8:

Lhv = ∂ttv − 2sλϕ∂tψ ∂tv + s2λ2ϕ2 (∂tψ)
2
v − sλ2ϕ (∂tψ)

2
v − sλϕ(∂ttψ)v

−
(

1 +
h2

2
(s2λ2A2 − sλ2A3 − sλA4)

)

∆hv + 2sλA1∂hv

− (s2λ2A2 − sλ2A3 − sλA4)v.

In order to simplify the notations, we also set

A0 =
h2

2
(s2λ2A2 − sλ2A3 − sλA4),

so that Lh can be rewritten as

Lhv = ∂ttv − 2sλϕ∂tψ ∂tv + s2λ2ϕ2 (∂tψ)
2
v − sλ2ϕ (∂tψ)

2
v − sλϕ(∂ttψ)v

− (1 +A0)∆hv + 2sλA1∂hv − (s2λ2A2 − sλ2A3 − sλA4)v.

Note that A0 is expected to be small. Indeed, using Lemma 2.10, one easily gets
that A0 is in Oλ(sh) and that the same holds true for the following expressions:

A0,mhA0, m
±
hA0, ∂hA0, ∂

±
h A0, ∂tA0, ∆hA0, ∂ttA0 all are Oλ(sh). (2.35)

We emphasize that this term A0 is a purely numerical artifact which does not have
any continuous counterpart.
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2.6. Proof of the discrete Carleman estimate. In this section, we focus on
the proof of the discrete Carleman estimate (2.4) given in Theorem 2.2.

We first set

Lh,1v = ∂ttv −∆hv(1 +A0) + s2λ2
[

ϕ2 (∂tψ)
2 −A2

]

v , (2.36)

Lh,2v = −sλ2
[
ϕ|∂tψ|2 −A3

]
v − 2sλ [ϕ∂tψ∂tv −A1∂hv] , (2.37)

Rhv = sλ [ϕ∂ttψ −A4] v , (2.38)

so that we have Lh,1v + Lh,2v = Lhv + Rhv, and in particular,

∫ T

−T

∫

(0,1)

|Lhv + Rhv|2 dt =
∫ T

−T

∫

(0,1)

|Lh,1v|2 dt+
∫ T

−T

∫

(0,1)

|Lh,2v|2 dt

+ 2

∫ T

−T

∫

(0,1)

Lh,1vLh,2v dt. (2.39)

We will then prove the following:
Lemma 2.11. There exist λ > 0, s0 > 0, ε0 > 0 and a constant C0 > 0

independent of h > 0 such that for all s ∈ (s0, ε0/h), for all v satisfying v0 = vN+1 = 0
and v(±T ) = ∂tv(±T ) = 0,

s

∫ T

−T

∫

(0,1)

|∂tv|2 dt+ s

∫ T

−T

∫

[0,1)

|∂+h v|2 dt+ s3
∫ T

−T

∫

(0,1)

|v|2 dt

+

∫ T

−T

∫

(0,1)

|Lh,1v|2 dt+
∫ T

−T

∫

(0,1)

|Lh,2v|2 dt ≤ C0

∫ T

−T

∫

(0,1)

|Lhv|2 dt (2.40)

+C0s

∫ T

−T

∣
∣(∂−h v)N+1

∣
∣
2
dt+ C0s

∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2 dt.

Proof. We will begin with calculating and bounding from below the product

∫ T

−T

∫

(0,1)

Lh,1vLh,2v dt.

STEP 1. Explicit computations of the cross product. The proof of estimate (2.40)
relies first of all on the computation of the multiplication of each term of Lh,1v by
each term of Lh,2v. We write

∫ T

−T

∫

(0,1)

Lh,1vLh,2v dt =

3∑

i=1

2∑

j=1

Iij

where Iij denotes the product between the i-th term of Lh,1 in (2.36) and the j-th
term of Lh,2 in (2.37). We now perform the computation of each Iij term.

Of course, we shall strongly use below the properties of v on the boundary and
in particular that v(±T ) = ∂tv(±T ) = 0, v0(t) = vN+1(t) = 0 and also the fact that
∂tv0(t) = ∂tvN+1(t) = 0 for all t ∈ (−T, T ).

Moreover, we shall use the results of Lemma 2.10, which will allow us to simplify
most of the expression in which the coefficients Aℓ appear. We recall to the reader that
we use notations (1.9) for the discrete integrals in space. Finally, in order to simplify
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the reading, we will also omit “dt” in the integrals in time (that are continuous ones).
Therefore:

∫ T

−T

∫

(0,1)

f = h

N∑

j=1

∫ T

−T

fj(t)dt and

∫ T

−T

∫

[0,1)

f = h

N∑

j=0

∫ T

−T

fj(t)dt.

Computation of I11. An integration by parts in time gives,

I11 = − sλ2
∫ T

−T

∫

(0,1)

∂ttv(ϕ|∂tψ|2 −A3)v

= sλ2
∫ T

−T

∫

(0,1)

|∂tv|2(ϕ|∂tψ|2 −A3)−
sλ2

2

∫ T

−T

∫

(0,1)

|v|2∂tt(ϕ|∂tψ|2 − A3)

= sλ2
∫ T

−T

∫

(0,1)

|∂tv|2ϕ(|∂tψ|2 − |∂xψ|2)

− sλ2

2

∫ T

−T

∫

(0,1)

|v|2∂tt(ϕ|∂tψ|2 − ϕ|∂xψ|2)

+ s

∫ T

−T

∫

(0,1)

Oλ(sh)|∂tv|2 + s

∫ T

−T

∫

(0,1)

Oλ(sh)|v|2,

using A3 = ϕ|∂xψ|2 +Oλ(sh) and ∂ttA3 = ∂tt
(
ϕ|∂xψ|2

)
+Oλ(sh).

Computation of I12.

I12 = − 2sλ

∫ T

−T

∫

(0,1)

∂ttv(ϕ∂tψ∂tv −A1∂hv)

= sλ

∫ T

−T

∫

(0,1)

|∂tv|2ϕ∂ttψ + sλ2
∫ T

−T

∫

(0,1)

|∂tv|2ϕ|∂tψ|2

− 2sλ

∫ T

−T

∫

(0,1)

∂tA1∂tv∂hv − 2sλ

∫ T

−T

∫

(0,1)

A1∂tv∂h∂tv.

But, by (2.16),

− 2sλ

∫ T

−T

∫

(0,1)

A1∂tv∂h∂tv = sλ

∫ T

−T

∫

(0,1)

|∂tv|2∂hA1

− h2

2
sλ

∫ T

−T

∫

(0,1)

|∂+h ∂tv|2∂+h A1.

Therefore, using Lemma 2.10 for ∂hA1 and ∂tA1, we get

I12 = sλ

∫ T

−T

∫

(0,1)

|∂tv|2ϕ(∂ttψ + ∂xxψ) + sλ2
∫ T

−T

∫

(0,1)

|∂tv|2ϕ(|∂tψ|2 + |∂xψ|2)

− 2sλ2
∫ T

−T

∫

(0,1)

(∂tv)(∂hv)ϕ∂tψ ∂xψ − sλ

2

∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2∂+h A1

+ s

∫ T

−T

∫

(0,1)

Oλ(sh)|∂tv|2 + s

∫ T

−T

∫

(0,1)

Oλ(sh)∂tv∂hv.
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Computation of I21. Using (2.18) and (2.35),

I21 = sλ2
∫ T

−T

∫

(0,1)

∆hv(1 +A0)(ϕ|∂tψ|2 −A3)v

= − sλ2
∫ T

−T

∫

[0,1)

|∂+h v|2m+
h ((1 +A0)(ϕ|∂tψ|2 −A3))

+
sλ2

2

∫ T

−T

∫

(0,1)

|v|2∆h((1 +A0)(ϕ|∂tψ|2 −A3))

= − sλ2
∫ T

−T

∫

[0,1)

|∂+h v|2ϕ(|∂tψ|2 − |∂xψ|2)

+
sλ2

2

∫ T

−T

∫

(0,1)

|v|2∂xx(ϕ|∂tψ|2 − ϕ|∂xψ|2)

+ s

∫ T

−T

∫

[0,1)

Oλ(sh)|∂+h v|2 + s

∫ T

−T

∫

(0,1)

Oλ(sh)|v|2.

We do not develop the term in ∂xx(ϕ|∂tψ|2 − ϕ|∂xψ|2) since it is uniformly bounded
with respect to s.

Computation of I22. We can split this term in two parts as follows

I22 = 2sλ

∫ T

−T

∫

(0,1)

∆hv(1 +A0)ϕ∂tψ∂tv

︸ ︷︷ ︸

I22a

− 2sλ

∫ T

−T

∫

(0,1)

∆hv(1 +A0)A1∂hv

︸ ︷︷ ︸

I22b

.

To compute I22a, we use ∆h = ∂−h ∂
+
h , ∂tv0 = ∂tvN+1 = 0, and formula (2.12) and

(2.14):

I22a = − 2sλ

∫ T

−T

∫

[0,1)

(∂+h v)∂
+
h ((1 + A0)ϕ∂tψ∂tv)

= − 2sλ

∫ T

−T

∫

[0,1)

(∂+h v)m
+
h (∂tv)∂

+
h ((1 +A0)ϕ∂tψ)

+ sλ

∫ T

−T

∫

[0,1)

|∂+h v|2∂tm+
h ((1 +A0)ϕ∂tψ).

= − 2sλ

∫ T

−T

∫

[0,1)

(∂+h v)m
+
h (∂tv)∂x(ϕ∂tψ) + sλ

∫ T

−T

∫

[0,1)

|∂+h v|2∂t(ϕ∂tψ)

+ s

∫ T

−T

∫

[0,1)

Oλ(sh)|∂+h v|2 + s

∫ T

−T

∫

[0,1)

Oλ(sh)(∂
+
h v)m

+
h (∂tv).
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For the computation of I22b, we rather use (2.19) and (2.35):

I22b = − sλ

∫ T

−T

∫

[0,1)

|∂+h v|2∂+h ((1 +A0)A1)

+ sλ

∫ T

−T

((1 +A0)A1)(t, 1)|(∂−h v)N+1|2

− sλ

∫ T

−T

((1 +A0)A1)(t, 0)|(∂+h v)0|2

= − sλ

∫ T

−T

∫

[0,1)

|∂+h v|2∂x(ϕ∂xψ) + s

∫ T

−T

∫

[0,1)

Oλ(sh)|∂+h v|2

+ sλ

∫ T

−T

([ϕ∂xψ](t, 1) +Oλ(sh)) |(∂−h v)N+1|2

− sλ

∫ T

−T

([ϕ∂xψ](t, 0) +Oλ(sh)) |(∂+h v)0|2.

Therefore, I22 = I22a − I22b gives

I22 = − 2sλ2
∫ T

−T

∫

[0,1)

(∂+h v)m
+
h (∂tv)ϕ∂xψ∂tψ

+ sλ2
∫ T

−T

∫

[0,1)

|∂+h v|2ϕ(|∂tψ|2 + |∂xψ|2)

+ sλ

∫ T

−T

∫

[0,1)

|∂+h v|2ϕ(∂ttψ + ∂xxψ)

− sλ

∫ T

−T

([ϕ∂xψ](t, 1) +Oλ(sh)) |(∂−h v)N+1|2

+ sλ

∫ T

−T

([ϕ∂xψ](t, 0) +Oλ(sh)) |(∂+h v)0|2

+ s

∫ T

−T

∫

[0,1)

Oλ(sh)|∂+h v|2 + s

∫ T

−T

∫

[0,1)

Oλ(sh)(∂
+
h v)m

+
h (∂tv).

Computation of I31. From Lemma 2.10, one easily obtains:

I31 = − s3λ4
∫ T

−T

∫

(0,1)

|v|2(ϕ2|∂tψ|2 −A2)(ϕ|∂tψ|2 −A3)

= − s3λ4
∫ T

−T

∫

(0,1)

|v|2ϕ3(|∂tψ|2 − |∂xψ|2)2 + s3
∫ T

−T

∫

(0,1)

Oλ(sh)|v|2.
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Computation of I32. Finally, from (2.16) of Lemma 2.5, we get

I32 = − 2s3λ3
∫ T

−T

∫

(0,1)

v(ϕ2|∂tψ|2 −A2)(ϕ∂tψ∂tv −A1∂hv)

= s3λ3
∫ T

−T

∫

(0,1)

|v|2∂t((ϕ2|∂tψ|2 −A2)ϕ∂tψ)

− s3λ3
∫ T

−T

∫

(0,1)

|v|2∂h(A1(ϕ
2|∂tψ|2 −A2))

+
s3λ3

2

∫ T

−T

∫

[0,1)

|h∂+h v|2∂+h (A1(ϕ
2|∂tψ|2 −A2)).

But, according to Lemma 2.10,

∂t((ϕ
2|∂tψ|2 −A2)ϕ∂tψ) = 3λϕ3|∂tψ|2

(
|∂tψ|2 − |∂xψ|2

)

+ 3ϕ3∂ttψ|∂tψ|2 − ϕ3∂ttψ|∂xψ|2 +Oλ(sh)

and

∂h(A1(ϕ
2|∂tψ|2 −A2)) = 3λϕ3|∂xψ|2

(
|∂tψ|2 − |∂xψ|2

)

+ ϕ3∂xxψ|∂tψ|2 − 3ϕ3|∂xψ|2∂xxψ +Oλ(sh).

Thus we obtain

I32 = 3s3λ4
∫ T

−T

∫

(0,1)

|v|2ϕ3(|∂tψ|2 − |∂xψ|2)2

+ 3s3λ3
∫ T

−T

∫

(0,1)

|v|2ϕ3
(
|∂tψ|2∂ttψ + |∂xψ|2∂xxψ

)

− s3λ3
∫ T

−T

∫

(0,1)

|v|2ϕ3
(
|∂xψ|2∂ttψ + |∂tψ|2∂xxψ

)

+ s

∫ T

−T

∫

[0,1)

Oλ(sh)|∂+h v|2 + s3
∫ T

−T

∫

(0,1)

Oλ(sh)|v|2.

Final computation. Gathering all the terms, one can write
∫ T

−T

∫

(0,1)

Lh,1vLh,2v = Iv + I∂t,∇v + I{0,1} + ITych, (2.41)

where Iv contains all the terms in |v|2:

Iv =

∫ T

−T

∫

(0,1)

|v|2F, (2.42)

with F given by

F = − sλ2

2
∂tt(ϕ|∂tψ|2 − ϕ|∂xψ|2) +

sλ2

2
∂xx(ϕ|∂tψ|2 − ϕ|∂xψ|2)

+ s3λ3ϕ3(|∂tψ|2 − |∂xψ|2)(∂ttψ − ∂xxψ) + 2s3λ3ϕ3(|∂tψ|2∂ttψ + |∂xψ|2∂xxψ)
+ 2s3λ4ϕ3(|∂tψ2 − |∂xψ|2)2 + s3Oλ(sh)

= s3λ3ϕ3(|∂tψ|2 − |∂xψ|2)(∂ttψ − ∂xxψ) + 2s3λ3ϕ3(|∂tψ|2∂ttψ + |∂xψ|2∂xxψ)
+ 2s3λ4ϕ3(|∂tψ|2 − |∂xψ|2)2 + s3Oλ(sh) + sOλ(1) ;
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I∂t,∇v contains all the terms involving first order derivatives of v:

I∂t,∇v = 2sλ2
∫ T

−T

∫

(0,1)

|∂tv|2ϕ|∂tψ|2 + 2sλ2
∫ T

−T

∫

[0,1)

|∂+h v|2ϕ|∂xψ|2

− 2sλ2
∫ T

−T

∫

(0,1)

(∂tv)(∂hv)ϕ∂tψ∂xψ − 2sλ2
∫ T

−T

∫

[0,1)

(∂+h v)m
+
h (∂tv)ϕ∂xψ∂tψ

+ sλ

∫ T

−T

∫

(0,1)

|∂tv|2ϕ(∂ttψ + ∂xxψ) + sλ

∫ T

−T

∫

[0,1)

|∂+h v|2ϕ(∂ttψ + ∂xxψ)

+ s

∫ T

−T

∫

(0,1)

(

Oλ(sh)|∂tv|2 +Oλ(sh)∂tv∂hv
)

+ s

∫ T

−T

∫

[0,1)

(

Oλ(sh)|∂+h v|2 +Oλ(sh)m
+
h (∂tv)∂

+
h v
)

;

I{0,1} contains all the boundary terms:

I{0,1} =− sλ

∫ T

−T

([ϕ∂xψ](t, 1) +Oλ(sh)) |(∂−h v)N+1|2

+ sλ

∫ T

−T

([ϕ∂xψ](t, 0) +Oλ(sh)) |(∂+h v)0|2;

ITych contains the term corresponding to the Tychonoff regularization:

ITych = −sλ
2

∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2∂+h A1. (2.43)

STEP 2. Bounding each term from below.
Step 2.1. Dealing with the 0 order terms in v. We have:

F = s3λ3ϕ3G+ s3Oλ(sh) + sOλ(1),

with

G = 2λ(|∂tψ|2 − |∂xψ|2)2 + (|∂tψ|2 − |∂xψ|2)(∂ttψ − ∂xxψ)

+ 2(|∂tψ|2∂ttψ + |∂xψ|2∂xxψ)
= 2λ(|∂tψ|2 − |∂xψ|2)2 + (|∂tψ|2 − |∂xψ|2)(∂ttψ − ∂xxψ)

+ 2(|∂tψ|2 − |∂xψ|2)∂ttψ + 2|∂xψ|2(∂ttψ + ∂xxψ).

But ∂ttψ + ∂xxψ = 2(1 − β) > 0 and inf(0,1) |∂xψ|2 = 4 inf(0,1) |x − x0|2 is strictly
positive since x0 /∈ [0, 1]. Therefore, setting X = |∂tψ|2 − |∂xψ|2, we have

G ≥ 2λX2 − 2X(3β + 1) + c, with c = 16(1− β) inf
(0,1)

|x− x0|2 > 0.

Thus, there exists λ0 > 0 large enough such that for all λ ≥ λ0, this expression can
be made strictly positive. Therefore, for λ ≥ λ0, we get a positive constant c∗ > 0
independent of λ and h such that

Iv ≥ 2c∗s
3λ3

∫ T

−T

∫

(0,1)

|v|2ϕ3 − (s3Oλ(sh) + sOλ(1))

∫ T

−T

∫

(0,1)

|v|2.
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Thereby, bounding ϕ from below by 1, we can choose s0(λ) such that for all s ≥ s0(λ),

Iv ≥ c∗s
3λ3

∫ T

−T

∫

(0,1)

|v|2 − s3Oλ(sh)

∫ T

−T

∫

(0,1)

|v|2. (2.44)

From then on, we fix λ ≥ λ0.
Step 2.2. Dealing with the first-order derivatives. The idea is to show that the terms
in which sλ2 appears are positive up to a small error term, and then check that the
terms in sλ are strictly positive.

On the one hand,
∣
∣
∣
∣
∣

∫ T

−T

∫

(0,1)

(∂tv)(∂hv)ϕ∂tψ∂xψ

∣
∣
∣
∣
∣

≤ 1

2

∫ T

−T

∫

(0,1)

|∂tv|2ϕ|∂tψ|2 +
1

2

∫ T

−T

∫

(0,1)

|∂hv|2ϕ|∂xψ|2

≤ 1

2

∫ T

−T

∫

(0,1)

|∂tv|2ϕ|∂tψ|2 +
1

2

∫ T

−T

∫

[0,1)

|∂+h v|2ϕ|∂xψ|2 +Oλ(sh)

∫ T

−T

∫

[0,1)

|∂+h v|2

and similarly,
∣
∣
∣
∣
∣

∫ T

−T

∫

[0,1)

(∂+h v)m
+
h (∂tv)ϕ∂tψ∂xψ

∣
∣
∣
∣
∣

≤ 1

2

∫ T

−T

∫

[0,1)

|∂+h v|2ϕ|∂xψ|2 +
1

2

∫ T

−T

∫

[0,1)

|m+
h (∂tv)|2ϕ|∂tψ|2

≤ 1

2

∫ T

−T

∫

[0,1)

|∂+h v|2ϕ|∂xψ|2 +
1

2

∫ T

−T

∫

(0,1)

|∂tv|2ϕ|∂tψ|2 +Oλ(sh)

∫ T

−T

∫

(0,1)

|∂tv|2.

Therefore,

2sλ2
∫ T

−T

∫

(0,1)

|∂tv|2ϕ|∂tψ|2 + 2sλ2
∫ T

−T

∫

[0,1)

|∂+h v|2ϕ|∂xψ|2

− 2sλ2
∫ T

−T

∫

(0,1)

(∂tv)(∂hv)ϕ∂tψ∂xψ − 2sλ2
∫ T

−T

∫

[0,1)

(∂+h v)m
+
h (∂tv)ϕ∂xψ∂tψ

≥ − sOλ(sh)

∫ T

−T

∫

[0,1)

|∂+h v|2 − sOλ(sh)

∫ T

−T

∫

(0,1)

|∂tv|2.

On the other hand, focusing on the terms in sλ, we have ∂ttψ+∂xxψ = 2(1−β) >
0, and then, bounding ϕ = eλψ from below by 1, we obtain:

I∂t,∇v ≥ 2sλ(1− β)

∫ T

−T

∫

[0,1)

|∂+h v|2 + 2sλ(1− β)

∫ T

−T

∫

(0,1)

|∂tv|2

− sOλ(sh)

∫ T

−T

∫

[0,1)

|∂+h v|2 − sOλ(sh)

∫ T

−T

∫

(0,1)

|∂tv|2, (2.45)

where we used that, by Cauchy Schwartz,

∫ T

−T

∫

(0,1)

|∂hv|2 ≤
∫ T

−T

∫

[0,1)

|∂+h v|2,
∫ T

−T

∫

[0,1)

|m+
h (∂tv)|2 ≤

∫ T

−T

∫

(0,1)

|∂tv|2.
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Step 2.3. The boundary terms. Since min(−T,T )×(0,1) ϕ∂xψ > 0 (recall x0 < 0), then
there exists ε1(λ) > 0 such that taking sh ≤ ε1(λ),

Oλ(sh) ≤ min
(t,x)∈(−T,T )×(0,1)

{ϕ(t, x)∂xψ(t, x)} .

Therefore, there exists a constant C > 0 independent of s and h but depending on λ
such that

I{0,1} = −sλ
∫ T

−T

([ϕ∂xψ](t, 1) +Oλ(sh)) |(∂−h v)N+1|2

+ sλ

∫ T

−T

([ϕ∂xψ](t, 0) +Oλ(sh)) |(∂+h v)0|2

≥ −2sλ

∫ T

−T

[ϕ∂xψ](t, 1)|(∂−h v)N+1|2 ≥ −sC
∫ T

−T

|(∂−h v)N+1|2. (2.46)

Step 2.4. The Tychonoff regularization. Let us recall that ∂+h A1 = λϕ|∂xψ|2+ϕ∂xxψ+
Oλ(sh) = Oλ(1) since sh ≤ ε1(λ). Thus

ITych = −sλ
2

∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2∂+h A1 ≥ −sC
∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2 (2.47)

where again C > 0 is a constant independent of s and h. Noticing that λϕ|∂xψ|2 +
ϕ∂xxψ > 0, ITych ≤ 0 and cannot be made positive. This is not only a technical
matter, since otherwise we would get uniform observability results for the semidiscrete
wave equations, which are proved not to hold in [27].
STEP 3. Proof of Lemma 2.11. Recall that λ is fixed from Step 2.1.
Collecting the results (2.45)-(2.47) of Step 2, we have proved that for s ≥ s0(λ) and
sh ≤ ε1(λ),
∫ T

−T

∫

(0,1)

Lh,1vLh,2v ≥ 2sλ(1 − β)

∫ T

−T

∫

[0,1)

|∂+h v|2 + 2sλ(1 − β)

∫ T

−T

∫

(0,1)

|∂tv|2

−sOλ(sh)

∫ T

−T

∫

[0,1)

|∂+h v|2 − sOλ(sh)

∫ T

−T

∫

(0,1)

|∂tv|2

+c∗s
3λ3

∫ T

−T

∫

(0,1)

|v|2 − s3Oλ(sh)

∫ T

−T

∫

(0,1)

|v|2

−sC
∫ T

−T

|(∂−h v)N+1|2 − sC

∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2.

Therefore, taking sh small enough such that

Oλ(sh) ≤ min

{

λ(1 − β),
c∗λ

3

2
, ε1(λ)

}

,

which defines ε0(λ) > 0, we obtain, for some constant C1 = C1(λ) > 0,

s

∫ T

−T

∫

(0,1)

|∂tv|2 + s

∫ T

−T

∫

[0,1)

|∂+h v|2 + s3
∫ T

−T

∫

(0,1)

|v|2

≤ C1

∫ T

−T

∫

(0,1)

L1,hvL2,hv + C1s

∫ T

−T

∣
∣(∂−h v)N+1

∣
∣
2
+ C1s

∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2.

(2.48)
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Now, we use that from (2.39),

2

∫ T

−T

∫

(0,1)

L1,hvL2,hv +

∫ T

−T

∫

(0,1)

|L1,hv|2 +
∫ T

−T

∫

(0,1)

|L2,hv|2

≤ 2

∫ T

−T

∫

(0,1)

|Lhv|2 + 2

∫ T

−T

∫

(0,1)

|Rhv|2,

where Rhv is given by (2.38), which yields, for some C2 = C2(λ) > 0,

s

∫ T

−T

∫

(0,1)

|∂tv|2 + s

∫ T

−T

∫

[0,1)

|∂+h v|2 + s3
∫ T

−T

∫

(0,1)

|v|2

+

∫ T

−T

∫

(0,1)

|Lh,1v|2 +
∫ T

−T

∫

(0,1)

|Lh,2v|2 ≤ C2

∫ T

−T

∫

(0,1)

|Lhv|2

+ C2

∫ T

−T

∫

(0,1)

|Rhv|2 + C2s

∫ T

−T

∣
∣(∂−h v)N+1

∣
∣
2
+ C2s

∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2. (2.49)

Therefore, since

∫ T

−T

∫

(0,1)

|Rhv|2 ≤ s2λ2
∫ T

−T

∫

(0,1)

|v|2 (ϕ∂ttψ −A4)
2 ≤ s2Oλ(1)

∫

(0,1)

|v|2,

this term can be absorbed by the left hand side of (2.49) by taking s large enough,
thus yielding to (2.40).

Proof of Theorem 2.2. The Carleman estimate (2.4) of Theorem 2.2 will now be
deduced from Lemma 2.11. Actually, it simply consists in writing (2.40) in terms
of w instead of v, using that w = v exp(−sϕ) and, by construction, see (2.20),
exp(sϕ)Lhw = Lhv.

In particular, we have

esϕ∂tw = esϕ∂t(ve
−sϕ) = ∂tv − sλvϕ∂tψ,

esϕ∂+h w = esϕ∂+h (ve
−sϕ) = ∂+h v(e

sϕm+
h (e

−sϕ))− esϕ∂+h (e
−sϕ)m+

h v,

and, since, similarly as in Lemma 2.9,

esϕm+
h (e

−sϕ) = 1 +Oλ(sh) and e
sϕ∂+h (e

−sϕ) = −sλϕ∂xψ +Oλ(sh),

we get, for sh small enough,

e2sϕ|∂tw|2 ≤ 2|∂tv|2 + 2s2λ2ϕ2|∂tψ|2|v|2,
e2sϕ|∂+h w|2 ≤ 3|∂+h v|2 + 3s2λ2ϕ2|∂xψ|2|m+

h v|2.

Therefore, there exists C3(λ) such that

s

∫ T

−T

∫

(0,1)

e2sϕ|∂tw|2 + s

∫ T

−T

∫

[0,1)

e2sϕ|∂+h w|2 + s3
∫ T

−T

∫

(0,1)

e2sϕ|w|2

≤ C3s

∫ T

−T

∫

(0,1)

|∂tv|2 + C3s

∫ T

−T

∫

[0,1)

|∂+h v|2 + C3s
3

∫ T

−T

∫

(0,1)

|v|2. (2.50)
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Now, it remains to estimate the right hand side of (2.40) in terms of w. For the
boundary term, we use the fact that ϕ(t, ·) is increasing and therefore

|(∂−h v)N+1| =
∣
∣
∣
vN
h

∣
∣
∣ =

∣
∣
∣
∣

wNe
sϕN

h

∣
∣
∣
∣
≤
∣
∣
∣
wN
h

∣
∣
∣ esϕ(t,1) = |(∂−h w)N+1|esϕ(t,1). (2.51)

Finally, we bound the term corresponding to the Tychonoff regularization, using (2.12)
of Lemma 2.5 and ∂tv = esϕ∂tw + w∂t(e

sϕ):

h∂+h ∂tv = h∂+h (∂tw)m
+
h (e

sϕ) + h(∂+h w)m
+
h ∂t(e

sϕ)

+m+
h (∂tw)h∂

+
h (e

sϕ) + (m+
hw)h∂

+
h (∂te

sϕ).

Again, similarly to Lemma 2.9, one can prove

hm+
h (∂t(e

sϕ))

esϕ
= Oλ(sh),

h∂+h (e
sϕ)

esϕ
= Oλ(sh), and

h∂+h (∂te
sϕ)

esϕ
= sOλ(sh),

and deduce a bound of the form:

|h∂+h ∂tv| ≤ |h∂+h (∂tw)|esϕ(1 +Oλ(sh)) +Oλ(sh)|∂+h w|esϕ

+Oλ(sh)|m+
h (∂tw)|esϕ + sOλ(sh)|m+

hw|esϕ.

Therefore, one gets:

s

∫ T

−T

∫

[0,1)

|h∂+h ∂tv|2

≤ C4s

∫ T

−T

∫

[0,1)

e2sϕ|h∂+h ∂tw|2 + C4sOλ(sh)

∫ T

−T

∫

[0,1)

e2sϕ
(
|∂+h w|2 + |m+

h (∂tw)|2
)

+ C4s
3Oλ(sh)

∫ T

−T

∫

[0,1)

e2sϕ|m+
hw|2

≤ C5s

∫ T

−T

∫

[0,1)

e2sϕ|h∂+h ∂tw|2 + C5sOλ(sh)

∫ T

−T

∫

[0,1)

e2sϕ|∂+h w|2 (2.52)

+ C5sOλ(sh)

∫ T

−T

∫

(0,1)

e2sϕ|∂tw|2 + C5s
3Oλ(sh)

∫ T

−T

∫

(0,1)

e2sϕ|w|2.

Hence, combining (2.50)–(2.51)–(2.52), plugging them in (2.40) and choosing sh
small enough so that C0C3C5Oλ(sh) ≤ 1/2 and sh ≤ ε0 (given by Lemma 2.11), we
obtain the desired Carleman estimate (2.4).

3. Uniform stability estimates. In this section, we state and prove uniform
stability results for the semi-discrete framework, announced by estimate (1.20) in the
introduction.

3.1. Statements of the results. Similarly to Theorem 1.1, we will prove the
following local stability result:

Theorem 3.1. Let m > 0, K > 0, γ > 0, T > 1 and ph ∈ L∞
h,≤m(0, 1).

Consider the equation






∂ttyj,h − (∆hyh)j + pj,hyj,h = gj,h, t ∈ (0, T ), j ∈ {1, ..., N},
y0,h(t) = g0h(t), yN+1,h(t) = g1h(t), t ∈ [0, T ],
yj,h(0) = y0j,h, ∂tyj,h(0) = y1j,h, j ∈ {1, ..., N},
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denote its solution by yh[ph] and assume that

‖yh[ph]‖H1(0,T ;L∞

h
(0,1)) ≤ K (3.1)

and

inf
j∈{1,...,N}

|y0j,h| ≥ γ. (3.2)

Then there exists a constant C = C(T,m,K, γ) > 0 independent of h such that for
all qh ∈ L∞

h,≤m(0, 1), the uniform stability estimate (1.20) holds:

‖qh − ph‖L2

h
(0,1) ≤ C

∥
∥∂t(∂

−
h yh)N+1[qh]− ∂t(∂

−
h yh)N+1[ph]

∥
∥
L2(0,T )

(3.3)

+ C
∥
∥h∂+h ∂ttyh[qh]− h∂+h ∂ttyh[ph]

∥
∥
L2(0,T ;L2

h
[0,1))

,

where yh[qh] denotes the solution of (1.7).
Before giving the proof of Theorem 3.1 at the end of this section, we will begin

by a stability theorem for the following inverse source problem, using the discrete
Carleman estimate obtained in the previous section:

Theorem 3.2. Let m > 0, K > 0, γ > 0, T > 1.
Let fh ∈ L2

h(0, 1) and Rh ∈ H1(0, T ;L∞
h (0, 1)) such that

‖Rh‖H1(0,T ;L∞

h
(0,1)) ≤ K and inf

j∈{1,...,N}
|Rj,h(0)| ≥ γ. (3.4)

Let qh ∈ L∞
h,≤m(0, 1) and consider the semi-discrete wave equation







∂ttuj,h − (∆huh)j + qj,huj,h = fj,hRj,h(t), t ∈ (0, T ), j ∈ {1, ..., N},
u0,h(t) = 0, uN+1,h(t) = 0, t ∈ [0, T ],
uj,h(0) = 0, ∂tuj,h(0) = 0, j ∈ {1, ..., N}.

(3.5)

Then there exists a constant C = C(T,m,K, γ) > 0 independent of h and such that
∥
∥∂t(∂

−
h uh)N+1

∥
∥
L2(0,T )

+
∥
∥h∂+h ∂ttuh

∥
∥
L2(0,T ;L2

h
([0,1)))

≤ C ‖fh‖L2

h
(0,1) , (3.6)

‖fh‖L2

h
(0,1) ≤ C

∥
∥∂t(∂

−
h uh)N+1

∥
∥
L2(0,T )

+ C
∥
∥h∂+h ∂ttuh

∥
∥
L2(0,T ;L2

h
([0,1)))

. (3.7)

Theorem 3.1 will then be a simple consequence of Theorem 3.2, whose proof can be
read in Section 3.3.

3.2. Stability for the inverse source problem. Before going into the proof
of Theorem 3.2, we first recall some counterparts of the classical energy estimates for
the solutions of the continuous wave equation in the context of the semi-discrete wave
equation:

Lemma 3.3. Let m > 0 and qh ∈ L∞
h,≤m(0, 1).

Let gh ∈ L1(0, T ;L2
h(0, 1)) and (z0h, z

1
h) be discrete functions and let zh be the

solution of






∂ttzj,h − (∆hzh)j + qj,hzj,h = gj,h(t), t ∈ (0, T ), j ∈ {1, ..., N},
z0,h(t) = 0, zN+1,h(t) = 0, t ∈ [0, T ],
zj,h(0) = z0j,h, ∂tzj,h(0) = z1j,h, j ∈ {1, ..., N}.

Then, setting

Ezh(t) =
∥
∥∂+h zh(t)

∥
∥
2

L2

h
([0,1))

+ ‖∂tzh(t)‖2L2

h
(0,1) + ‖zh(t)‖2L2

h
(0,1) , (3.8)
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there exists a constant C = C(T,m) > 0 independent of h and such for all t ∈ (0, T ),

Ezh(t) ≤ C
(∥
∥∂+h z

0
h

∥
∥
2

L2

h
([0,1))

+
∥
∥z1h
∥
∥
2

L2

h
(0,1)

+ ‖gh‖2L1(0,T ;L2

h
(0,1))

)

. (3.9)

We also have the following “hidden regularity” property:

∥
∥(∂−h zh)N+1

∥
∥
2

L2(0,T )
≤ C

(∥
∥∂+h z

0
h

∥
∥
2

L2

h
([0,1))

+
∥
∥z1h
∥
∥
2

L2

h
(0,1)

+ ‖gh‖2L1(0,T ;L2

h
(0,1))

)

.

(3.10)

Proof. The proof is somewhat classical, except perhaps for (3.10). We sketch it
for the convenience of the reader since it will be useful in the sequel. Note that the
quantity Ezh is usually called the discrete energy of the solution zh.

Differentiating Ezh with respect to the time t, we obtain

dEzh
dt

(t) = 2

∫

(0,1)

(∂ttzh −∆hzh + zh) ∂tzh

≤ 2

∫

(0,1)

|gh(t)∂tzh|+ 2(m+ 1)

∫

(0,1)

|zh∂tzh|

≤ 2

(
∫

(0,1)

|gh(t)|2
)1/2√

Ezh(t) + (m+ 1)Ezh(t).

Therefore,

d
√
Ezh
dt

≤
(
∫

(0,1)

|gh(t)|2
)1/2

+
(m+ 1)

2

√

Ezh

and Gronwall’s estimate then yields a constant C(T,m) such that for all t ∈ (0, T ),

Ezh(t) ≤ C(Ezh(0) + ‖gh‖2L1(0,T ;L2

h
(0,1))), (3.11)

which implies (3.9) providing a discrete Poincaré estimate proved hereafter (recall
z00,h = 0):

∫

(0,1)

|z0h|2 = h

N∑

j=1

(

h

j−1
∑

k=0

∂+h (|z0h|2)k
)

≤ 2h

N∑

j=1

(
∫

[0,1)

|∂+h z0h|2
)1/2(∫

[0,1)

|m+
h z

0
h|2
)1/2

≤ 2

(
∫

[0,1)

|∂+h z0h|2
)1/2(∫

(0,1)

|z0h|2
)1/2

,

which implies

∥
∥z0h
∥
∥
2

L2

h
(0,1)

≤ 4
∥
∥∂+h z

0
h

∥
∥
2

L2

h
([0,1))

. (3.12)

Finally, to prove (3.10), we use a multiplier type argument. Multiplying the
equation of zh by j(zj+1,h− zj−1,h) = rh(x)∂hzh (which is a discrete version of x∂xz),
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summing in j and integrating in time, we get (cf [27, Lemma 2.2] or the proof of
(4.19) given hereafter in a more intricate case):

h

N∑

j=0

∫ T

0

∂tzj,h∂tzj+1,h +

∫ T

0

∫

[0,1)

|∂+h zh|2 +Xh(t)
∣
∣
∣

T

0
+ 2

∫ T

0

∫

(0,1)

rh(x)qhzh∂hzh

− 2

∫ T

0

∫

(0,1)

ghrh(x)∂hzh =

∫ T

0

∣
∣(∂−h zh)N+1

∣
∣
2

(3.13)

where

Xh(t) = 2

∫

(0,1)

rh(x)∂hzh(t)∂tzh(t).

Of course, since each term in (3.13) is easily bounded by sup[0,T ]E
z
h(t) except for the

term involving gh which can be bounded by ‖gh‖L1(L2

h
) sup[0,T ]

√
Ezh(t), we immedi-

ately obtain (3.10) from (3.9).
Proof of Theorem 3.2.

STEP 1. Energy estimates. Set zh = ∂tuh. Then, using the notation Lh[qh] =
∂tt −∆h + qh , zh satisfies







Lh[qh]zh = fh∂tRh, t ∈ (0, T ),
z0,h(t) = zN+1,h(t) = 0, t ∈ [0, T ],
zh(0) = 0, ∂tzh(0) = fhRh(0).

(3.14)

We can apply Lemma 3.3 to zh solution of (3.14) since ∂tRh belongs to L
1(0, T ;L∞

h (0, 1))
and fh ∈ L2

h(0, 1). In particular, if Ezh denotes the energy of zh (see (3.8)), we obtain,
for all t ∈ (0, T ),

Ezh(t) ≤ C
(

‖fhRh(0)‖2L2

h
(0,1) + ‖fh∂tRh‖2L1(0,T ;L2

h
(0,1))

)

≤ C ‖fh‖2L2

h
(0,1)

(

‖Rh(0)‖2L∞

h
(0,1) + ‖Rh‖2H1(0,T ;L∞

h
(0,1))

)

≤ CK2 ‖fh‖2L2

h
(0,1) , (3.15)

where we have used that H1(0, T ;L∞
h (0, 1)) embeds into C([0, T ];L∞

h (0, 1)). This
implies in particular

‖∂tzh‖2L∞(0,T ;L2

h
([0,1))) ≤ CK2 ‖fh‖2L2

h
(0,1) .

Using the fact that h∂+h is bounded uniformly in h on L2
h([0, 1)) and zh = ∂tuh, this

gives

∥
∥h∂+h ∂ttuh

∥
∥
L2(0,T ;L2

h
([0,1)))

≤ CK2 ‖fh‖2L2

h
(0,1) .

Using (3.10) and arguing as in (3.15), we also get

∥
∥∂t(∂

−
h uh)N+1

∥
∥
L2(0,T )

=
∥
∥(∂−h zh)N+1

∥
∥
2

L2(0,T )
≤ CK2 ‖fh‖2L2

h
(0,1) .

These two last estimates yield (3.6).
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STEP 2. The choice of the Carleman weight. Since we assumed T > 1, there exists
x0 < 0 such that

T > sup
x∈(0,1)

|x− x0|
(

= 1 + |x0|
)

.

Therefore, we can choose β ∈ (0, 1) and η > 0 such that the Carleman weight function
ψ = ψ(t, x) = |x− x0|2 − βt2 + α satisfies

{
ψ(0, x) ≥ α, ∀x ∈ (0, 1),
ψ(t, x) ≤ α, ∀ t ∈ [−T,−T + η] ∪ [T − η, T ], ∀x ∈ (0, 1).

In particular,

{
ϕ(0, x) ≥ eλα, ∀x ∈ (0, 1),

ϕ(t, x) ≤ eλα, ∀ t ∈ [−T,−T + η] ∪ [T − η, T ], ∀x ∈ (0, 1).
(3.16)

In the sequel, we fix β as above (β ∈ (0, 1) and T
√
β < supx∈(0,1) |x − x0|), λ, s0,

ε > 0 such that Corollary 2.3 holds and the Carleman estimate (2.5) holds for all
h ∈ (0, h0) and s ∈ (s0, ε/h).

STEP 3. Extension and truncation. We now extend the problem (3.14) on (−T, T ),
setting zh(t) = −zh(−t) for all t ∈ (−T, 0). We also extend ∂tRh in an odd way and
keep the same notations for the new problem.

Let us define the cut-off function χ ∈ C∞(R; [0, 1]) such that:

{
χ(±T ) = ∂tχ(±T ) = 0
χ(t) = 1 for all t ∈ [−T + η, T − η].

(3.17)

We set wh = χzh that satisfies the following equation:







Lh[qh]wh = ∂ttχzh + 2∂tχ∂tzh + χfh∂tRh, t ∈ (−T, T ),
w0,h(t) = wN+1,h(t) = 0, t ∈ (−T, T ),
wh(0) = 0, ∂twh(0) = fhRh(0),
wh(±T ) = 0, ∂twh(±T ) = 0.

(3.18)

STEP 4. Using the Carleman estimate. From now on, C > 0 will correspond to a
generic constant depending on s0, λ, T, x

0, β, χ and η but independent of h ∈ (0, h0)
and s ∈ (s0, ε/h). We use the same notations as in Section 2 and set vh = exp(sϕ)wh.
We then have (recall (2.36))

Lh,1vh = ∂ttvh − (1 +A0)∆hvh + s2λ2
[

ϕ2 (∂tψ)
2 −A2

]

vh

and vh(±T ) = ∂tvh(±T ) = 0, vh(0) = 0 and ∂tvh(0) = fhRh(0)e
sϕ(0,·).

Using the properties of vh, Lemma 2.10 and (2.35), we can make the following
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calculation:

∫ 0

−T

∫

(0,1)

Lh,1vh ∂tvh

=

∫ 0

−T

∫

(0,1)

(
∂ttvh − (1 +A0)∆hvh + s2λ2

[
ϕ2(∂tψ)

2 −A2

]
vh
)
∂tvh

=
1

2

∫

(0,1)

|∂tvh(0)|2 +
∫ 0

−T

∫

[0,1)

∂+h vh∂
+
h ((1 +A0)∂tvh)

− s2λ2

2

∫ 0

−T

∫

(0,1)

|vh|2∂t
(

ϕ2 (∂tψ)
2 −A2

)

≥ 1

2

∫

(0,1)

|fh|2|Rh(0)|2e2sϕ(0,·) − s2C

∫ 0

−T

∫

(0,1)

|vh|2

+

∫ 0

−T

∫

[0,1)

(
1

2
∂t(|∂+h vh|2)m+

h (1 +A0) + ∂+h A0∂
+
h vhm

+
h ∂tvh

)

≥ γ2

2

∫

(0,1)

|fh|2e2sϕ(0,·) − s2C

∫ 0

−T

∫

(0,1)

|v|2

− 1

2

∫ 0

−T

∫

[0,1)

|∂+h vh|2m+
h (∂tA0) +

∫ 0

−T

∫

[0,1)

∂+h A0∂
+
h vhm

+
h ∂tvh

≥ γ2

2

∫

(0,1)

|fh|2e2sϕ(0,·) − s2C

∫ 0

−T

∫

(0,1)

|v|2

−Oλ(sh)

(
∫ 0

−T

∫

[0,1)

|∂+h vh|2 +
∫ 0

−T

∫

(0,1)

|∂tvh|2
)

.

Therefore

γ2

2

∫

(0,1)

|fh|2e2sϕ(0,·) ≤
∫ T

−T

∫

(0,1)

Lh,1vh ∂tvh + Cs2
∫ T

−T

∫

(0,1)

|vh|2

+Oλ(sh)

(
∫ T

−T

∫

[0,1)

|∂+h vh|2 +
∫ T

−T

∫

(0,1)

|∂tvh|2
)

.

Using

∣
∣
∣
∣
∣

∫ T

−T

∫

(0,1)

Lh,1vh ∂tvh

∣
∣
∣
∣
∣
≤ 1

2
√
s

(
∫ T

−T

∫

(0,1)

|Lh,1vh|2 + s

∫ T

−T

∫

(0,1)

|∂tvh|2
)

and the fact that Oλ(sh) is bounded by some constant independent of s since sh ≤ ε,
we get

γ2
√
s

∫

(0,1)

|fh|2e2sϕ(0,·) ≤
∫ T

−T

∫

(0,1)

|Lh,1vh|2 + s

∫ T

−T

∫

(0,1)

|∂tvh|2

+ Cs5/2
∫ T

−T

∫

(0,1)

|vh|2 + C
√
s

(
∫ T

−T

∫

[0,1)

|∂+h vh|2 +
∫ T

−T

∫

(0,1)

|∂tvh|2
)

.
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From the Carleman estimate (2.40) of Lemma 2.11, this implies that for all s satisfying

s0 < s <
ε

h
,

γ2
√
s

∫

(0,1)

|fh|2e2sϕ(0,·) ≤ C

∫ T

−T

∫

(0,1)

|Lhvh|2 + Cs

∫ T

−T

∣
∣(∂−h vh)N+1

∣
∣
2

+Cs

∫ T

−T

∫

[0,1)

|h∂+h ∂tvh|2

≤ C

∫ T

−T

∫

(0,1)

e2sϕ|Lhwh|2 + Cs

∫ T

−T

e2sϕ(t,1)
∣
∣(∂−h wh)N+1

∣
∣
2

+Cs

∫ T

−T

∫

[0,1)

e2sϕ|h∂+h ∂twh|2, (3.19)

where the last estimate follows from (2.51)–(2.52).
From equation (3.18), the properties (3.17) of the cut-off function χ and (3.16)

of the weight function ϕ, which is a decaying function of |t|, one gets

∫ T

−T

∫

(0,1)

e2sϕ|Lhwh|2 ≤ C

∫ T

−T

∫

(0,1)

e2sϕ
(
|χfh∂tRh|2 + |∂tχ∂tzh|2 + |∂ttχzh|2

)

≤ C

∫ T

−T

∫

(0,1)

e2sϕ|fh|2|∂tRh|2 + C

(
∫ −T+η

−T

+

∫ T

T−η

)
∫

(0,1)

e2sϕ
(
|∂tzh|2 + |zh|2

)

≤ CK2

∫

(0,1)

e2sϕ(0,·)|fh|2 + Ce2se
λα

(
∫ −T+η

−T

+

∫ T

T−η

)

Ezh(t).

Using now the energy estimate (3.15),

∫ T

−T

∫

(0,1)

e2sϕ|Lhwh|2 ≤ CK2

∫

(0,1)

e2sϕ(0,·)|fh|2 + CK2e2se
λα

∫

(0,1)

|fh|2

≤ CK2

∫

(0,1)

e2sϕ(0,·)|fh|2. (3.20)

Similarly, since ∂twh = χ∂tzh + ∂tχzh, using the energy estimate (3.15),

∫ T

−T

∫

[0,1)

e2sϕ|h∂+h ∂twh|2

≤ 2

∫ T

−T

∫

[0,1)

e2sϕχ2|h∂+h ∂tzh|2 + 2h2
∫ T

−T

∫

[0,1)

e2sϕ|∂tχ|2|∂+h zh|2

≤ 2

∫ T

−T

∫

[0,1)

e2sϕχ2|h∂+h ∂tzh|2 + 2h2CK2

∫

(0,1)

e2sϕ(0,·)|fh|2, (3.21)

where we have used that, as proved above,

∫ T

−T

∫

[0,1)

e2sϕ|∂tχ|2|∂+h zh|2 ≤ Ce2se
λα

(
∫ −T+η

−T

+

∫ T

T−η

)

Ezh(t)

≤ CK2

∫

(0,1)

e2sϕ(0,·)|fh|2.
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Therefore, plugging (3.20)–(3.21) in (3.19) we obtain

√
sγ2

∫

(0,1)

e2sϕ(0,·)|fh|2 ≤ CK2

∫

(0,1)

e2sϕ(0,·)|fh|2+Cs
∫ T

−T

e2sϕ(t,1)χ2
∣
∣(∂−h zh)N+1

∣
∣
2

+ Cs

∫ T

−T

∫

[0,1)

e2sϕ|h∂+h ∂tzh|2 + Csh2K2

∫

(0,1)

e2sϕ(0,·)|fh|2.

Thus, since sh2 ≤ εh0 ≤ 1, taking s∗ > s0 such that for all s ≥ s∗,
√
sγ2−2CK2 > 0,

for all h ∈ (0, h∗) with h∗ = min{h0, ε/s∗}, we obtain

∫

(0,1)

e2s∗ϕ(0,·)|fh|2 ≤ Cs∗

∫ T

−T

e2s∗ϕ(t,1)χ2
∣
∣(∂−h zh)N+1

∣
∣
2

+ Cs∗

∫ T

−T

∫

[0,1)

e2s∗ϕ|h∂+h ∂tzh|2,

and therefore

‖fh‖L2

h
(0,1) ≤ C

∥
∥(∂−h zh)N+1

∥
∥
L2(−T,T )

+ C
∥
∥h∂+h ∂tzh

∥
∥
L2(−T,T ;L2

h
(0,1))

, (3.22)

which coincides with (3.7). The proof of Theorem 3.2 is then complete.
Remark 4. With the notations of Theorem 3.2, if Rh ∈ W 2,1(0, T ;L∞

h (0, 1)),
considering the equation satisfied by wh = ∂tzh:







∂ttwh −∆hwh + qhwh = fh∂ttRh, t ∈ (0, T ), j ∈ {1, N},
w0,h(t) = wN+1,h(t) = 0, t ∈ (0, T ),
wh(0) = fhRh(0), ∂twh(0) = fh∂tRh(0),

from Lemma 3.3, we get

sup
t∈(0,T )

Ewh (t) ≤ CEwh (0) + C ‖fh‖2L2

h
(0,1) ‖Rh‖

2
W 2,1(0,T ;L∞

h
(0,1)) ,

with

Ewh (0) =

∫

[0,1)

|∂+h (fhRh(0))|2 +
∫

(0,1)

|fh∂tRh(0)|2 +
∫

(0,1)

|fhRh(0)|2

≤ 2

∫

[0,1)

|∂+h fh|2|m+
hRh(0)|2 + C ‖fh‖2L2

h
(0,1) ‖(Rh(0, ·), ∂tRh(0, ·))‖

2
L∞

h
(0,1)2

≤ C

(
∫

[0,1)

|∂+h fh|2 + ‖fh‖2L2

h
(0,1)

)

‖Rh‖2W 2,1(0,T ;L∞

h
(0,1)) .

Therefore, if in addition to (3.4), there exist constants δ > 0 and K > 0 such that for
all h > 0,

‖Rh‖W 2,1(0,T ;L∞

h
(0,1)) ≤ K,

∫

[0,1)

|∂+h fh|2 ≤ δ2

h2

∫

(0,1)

|fh|2, (3.23)

then

∥
∥∂+h wh

∥
∥
L∞(0,T ;L2

h
[0,1))

=
∥
∥∂+h ∂tzh

∥
∥
L∞(0,T ;L2

h
[0,1))

≤ CK(δh−1 + 1) ‖fh‖L2

h
(0,1) ,
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and in particular,

h
∥
∥∂+h ∂tzh

∥
∥
L∞(0,T ;L2

h
[0,1))

≤ C(δ + h) ‖fh‖L2

h
(0,1) .

Therefore, if condition (3.23) is satisfied for δ > 0 small enough, estimate (3.22)
simply becomes, for h small enough,

‖fh‖L2

h
(0,1) ≤ C

∥
∥(∂−h zh)N+1

∥
∥
L2(−T,T )

.

Condition (3.23) can be seen as a filtering condition on the data. To be more precise,
if we filter enough the data (at the scale δ/h with δ small enough), the Tychonoff
regularization term is not needed anymore in (3.7).

3.3. Uniform stability for the discrete inverse problem. Proof of Theorem
3.1. Setting uh = yh[qh]−yh[ph], where yh[qh] and yh[ph] are respectively the solutions
of (1.7) corresponding to qh and ph, then uh solves







∂ttuh −∆huh + qhuh = fhRh, t ∈ (0, T ),
u0,h(t) = uN+1,h(t) = 0, t ∈ [0, T ],
uh(0) = 0, ∂tuh(0) = 0,

(3.24)

with fh = ph − qh and Rh = yh[ph]. We then directly apply Theorem 3.2.
Remark 5. Remark 4 also applies here of course, and the filtering condition

(3.23) then becomes:

‖yh[ph]‖W 2,1(0,T ;L2

h
(0,1)) ≤ K,

∫

[0,1)

∣
∣∂+h (qh − ph)

∣
∣
2 ≤ δ2

h2

∫

(0,1)

|qh − ph|2, (3.25)

for some δ > 0 small enough. A convenient way to satisfy these two conditions is to
impose that both ph and qh belong to a filtered space and that the data (y0h, y

1
h), gh and

(g0h, g
1
h) derive from smooth functions. For instance, if (y0, y1) ∈ H3(0, 1)×H3(0, 1),

g ∈ W 2,1(0, T ;C0([0, 1])) and (g0, g1) ∈ H3(0, T ) with the compatibility conditions
(1.6) and

∂ttg
0(0) = ∆y0(0)− p(0)y0(0) + g(0, 0), ∂ttg

1(0) = ∆y0(1)− p(1)y0(1) + g(0, 1),

setting (y0h, y
1
h) = (rh(y

0), rh(y
1)), gh = rh(g) and (g0h, g

1
h) = (g0, g1), one can check

that

sup
h>0

‖yh[ph]‖W 2,1(0,T ;L∞

h
(0,1)) <∞,

therefore guaranteeing the first estimate in (3.25) uniformly in h > 0.

4. Convergence issues. In this section, we will detail and prove the conver-
gence results that were presented rapidly in the introduction.

4.1. Statements of the results. In order to prove a convergence result, we
shall need some assumptions first.

Assumption 1 (A priori bounds on the potential). There exists m > 0 such that
p ∈ L∞

≤m(0, 1).
Assumption 2 (Regularity). The data of the continuous wave problem (1.1)

satisfy

(y0, y1) ∈ H2(0, 1)×H1(0, 1),

g ∈ W 1,1(0, T ;L2(0, 1)), (g0, g1) ∈ (H2(0, T ))2,
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with the compatibility conditions

g0(0) = y0(0), g1(0) = y0(1), ∂tg
0(0) = y1(0) and ∂tg

1(0) = y1(1).

One should notice that under these regularity assumptions, according to [29] (see
also Remark 1), for p ∈ L∞

≤m(0, 1) the solution y[p] of (1.1) belongs to the space

C2([0, T ];L2(0, 1)) ∩ C1([0, T ];H1(0, 1)) ∩ C0([0, T ];H2(0, 1)). In particular, one can
check that ∂txy[p](·, 1) ∈ L2(0, T ) (this can be found in [29] but can also be seen as a
consequence of the multiplier identity (4.12)) and that y[p] ∈ H1(0, T ;L∞(0, 1)).

Of course, we shall need some convergence estimates, that rely on the notations
introduced in (1.13) and (1.14):

Assumption 3 (Convergence). The sequence of discrete data (y0h, y
1
h) satisfies

(e0h(∆hy
0
h), e

0
h(∆hy

1
h)) −→

h→0
(∆y0,∆y1) in L2(0, 1)×H−1(0, 1). (4.1)

The sequences of source terms gh, (g
0
h, g

1
h) satisfy

e0h(gh) −→
h→0

g in W 1,1(0, T ;L2(0, 1)), (g0h, g
1
h) −→

h→0
(g0, g1) in (H2(0, T ))2. (4.2)

Finally, we shall also need a uniform positivity assumption:

Assumption 4 (Positivity). There exists γ > 0 such that

inf
{
|y0(x)|, x ∈ (0, 1)

}
≥ γ > 0, and ∀h > 0, inf

j∈{1,··· ,N}
|y0j,h| ≥ γ. (4.3)

Now, we introduce, for h > 0, the following observation operator:

Θh : L∞
h,≤m(0, 1) → L2(0, T )× L2((0, T )× (0, 1))

ph 7→
(
∂t(∂

−
h yh[ph])N+1, h∂xeh(∂ttyh[ph])

)
,

(4.4)

where yh[ph] is the solution of (1.7) with potential ph. We also introduce its continuous
analogous

Θ0 : L∞
≤m(0, 1) → L2(0, T )× L2((0, T )× (0, 1))

p 7→
(
∂t∂xy[p](·, 1), 0

)
,

(4.5)

where y[p] is the solution of (1.1) with potential p.

Note that, using these notations, Theorem 3.1 can then be seen as a uniform
stability of the maps Θ−1

h . Indeed,

∥
∥h∂+h ∂ttyh[qh]− h∂+h ∂ttyh[ph]

∥
∥
L2(0,T ;L2

h
([0,1))

= ‖h∂xeh(∂ttyh[qh])− h∂xeh(∂ttyh[ph])‖L2((0,T )×(0,1)) ,

and then (3.3) reads as:

∥
∥e0h(qh)− e0h(ph)

∥
∥
L2(0,1)

≤ C ‖Θh(ph)−Θh(qh)‖L2(0,T )×L2((0,T )×(0,1)) . (4.6)
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We are now able to state precisely the main result of this article, which is the
following convergence theorem:

Theorem 4.1. Assuming T > 1 and Assumptions 1− 4, let qh ∈ L∞
h,≤m(0, 1) be

such that

Θh(qh) −→
h→0

Θ0(p) strongly in L2(0, T )× L2((0, T )× (0, 1)). (4.7)

Then one has the convergence

e0h(qh) −→
h→0

p in L2(0, 1). (4.8)

Before going into the proof of Theorem 4.1, we shall emphasize that there exist
discrete sequences of potentials such that (4.7) holds. Actually, this is a consequence
of the following consistency result:

Theorem 4.2. Under Assumptions 1 − 4, for all potential p ∈ L∞
≤m(0, 1) there

exists discrete potentials ph ∈ L∞
h,≤m(0, 1) such that

e0h(ph) −→
h→0

p in L2(0, 1) and

Θh(ph) −→
h→0

Θ0(p) in L2(0, T )× L2((0, T )× (0, 1)).
(4.9)

Moreover, the solution yh[ph] of (1.7) satisfies

sup
h∈(0,1)

‖yh[ph]‖H1(0,T ;L∞

h
(0,1)) <∞. (4.10)

In the following section, we give the proofs of these Theorems. Actually, as we
will see, Theorem 4.2 is the second milestone of the proof of Theorem 4.1, the first
one being Theorem 3.1. In other words, the proof of Theorem 4.1, that will be given
at the end of this section, relies on a Lax-type argument for the convergence of the
numerical schemes based on the consistency of the method, given by (4.9), and the
uniform stability (4.6) of the discrete inverse problems.

4.2. Proofs. Proof of Theorem 4.2. In the proof, we shall distinguish the regu-
larity and convergence issues coming from the boundary source terms and the initial
data from the classical ones coming from the potential and distributed source term.
STEP 1: Convergence without potential and source term. Let z be the solution of







∂ttz − ∂xxz = 0, (t, x) ∈ (0, T )× (0, 1),
z(t, 0) = g0(t), z(t, 1) = g1(t), t ∈ (0, T ),
z(0, ·) = y0, ∂tz(0, ·) = y1.

(4.11)

Since (y0, y1) and (g0, g1) satisfy Assumption 2, the solution z of (4.11) satisfies (see
[29] for details)

∂tz ∈ C([0, T ];H1(0, 1)) ∩ C1([0, T ], L2(0, 1)).

We are therefore allowed to write the following multiplier identity

1

2

∫ T

0

|∂xtz(t, 1)|2 dt =
1

2

∫ T

0

∫ 1

0

(
|∂ttz|2 + |∂xtz|2

)
dxdt− 1

2

∫ T

0

|∂tg1|2 dt

+

∫ 1

0

∂ttz(T, x)x∂xtz(T, x) dx−
∫ 1

0

∂ttz(0, x)x∂xtz(0, x) dx, (4.12)
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which is obtained by differentiating in time equation (4.11), and then multiplying it
by x∂txz, integrating over (0, T )× (0, 1) and doing integration by parts.

Now, let zh be the solution of







∂ttzj,h − (∆hzh)j = 0, t ∈ (0, T ), j ∈ {1, N},
z0,h(t) = g0h(t), zN+1,h(t) = g1h(t), t ∈ [0, T ],
zj,h(0) = y0j,h, ∂tzj,h(0) = y1j,h, j ∈ {1, N}.

(4.13)

In this step, we want to prove that zh −→
h→0

z in the appropriate functional spaces. In

order to do that, we use the following result:
Theorem 4.3 ([18]). Let (f0

h , f
1
h)h>0 be a sequence of boundary data strongly

convergent to some functions (f0, f1) in L2(0, T )2. Let (ϕ0
h, ϕ

1
h) be a sequence of

discrete functions such that

(e0h(ϕ
0
h), e

0
h(ϕ

1
h)) −→

h→0
(ϕ0, ϕ1) strongly in L2(0, 1)×H−1(0, 1). (4.14)

Then the solutions ϕh of







∂ttϕj,h − (∆hϕh)j = 0, t ∈ (0, T ), j ∈ {1, ..., N},
ϕ0,h(t) = f0

h(t), ϕN+1,h(t) = f1
h(t), t ∈ [0, T ],

ϕj,h(0) = ϕ0
j,h, ∂tϕj,h(0) = ϕ1

j,h, j ∈ {1, ..., N}

converge toward the solution ϕ of







∂ttϕ− ∂xxϕ = 0, (t, x) ∈ (0, T )× (0, 1),
ϕ(t, 0) = f0(t), ϕ(t, 1) = f1(t), t ∈ (0, T ),
ϕ(0, ·) = ϕ0, ∂tϕ(0, ·) = ϕ1,

in the following sense:

e0h(ϕh) −→
h→0

ϕ strongly in L2(0, T ;L2(0, 1)) ∩H1((0, T );H−1(0, 1)). (4.15)

Besides, for all t0 ∈ [0, T ],

(e0h(ϕh)(t0), ∂te
0
h(ϕh)(t0)) −→

h→0
(ϕ(t0), ∂tϕ(t0)) strongly in L2(0, 1)×H−1(0, 1).

For the proof of Theorem 4.3, we refer to [18]. Note that Theorem 4.3 is not
standard, since it deals with solutions of the continuous wave equation defined in
the transposition sense. Therefore, the proof of Theorem 4.3 is based on a duality
argument and convergence results for the adjoint equation, namely the waves, and
in particular on their normal derivatives on the boundary (which corresponds to the
adjoint operator of the Dirichlet boundary conditions).

Of course, regarding the regularity hypothesis in Assumption 2 and the conver-
gence one in Assumption 3, we can apply this result to zh, ∂tzh and ∂ttzh. Of course,
the latter yields the strongest result, thus improving the ones on ∂tzh and zh:







∂tte
0
h(zh) −→

h→0
∂ttz strongly in L2(0, T ;L2(0, 1)) ∩H1(0, T ;H−1(0, 1)),

∂teh(zh) −→
h→0

∂tz strongly in L2(0, T ;H1(0, 1)) ∩H1(0, T ;L2(0, 1)),

eh(zh) −→
h→0

z strongly in H1(0, T ;H1(0, 1)) ∩H2(0, T ;L2(0, 1)),

(4.16)
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and, for all t0 ∈ [0, T ],

(e0h(∂h∂tzh)(t0), e
0
h(∂ttzh)(t0)) −→

h→0
(∂xtz(t0), ∂ttz(t0))

strongly in (L2(0, 1))2. (4.17)

Now, we focus on the strong convergence of the normal derivatives. This is slightly
more subtle. First, arguing as in [18] by duality against smooth functions, one easily
checks that

(∂−h zh)N+1 ⇀
h→0

∂xz(·, 1) weakly in L2(0, T ). (4.18)

Then, we derive a multiplier identity similar to (4.12) for the discrete equation
(4.13). In order to do that, we multiply equation (4.13) differentiated once in time by
rh(x)∂h∂tzh:

∫ T

0

∫

(0,1)

∂tttzh rh(x) ∂h∂tzh dt−
∫ T

0

∫

(0,1)

∆h∂tzh rh(x) ∂h∂tzh dt = 0.

But, on the one hand, using (2.16), we have

∫ T

0

∫

(0,1)

∂tttzh rh(x) ∂h∂tzh dt

=

∫

(0,1)

∂ttzh rh(x) ∂h∂tzh

∣
∣
∣
∣
∣

T

0

−
∫ T

0

∫

(0,1)

∂ttzh rh(x) ∂h∂ttzh dt

=

∫

(0,1)

∂ttzh rh(x) ∂h∂tzh

∣
∣
∣
∣
∣

T

0

+
1

2

∫ T

0

∫

(0,1)

|∂ttzh|2 dt−
h2

4

∫ T

0

∫

[0,1)

|∂+h ∂ttzh|2 dt

and on the other hand, using now (2.19), we get

∫

(0,1)

∆h∂tzh rh(x) ∂h∂tzh = −1

2

∫

[0,1)

|∂+h ∂tzh|2 +
1

2
|(∂−h ∂tzh)N+1|2.

Combining these last three identities, we obtain

1

2

∫ T

0

|(∂−h ∂tzh)N+1|2 dt+
h2

4

∫ T

0

∫

[0,1)

|∂+h ∂ttzh|2 dt

=

∫

(0,1)

∂ttzh rh(x) ∂h∂tzh

∣
∣
∣
∣
∣

T

0

+
1

2

∫ T

0

∫

(0,1)

|∂ttzh|2 dt+
1

2

∫ T

0

∫

[0,1)

|∂+h ∂tzh|2 dt.

(4.19)

According to the strong convergences in (4.16) and (4.17), we can pass to the
limit in the right hand side of (4.19), which converges to the right hand side of (4.12),
leading to:

lim
h→0

(

1

2

∫ T

0

|(∂−h ∂tzh)N+1|2 dt+
h2

4

∫ T

0

∫

[0,1)

|∂+h ∂ttzh|2 dt
)

=
1

2

∫ T

0

|∂xtz(t, 1)|2 dt.
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This last fact, together with the weak convergence (4.18), implies that

((∂−h ∂tzh)N+1, h∂xeh(∂ttzh)) −→
h→0

(∂xtz(·, 1), 0)

strongly in L2(0, T )× L2((0, T )× (0, 1)). (4.20)

STEP 2: Convergence with source term and potential. So far, we did not assume
anything on the potential p and on the convergence of the discrete potentials ph to p,
since they did not appear in the study of z and zh solutions of (4.11) and (4.13).

Since p ∈ L∞
≤m(0, 1), it is very easy to construct a sequence ph ∈ L∞

h,≤m(0, 1)

such that e0h(ph) strongly converge to p in L2(0, 1). Taking such sequence ph, we set
yh[ph] = zh + vh[ph] where vh[ph] is the solution of







∂ttvj,h − (∆hvh)j + pj,hvj,h = gj,h − pj,hzj,h, t ∈ (0, T ), j ∈ {1, N},
v0,h(t) = vN+1,h(t) = 0, t ∈ [0, T ],
vj,h(0) = 0, ∂tvj,h(0) = 0, j ∈ {1, N}.

Due to the convergence hypothesis in Assumption 3, we have the convergence of e0h(gh)
towards g in W 1,1(0, T ;L2(0, 1)) as h→ 0.

From (4.16), e0h(zh) and e0h(∂tzh) strongly converge in L2(0, T ;L2(0, 1)) towards
z and ∂tz, respectively. Besides, eh(zh) and eh(∂tzh) respectively converge to z and
∂tz in L2(0, T ;H1(0, 1)), hence in L2(0, T ;L∞(0, 1)). Since e0h(ahbh) = e0h(ah)e

0
h(bh)

and e0h(ph) strongly converges to p in L2(0, 1), we thus obtain that e0h(phzh) and
e0h(ph∂tzh), respectively, strongly converge to pz and p∂tz in L

2(0, T ;L2(0, 1)). There-
fore,

e0h(gh − phzh) −→
h→0

g − pz in W 1,1(0, T ;L2(0, 1)).

Thus, classical results yield the convergence of vh[ph] toward v[p], solution of







∂ttv −∆v + pv = g − pz, (t, x) ∈ (0, T )× (0, 1),
v(t, 0) = v(t, 1) = 0, t ∈ (0, T ),
v(0, ·) = 0, ∂tv(0, ·) = 0.

Therefore, we obtain

{
∂teh(vh[ph]) −→

h→0
∂tv[p] strongly in L2(0, T ;H1

0(0, 1)) ∩H1(0, T ;L2(0, 1)),

eh(vh[ph]) −→
h→0

v[p] strongly in L2(0, T ;H1
0(0, 1)) ∩H2(0, T ;L2(0, 1))

(4.21)
and, for all t0 ∈ [0, T ],

(e0h(∂h∂tvh[ph])(t0), e
0
h(∂ttvh[ph])(t0)) −→

h→0
(∂xtv[p](t0), ∂ttv[p](t0))

strongly in (L2(0, 1))2.

Of course, as for zh, using the discrete multiplier identity satisfied by ∂tv (see (4.19))
and the above convergences, we easily get

((∂−h ∂tvh[ph])N+1, h∂xeh(∂ttvh[ph])) −→
h→0

(∂xtv[p](·, 1), 0)

strongly in L2(0, T )× L2((0, T )× (0, 1)). (4.22)
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Now, using (4.20) and (4.22), the solution yh[ph] of (1.7) converges to the solution
y[p] of (1.1) in the following sense:

((∂−h ∂tyh[ph])N+1, h∂xeh(∂ttyh[ph])) −→
h→0

(∂xty[p](·, 1), 0),

strongly in L2(0, T )× L2((0, T )× (0, 1)), which is precisely (4.9).
Besides, using (4.16) and (4.21), we have

eh(yh[ph]) −→
h→0

y[p] in H1(0, T ;H1(0, 1)),

which of course implies the bound (4.10). This concludes the proof of Theorem 4.2.
We are finally in position to prove Theorem 4.1.
Proof of Theorem 4.1. Let p ∈ L∞

≤m(0, 1) and let qh ∈ L∞
h,≤m(0, 1) be such that

(4.7) holds. Denote by ph the potentials given by Theorem 4.2. Then we have

Θh(ph)−Θh(qh) −→
h→0

(0, 0) strongly in L2(0, T )× L2((0, T )× (0, 1)).

But according to (4.10) and the positivity Assumption 4, we can apply Theorem 3.1:
for some C > 0 independent of h > 0, estimate (4.6) holds. Therefore, e0h(ph)−e0h(qh)
strongly converges to zero in L2(0, 1). Using (4.9), we deduce that e0h(qh) strongly
converges to p in L2(0, 1).

5. Further comments.

• Other convergence results. Our convergence results (Theorem 4.1) re-
quire the convergence of h∂xeh(∂ttyh[ph]) to zero in L2(0, T ;L2(0, 1)). This term is
here to handle spurious high-frequency waves generated by the space semi-discretization
- see e.g. [36] - which are by now well-known to be responsible for the lack of uniform
observability of waves [40]. Of course, other ways of removing these high-frequency
waves can be implemented, an easy one being to impose some smoothness and filter-
ing conditions on the data - see Remark 5. Note however that these conditions seem
to be more difficult to implement in practice.

• Time discretization. Here we focus on the space semi-discretization of the
wave equation for simplicity. Indeed, the fully discrete wave equation in which the
time-derivative has been approximated by the centered difference approximation could
be handled the same way, since time and space are completely decoupled then. This
will of course introduce a Tychonoff regularization term within the Carleman estimates
of the same order but depending not only on the space discretization parameter, but
also on the time semi-discretization parameter. This again is completely compatible
with the known results on the observability of discrete waves - see [16, 19].

• Other space discretizations. Here, we have chosen a very simple space
discretization process corresponding to the finite-differences approach. Other space
discretizations should be studied, but regarding the literature in what concerns dis-
crete observability estimates for the waves (see e.g. [40, 17]), we expect the Tychonoff
regularization term to be needed within the discrete Carleman estimates in the case of
finite-elements methods. However, for mixed finite elements methods (see [10, 11, 14]),
we expect better behavior than here and this Tychonoff regularization term may be
not needed anymore. This should be studied carefully.

• Higher dimensions and more sophisticated wave models. Of course,
an interesting question would be to develop these discrete Carleman estimates in
higher dimensions (as it was done in [7]). It is usually admitted that Carleman esti-
mates “do not see” the dimension of the space. This is indeed true in the continuous
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case, but in the discrete case, the integrations by parts are much more intricate. Once
these discrete Carleman estimates are proved in higher dimensions, there is a priori
no difficulties in extending the proof of the stability result to higher dimensions, the
consistency being in general easily guaranteed. This is currently under investigation.
Regarding more general hyperbolic models, one could also mention [26], [4] or [2]
giving stability of inverse problem from global Carleman estimates respectively for
the Lamé system, a discontinuous wave equation or in a network of 1-d strings.
As mentioned in the introduction, if one considers wave equations with non-constant
velocities, several results exist as well, see e.g. [25, 35]. Developing discrete counter-
parts of these results and corresponding convergence results deserves further work.

• Semilinear wave equations. One of the standard applications of Carleman
estimates is to prove controllability of semilinear wave equations - see [13, 20]. We
expect that these discrete Carleman estimates could be of some use to prove the
convergence of discrete controls for semilinear wave equations and to improve the
results already obtained for globally Lipschitz nonlinearities using bi-grids methods
in [41].

• How to compute a discrete sequence ph such that Θh(ph) converges
to Θ0(p) ? This is certainly one of the most challenging issues concerning this kind
of inverse problems, since the map Θh is highly nonlinear. Of course, a natural idea
is to introduce

Jh(ph) = ‖Θh(ph)−Θ0(p)‖2L2(0,T )×L2(0,T ;L2(0,1)) (5.1)

and to minimize it on the set L∞
h,≤m(0, 1). But this can be very hard since Jh may

have several local minima. Another approach will be presented in the work [3] based
on Carleman estimates and stability results inspired from [24, 1].

• Convergence rates. It would be interesting to get a more precise descrip-
tion of the convergence of the discrete inverse problems towards the continuous one.
For instance, one could try to derive rates of convergence for the L2(0, 1)-norm of
(e0h(qh) − p), qh being the minimizer of the functional Jh defined in (5.1). Indeed, if
qh is the minimizer of the functional Jh defined in (5.1) on L∞

h,≤m(0, 1), Theorems 4.1

and 4.2 imply that
∥
∥e0h(qh)− p

∥
∥
L2(0,1)

goes to zero as h→ 0.

Getting such rates of convergence should rely mostly on getting convergence rates for
the consistency result in Theorem 4.2, but to our knowledge, this question is still open.
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