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Abstract

Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations,
we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential
in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from
boundary or internal measurements. The discrete stability results, when compared with their
continuous counterparts, include new terms depending on the discretization parameter h. From
these stability results, we design a numerical method to compute convergent approximations of
the continuous potential.

Résumé

A partir d’inégalités de Carleman pour des équations aux dérivées partielles dicrétisées elliptiques
et hyperboliques, nous étudions la stabilité Lipschitz et logarithmique du probléme inverse de
détermination du potentiel dans une équation des ondes semi-discrétisée, par un schéma aux
différences finies sur un maillage 2-d uniforme, & partir de mesures internes ou frontiéres. Quand
ils sont comparés avec leur contrepartie continue, les résultats de stabilité dans le cadre discret
contiennent de nouveaux termes dépendants du pas h du maillage utilisé. C’est a partir de ces
résultats que nous décrivons une méthode numérique de calcul d’approximations convergentes du
potentiel continu.

1 Introduction

The goal of this article is to study the convergence of an inverse problem for the wave equation, which
consists in recovering a potential through the knowledge of the flux of the solution on a part of the
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boundary. This article follows the previous work [3] on that precise topic in the 1-d case.

1.1 The continuous inverse problem

Setting. We will first present the main features of the continuous inverse problem we consider in this
article. Let € be a smooth bounded domain of R?, and for 7' > 0, consider the wave equation:

Oy — Ay +qy = f, in (0,7) x €,
y = fa, on (0,T) x 99, (1.1)
y(0,) =9°, 9wy(0,") =y', inQ.

Here, y = y(t,x) is the amplitude of the waves, (y°,y') is the initial datum, ¢ = ¢(x) is a potential,
f is a distributed source term and fjy is a boundary source term.

In the following, we explicitly write down the dependence of the function y solution of in terms
of ¢ by denoting it y[g] and similarly for the other quantities depending on q.

We assume that the initial datum (y°,y') and the source terms f and f5 are known. We also assume
the additional knowledge of the flux

AMq) = 0yylg) on (0,T) x Ty, (1.2)

where I'g is a non-empty open subset of the boundary 9f) and v is the unit outward normal vector
on 0f). Note that for this map to be well-defined, we need to give a precise functional setting: for
instance, we may assume (y°,y') € HY(Q) x L2(Q), f € L*((0,T); L3(2)), fo € H'((0,T) x 99) and
y°| 5 = fo(t = 0) so that .# is well-defined for all ¢ € L>(£2) and takes value in L*((0,T) x 9Q),
see e.g. [28].

This article is about the recovering the potential ¢ from .#[q]. As usual when considering inverse
problems, this topic can be decomposed into the following questions:

e Uniqueness: Does the measurement .# [g] uniquely determine the potential ¢?

e Stability: Given two measurements .# [q%] and .#[q’] which are close, are the corresponding
potentials ¢* and ¢® close?

e Reconstruction: Given a measurement . [q], can we design an algorithm to recover the potential
q?

Concerning the precise inverse problem we are interested in, the uniqueness result is due to [12] and
we shall focus on the stability properties of the inverse problem . The question of stability has
attracted a lot of attention and is usually based on Carleman estimates. There are mainly two types
of results: Lipschitz stability results, see [26] 32] [33] 23] 2] 24] [4] [36], provided the observation is done
on a sufficiently large part of the boundary and the time is large enough, or logarithmic stability
results 5] [7] when the observation set does not satisfy any geometric requirement. We also mention
the works [6], [I3] for logarithmic stability of inverse problems for other related equations.

Below we present more precisely these two type of results, since our main goal will be to discuss
discrete counterparts in these two cases.

Lipschitz stability results under the Gamma-conditions. Getting Lipschitz stability results
for the continuous inverse problem usually requires the following assumptions, originally due to [19].
We say that the triplet (Q,T',T) satisfy the Gamma-conditions (see [30]) if

e (Q,T) satisfies the geometric condition:

Jzo eRV\Q, {2 €09, st. (x—ax0) v(z) >0} CT, (1.3)



o T satisfies the lower bound:
T > sup |z — zo|- (1.4)
€N
In [2], following the works [22] 21|, the next stability result was proved:

Theorem 1.1 ([2]). Let m > 0 and consider a potential ¢* € L>() with [|q*| () < m, and
assume for some K > 0 the regularity condition

ylg®] € HY(0,T;L2(Q)  with  [[y[a®]ll g1 071 () < K (1.5)

where y[q®] denotes the solution of (1.1) with potential q®. Let us further assume that (2,T0,T)
satisfies the Gamma-conditions (1.3)~(1.4) and the following positivity condition

dag >0, inf |y0(:1:)| > ag. (1.6)
zeQ

Then there exists a constant C' > 0 depending on m, K and aq such that for all ¢* € L>(Q) satisfying
quHLoo(Q) S m, we ]’LG’UB %[qa] - %[qb] S 1{1(0,7—’7 L2(FO)) G/I’Ld

1
g lla" = &l ey < 210" - 4

a b
C Clla" —q HL2(Q)' (1.7)

b
lq ]HHl(O,T;L?(FO)) <
Besides, if w is a neighborhood of Ty, i.e. for some 6 > 0, {x € Q, d(z,Ty) < §} C w, we also have
Arylg®] — dyla’) € H'((0,T) x w) and
1 a b a b a b
C Hq —4q HL2(Q) < Haty[q | = wlq ]HHl((O,T)Xw) <Cl¢"—q HL2(Q)' (1.8)

Remark 1.2. Note that in Theorem|1.1], we do not give assumptions on the smoothness of the data
YV, vy, f, fo directly. They rather appear through the bound K in (L.5) in an intricate way. Also note
that estimate (1.8) is not written in [2], but the proof of (1.8) follows line to line the one of (1.7).

Logarithmic stability results under weak geometric condition. Let us now explain what can
be done when the geometric part ([1.3) of the Gamma conditions is not satisfied. In this case, to our
knowledge, the best result available is due to [5]. Below, we state a slightly improved version of it:

Theorem 1.3 ([5], revisited). Assume that there exist an open subset I'y C OQ of the boundary 09
and an open subset O of Q0 such that:

o 'y CT'y and (2, T'1) satisfies the condition ;
e O contains a neighborhood of T'y in §2, i.e. for some § > 0,
{reQ,d(z,T1)<d} CO. (1.9)
Let ¢* be a potential lying in the class A(Q, m) defined for Q € L*°(O) and m > 0 by
AMQ.m) = {g € L™(Q), st dlo=Q and gl i) <m}. (1.10)
Let y° € HY(Q) satisfying the positivity condition and assume that y[q] satisfies the regularity

condition
ylg"] € H'(0,T; L=()) N W0, T; L*(2)). (1.11)



Let o> 0 and M > 0. Then there exists C > 0 such that for T > 0 large enough, for all ¢* € A(Q, m)
satisfying
@ —q’e H&(Q) and Hq“ — quH[}(Q) <M, (1.12)

we have . [q"] — 4 |q°] € H'(0,T; L*(Ty)) and

a

y<C

Hq - quL2(sz

C 14+«
log | 2+ ' b1
( l-#[q%] — %[qb]||H1(O,T;L2(F0))>] ( )

Besides, the constant C depends on m in (1.10), M in (L.12), ag in (1.6), a priori bounds on
HyOHHl(Q) 1YL g1 (0,7 Lo ()2 (0,712 () and the geometric setting (To,T'1, O, Q).

To be more precise, [5] states the previous result with a = 1 and under slightly stronger geometric
and regularity conditions. Since Theorem [1.3[ states a slightly better result than the one in [5], we
will prove it in Section Similarly as in 5], we will work on the difference y[q%] — y[q®] and use
the Fourier-Bros-lTagoniltzer transform which links solutions of the wave equation with solutions of
an elliptic PDE, but instead of considering the usual Gaussian transform as in [5] (see also [34 [35]),
we will consider the one used in [29] (see also [T, BI]). We will thus be led to prove a quantified
unique continuation result for an elliptic PDE, which we derive using a classical Carleman estimate
([20]). Nevertheless, we will do it in a somewhat different way as the one in [35] B1] by constructing
one global weight which allows to prove Theorem [I.3] without the use of iterated three spheres in-
equalities. The proof of Theoremwill then be completed by the use of the stability estimates .

Objectives. Our goal is to derive counterparts of Theorem and Theorem for the finite-
difference space approximations of the wave equation discretized on a uniform mesh. In order to give
precise statements, we need to introduce several notations listed in the next section. For simplicity of
notations, we make the choice of focusing on the unit square in the 2-d case

Q=(0,1)% (1.14)

though our methodology applies similarly in the case of the d-dimensional domains of rectangular
form Q = IT9_, [a;, b;] (still discretized on a uniform mesh). Note that, even if we stated Theorems
and for smooth bounded domains, both Theorems also hold in the case of a domain = (0, 1)<.

1.2 Some notations in the discrete framework

Here, we introduce the notations corresponding to the case of a finite-difference discretization of the
wave equation on a uniform mesh. Let N € N be the number of interior points in each direction, and
h =1/(N 4+ 1) the mesh size. All the notations introduced in the discrete setting will be indexed by
the parameter h > 0 to avoid confusion with the continuous case.

Discrete domains. We introduce the following (see also an illustration in Figure [1f):

Qp ={h,2h,...,Nh}?, Qn ={0,h,2h,...,Nh,1}?

o, = ({0 u{1}) x {h,...,Nhh U({h,...,Nh} x ({0} U{1})),
Ty =10} x {h,...,Nh}, Ty, ={h,...,Nh} x {0},

Uy = {1} x {h,...,Nh}, Iy ={h,...,Nh} x {1},

I, =T,,Ul,,  Tf=Tfulf,, 09, =T, ury,
Q= UL Qo= UT Q) = N

(1.15)
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Figure 1: Main discrete notations in = (0,1) x (0, 1).

Note that this naturally introduces two representations of the discrete set Qy,. We will use alternatively
xy, € Qp or (i,7) € [0, N+1]? (where [a, b] = [a, b]NN) to denote the point zj, = (ih, jh), the advantage
of the first writing being its consistency with the continuous model.

Discrete integrals. By analogy with the continuous case, if we denote by fr = (f(zn))z, ey,
respectively fj, = (f(zh))mhegh, fn= (f(:z:h))mheng’z, a discrete function, we will use the following
shortcuts:
N N N N N
/ th/ fig =0 fijs / fh:hQZZfi,j§/ fo =102 fise (1.16)
Qn Q2 ij=1 Dy i=0 j=1 Q2 i=1 j=0

One should notice that if these symbols are applied to continuous functions or products of discrete
and continuous functions, they have to be understood as the corresponding Riemann sums.

When considering integrals on the boundary 9, we use the natural scale for the boundary and
we define, for f; a discrete function on 9y,

/aszh,fh:h > flan). (1.17)

xR €00,

Subsets. In several places, we will consider open subsets O,w C € and we then note O, = O N Qy,
Op ={z € Q,d(z,0) <h}NQy, Oy = {r € Q,Je € [0,h], x + ee, € O} N Qy, ;. and similarly for
the sets wy, Wy and wy, (notice that these sets are always non-empty for 4 small enough). Integrals
on these discrete approximations of open subsets of € are given for f;, discrete functions on O, as

follows:
/ o= Julo,: / In =/ fnlp- (1.18)
On Qp Ok Qo bk

and similarly for the integrals on wy, wy, .
When considering open subsets I' of the boundary 0f2, we will similarly set I';, = I' N 9€y,, and the
integrals on these discrete approximations of subsets of the boundary will be given by

/ fn= Inlr,.
Ty OQp



Discrete LP-spaces. We also define in a natural way a discrete version of the LP({)-norms as
follows: for p € [1,00), we introduce L} (Qp,) (vespectively L} (€, ;)) the space of discrete functions
fn = (fij)ijen,ny, (respectively i € [0, N, j € [1, N]) endowed with the norms

p _ P p — D
”fh”[}}';(g“ _,/Qh |fh| (resp. ||thL§(Q;1) _/Qh‘l |fh‘ )7 (119)

and, for p = 00, || full () = suPsjep,ng [fisl (tesp [ fall e oy ) = SuPiego,vger, Ny [fis]):
We define the spaces Lj (9, ,), L},(Or) and Lj (wy) for open subsets O,w C Q in a similar way. We

also define discrete norms on parts of the boundary: if T is an open subset of 99, the space L} (T'y,),
(p € [1,00)) is the set of discrete functions f;, defined on I'j, endowed with the norm

15 = [ 16007

Discrete operators. We approximate the Laplace operator by the 5-points finite-difference approx-
imation: V(i,j) € [1, N]?,

1
(Ahvh)i’j = ﬁ (/UH—L]' =+ Vg, 5+1 + Vi—1,5 + Vij — 4vi,j) . (120)

Besides the discrete Laplacian Ay, let us also introduce the following discrete operators:

Vit1,j + 2055 + V-1 Vi1 + 2055 + Vi1

(Mmp1vn)i; = 1 i (mpavn)ig = 1 ;
_ Vi1, + Vi j _ v+ Vi g
(mjy 1vn)ig = (Mg, 1vR)ign,; = % s (M gvn)ig = (Mg R)ivr; = %”H ;
Vit1,; — Vi1, Vi i1 — Vij_1 0
(Onavn)iy = % i (Onovn)iy = ”JFT” ;o V= ( 6:; ) ;
. Vit1,5 — Vi _ Vij+1 — Vi
(O 1vn)ij = (O 1vn)it1j = % i (O qvn)ig = (O gvn)ije1 = % ;
(Anavn)sy = S0 Z2UG TG (), = D T 20 i
3 2, ’ 5 ,] N

B2
We finally introduce the following semi-discrete wave operator:

Op =04 —Ap =0 — Ap1 — Ap .

h2

Spaces of more regularity. We will use the space H} () of discrete functions f, defined on Qn
endowed with the norm

2 2
Il ) = W1fnllze @ + Z Ha}tkfh‘
k=12

2
Ly Q)

We also denote H&h(Qh) the set of functions f;, defined on € and vanishing on 02, endowed with
the above norm.

Note down that H}(€2,) and H&,h(Qh) denote spaces of functions defined on ;. We decided to
slightly abuse the notations by denoting them that way, since the topology of these spaces is strong
enough to define the trace operators.

Similarly, when w is a non-empty open subset of €, we denote by H}(wy) the set of discrete
functions f; defined in @} endowed with the norm

2
2 2
HthH}L(wh) = H.fh”L;"l(W)_F E : Ha;{,kfh’
k=1,2

Li(‘*’;k)

6



We finally introduce H }%(Qh) the set of discrete functions f;, defined on Qj, endowed with the norm

2

2 2 2 2
1fnllerz @) = 0l @u) + 1881 f0llZ2 @, + 1AR2f0lL2 0, + Haltl(?}thh‘ Loy
Besides, with an abuse of notations, we will often denote L?(0,T;H} () N H'(0,T; L% (2,)) by
H}((0,T)x Q) and the space H?(0,T; L2 (Q4))NH(0,T; HE(Q))NL2(0, T; H3 () by HZ((0,T) x
).

Extension and restriction operators. Finally, we shall explain how to compare discrete functions
with continuous ones. In order to do so, we introduce extension and restriction operators.

The first one extends discrete functions by continuous piecewise affine functions and is denoted by
ep. To be more precise, if f;, is a discrete function (f; j); jeqo,n+1], the extension ey (fy) is defined on
[0, 1] for (z1,x2) € [ih, (i + 1)h] x [jh, (j + 1)h] by

%mmMma:<r—“;“ﬁ(r—“;ﬂﬁﬁd+<“;m)(vﬂ”;M)ﬁmj

r1 —ih ro — jh r1 —ih xo — jh
+(1 lh >(2h )fm‘+1+<lh >(2h )fi+1,j+1- (1.21)

This extension presents the advantage of being naturally in H'(£2). The second extension operator is
the piecewise constant extension € (f5), defined for discrete functions f, = ( fig)ijen,ny by

QU =iy on (6= 1/2h G+ 1D - DG, BFEDLNL
eY(fn) =0 elsewhere. '
This one is natural when dealing with functions lying in L?(2) as ||e2(fh)||L2(Q) = [fullz2 - Also

note that easy (but tedious) computations show that e (f) converge to f in L%(Q) if and only if
9 (fn) converge to f in L?(£).

We finally introduce restriction operators rp, ¥ and rp pq where rp, is defined for continuous
function f € C(Q2) by

rh(f):fh given by fl]:f(Zhvjh)v Vi?je [[17N]]7

fy, for functions f € L?(Q2) by

1 ..
fij = 72 // f(x1,x2) dxidas, Vi, j € [1,N],
w1 —ih|<h/2
|z2—jh|<h/2
tr(f) = fn given by 1 o
fij = 2 f(z1,x2) dx1dxe, Va5, = (ih,jh) € O,
|21 —ih|<h/2
|wa—jh|<h/2
(z1,22)EQ

and 15, po for functions fo € L%(9€2) by

rp.00(fo)(xn) = % / fo(z)do for x), € O8Yy,.

|z—zp|<h/2,
z€IN



1.3 The semi-discrete inverse problem and main results

We discretize the usual 2-d wave equation on = (0,1)? using the finite difference method on a
uniform mesh of mesh size h > 0. Using the above notations, this leads to the following equation:

Ouyn — Apyn + anyn = fr - in (0,T) x Qp,
Yn = fo,n on (0,T) x 0Qy, (1.23)
yh(O) = y?m atyh(o) = y;lL in Qh-

Here, yn(t,xp) is an approximation of the solution y of in (t,zn), Ap approximates the Laplace
operator and we assume that (y,y}) are the initial sampled data (y°,y') at z, and the source terms
fon € L?(0,T; L2 (0Q,)) and f, € L1(0,T; L2 (Q4)) are discrete approximations of the boundary and
source terms fy and f.

Our main goal is to establish the convergence of the discrete inverse problems for toward
the continuous one for in the sense developed in [3]. Let us rapidly present what kind of results
should be expected.

The natural idea to compute an approximation of the potential ¢ in from the boundary
measurement .7 [g] is to try to find a discrete potential g such that the measurement

A \qn] = Oven(ynlan]) on  (0,T) x Ty (1.24)

where yp[gr] is the solution of (1.23), and ej is the piecewise affine extension defined in (1.21)),
approximates .#[q] defined in (1.2)). We are thus asking the following:

if one finds a sequence g, of discrete potentials such that .4} [qn] converges towards .#q]
as h — 0 (in a suitable topology), can we guarantee that the sequence ¢, converges (in a
suitable topology) towards ¢ ?

As it is classical in numerical analysis - this is the so-called Lax theorem for the convergence of
numerical schemes - such result can be achieved using the consistency and the uniform stability of the
problem. In our context, even if the consistency requires some work, the stability issue is much more
intricate since even in the continuous case it is based on Carleman estimates. Here, stability refers to
the possibility of getting bounds of the form

lleh(ah —an)ll, < C||-#nlas] — Anlap]]l - (1.25)

where €] is the piecewise constant extension defined in (1.22), and the norms |||, and |- 4 have to
be precised, for some positive constant C' independent of h.

As we already pointed out in [3] in the 1-d case, a stability estimate of the form is far
from obvious and actually, instead of getting an estimate like (|1.25)), we proposed a slightly modified
observation operator ., for which we prove uniform stability estimates and the convergence of the
inverse problem.

Hence the main difficulty in obtaining convergence results is to derive suitable stability estimates
for the discrete inverse problem under consideration. We will thus state convergence results for the
discrete inverse problems in the forthcoming Theorem [I.6] while the main part of the article focuses
on the proof of stability estimates for the discrete inverse problem set on stated hereafter in
Theorems [[.4] and .5

1.3.1 Discrete stability results

Discrete Lipschitz stability. Since we assumed 2 = (0,1)2, the condition (1.3) will be satisfied
by a set I'g C 99 if and only if 'y contains two consecutive edges, and in this case the time T in



(T.4) can be taken to be any T > /2. Thus, with no loss of generality, when the Gamma-conditions
(1.3)—(1.4) are satisfied, we can focus on the study of the case

Q=(0,1)% To>T, =({1}x(0,1)U((0,1)x {1}), T > 2. (1.26)

When the measurement is done on a part of the boundary I'y satisfying the above conditions, we will
prove the following counterpart of Theorem

Theorem 1.4 (Lipschitz stability under Gamma-conditions). Assume that (Q, T, T) satisfy the con-
figuration (L.26). Let m >0, K >0, ag > 0, and ¢ € Ly°(Qyp,) with ”qZ”L;"(Qh) < m. Assume also

that v and the solution yp[q}] of (L.23)) with potential qf satisfy

. 0 a
1S§E|?Jh| >ao and ||Z/h[qh]||H1(o,T;L;;°(Qh)) < K. (1.27)

Then there ezists a constant C = C(T,m, K, ag) > 0 independent of h such that for all ¢¢ € L$°(Q,)
with Hq,blHLoo(Qh) < m, the following uniform stability estimate holds:
h

qu - qz”Li(Qh) <C H//Zh[qi(ﬂ - *///h[‘JZ]HHl(o,T;Li(FO,h))

Ch > |05 ouunlas] - &5 Ouunlah) 1.28
+ Z .k et Yn (] h.k ard L2(0,TiL2 (@5 ) ( )
k=1,2 ,
where yp[q2] is the solution of (1.23) with potential ¢’
Similarly, if w is a neighborhood of T'y, i.e. there exists § > such that
((1,1 = 8) x (0,1)) U ((0,1) x (1 6,1)) C w, (1.29)

then there ezists a constant C = C(T,m, K, ap, ) > 0 independent of h such that for all ¢¢ € L$°(Qp,)
with Hq;’LHLw(Qh) < m, the following uniform stability estimate holds:
h

97 = @il 12 0,y < C 10wnlai] = Bewmlai] | s o r2

wn))

+0 Y Haf;katyh[qm - aftkatyh[qz]‘
k=1,2

L2(0,T;Lj (wy, 1))

+Ch Z Haitkattyh[qg] - 3{k3ttyh[q;ﬁ]‘

k=1,2

L (1.30)
L2(0,T5L2 (2 )

When comparing Theorem [1.4] with Theorem one immediately sees that estimate (1.28) is a
reinforced version of (1.7)) due to the additional term

Ch Z Haftkattyh la] — 5{k3ttyh[q§1]’ (1.31)

k=1,2

L2(0,T:L2 (25 ,)

This was already observed in [3] for the corresponding 1-d inverse problems, and is remanent from
the fact that observability estimates for the discrete wave equations do not hold uniformly if they
are not suitably penalized, see 25 40}, [I5]. Note in particular that as A — 0 and under suitable
convergence assumptions, this term vanishes and allows to recover the left hand side inequality of
by passing to the limit in . Theorem is proved in Section Following the proof of
its continuous counterpart Theorem the main issue is to derive a discrete Carleman estimate for
the wave operator (Theorem [2.1)), as it was already done in [3] in the 1-d setting. Though the proof
of this discrete Carleman estimate is very close to the one in 1-d, the dimension 2 introduces new



cross-terms involving discrete operators in space that require careful computations. Note however
that our proof also applies in higher dimension when the domain is a cuboid discretized on uniform
meshes as this would involve similar terms. Actually, this has already been done in the context of
elliptic equations, see [9].

Discrete logarithmic stability. Since we limit ourselves to the case Q = (0,1)?, we may assume
that Ty is a (non-empty) subset of one edge and that the counterpart of T'y appearing in Theorem
satisfying the Gamma conditions is formed by two consecutive edges. Due to the invariance by
rotation, with no loss of generality, we may thus assume:

Q=(0,1)2, Toc {1} x(0,1), Ty=T4=({1}x(0,1)U((0,1)x {1}). (1.32)

Theorem 1.5 (Logarithmic stability under weak geometric conditions). Assume that the triplet
(Q,T0,T) satisfy the geometric configuration (L.32)) and the existence of an open set O C 2 such that

e O contains a neighborhood w of I'1 in €, i.e. such that holds.
o the potential g5, is known on 0Qy, and in Oy, where it takes the value Qp, € Ly°(Op,).
Let ¢f be a potential lying in the class Ayp(Qp,m) defined for Qp € L2(O),) and m > 0 by
An(Qn,m) = {an € LT (), st anlo, = Qn and ||gn]l e g,y < m}- (1.33)

Let ag > 0,M > 0 and o > 0. Assume also that y) € H}(Qn) and the solution yplqf] of (1.23) with
potential qj satisfy the conditions

inf lyp| > o and  ynlg®] € HY(0,T; Ly () N W20, T; Lz (). (1.34)
h

Then there exist C > 0 and hg > 0 such that for T > 0 large enough, for all h € (0,hg), for all
¢% € A (Qn,m) satisfying

ah—ah € Hop()  and gk = bl g, < M. (1.35)

we have

qu - qZHLi(Qh) <opt/tite) o

C 1+a
log | 2+
< \|-1lar] — A1n1ap) ||H1(0,T;L2(Fo))>]

+Ch Y ||or s 0umnlat) — 03 Drun o}
k=1,2

Besides, the constant C depends on the constants m, M in (1.35)), ag in (1.34), an a priori bound on
Hy?LHH}L(Qh) + ”yh[q;ﬂHHl(O,T;L;f(Qh))mWN(O,T;L;i(ﬂh))? and on the geometric configuration.

L2(0,T;L2 (2 ) (1.36)
2T h h,k

When compared with the corresponding continuous result of Theorem [I.3] the stability estimate
contains two extra terms: the penalization term and the new term Ch!/(1+e),

The proof of , given in Section follows the same path as in the continuous case and combines
the stability results obtained in the case where the Gamma conditions are satisfied with stability
results obtained for solutions of the wave equation through a Fourier-Bros-Tagoniltzer transform and
a Carleman estimate for elliptic operators due to [8, [@]. Hence, the penalization term is
remanent from Theorem But the term Ch'/(1+®) comes from the fact that the parameters within
the discrete Carleman estimates cannot be made arbitrarily large and should be at most at the order
of 1/h. This fact has already been observed in several articles in the elliptic case, see [8, @, [I4]. We
also refer to [27] for a previous work related to the convergence of the quasi-reversibility method.
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1.3.2 Discrete convergence results

The stability results of the previous Theorems [I.4] and [L.5] suggest to introduce the observation oper-
ators Ay, = AMn{yY,y}, fn, fo.n} defined for h > 0 by

My L) —  L20,T;L3(Ty)) x L2((0,T) x €)
qn = (Oven(ynlan]), hVzen(Ouynlan))).

where yp, [g5] is the solution of (1.23)) with potential g5, and data y3, y}, fa, fo,n and ey, is the piecewise
affine extension defined in (|1.21). Corresponding to the case h = 0, we introduce its continuous

analogous .#, = %{yo,y17 fi fa}:

My L=(Q) — L20,T;L2(Ty)) x L*((0,T) x Q)
g = (6la,0),

(1.37)

(1.38)
where y[q] is the solution of (|1.1). Recall that according to [28], this map ]ZO is well defined on
L>(Q) for data

W% y's f, fo) € HY(Q) x L2(Q) x L1((0,T); L*(2)) x H'((0,T) x 0Q)

. 1.39
with 39|, = fo(t = 0), (1.39)

that we shall always assume in the following.
Remark that with these notations, the quantities

H%h [QZ] - '///h [QZ] ||H1((O,T);Li(F0,h)) +h Z Ha}tkattyh[q}az} - 8}tk8ttyh [QZ]‘
k=1,2

L2((0,T)x 95, )

and — —
nlaf) ~ Ao
H nlan] nlan] H'(0,T;L2(T0))x L2((0,T)x€)

are equivalent, uniformly with respect to the parameter h > 0. Hence the stability results in Theorems
and easily recast into stability results for .#},.
Our convergence result is then the following:

Theorem 1.6 (Convergence of the inverse problem). Let ¢ € H! N L*°(Q) and assume that we
know g5 = qloa. Let the data (y°,y', f, fa) follow conditions (1.39) and the positivity condition
infg |y°| > ag > 0. Furthermore, assume that the trajectory ylq] solution of (L.1]) satisfies

yla) € H*(0,T; H'(2)) N H' (0, T; H*(2)). (1.40)
We can construct discrete sequences (yg,y}l, fn, fo.n), such that if we assume either

o (0,10, T) satisfy the configuration (1.26)), and in this case we define
X = Ly (S),

or

o (O, Ty, T1) satisfy the configuration (1.32)), T > 0 is large enough, q is known on O,
neighborhood of Ty, and takes the value qlo = Q, and we define

Xpn = {qn € L () s.t. gnlo, =Tr(Q),
and gy, extended on 0Qy, by qnlaq, = rn.ea(gs), belongs to H}L(Qh)},

that we endow with the L> () N H} (Qy,)-norm,
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then
- there exists a sequence (qp)n>0 € Xp of potentials such that

| lan) — | =0, (141)

lim su < oo, and =
;Hop lanllx., H'(0,T;L2(T0))x L2((0,T) x2)

lim
h—0
- for all sequence (qp)n>0 € Xp of potentials satisfying (1.41)), we have
. 0 . _

,llli% len (an) q||L2(Q) 0.

Let us briefly comment the assumptions of Theorem which might seem much stronger com-
pared to the ones for the stability results in Theorems[I.4]and[I.5] This is due to the consistency of the
inverse problem, detailed in Lemma [£.3] which requires to find discrete potentials such that the cor-
responding solutions of the discrete wave equation belongs to H'(0,T; L>(2)). But this class
is not very natural for the wave equation, and we will thus rather look for the class H*(0,T; H*(2)),
which embeds into H'(0,7; L>°(€)) according to Sobolev’s embeddings (since Q C R?). This is
actually the only place in the article which truly depends on the dimension.

It may also seem surprising to assume the knowledge of ¢ on the boundary even in the configuration
, for which Theorem applies with only an L{°(£),)-norm on the potential. This is actually
due to the fact that the knowledge of ¢|5q is hidden in the regularity assumptions on y[q]. Indeed, if
ylg] is smooth and satisfies (I.I)), we may write 9yy(0,z) = Ay°(z) — q()y° () + f(0,z) for all z € Q2
and in particular z € 99, whereas 9yy(0, 2) = 9y fo(0, x) for x € Q. In particular, since y° does not
vanish on the boundary, these two identities imply that gpn can be immediately deduced from the
knowledge of 30, f and f5 for sufficiently smooth solutions, see Remark

Details on the derivation of Theorem [I.6]are given in Section [d] with a particular emphasis on the
related consistency issues. In particular, Lemma explains how to derive the discrete data y‘fw y}”
fr and fsj from the data y°, y*, f, fo and qlo0-

1.4 Outline

Section [2] will be devoted to the establishment of a uniform semi-discrete hyperbolic Carleman esti-
mates in two-dimensions, including the boundary observation case in Theorem [2.1] and the distributed
observation case in Theorem [2.2] We will then derive from these tools the discrete stability result of
Theorem In Section [3] we will present a revisited version of Theorem based on a global elliptic
Carleman estimate and follow the same strategy to establish the discrete stability result of Theorem
that relies on a global uniform semi-discrete elliptic Carleman estimate due to [9]. Finally, Sec-
tion [] will gather the proof of Theorem [I.6] some informations about the Lax type argument, and a
detailed discussion about consistency issues.

2 Application of hyperbolic Carleman estimates

In this section, we discuss uniform Carleman estimates for the 2-d space semi-discrete wave operator
discretized using the finite difference method and applications to stability issues for discrete wave
equations. These discrete results are closely related to the study of the 1-d space semi-discrete wave
equation one can read in [3]. Actually, our methodology (here and in [3]) goes back to the articles
[8, @] where uniform Carleman estimates were derived for elliptic operators.
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2.1 Discrete Carleman estimates for the wave equation in a square

The proofs of the results stated here will be presented in Sections [2.2] and [2:3]
Recall that we assume the geometric configuration

Q= (0,1, TooTy = ({1} x (0,1)) U((0,1) x {1}). (2.1)
Carleman weight functions. Let a > 0, 7, = (—a,—a) ¢ Q = [0,1]?, and 8 € (0,1). In
[T, T] x [0,1]2, we define the weight functions ¢ = 9 (¢,x) and ¢ = p(t,z) as

1/)(157%) = |l’ - xa|2 - 5t2 + Co, cp(t,:c) = euw(t7z)v (22)

where ¢y > 0 is such that ¢» > 1 on [T, T] x [0,1]? and p > 1 is a parameter.

Uniform discrete Carleman estimates: the boundary case. One of the main results of this
article is the following:

Theorem 2.1. Assume the configuration (2.1) for Q and I'y. Let a > 0, 8 € (0,1) in (2.2) and
T >0. There exist 7o > 1, p > 1, >0, hg > 0 and a constant C = C(r9, 1, T, e, 8) > 0 independent
of h > 0 such that for all h € (0,hy) and T € (10,&/h), for all wy, satisfying

Upwy, € L2( T,1T, L? (Qh))
wo,j(t) = wNnt1,;(t) = wio(t) =win1(t) =0  Vte (=T,T),4,j€[0,N +1], (2.3)
w; j(£T) = dyw; ;(£T) =0 Vi, j € [0,N +1],
we have
T
7_/ / QTtp}L awh| dt+ 7 Z / / QTSWL wh|2 dt-l—T / / 27'goh wh|2 dt

T k=1,2 h Q

< O/ [ e imanar+or Y / / e oy o at (2.4)

=T k=1,2
+CTh? Y / / 2Tt Oywp | dt,
k=1,2

where @y, is defined as the approzimation of ¢ given by op(t) = rpp(t) fort € [0,T].
Besides, if wy(0,z) =0 for all xj, € Qy,, we also have

T
7_1/2/ 627¢;L(0)|atwh(07xh)|2 < C/ / e2ﬂph|thh|2 dt
Qh Qh
/ / S wh‘ dt + CTh? Z / / 27| Dywp [ dt. (2.5)
T, n

k=1,2

The proof of Theorem will be given later in Section It is very similar to the one of [3]
Theorem 2.2] but more intricate. The continuous counterpart of Theorem is given in [4, Theorem
2.1 and Theorem 2.10], and very close versions of it can be found in [22] 2I]. However, two main
differences with respect to the corresponding continuous Carleman estimates appear:

e The parameter 7 is limited from above by the condition T7h < e: this restriction on the range
of the Carleman parameter always appear in discrete Carleman estimates, see [8] 9, [8] 14]. This is
related to the fact that the conjugation of discrete operators with the exponential weight behaves as
in the continuous case only for 7h small enough, since for instance

€0 (e7™¥) = =10, only for 7h small enough.
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e There is an extra term in the right hand-side of (2.4]), namely

T
Th? Z /

k=1,27-"T

that cannot be absorbed by the left hand-side terms of . This is not a surprise as this term already
appeared in the Carleman estimates obtained for the waves in the 1-d case, see [3| Theorem 2.2], and
also in the multiplier identity [25]. As it has been widely studied in the context of the control of dis-
crete wave equations (see e.g. the survey articles [40, [15]), this term is needed since the discretization
process creates spurious frequencies that do not travel at the velocity prescribed by the continuous dy-
namics (see also [37]). Also note that this additional term only concerns the high-frequency part of the
solutions, since the operators h@,tl, hé‘,i2 are of order 1 for frequencies of order 1/h, whereas it can be

absorb by the right hand-side of (2.4)) for scale O(1/h!~¢) for all € > 0 by choosing h sufficiently small.

/ o) Dy dt (2.6)
h,k

Uniform discrete Carleman estimates: the distributed case. The usual assumption in the
distributed case for getting Carleman estimates in the continuous setting (see [2I]) is that the obser-
vation set w is a neighborhood of a part of the boundary satisfying the Gamma condition . Since
in our geometric setting Q = (0,1)2, with no loss of generality we may assume that there exists § > 0
such that holds. Under these conditions, we show:

Theorem 2.2. Assume the configuration (1.29)) for w. We then set
wp = Nw, w,, =Q, Nw, ke {1,2}.

Leta > 0,8 € (0,1) in (2.2) and T > 0. There exist 90 > 1, u > 1, € > 0, hg > 0 and a constant
C = C(ro,pu,T,e,8) > 0 independent of h > 0 such that for all h € (0,hy) and 7 € (19,¢/h), for all

wy, satisfying (2.3)),
T T T
7'/ / 2R | Qpwy |2 dt + T Z / / e2Ten |8,J[)kwh|2 dt + 713 / / e lwy, | dt
—T JQp -T l:,k =T JQp

k=1,2
T
< C/ / e27¢n
—T Q}L

T
thh|2dt+07h2 Z / / e2men
hok
T
C"r/ / e2ren
—T Jwp

k=1,27"T
where pp(t) = rpe(t) for t € [0,T]. Besides, if wy(0,z,) =0 for all ), € Qy,, the term

71/2 / e27#n(0) |0sw (0, ) |
Qh

O;F  Oywp|* dt (2.7)

T T
Opwp|*dt +Cr Y / e wp|* dt + CT° / / X7 wp,|? dt,
T h. =T Jwp

k=12"" Whk

is also bounded by the right hand side of (2.7)).
Of course, Theorem [2.2] shares the same features as Theorem 2.1} Actually, Theorem [2.2] is a

corollary of Theorem [2.1] and we postpone its proof to Section [2.3
2.2 Proof of the discrete Carleman estimate - boundary case

Proof of Theorem[2.1} The proof of estimate (2.4)) is long and follows the same lines as [3, Theorem
2.2]. In particular, the main idea is to work on the conjugate operator

Lpop = €T O (e TP up). (2.8)

The precise computation of %, already involves tedious computations summed up below:
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Proposition 2.3. The conjugate operator £, can be written in the following way:

Lyon = Opvn, — 27100 O Oyon, + 727 0% (00) i — TP () wn — Tpasp(Duuth)vn (2.9)
— Z (1 + AO,k)Ah,kUh + 27'/1, Z Alwké‘h,kvh — Z (TzlLl,?AZk — T/~L2A37k — T/I,A4,k)vh,
k=1,2 k=1,2 k=1,2

where the coefficients Ag . are given, for (t,xy) € (=T,T) x Qp and e' = (1,0), > = (0,1), by

—7ro(t,xn+ohe®)

1t e
Avpltizn) =5 [ 10000 (t2n + ohe)
—1

1 —71o(t,xn+ohe)

do, (2.10)

eiTW(t’mh)

e

AQ,k(tamh) = / (1 - |J|) [WQ(amkw)ﬂ (taxh + Uhek) e—ro(tn) do, (211)
-1
1 ) X e—‘rcp(t,zh—&-ohek)
Az i(t,xn) = / (1= lo]) [¢(92,)?] (t, 21, + ohe )W do, (2.12)
-1
1 k e—ﬂp(t,xh+ahek)
At o) = / (1 |o]) [pBy, ) (b2 + o) S doy (2.13)
. e—e(tan
h2
Aoy = 7(72M2A2,k — T,LLQA37]€ — TpAL)- (2.14)

In particular, these functions Agy defined on [0,T] x Qp, can be extended on [0,T] x Q in a natural
way by the formulas (2.10)—(2.13) and satisfy the following property: setting

fO,k = 07 fl,k = 410832191/)7 fZ,k = QOZ(aka){ f3,k = @(892191/))27 f4,k = 9083%3%11)7
or some constants epending on p but independent of T and h, we have
f C,d d b d d f dh h
1Aek = ferllcaqorpea < Cuth, WL €{0,...,4}, Wk € {1,2}. (2.15)

The proof of Proposition can be easily deduced from the detailed one in [3, Propositions 2.7,
2.8 and Lemma 2.9, 2.10] and the details are left to the reader. Note in particular that (2.15) implies
for all (£, k) € [0,4] x {1,2},

Apke = okl oo Lo + H8+ Ak — rhﬁmfg,kH
|| ||L ((0,T); L2 () k;2 h.k Lm((O,T);Li(Q;’k,))

+ HAhAg’k — rhAf£7k|‘Lw((O,T);Li°(Qh)) < C#Th.

Afterwards, one step of the usual way to prove a Carleman estimate is to split .%}, into two operators
21 and &, 2, that, roughly speaking, corresponds to a decomposition into a self-adjoint part and a
skew-adjoint one. To be more precise, using the notations

Ay = Ag 1 + Agp, Az = Az + Az, Ay = Ayq + Ay,

we set
vy = Ouvp — Z (1+ A x)Ap gvp + 7207 (@2 (Op)? — A2> Up (2.16)
k=12

Zhovn = (a1 — D)7 (90uth — Ag) v, — 7% (@|0]* — As) g,

—27p | @OpOon — Y AvgOngon |, (2.17)
k=1,2
1

Znon = arTp(e0up — Ag)vn,  with ay = % (2.18)

15



so that we have £, 1v+.%5 2v = Lpv+Zpv. Here, %), will be considered as a lower order perturbation
of no interest and the letter # states for “reminder”. More precisely, all our computations will be
based on the following straightforward estimate:

/ / |- L 1vn |2 dt+/ / | L .ovn |2 dt+2/ L 1Vp L 2vp dt
Qp Qn Q
T
= 2/ / | ZLhon? dt+2/ / | Zn0)? dt. (2.19)
=T JQp —T JQy

In particular, we claim the following proposition, proved in Appendix [B}

Proposition 2.4. For any T > 0, there exist p > 1, 79 > 1, €9 > 0 and a constant Cy > 0 such
that for all T € (19,e0/h), for all vy, satisfying vo; = Uvn41,; = Vio = Vin+1 = 0 and v; ;(£T) =
O, ;(£T) = 0,Yi,j € [0, N + 1],

T T
/ / ‘at’()h|2dt+7' Z/ / |8{kvh\2dt+73/ / ‘Uh‘2dt+/ / |$hﬁlvh\2dt
T JQy T JQp

k=1,2
dt+CothZ/ / |0} Oron | dt

<CO/ / \fhvu dt + Cor1 Z/ /+ ‘8 & Uh
r k=1,2

k=1,2

(2.20)

where the operators &, and Z,1 are defined by (2.8) and (2.16]).

The proof of Proposition [2.4] is the core of the derivation of the discrete Carleman estimate and
consists in estimating from below the cross-product f_TT th L1y Ly 2vn dt in . This is done in
two steps: Computation of the cross-product and computations of the leading order terms coefficients
in front of vy, Oy, 82‘ wVh- The proof of Proposition is given in Appendlx

Actually, this closely follows the proof of |3 Lemm .11] corresponding to the 1-d case. The main
novelties with respect to [3] Lemma 2.11] are the following ones:

e Some computations in the cross-product of £ 1vp, and £, 2v, are new since the term (o —
D71p(@0uth) — 3, Aag)vn in Lo in vanishes in dimension 1. Actually, the coefficient o is
chosen in some range that depends on the dimension d of the space variable and is required to belong
to (28/(B +d),2/(8 + d)). Hence, since d =1 in [3], we chose oy = 1 to simplify the computations.

e There are also new cross-products involving integration by parts of discrete derivatives in different
directions. In particular, besides the 1-d integration by parts formula in [3| Lemma 2.6] that we recall
in[A] we will need the following specific 2-d formula:

Lemma 2.5 (discrete integration by part formula). Let vy, gp be discrete functions depending on the
variable x, € [0,1]? such that v, = 0 on the boundary of the square. Then we have the following
identity:

1
/ 9h An1Vh Op2vn = 5/ |5;tlvh|2<9h,2(milgh)—/ O yunmif 1 (On.2vn) Oy 190
Qh h QI:,l

h,1
h2

B _|8,t13;t2vh\28;2(m2:19h). (2.21)

h

Though the formula (2.21]) cannot be found as it is in [3], it can be easily deduced from the inte-
gration by parts formula in Appendix [A] and the proof is left to the reader.
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Furthermore, if we assume v,(0) = 0 in Qj, we can compute the following cross-product (it is a
straightforward modification of the computations in [3} p.586]):

0 0
1 1
/ O, Loy dt = 5/ |0yv (0)]? — 3 Z / mZ,k(atAow |8ftkvh|2 dt
—rJa, Q k=127 ~T
2,2

3 /_OT /Qh |Uh|28t ((‘02 (8,51/})2 - Az) dt.

0
+ > / Oy Ao O jon mif, (Opvr) dt —
k=127 T/,

Therefore, based on Proposition we easily get

C 0 0
/ \8tuh(0)|2 S 7/ / |$h,17)h|2 dt—l—C\ﬁ/ / |6tvh|2 dt
Qp

+cm2// 07 kvh|2dt+CThZ// |8tvh| dt—i—C’r/ / lonl2 dt.
- Qp

k=1,2 k=1,2

As 7h < 1, applying Proposition [2.4] then immediately yields

7'1/2/ |Opvr (0 <C/ / \fhvh\ dtJrCTZ/ /+ lﬁhkvh dt
Qn r

k=1,2
+CTh? Y / / |0y Ovun|* dt. (2.22)

k=1,2

Finally, for wy, satisfying (2.3)), we set v, := e"™#»wy,. Remarking that by construction v, =
e"?rOpwp, we can apply directly Proposition We notice that for 7h < 1,

wp|*e*7" < Culonl?,

|Ovwn *e?7¢" < Cu(10ronl* + [unl?), |0y gwnl?e*™ < Cu(l0y gonl? + Cur?|my] jonl?),

|8,‘;k3tvh\2 < CM|8ljk3twh|262wh +Cyr (|8h),€wh|2 + \m;katwﬁ)ezw”' + C’MT4|mIkw\262T‘ph,
and |0, kvh|2 < C |8 kwh|2 2¢n on the boundary I'}’ .k @ wp vanishes on th We thus deduce
Carleman estimate for 7 large enough and 7h small enough directly from . Besides, when

wp(0) = 0 on Qp, then v1,(0) = 0 and ;v (0) = Aywp (0)e™ () on Q,, hence we conclude (2.5) from
©.29). 0

2.3 Proof of the discrete Carleman estimate - distributed case

Proof of Theorem[2.4 It can be deduced from Theorem Indeed, under assumption , it
suffices to define a cut-off function x € C*°(Q;[0,1]) taking value 1 on Q\ {z € Q, d(z,Ty) < §/2}
and vanishing on the boundary I'y = ({1} % (0,1))U((0,1) x {1}) and to apply the Carleman estimate
to xpwp, with xp = r,(x): the boundary terms in vanish by construction but we have

On(Xnwr) = xpOrwp — 2VaxaVawy — Apxn(2mpws, — wp).
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Using that x =1 on Q\ {z € Q, d(z,Ty) < §/2}, one easily checks that for h small enough, 95 x}, and
Apxp are supported on w. We thus readily obtain

/ / QTsa;LX |a wh| dt + 1 Z / /7 27—5%

k=1,2

SC/ / eQT(PhX%‘thhF dtJrO/ / 627’9% (|Vhwh‘2+‘mh,wh|2+|wh|2) dt
—-T JQy =T Jwp,

+cThQZ/ / T OF Oy (xnwn)|? dt.  (2.23)

k=1,2

8* w Oxnwy)|? dt + 72 / / T x| wn |* di

One then easily checks that, for 7h small enough,

/ / QW’L \Vhwh| + [ma(wp) ] + [wn]? ) dt + Th? Z / /7 e2Ten
Wh

k=1,2 h,k

T
CZ/ / 627"9’*|6;[7kwh\2dt+0/ / e2Tn lwy, |2 dt
k=127 T Jwn —T Jwn

Z/ /— 2T O Oywn|* dt.

k=1,2

8+ at(xhwh)\ dt

T
+ COTh? / / eXn | Opwy,|? dt + CTh?
Qn

We thus conclude (2.7) only by adding the terms
T T
7_/ / 27'Lph|a wh| dt 47 Z / / 2T@h|a}tkwh|2 dt + 7_3/ / 627¢;L|wh|2 dt
-T wh k=1 2 -T Wh

on both sides of (2.23) and by taking 7 large enough. O

2.4 Proof of the uniform Lipschitz stability result

As said in the introduction, Theorem [I.4]is a consequence of the Carleman estimates in Theorems
and Its statement is very similar to the one of [3, Theorem 3.1] in the 1-d case. With respect to
the stability estimates obtained in the continuous case in [2] (see also [22], []), there is the additional
term which is remanent from corresponding to some non-standard penalization of the
discrete inverse problems.

Proof of Theorem[I-]} Let us begin with the identity
4 — a — b 2 a b 2
Z /T /FJr ‘8h,kyh [qh] - ah,kyh[qh]‘ dt = Hal/eh(yh[qh]) - 8Veh(yh [qh])HHl(O,T;LQ(FJr)) )
h,k
that allows to end the proof of Theorem n 1.4 as soon as we obtain the stability estimate with

H AMnlag) — Ala, HHl 0.T:L2(T replaced by
( (To))

1/2

Z / / ‘811 kYn qh h kyh[qh] dt

k=1,2

Since the proof follows the one of [3] Theorem 3.1], we only sketch the main steps required.
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e Step 1. Energy estimates. We first write classical energy estimates in the context of the semi-
discrete wave equation in Qp, like the one written in [3, Lemma 3.3], and apply them to z, =
Or(ynlgl] — ynlg)) that satisfies

Ouzn — Dpzn + qzzh = (QZ - qg)atyh [Q}ﬂv in (07 T) X Qh’
zn =0, on (0,7) x 0y,
(21.(0), :21(0)) = (0, (a7, — ai)yp), in Qp.

We thus get a constant C' = C(T,m) > 0 independent of h and such that for all ¢ € (0,7T),
Ha;:_zh(t)HLi(Q;) + ”atzh(t)HLi(Qh) + ”Zh(t)HLfl(Qh) S CK ||qz - QZHL}%(Q’I) 5 (224)

where ”yh [qz]HHl(O’T;L’OLO(Qh)) <K.
e Step 2. Choice of the Carleman weight. Since we assumed T > /2, we can find a > 0 and
B € (0,1) such that
BT? > sup |z — z,4|* — inf |z — z,|* = 2 + 4a.
2€Q e

Therefore, we can choose 1 > 0 such that the Carleman weight function v defined in (2.2)) satisfies

sup P(t,z) < inf (0, x). (2.25)
|tle(T—n,T), zeQ zeQ

We then choose a and 3 as above in the Carleman weight , and choose u, 19, € > 0 such that

Theorem 2.1 holds.

e Step 3. Euxtension and truncation. We extend the equation in z, on (=T,T), setting z,(t) =
—zp(—t) for all t € (—T,0). We also extend 0;y5,[g¢] as an odd function on (—T,T). We define the cut-
off function x € C*(R; [0, 1]) such that x(£T) = O:x(£T) =0 and x(t) = 1 for all t € [-T+n, T —n).
Then wy, = xz, fulfills the assumptions of Theorem [2.I] and satisfies the following equation:

Opwn, — Apwp, + @b wy, = O xzn + 20ix0izn + (¢4 — ¢)Oynlql], in (=T,T) x Qp,

wp, =0, on (=T,T) x 00,
(wn(0), Brwn(0)) = (0, (g5 — ap)u), in Qp,
wh(iT) = 07 6twh(:|:T) = 0, in Qh.

e Step 4. Using the Carleman estimate. We apply Carleman estimates (2.5) and (2.4) to wp, and,
using the expression of dywp,(0) and Assumption ([1.27)), we get, for all 7 € (79,e/h),

T T
ﬁ/ eTSDh(O)IqZ _ q2|2 + 7'3/ / eTtph‘wh|2 dt < C/ / eQﬂph|thh|2 dt
Q —TJa, -7 Ja,
T 9 T
+Cr Z/ / e’Ten aﬁ,kwh‘ dt + Cth? Z/ / T |05 Dywn|* dt - (2.26)
k=127 -TJT}, k=1,27 T/,

The end of the proof finally consists in estimating the term containing Oy wy,:

T T
/ / 2T | 0wy, | dt < C’/ / eXmen | qbwp,|? dt
-1 Jay, -7Jo,

T
e [ el +lapyarc [ [ e - dhowldP . (220
Qp T JQy

[t|e(T—n,T)

The first term of the right hand side of (2.27) can be absorbed by the left hand-side of (2.26)) as ¢’
is of bounded L7°(€,)-norm. In the second term, we bound the weight function by its supremum on

19



[T'—mn, T] and then use the energy bound (2.24)) on zp,. This can then be absorbed by the left hand-side
of - ) due to the comparison (2 of the weight at time 0 and on (7" — n,T). Finally, since the
weight function is maxnnal at t = 0 the last term can be bounded by Cf 2T‘P’L(O)|q - q 212 due

to the assumption and thus it can also be absorbed by the left hand- 81de of - Therefore,
taking 7 large enough Completes the proof of Theorem [I.4] in the case of a boundary observation
(1.28)). The case of a distributed observation can be deduced similarly from Theorem stating a
Carleman estimate for a distributed observation. O

3 Application of elliptic Carleman estimates

3.1 Logarithmic stability estimate in the continuous case

The goal of this section is to prove Theorem Actually, it is a direct consequence of the following
result, similar to the ones in [29] 31]:

Theorem 3.1. Let 'y be a non-empty open subset of 02 and let w be a smooth connected open
subset of Q such that Ow N OQ is an open neighborhood of T'y. Let m > 0 and q € L™ (Q) satisfying
llgll 00 <m. Let 2 >0 and Ry > 0, and assume that { = ((t,x) solves the wave equation

8tt€ - AC + QC = fa n (7T7 T) X Qa (3 1)
(=0 on (=T,T) x 99, '

for some f € LY(=T,T; L?(Q)) satisfying
f=0 in(-T.,7)x{z €, dz,w) < Ry}, (3.2)

and satisfies ¢ € H*((=T,T) x Q) with HCHH2((—T,T)><Q) < 9.
Let o« > 0. There exists Ty > 0 such that for any T > Ty, there exists a constant C = C(T) > 0
such that

@ 14+«
[y v o <CZ |log |2+ : (3.3)
HY((=T/8,T/8)xw) ‘|8VC||L2((—T7T)><FO)
Indeed, let us first show how Theorem [3.1] implies Theorem [I.3]
Proof of Theorem[1.3 The idea is to apply Theorem 3.1] . to ¢ = 0¢(y[q"] — ylq®]), which satisfies the
wave equation
attc - AC + qu = (qb - qa)aty[qa]v ( 71:) ( aT) X Qa
¢=0 (t,z) € (0,T) x 99, (3.4)
¢(0,2) = 0,0,((0,2) = (¢" — ¢*)(2)y° (=), z € Q.

Extending ¢ as an odd function on (=T, T), using the classical energy estimates on 9,(, the fact that
0¢( is continuous at ¢ = 0 by construction, and recalling assumption (1.12)) on ¢* — ¢°, we easily get:

||C||H2(( r.17)x0) < Cm (H qb)yOHHol(Q) + H(qa - qb)ylup(n) + H(qa - qb)aty[qa]HWLI(O,T;LZ(Q)))
< Cm (||y ||H1(Q) + ||y1HL2(Q) + ||6fy[qa]HW1~1(07T;L2(Q))> +CmM Hy0||L°°(Q)

< Con(m+ M) 1yl w2 o022 00 (0,752 () T Crm [0 1 o) = 2 (35)
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Since the potentials ¢® and ¢” coincide on O by (1.10)), and because of (1.9), the source term f =
(q® — ¢*)0y[q°] extended to an odd function on (—T,0), satisfies (3.2) for Ry = §/2 and w = {z €
Q,d(z,T1) < §/2 }. Applying Theorem we obtain:

9 I+a
4 — b < 2 |log | 2 .
Haty[q ] — Owyla H‘Hl((—T/S,T/S)Xw) <9 [Og ( + 10,0yy[q®] — auaty[qb}ILZ((—T,T)xF0)>‘|

Because w = {x € Q, d(x,I'1) < §/2} satisfies the condition (1.9) and is thus a neighborhood of
a boundary satisfying the Gamma-condition (1.3), the use of estimate (|L.8) of Theorem then
completes the proof of Theorem O

Let us now focus on the proof of Theorem As we said in the introduction, this result follows
from a suitable use of a Fourier-Bros-Tagoniltzer (FBI) transform to reduce the hyperbolic problem
to an elliptic problem and on an elliptic Carleman estimate.

As in [29] [3T], we use a FBI transform with a “Gaussian-polynomial” kernel: this ingredient allows us
to improve the exponent in to any a > 0 instead of only o =1 as in [5].

Also, our proof shortcuts the one in [31] by using a global Carleman estimate for the elliptic equation,
allowing to get rid of the iterated three spheres inequalities in [31I] (see also [5]). Though this does
not yield any particular improvement on the result in the continuous setting, we will follow the same
strategy in the semi-discrete case and that way, we will manage to avoid the iterated use of three
spheres inequalities in the discrete setting, which would induce tedious discussions.

Proof of Theorem[3.1} The proof is rather long and can be split into several steps. Along this proof,
the constants written in large caps may depend on the parameter n € N and 7' > 0 and are independent
of the other parameters. But constants with small caps, that will be numbered ¢, ¢1, (...) have the
additional property that they do not depend on the time parameter T either.

e Step 1. The Fourier Bros Iagoniltzer kernel. In this step, we introduce the FBI kernel following
[29, p.473]. Let us set n € N* such that 1/(2n—1) < o and v = 1 — 1/(2n) (that guarantees
1/(1+ a) < v < 1). Introduce a function F' defined on C as follows:

Flz) = /m ¢itt o€ ge. (3.6)

:% .

According to [29], this function F is even, holomorphic on C and satisfies, for some positive constants
CO, Co, C1, C2:

F(2)] + |F'(2)] < Coexp (eolS(2)|7), Yz e, .
|F(2)| < Coexp (—ci]z]Y7), Vz € C with |S(2)] < co|R(2)], '
Then, for A > 1, we introduce
F\(z) = NF(\2),
which, due to (3.7)), satisfies the following estimates:
FA(2)] + 1F ()] < Cor? exp (coMS()[117) . ¥z € C, .
|F)\(2)] < CoXVexp (—e1A|z|V7) Vz € C with [3(2)| < c2|R(2)]- '

Let us remark that F defined by (3.6) is the inverse Fourier transform of £ — e~¢"" so that Fy is an
approximation of the identity as A — oco. Finally, notice that by construction, the Fourier transform

of Fy(t) is )
FEE©) = F(F) (5 ) = e ( (5) ) . (5.9)



e Step 2. The Fourier-Bros-lagoniltzer transform. Let ¢ be the solution of (3.1]). We introduce a
cut-off function n € C°([-T,T);[0,1]) such that

(1 i< T2
n(t) = { 0 if t| > 3T/4.

We define the FBI transform of ¢ for s € R, a € [-T/4,T/4] and z € Q by
Vg a(s, @) = / Fy(a+is—t)n(t)¢(t, x) dt, (3.10)
R

where i denotes the imaginary unit. Since Osvq(s,2) = i[5 Fa(a +is — t) 0¢(n(t)( (¢, x)) dt, using
integration by parts, one easily checks that v, ) solves the elliptic equation

(7835 - Am + q)’Uay)\ = fa7)\ in R x Q7
Vax =0 on R x 99,

where f, » is defined as f, x = fax1 + fa,r,2, With (since ¢ satisfies )
fori(s,a) = / Fala+is — t) (20 (00, ) + 1 (D)t o)) d,
R
faralsie) = [ Fulais = On(0f(t.z)dr
R

On the one hand, using that 21/9,¢ +1n''¢ is supported in {(¢,z) € (=T, T) x Q s.t. |¢t| > T/2} and
the second estimate in (3.8) on the kernel Fy, we have

1/v

—9%¢ 1/~ _92¢
I fan il (s mirogy < CATe 2 XTI (Cpgyegy < CAe2X T/ g2 (311)
for any T > 12/c¢q, since a € [-T/4,T/4], |t| > T/2 and since we decided to work for s € [—3,3] and
needed |s| < ¢g]a — t| to apply (3.8)).
On the other hand, the first estimate in (3.8)) also yields, for c3 = 2 - 3/7¢,

2 ’ 2 .
||Ua,>\HH1((—3,3)><Q) < CAPess? HCHHl((—T,T)xQ) < OV 72, (3.12)

and, similarly, , ,
||8uva,>\||L2((_373)><r0) < Ot HaVCHLz((—T,T)XFO) : (3.13)

o Step 3. Estimating v x by an observation on (—3,3)xTy. This step strongly relies on a Carleman
estimate for the following elliptic problem:

{(_ass_Az+q)w:g ( 3

(—

(3.14)

3) x
w=0 ona( 3, )XQ)

One of the most important points is to suitably choose the Carleman weight. First construct a smooth
function ¥y = 1 (x) on @ such that

Vo € W, ¥o(z) >0,

IHfU{Wﬂ)O\} > 07

Vo € 0w\ To, ¥o(z) =0 and 9,¢p(z) <0
1Yol poe )y < 1/2.

(3.15)
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Note that such a function 1 exists according to the construction in [I7] (see also [38, Appendix IIIJ).
We then extend this function 1, as a smooth function ¥ on €2 satisfying ||| L0y < 1. By continuity,
there exists a positive constant R € (0, Ry) such that in the set

wr = {z € Q, d(z,w) < R},

where the source term f vanishes by assumption (3.2), we have inf,czz{|V¢ ()|} > 0 and such that
in the set

%:{er, §<d(m,w)<R},

we have, as pictured in Figure
0 = inf ey > supp. (3.16)
« 2

Figure 2: Construction of the weight function (x).

We finally define, for u > 1,

¥ = QO(S,JJ) = eXP(MW(l’) - 52))7 (va) € [_37 3] x Q. (317)
According to [20] (see also [17], B5]) one has the following Carleman estimate for (3.14):

Lemma 3.2 (An elliptic Carleman estimate). There exist u > 1 and a constant C > 0 such that for
all 7 > 1, for all g € L?>((=3,3) x Q) and w solution of (3.14)) supported in (—3,3) x wg,

2 2
T e wlia (a5 x0) T T 1T Vw25 3)xa)

o 112 T 2
<Clle S09||L2((_3,3)XQ) +C7lle S081/“’||L2((_3,3)Xr0) ; (3.18)

where the constant C can be taken uniformly with respect to g € L™ () with ||q|| -« < m.

Estimate has to be understood as a Carleman estimate with observation on (—3,3) x I'g
and in (—3,3) % (2\ wg). But, as we assumed that w is supported in (—3,3) X wg, we simply omit
the observation in (—3,3) x (Q\ wg).

Now, introduce smooth cut-off functions xs = xs(s) and xg = xr(z) such that

1 if|s] <2,
xs(s) —{ 0 if]s| >3 2 Ixsllwaem <G

23



and

1 itd(z,w) < R/2,
Xr(@) = { 0 ifdxw) >k 0 IXelwaee <O
We can then define
wa,)\(svx) = XS(S)XR(:E)’UG,)\(S?x)v (571‘) ERxQ (319)

which satisfies

{ (—0ss — Ay + Qwar = ga,x  in (=3,3) x Q, (3.20)

wWe =0 on 0((—3,3) x ),
where (using the fact that f, x o vanishes in wr by assumption (3.2))

Gax = XSXRax1 — 2XROsX$0sVa,x — XROssXSVax — 2XsVXRVUa,x — XSAXRVa, -

Thus, Carleman estimate (3.18]) can be applied, and gives: for all 7 > 1,

2 2
7 €7 wa,x |L2((_3,3)><Q) +7 ||ew;vs,xwa,>\||L2((_373)><Q)
2 2
<C ||6T<pga,)\||L2((73’3)><Q) +CT ||6T¢avwa,k||L2((73’3)><F0) .

Since wq\ = va,x o0 (—1,1) X w and [[XsXrllw2.0@rxo) < €, We obtain

2 2
T3 ‘levaa,A||L2((—17l)Xw) + T ||6T¢V5,1/Ua)>‘HL2((—1,1)><UJ))

<C Heﬂpga,kuiq(,g,g)xg) +C1 ||€T(pauva,)\||2Lz((73’3)><r) . (3.21)

Now, we estimate from below the left hand side and from above the right hand side of (3.21).
Notice first that according to (3.16)), we can choose ¢y € (0, 1) such that

inf - > sup o (3.22)
Is|<eo, z€Ew |s|<3, z€€
In order to simplify notations, we set
F,= inf ¢ S= sup ¢, Sz = sup p, Se= sup . (3.23)
[s|<eo, zEwW |s|<3, zeQ |s|e(2,3), zeQ |s|<3, z€F

Remark that, similarly to (3.22), that writes now ., > %, using the explicit form of ¢ and the fact
that |9l () < 1, we have

S, > ,5”(273), (3.24)
Going back to (3.21)), on the one hand, for all 7 > 1, the left hand side satisfies,
™ vl (e enrwn) < TN 0ar T 11yxwy + 717 Ve wbarllpa i 11y xw) - (3.25)

On the other hand, the first term of the right hand side in (3.21)) can be estimated from above:

< 627:5’ ‘

T 2 2 T T L
||€ [Pga,/\HLz((_SB)XQ) > |faa)"1||L2((—3,3)><Q) —|—C (62 Z(2,3) + 62 yf) l

2
|UU«,)\||H1((—3,3)><Q) (3.26)

since Osxs, Ossxs are supported in {s € R, s.t. |s| € (2,3)} and Vxg, Axg are supported in €.
Plugging (3.11)) and (3.12)) into (3.26)), we obtain

le™ ganl3e((_sayxay < CET7 N 2T/ G2 4 € (2770 4 2770 ) Neesh g2, (3.27)
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Combining now estimates (3.21)) with (3.25)), (3.13) and (3.27), we get

eQT]w

||Ua’>\||?{1((_60760)xw) < CezrﬁﬂAQWG—chA(T/2)l/vg2
+C (2770 4 2T70) M1 G2 4 Cre®™ MM |0,C[ 72 (rryry) - (3:28)
o Step 4. Estimating ¢ from its FBI transform v, . Writing ¢ as follows,
C(t,z) = ¢t x) — v (0, @) + vi,a(0,2),
we obtain that, for t € (—T'/8,T/8),
IS L2((—r/s7/8)xw) < (@) = C(E, @) — vt7>\(07$)||L2((7T/87T/8)Xw)

+ (@, 2) = vax(0,2) 2 18 1/8) %0y - (3:29)

As already detailed in [31], since vy x(0,2) = F) % (n¢)(¢), where the convolution is only in the time
variable, we obtain, from (3.9) the following estimate (notice n =1 in (—7/8,T/8)):

[(t,2) = C(t,2) — Ut,/\(oax)np —T/8,T/8)xw) = [In¢ — Fx* (nC)HLz(( T/8,T/8)xw)

<la —f(FA))f(nOHLz(Rw) < \(m) B 2oy, )

L2(Rxw)
= /\7 ||77C||H1 Rxw) = 35 HCHHl(( T, T)xw) *

Besides, since F) is holomorphic, the map a + is — v, 2 (s, z) is holomorphic in the variable a + is
for all A and z, and the Cauchy formula implies that (see appendix of [5], for some details)

a,x) — va 2 (0, _ w20 sup Va,x —€0,60) Xw)
¢ ) ( )||L2(( T/8,T/8) xw) wc(_T)aT/4) | ||L2(( 0,€0) XW)

Hence, from ([3.29), combining the above estimates we get

C
< — 1 C a .
ISl 22— /8,7/8)x0) = 37 IS =7y 0y + ae(_ST‘LE’TM) 10a Al L2 ((—ep,e0) x)

Having an estimate on v, » in H'((—e€p, €9) X w) at our disposal, we can apply the latter to 9,¢ and
V( and obtain

IS e ((—7/5,7/8) %)

—|I¢ B o TC sup Va,\ —€0,€0) XW
3o el (rimysy + € sup el -

C
< F@ +C sup | (3.30)

a€(—T/4,T/4)

((—eos€0)xw) *

e Step 5. Concluding step. Combining estimates (3.28) and (3.30]), we have shown that for all
A>land72>1,

C ¥
||C||H1(( T/8.T/8)xw) = 27 5= 7%+ CFTI )\ 2N T2

+ Cem T (27700 4 21T) XA G2 4 Cre?T TSN M 0, Lo (i ery) - (331)

92

25



Recalling (3.22) and (3.24), we can choose the Carleman parameter 7 as a linear function of the FBI
parameter A by setting

Cg)\
T = . 3.32
S —max{ S, S (23} ( )

With this choice, one should assume A > ., where A\, = + (ﬂw — maX{y%ﬂ,y(g’?,)}) , in order to

C;
guarantee (3.31) (since 7 > 1). Thereby, there exist positii/e constants ¢y, ¢5, cg such that for all

A=Ay,

6—27'.%“, (627':7(213) + eQTft,;:) )\4'yeC3A < 616—04A7
627‘(5”7]“,))\2’}/67201)\(T/2)1/’Y < CeA(crzcl(T/z)l/v)’
Te2r(‘5ﬁfﬂw))\4fy€¢:3)\ < C€C6>\.

Obviously, there exists Ty > 0 such that for all T > Ty, ¢5 < ¢y (T/2)*/7. Thus, estimate (3.31)) yields,
forall T > Ty and A > A,

1< (—/s,7/8) %) < C2 <>\12,y et 4 e_/\cl(Tm)lM) +Ce 0,C 1o (1) o)
or, in a more concise form, for all A > A,
S e (=7 /8,7/8) xew) < %9 + Ceo? 100 €l L2 (1) xT0) - (3.33)
Finally, if we define the ratio “data over measurement”

7

p =
||8V<HL2((—T,T)><I‘0)
and the critical value 1
Ao = - log (24 p), (3.34)

6

taking A = A\g if A\g > A\, we have
1 (2+ p)1/2>
<C9 .
L (o

We can drop the second term of the right hand side since the first term dominates as p — oo
(p is bounded from below by the continuity of the operator z ~ 8,z from H?((=T,T) x Q) to
L3((=T,T) x 09)). Otherwise, if A\g < A, we take A = A, : In this case, p < exp(cg).) = C, i.e.
2 < Cl0uCll p2((~1,7)x10)> SO that with A = A, yields

2
HC||H1((—T/8,T/8)><¢,.;) <C ”aVCHL?((_Tj)XFO) < C;~
This concludes the proof of (3.3]) since —y < —1/(1 + «). O

Remark 3.3. When [ vanishes everywhere in (0,T) x Q, no cut-off function xr is needed and one
obtains the following quantification of unique continuation result due to [31, Theorem F| (see also [35]
for a = 1): For all T > 0 large enough, for all ¢ € H*((=T,T) x Q) solution of the wave equation
with f =0,

1CH k2~ 1.1y <) >] e

<C log [ 2+
S e (—7ys,7/8)%0) < ClICH 2~ 1) 0 2) [ g( 10uC Il L2~y X1y
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or, equivalently,

<N 222~ 1) x92)

HCHHQ((—T,T)XQ) < Cexp (CAHQ) ||8VC||L2((—T7T)><1") , where A = .
1<z~ 778, 7/8)x )

Since ¢ in that case is a solution of the wave equation with no source term, this last formulation can
be written in terms of the initial data (¢(0),0:¢(0)) = (¢°,¢Y) € H2N HE(Q) x H(Q):

1(C0s SOl 2 x

1Gor COla 2

16" DM 2y @y x ) < CPCAGT) 10uCll 2,1y xry » where Ao =

3.2 Uniform stability in the semi-discrete case

The goal of this section is to derive the semi-discrete counterpart of Theorem Similarly as in the
continuous case, that will be the main ingredient for the proof of Theorem

As specified in the introduction, we limit ourselves to the case Q = (0,1)2. We may thus assume
that T'g is a subset of one edge. Due to the invariance by rotation, with no loss of generality, we may
further assume that this edge is {1} x (0, 1).

We claim the following result:

Theorem 3.4. Let Q = (0,1)2 and Ty be a non-empty open subset of the edge {1} x (0,1). Letw be a
connected open subset of Q0 with Lipschitz boundary and assume that dw NS is an open neighborhood
of To. Also set w, = wN Q. Let m > 0 and g, € L7°(Q4) satisfying ||Qh||Lhoo(Qh) <m. Let 2 >0
and Ry > 0, and assume that (p, is a solution of the wave equation

{ OuCh — ACh + qnCh = [, in (=T,T) x Qp,

Ch =0 on (—T, T) X 69}“ (335)

for some fr, € LY(=T,T;L3?(Q)) satisfying fr, = 0 in (=T, T) x {x, € Qp, d(zp,w) < Ry}, and
satisfies ¢, € HE((—=T,T) x Q) with

||ChHH;2L((7T,T)><Qh) <9.

for some Ry > 0 and & independent of h > 0.
Let o > 0. There exist Ty > 0 and hg > 0 such that for any T > Ty, there exists a constant C'
independent of h such that for all h € (0, ho),

1
ita

7 + C P+ (3.36)

||ChHH,1L((7T/8,T/8)><wh)SC-@ log | 2+ 77—
o526

L2((=T,T);L3 (To,n))

Before proving Theorem [3.4] let us point out that it differs from Theorem [3.I] by the last term
h'/(1+2) @ in (3.36). Nonetheless, this term vanishes in the limit A — 0 and thus estimate can be
recovered fro when A — 0. But in particular, estimate does not state a uniqueness result
anymore, but rather an “almost-uniqueness” result: if 8,; 5Ch vanishes on (=T,T) x Iy}, for some (p

satisfying the assumptions of Theorem [3.4] we only have that the norm of ¢, in H} ((—7/8,T/8) x wy)
is smaller than ChY/(1+®) @ Due to the definition of 2, this corresponds to the case where

1Shll 13 (75778 eom) < CBY T Chll2 (7 myxs2n) »

i.e. functions that are localized outside (—7/8,7/8) x wyp. This is completely consistent with the
presence of spurious high-frequency modes that are localized, see [37, 40, [15]. We refer for instance to
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a counterexample due to O. Kavian: if wj, denotes the discrete function given by w; ; = (—1)* when

i = j and vanishing for i # j, the function (4 (¢, z;) = exp(2it/h)wy(zy,) is a solution of (3.35) with
gn = 0 and f;, = 0 whose discrete normal derivative on {1} x (1/4,3/4) vanishes identically.

Proof of Theorem[3]} It follows the same steps as the one of Theorem More precisely, Steps 1, 2
and 4 involving the FBI transform in time are left unchanged, but Steps 3 and 5 need to be modified.
Indeed, Step 3 in the proof of Theorem [3.1]is based on the Carleman estimate in Lemma [3.2] and we
should thus use a semi-discrete counterpart. Namely, we use the discrete Carleman inequality proved
in [9 Theorem 1.4] that we rewrite below within our setting and using our notations.

Before stating this result, let us make precise how we choose the weight function. In particular,
let us emphasize that the weight function in [9] is assumed to be C?([—3,3] x Q) for p large enough,
and this cannot be true with the construction we did for the proof of Theorem since Q = (0,1)?
contains corners.. We thus build the weight function v, as follows (here the subscript ‘v’ stands for

‘regularized’): first we conceive an open subset w; such that w, C {z € Q, d(z,w) < Ro/2 }, w C wy,
and Ow, \ T'y is smooth (see Fig. [3).

.
~~

-

Lo

Ry

S R L L

|

|
.
.

Figure 3: Construction of the weight function g ,(z) when w is a neighborhood of two consecutive
edges.

We can then design a smooth weight function v » such that

Vm € Frv 1/10,r(95) Z 0;

info{|Vbo,r (z)[} > 0,

Vo € 0w, \ Ty, O,¢0.(x) <0, (3.37)
Vo € 8&]1- \ F+7 ¢0,r(x) = 07

ol oy < 1/2.

Again, such a function vy, exists according to the construction in [I7, [38] and it can be extended

as a smooth function ¢, on Q satisfying [¥rll @) < 1. By continuity, there exists R € (0, Ro/2)
such that for the sets

wr={re€Q, dz,wy) <R} and % ={zxecQ, R/2<d(z,w) <R},
we have

inf {|[Vi(2)[} >0, and  infg, > sup . (3.38)
Wr, R Wr Z.
We then define @, as in (3.17)) but with this function ,: for pu > 1,

Pr = pels,@) = exp(p(ve(z) — 5%)  (s,2) € [-3,3] x Q.
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Theorem 3.5 ([9]). Let ¢, be as above and its restriction on the mesh ¢y p = rpe;.
There exist p > 1, C >0, hg > 0 and g9 > 0 such that for all h € (0, hg), 7 > 1 with Th < &g, for all
gn € L*((—3,3); L} (Q4)) and wy, solution of

(=0ss — A + qn)wn = gn in (—3,3) x Qu,
wp, =0 on ((—3,3) x Q) U ({—3,3} x Q4),

supported in (—3,3) X wy R,

2

3 || TP,k 2 T@r,h 2 Tern 9t
TNl wnllze 5503 () TN VswnllLe (s 5,03 @u) T €T Oy o 2 (o
h h k—=1.2 L2(7313§Lh(ﬂk,h))

’ (3.39)

TPr, h 2 TPr,h A
< Clle™ " gnllLa (3,302 n)) TCT ‘ erer ‘ah,gwh‘

L2(—3,3;L2(T1))
Besides, the constant C' can be taken uniformly with respect to qn, € L5° () with th||Lzo <m.

Remark 3.6. Before going further, let us comment more precisely Theorem |3.5, which cannot be
found under that precise form in [9] and differs from [4, Theorem 1.4] at three levels.

The first issue is that Theorem 1.4 in [9] concerns the case of an observation on the boundary
of the continuous variable, corresponding here to s = £3. Therefore, Assumption 1.3 on the weight
function in [9] is designed to yield observations on the boundary of the continuous variable, and in
our case, they are replaced by the condition Yz € Ow, \ T'g, 0,0, (z) < 0 in . We claim that
this condition is enough to guarantee a Carleman estimate with an observation on the boundary of
the discrete variables. This can be proved following the lines of [9] in that case and looking at the
boundary terms denoted Y and estimated in [4, Lemma 3.7], which are strong enough to absorb the
boundary terms in Ji1 in [9, Lemma 8.3] on 00\ T.

The second issue is that Assumption 1.8 in [9] requires some convexity condition in the neighbor-
hood of the boundary. But, as mentioned in [I1, Remark 1.3], this can be avoided by suitably modifying
the proof of Lemma C.4 in [9].

The third and last issue is that our weight function may degenerate outside (—3,3) X wy,r. But, as
in the continuous case, this actually does not come into play as we apply Carleman estimate (3.39)
to discrete functions wy, supported in (—3,3) X wy g.

Note that the main difference in the discrete Carleman estimate of Theorem with respect to
the one in Lemma [3:2] is the fact that the parameter 7 is assumed to satisfy 7h < 9. The proof of
Theorem [3.1] shall then be modified to keep track on this restriction. Thus, Step 3 can be done as in
the proof of Theorem [3.1] except that the construction of the cut-off function x g is now based on w,
and the existence of €5 > 0 such that

inf  Gi(s,2) > sup  ti(s,2)
|s|<eo, z€wr |s|<3, €%,

is granted by (3.38)). Then, all the constants .7, ., F(23), % in (3.23)), now denoted .7, , .7,
S 2,3), J,, are defined by replacing w by w;, ¢ by ¢, and € by ;. Hence, instead of (3.31), we

obtain the following: for all h € (0, hg), 7 > 1 with 7h < gq, for all A > 1,

C I 1/~

2 2 27(F = I ) \ 27 ,—2c1 \(T/2 2
Sl e (=1 /8.7/8) xoen) < ﬁg + 0™l DAB RN g

2
+ 06727—‘]“" (62727’@,3) + 62717’%»1.) )\4’y6C3)\ @2 + CT62T(§/’7ﬂur))\4wecg/\ H3}:2<h’

L2(=T,T5L2 (To,1))

The discussion then follows the same path as in the Step 5 of the proof of Theorem the natural
choice is to take 7 as a linear function of A as in (3.32). Thereby, we get the following discrete

29



counterpart of (3.33)): there are constants C' > 0 and e, > 0 independent of & > 0 such that for all
h € (0, ho) and for all XA € (A, e./h),

(3.40)

c ceA/2 —
Ikl -2 /9% < 377 + €€ Ha"’QCh’ L2(~T,T3L2 (To.n))

Introducing the ratio

9

Ph = 7
for.

L2(=T,T;L (To,n))

the optimal value of the parameter \ is
1
Ao = —log (2 + pn),
Ce

corresponding to the choice in the proof of Theorem We then have to discuss the cases
Mok < A, Aon € (Aiyes/h) and Ao > ex/h. Of course, the first two cases can be handled as
in the continuous setting. There only remains the last case Agj > €./h. But this corresponds to
pn > exp(cees/h) — 2 > exp(ces/h) /2, for h small enough, which in particular implies

2 HB};QQL‘ < D exp(—cees/h).

L2(7T,T;L}2L(Foyh))

Thus, taking A = e, /h in (3.40)), we obtain
1kl 2 ((—1/8,7/8) xn) < CBTZ.
This explains the presence of the last term in (3.36]). O

We finally conclude this section with the proof of Theorem [1.5

Proof of Theorem[I.5 As for the proof of Theorem [1.3|from (3.1)), it follows immediately by applying
Theorem to Cn = Owynlal] — Oynlat]. The use of estimate (1.30]) of Theorem then completes
the proof. Details are left to the reader. O

Remark 3.7. Following Remark[3.3, we can derie a quantification of a kind of unique continuation
result for solutions (;, of discrete wave equations with no source term: For alla >0 andT >0
large enough, there exists a constant C' independent of h > 0 such that for all {, solution of the wave
equation with fr, = 0 and initial data (G, Cp) € Hy N Hy () x Hy , (Qn),

ATl o—
H(C27Ci)“Hé’h(Slh)xLi(Qh,) < Cehn Hah,2c‘

L2(—T,T;L;"l (To,n))

+ CpM Ot

0 1
’(C}“Ch)||H}21QH[%,}L(Qh)XHéyh(Qh) 5 (341)

H (Cf?’ CilL) HH,%OH&Y,L(Q;,,)XH(}JL(Q;T,)

where Ay, = or, equivalently,

18 G oz o

14
(1= ORI+ 0, [0, Wz mwrzan < CeCML Hamg‘ ety
Note that only yields an “almost uniqueness” result in the sense that it does not imply (b =0
when the discrete normal derivative 0, 5(p vanishes on (=T, T) x Ty . Recall here that this term is
needed as unique continuation for the discrete wave equations does not hold as shown by the coun-
terexample of O. Kavian of an eigenfunction of the discrete Laplace operator which is localized on the
diagonal of the square.
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4 Convergence and consistency issues

This last section is devoted to the proof of the convergence results stated in Theorem [T.6]

4.1 Convergence results for the inverse problem

We will first state and prove two theorems of convergence under more detailed consistency assump-
tions. The feasibility of these assumptions will be studied next. Under the Gamma-conditions, and
more specifically in the geometric setting (|1.26)), we obtain:

Theorem 4.1 (Convergence under Gamma-conditions). Assume that (Q,T9,T) satisfies the con-

figuration (1.26) and that (y°,y", f, fa) follows the conditions ([1.39). Let ¢ € L°°() and assume
that there exist sequences q € L3°(Q,), and (Y2, v}, fu, fon) of discrete functions in L3 (Qp)? x

LY(0,T; L2 () x L*(0,T; L2 (082,)) such that

: 0/ a .
%g%”eh(Qh) 7qHL2(Q) *07 (41)
I H?/? A H - 4.2
hli% nlai] old] H'(0,T;L2(T0))x L2((0,T) xQ) (42)
: a
lim sup |l Lee () < 00 (4.3)
lim sup ||yn [QZ]HHl(o,T;Lff(Qh)) < 00, (4.4)
h—0
Jag >0, Vh >0, inf ly9] > ap. (4.5)
h

Then for all sequence (¢%)n=0 of potentials satisfying

I bIl < oo, d i H% A H )
H,IfjngqhHLh @) = an [y nla] old] HY(0,T;L2(T0))x L2((0,T) x Q)
we have

. 0/ by _

}{% Heh(qh) q||L2(Q) 0.

When no geometric condition on the observation domain is satisfied, we get:

Theorem 4.2 (Convergence under weak geometric conditions). Assume the geometric configuration

(1.32) for (Q,To,Ty), the conditions (1.39) for (v°,y', f, f5), and let O be a neighborhood of T, .
Let ¢ € L* () and assume that there exist sequences gt € L (), and (Y3, v, fn, fo.n) of discrete

functions in L3 (Q4)? x LY(0,T;L2(Q)) x L*(0,T; L3 (002,)) such that (1), @2) and [@.3) are
fulfilled, along with

hf}? Sgp [yn [(Jﬁ]HHl(U,T;L,io(Qh,))ﬁW"‘vl(o,T;L,%(Qh)) < 00, (4.6)

-

Jag > 0,Vh >0, infly?]>ap and limsup Hy2||H1 0.y < 00 (4.7)
Qp h>0 h,( h)

Then for T > 0 large enough, for all sequence (qZ)h>0 of potentials satisfying

@ =qlinO, and qf—q)c Hé,h(Qh) with  limsup ||qz - < 00,
h—0

quHéyh(Qh)

I bl < oo, and li HZ/?*)—Z/?H —0
lﬂsiquhHLh (@) = 00 and nlar] old] H'(0,T;L?(T0))x L2((0,T) %)

we have
lim [[ef, (1) — 4| 2 () = 0-
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Theorems [£.1] and [£.2] follow from the same arguments and can be proved simultaneously.

Proof of Theorems[{.1] and[{.3. Let ¢f and ¢}, be as assumed in Theorem (resp. Theorem .
One easily gets

im 7101 7| -

s ata nla] H(0,T5L2(T0)) x L2((0,T) x2)

Since one can find m > 0 larger than ||¢[|;« g, and lim Suph_)o(”qZ”LzO(Q, )T quHLw(Qh))7 according
h h 3
to Theorem (resp. Theorem [L.5)), we get

. b _ . . 0(,b 0 _
}lllg% Hqg - qh“Li(Qh) - Ou or eCIU1valent1y7 ]}bli% Heh(Qh) - eh(qg)HLz(Q) = 0.
We then conclude by the triangular inequality

Heg(qz) - qHLz(Q) < Heg(q,bl) - eg(qﬁ)“m(sz) + Heg(qﬁ) - qHL2(£2) )
since each term in the right hand-side converges to zero as h — 0. O

Of course, Theorems[4.1and [£.2) are based on the strong assumption that there exists a sequence of
potentials g} satisfying suitable convergence assumptions for some (y,g, y}” fn, fa,n) that are not even
supposed to be convergent to their continuous counterpart. This rises the natural question: given

(y°, y', f, fo) satisfying (1.39)), can we guarantee that the natural approximations (y}, y}, fa, fa,n) of
(y°,yt, f, fa) yields the existence of a sequence of potentials ¢ satisfying the convergence conditions
of Theorem [£1] or Theorem ?

This is the consistency of the inverse problem, and the cornerstone of the proof of Theorem
once stability results are proved. These consistency issues are discussed in the following subsection.

4.2 Consistency issues

The difficulty to derive the consistency of the inverse problem is the condition (4.4]) (or in
the case of Theorem [4.2). Indeed, passing to the limit, it indicates that y[g] should belong to
HY((0,T); L>(£2)). But there is no simple way to guarantee this condition, since the “natural” spaces
for the wave equation are the H*())-spaces.

Let us remind the reader that we consider Q = (0,1)? C R?. We recall this setting here because
of its influence on the Sobolev’s embeddings we will repeatedly use in this last section.

Besides that, as our theorems of stability are given with conditions on y[qg] instead of conditions
on the coefficients (y°, 4, f, fa), we will stick to that approach. We claim the following result:

Lemma 4.3. Assume g € H' N L>(Q) and that we know qs = qloq. Furthermore, assume that the
trajectory ylq] solution of satisfies the reqularity given in , Finally, assume there exists
ag > 0 such that infg [y°] > ap.

Then we can construct discrete sequences (Y3, yr, fn, fo.n) depending only on (y°,y', f, fa,qo) such
that the corresponding sequence yplqn] solution of for qn = Th(q) satisfies conditions (E.1])~
. In particular, if q is known on some open set O and takes value qlo = Q, we can further
impose gy, = Th(Q) in O.

Proof of Theorem[I.6} Taking the discrete sequence (yg,y}l, fn, fo.n) given by Lemma the se-
quence g = T5(q) satisfies the assumption of Theorem or Theorem if ¢ is known in some
open set O, which corresponds to the first item of Theorem [1.6] The second item of Theorem [I.6] thus
follows immediately from Theorems [£.1] and O
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Proof of Lemma[{.3 We split it in two steps. First, we will construct (y?,y+, fr, fo,n) and gz; Second,
we will explain why our construction is suitable for conditions (4.1})—(4.7).

Let us choose ¢ € H' N L>(Q) with lan = go (note that such G exists since gy is the trace of
q € H' N L>(Q) by assumption). We define § = y[g] the solution of (1.1)) with potential . Then,
setting z = y[g] — 7, it satisfies

Onz — Az + ¢z = (G — q)ylq], in (0,7) x Q,
z=0, on (0,T) x 09, (4.8)
2(0,-) =0, 9:2(0,-)=0. in £,
Hence zo = 0z solves
Ouza — Azg + Gzo = (4 — q)Ouylyl, in (0,7) x €,
z9 =0, on (0,T) x 09, (4.9)
2(0,) = (G—q)y°  92(0,-) = (4 — @)y*. in Q.

Since implies y° € H! N L*>(Q), y' € L*(Q) and uylq] € L' (0,T; L?(Q2)), and since ¢ — g €
H} N L*(2), we have that zo = ;2 belongs to C([0,T]; H3(Q)) N C1([0,T]; L3(£2)). In particular,
since z(0,-) = 8;2(0,-) = 0, we have z € H?(0,T; H}(Q)).

Besides, by differentiating once with respect to time, we get that 0;z solves

(=A 4+ §)0z = (G — q)0wylq] — Oz € C([0,T]; L?(R)),  with 8,2 = 0 for (t,z) € (0,T) x 9.

Therefore, by elliptic regularity estimates, see [I8, Theorem 3.2.1.2|, 8,z € C([0,T]; H*(f2)), thus
z € HY0,T; H?()).

Recalling that § = y[g] — z and y[q] satisfies (L.40), § belongs to H2(0,T; H(Q)) N H*(0,T; H?(1)).
We then define g, = 7,(9) and, for ¢, = 7,(q), we set

yp = Jn(0) = T (y°), i = 04ijn(0) = Ta(y"), (4.10)
frn = Own — Ajn + Gnin, fo.n(t) = n(t)|og, - (4.11)

Note that this choice immediately implies that conditions (4.1]), (4.3) and (4.7)) (thus also (4.5)) are
satisfied.

We now prove that this construction yields condition (4.6]). This is based on the remark that by
construction, for g, = Tx(q) we have yp[gn] = gn + zn, where zj, solves

Owzn — Anzn + qnzn = (Gh — qn)Yns in (0,7) x Qp,
zp =0, on (0,7T) x 9y, (4.12)
(21 (0), 2 (0)) = (0,0), in Q.

Then z; 5, = Oy 2p, solves

Ouzan — Anzan + qnzon = (Gn — qn)0ubn, in (0,7) x Qp,
29, =0, on (0,T) x Oy, (4.13)

(22,1(0), 0r22,1(0)) = ((Gn — an)yps (Gn — an)y),  in Q.
One easily checks that with our construction
Gn — qn € Hy 1, (Qn) N L2 (Qn),
Gn € H?(0,T5 Hp (S0)) N HY(0, T HE (S4)),
yn € Hy(Qn) N L2(Qm),  yp € L (),
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where all these estimates stand with bounds uniform with respect to A > 0. Hence 23} is uni-
formly bounded in C([O,T];H&h(Qh)) N CY([0,T); L (S2,)) by energy estimates, so that Oyszn, €
C([0,T]; L2 (£2,)) and thus d;zy, solves

—Ahé)tzh + qhﬁtzh = ((jh — qh)atﬂh — Bmzh c C([O,T}; L}QL(Qh)) with 8tzh =0on th.

We use the following lemma, whose proof is postponed to Appendix [C]

Lemma 4.4. Let wy, € L2 () be a solution of
— Apwp +qpwp =gp in Q. and  wp =0 on Oy, (4.14)

with g, € L3(Q) and g, € L;°(Q). Let m > 0 and assume th||Lz.o(Qh) < m. Then, wy €

Hn Hy ,(Qn) and there exists a constant C = C(m) > 0 independent of h > 0 such that
HwhHHﬁﬂHéyh(Qh) <cC ”gh”Li(Qh) : (4.15)

Accordingly, d;zy, is uniformly bounded in C([0,T]; Hf N H&h(ﬂh)). Thus, yrlan] = Gn + zn is
uniformly bounded in H?(0,T; H} () N HY(0,T; L (Q,)), yielding (4.6) (and (4.4 .

We finally focus on the proof of the convergence condition . As j € HY0,T; H?(2)), g is
uniformly bounded in H'(0,T; H?(2,)). In particular, for k € {1,2}, Off xUn is uniformly bounded
in HI(O,T;H}L(Qik)), so en (9 ,n) is uniformly bounded in H(0,T; H*(Q)). Besides, it is easy
to check that, since § € H'(0,T; H*(Q)), eh(a,jﬁkgh) strongly converges to 0., § in H*(0,T; L?(12)).
Hence we get the strong convergence of eh(aikgjh) to 0,7 in all spaces H'(0,T; H*(Q)) with s < 1.
We then remark that

en(OF 10n)

Buen(ln) = ( eh(aizﬂh) ) oo (4.16)

where v is the normal vector to © on I'y. But the sequence e, (97, 75) strongly converges to 9,7

in H'(0,T; H**(2)) and the trace operator is continuous from H3/4(Q) to L?(99) (see [I8, Thm
1.5.2.1]). Therefore, 9, e, 7, strongly converges to d,y in H*(0,T; L?(99)).

One also easily checks that, since § € H?(0,T; H(Q)), the discrete function aikaﬁgh (ke {1,2})
is uniformly bounded in L*(0,T; L3 (€, ,,)). Hence hVep(8::9n) strongly converges to 0 as h — 0 in
L2((0,T) x Q).

We then study the convergence of the normal derivative of z;, and of hVey (9 z). We have seen
that zp, is uniformly bounded in H?(0,T; Hg ;, (%)) N H' (0, T; Hy(Q24)). This immediately implies
that 3}tk8ttzh is uniformly bounded in L*(0,T; L3 (9, ,,)) for k € {1,2} and, following, h¥Vep(0s:2n)
strongly converges to 0 in L?((0,7) x Q) as h — 0. Let us then remark that e, (gn) and en(gn — qn)
respectively converges to q, §—q as h — 0 strongly in L?(Q2), weakly in H*(£2) and weakly-* in L>°(£).
Besides, as § € H?(0,T; HY(9)), en(Jn) strongly converges to § in H2(0,T; H*(Q2)) for all s € [0,1).
Following,

en(qn ) ' 4 strongly in all LP () with p < oo, (4.17)
en((dn = n)¥n) —> (@ —q)y  strongly in H(0,T; L*(Q)), (4.18)
en((dn = an)yh) —> (@ —q)y”  strongly in L*(Q). (4.19)

Easy computations then yields that ej,(z;,) and e (0;z,) strongly converge in H((0,7) x Q) to z
and Oz, where z is the solution of (4.8). This can indeed be done in three steps: First show that it
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converges weakly in D'((0,T) x Q) toward z and 0;z; Second, use that the energy estimates imply
that the convergence is actually weak in H1((0,T) x Q) and in particular strong in L?(0,T; LP(f2))
for any p < oo; Third, use the energy identity to show the convergence of the H'((0,7") x ) norm.

Hence ep,(9)f ),z) strongly converges to Vz in H'(0,T;L*(2)). Recall that 2 is also uniformly
bounded in H'(0,T; H(Q4)), so that en(d) zn) is uniformly bounded in H'(0,T; H'()). Thus
en(0; . zn) strongly converges to Vz in H(0,T; H3*(Q)), so that formula and the continuity
of the trace operator from H3/4(Q) to L?(99) show the strong convergence of d,ep,(z) to 9,z in
HY(0,T; L*(052)).

Since y[q] = § + z, we have proved the convergence for the sequence yp[qn] = Jn + 2. O

Remark 4.5. In this proof, let us emphasize that the construction of the sequence of source terms
fn and fap in s not straightforward. But we point out that this is done explicitly from the
knowledge of the trace q5 of ¢ on OS.

Note however that this happens because we have chosen to keep a presentation where the as-
sumptions are set on the trajectory y[q], and not directly on the data (y°,y%), f, fo. But this other
choice would not yield any improvement as the natural space to get ylq] € H*(0,T; L>=(Q)) in 2-d is
ylg) € HYX(0,T; H*(2)), or H3((0,T) x Q). According to [28], this would correspond to

e H3(Q), y'€ HX(Q), f€ Moo W0, T;H* %)), foe H*(0,T) x 99),
with the compatibility conditions

y0|6§2 = fa(t = 0)7 yl‘ag = atfa(t = 0)’ and (f(t = 0) + AyO - qyo)’ggﬂ = 6ttf6(t = 0)

Of course, this latest compatibility condition is very strong and requires in particular the knowledge
of g on the boundary, as we also assumed in the approach of Lemma [[.3 But very likely, taking
projections of all these data on the discrete mesh Q, also yields a suitable sequence (Y3, vy, fu, fo.n)
satisfying conditions 7, even if one would have to study in that case the convergence of the
discrete wave equations with non-homogeneous boundary conditions, which to our knowledge has only
been done in 1-d so far in [16].
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A Discrete integration by parts formula in 1-d

For the sake of completeness, we mention the basic discrete integration by parts formula obtained in
[3, Lemma 2.6] in the 1-d setting as they are the main ingredients used to perform integration by
parts on 2-d (and higher dimensional) domains. To do so, we shall make precise some 1-d notations.

We assume that we consider integration by parts on discretized versions of (0,1). For N € N, we
introduce h = 1/(N + 1) and the discrete sets

(0,1)h={jh,j€[[1,N]]}, [O,I)hz{jh,jE[[(LNﬂ}, (0,1]h:{jh,j€[[l,N+1ﬂ}.
Here, discrete functions fj, are functions fi = (f;);eqo,....n+13 for which we define
J RNV SR RS DI R S D SRt
(0. 1)n je{l, - N} (0. 1)n j€{0, N} (0.1]n je{l,— N+1}

We also introduce the discrete operators for j € {1,...,N}:

(my fr)j = (my, fn)js1 = M :
(Onfrn)j = % s (O ) = (0 fr)j+1 = Lh_fj . (Anfa); = fit1— th;j ""fj—l.

Lemma A.1 (3], 1-d discrete integration by parts formulas). Let vy, fr, gn be discrete functions such
that vg = vys1 = 0. Then we have the following identities:

o / gn(OF fn) = */ (O gn)fn + gn+1fN+1 — 90f0 ; (A1)
[071)h, (Oal]h
h h _
o [ o= [ mfe)Ofh) - 3900 Do Gaxi @ D (A.2)
(0,1)n 0,1)n 2 2
h2
2 gu@en == [ P o+’ [ lofoPoron (A3)
0,1)n (0,1)n 0,1),
o / gn(Apvy) = —/ (0 vn) (8 gn) — (8 v)ogo + (0, v)N+19N+1 5 (A.4)
(0,1)h [0,1)}1,
1
o [ aen@uo) == [ @) (mig) 45 [ P (A5)
(071)h [Ovl)h (Oal)h

1 1 _ 2 1 2
/ I AV OV = —*/ 10; on 205 gn + = [(0, v)n+1| gn41 — = [(B5v)o| g0 (A6)
0,1)n 2 Jo), 2 2

In a square in dimension 2, we will apply Lemma when doing integrations by part in each
direction. For instance, identity (A.3) easily yields, for k € {1,2}:

h2
2/ 9n0 (O kvn) = —/ (On,kgn)|on]? + 5/ |05 onl 285 9
Q Q o

h

For convenience, we will also use the formula f[O,l)h mtvhfh = f(O,l]h vpmy, fr, valid for v;, vanishing
on the boundary, and its consequence

2
/ mi v (05 fn)(85 gn) = / VR (O fr)(Ongn) + hz/ VR (Anfn)(Angn), (A7)
[Ovl)h (Ovl)h (Ovl)h

whose proof is left to the reader.
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B Proof of a conjugate Carleman estimate

Proof of Proposition[2.f} Notations. In this proof, we will use the Landau notation O, (7h) to denote
discrete functions of (¢, z5) depending on p satisfying for some constant C,, > 0 that

||Op‘(7-h)||L°°(L2°) S C#’Th.

We will also use the shortcut O, (1) to denote bounded functions. Moreover, we will write v instead of
vy, as no confusion can occur: here, v is always a discrete function defined on (=T, T) x €, satisfying
o(£T, zp) = Ow(£T,xp) = 0 for all z, € Qp and v(t,xp) = 0 for all t € (=T,T) and z, € OQy,.
In order to simplify the integrals, we will also set Qp = (—=T,T) x Qp, Qik = (-T,T) x Qik,
Y= (-T,T) x Ty, Eik =(-T,T) x Fik and use the notations

T T T T
/h, a \/7T /szh’ /ka B /—T /szi,c7 /2,L a /—T /1“,1,7 /zik B /—T /ka '

In the following we will use the estimates of Proposition in particular (2.15]), and the discrete
integration by parts formula in Lemma and Lemma [2.5] Finally, let us emphasize that all the
constants below are independent of h € (0,1) and 7 > 1.

e Step 1. Explicit computations of the cross product. The proof of estimate (2.20) relies first of all on
the computation of the multiplication of each term of %}, ;v by each term of %}, ov:

3
$h711}$h721}dt= Z Iym,

Qn n,m=1

where I,,,,, denotes the product between the n-th term of ., 1 in (2.16) and the m-th term of %} o
in (2.17). We now perform the computation of each I, term.
Computation of I1. As in [3], we integrate by parts in time:

I = (al — 1)7’;}, OtV (@attw - A4) v
Qn

= (1—041)7'#/ |(9tv\2<p(5'tt7,/17A1/1)+7'/ O#(1)|U|2+T/ O,.(Th)|9v|?.

Qn Qn

Here, we used Ay = @A + O, (th) and 0y Ay = Ou(pA) + Ou(Th).
Computation of I1o. Similarly,

Liy= —7p° [ Ouv (00w)]* — A3) v
Qn

_— /Q BP0 — [Vl2) + 7 /Q Ou(DIvf + 7 /Q O, () uol?,

where we used Az = p|V|? + O, (th) and 0y Az = Oy (<p|Vw|2) + O, (7h).
Computation of I13. Using Y, 0n x A1k = po|VY|> + @AY+ O, (Th), 04 A1k = 190y, pOp + O, (Th),
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and (|A.3)), we obtain:

Lis= —27p | Ouv(p0ipOww — 3 A1 kOh kv)
Qn

= 7o [ 10 p(@u + B9+ 7 /Q P18l + Vo)

h
—2rp® | o Viv- Vip — 7” k/ W8} 00 20 Av
Qn Q. k

+ 7 (’)H(Th)|[“)tv|2 +7 0 (3, Ou(Th)Oh kv) .
Qn Qn

Computation of I»1. Since Ay = pAYp + O, (Th) and Ao = O, (Th), we get:
121 = (1 70&1)7"[1 Zk(l +A0,k)Ah7k’l} ((patﬂ/} 7A4)’U
Qn
= on =0 | ol et~ )47 [ O+ [ Ourhigg ol
h h,k

h,k

Computation of Iss. Using Az = ¢|V|? + O, (7h) and (A.5]), we obtain
Lo =1 [ 3,.(1+ Agp)Ap v (0|0]* — As) v
Qn
= S [l Vo) 47 [ 0L+ [ Ouriag ol
h h,k

h,k

Computation of Is3. We can split this term in two parts as follows

Iy = 2T‘LL Zk(l + AO,k)Ah,k'U QO@tQ/J Opv 727‘# Zk(l -+ Aoyk)Ath’U (ZéAlvgah)gU) .
Qn Qn

In3a Iazp

For I»3, we use Ay = 8}7k32_k and the zero boundary conditions on v. Setting gor = (1 +
Ap.i;) p O and using (A.1)), we get:

Ir3, = 727’#2,(:/ a}—;kva}tk(go,katv)
Qnk
= —2rpud", /Q_ O v 05 (Bev)miy L gok — 2T, /Q_ Ty kv 1 (00)0) 1 90,1
h,k h,k

Noticing that, on the one hand,

h,k

_QTMZk /Q 6Ijkva}tk(atv)m;k90,k :TNZI@/7 |8}tkv|28t(m;,k90,k)
h,k

=y, / 10 Pl O + 0 + O, (rh),

h,k
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and on the other hand (using (A.7))),

=27y, /Q a}tkvm;k(atv)a}tkg&k
h.,k

Tuh?
= —27p Z On, kv Opv On k9o .k — é Z Ap kv 00 A 1ok
r YQn k YQn

= —27u° 04w Oph o Vv - (Vb + O, (Th)) — Th? Z/ 0,(1)Ap kv Oy,
Qn Y Qn

the term I»3, takes the form

o = 7125, [ 100 PP 4 S [ 10l o0 + Ou(rh)

h,k Qh,k

— 2712 v Oh o Vyv - (Vb + O, (Th)) — Th? Z/ O0,.(1)Ap kv Opv.
Qn Lk YQn

To compute o, we consider the integrals Iazp k¢ indexed by (k,£) € {1,2}? and defined by

Iosp e = —QTM/ (1+ Aoi)An kv A g Opev.
Qn

When k = ¢, using formula (A.6)) with gr = (1 + Aox) A1k = 00z, ¥(1 + O,(Th)), we obtain

I e = Tu/f 10 0P O 9n —T/l/+ gk|8}:,kv|2+7—:u/7 gr|0y ol?

h,k h,k Ehﬁk

=i [ 10 P O (000 + Ol = s [ oo+ [ ool

h,k Eh,k Zhwk‘

When k # £, we use Lemmawith gre = (14 Ag i) A1 e

Tosb ke = —Tu/f |3;T,kv\23h,e(mik9k,e)+2TM/ Op 1,0 My 1 (O, e0) ) Tt

h,k Qnk

Tuh?
+ > /Q_|8ik8}tgv|28}te(mikgk’g).
h

Using (A.7) for vy, replaced by O ¢v, which vanishes on the boundary Xy, i as k # ¢, we get:

Dy ke = — TM/ |a}tkv|2 (8302 (<P5u¢) + OM(Th)> + 27 8}1,]9’0 ahlv (awk (‘PaacW) + OM(Th))
@k Qn

Tuh? Tuh?

5 Ah7k’l) Oh,ov (Afk (90890@7;/}) + O#(Th)) + / |8ik8}tgv|2a}tz(mik9k’g).
Qn Q@
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Hence we obtain

oo = TS [ 100l (00, (900, ) = Ky Ba(00s) + Ou(rh))

h,k

+ 27—:” 8h,1’0 ah72’l] (83?1 (‘P&czd’) + 8372 (‘pax] 1/’) + OH(Th))
Qn

h2
+ 7h? / O, (1)(Ap 10 Op2v + Ap 20 Op 1) + e

/Q_ |3Z‘713}t2v|2 (div(eVY) + O, (Th))
h
77',[LZ/ |8};kv|2gpamk1/)(l+ou(7'h)) +T,LLZ/ |6}tkv|2<pamk1/}(1+ou(7'h)).
PR PRI
We now remark that 0y, (002,%) + Op, (904, %) = 21p0y, Y0y, 1, and that we can write

drp? On,10 Op 20 @0y, Y0yt = 27u2/ ©|Vpv - V|2 —2rp? Z/ |0 10]2| 0, 0|2
Qn Qn L YQn

Therefore,

lo = TS [ 1070l (200, (01, 0) — div(oT0) + O, (rh)

h,k

+ 27',u2/ ©|Vyv - Vip|? — 2702 Z/ |0n 10 |% 0|0, 102 +T/ O,,(Th)0Op,1v Oh 2v

h r YQn h
+ Th® / (Ou(l)Ah,lv 8h,Q'U + Ou(l)Ah,g’U (9}17111)
h

Tph?
L Th

/ 0,0} yuI? (div(9Ve) + O, (rh)
_T“Z/ |3hkv\ (p0z, 0 + O, (Th)) +7'u2/ |0, kv| (p0z, 0 + O, (Th)).

Of course, this yields Io3 as Isz = Ia34 + I23p-
Computation of I31. Using Az = ¢*|V|> + O, (7h) and Ay = At + O, (Th), one easily obtains:

Is1 = (o0 — 1)T?’M3/ Els (%02 (On))* — A2> (¢ Outp — Aq)
Qn
— (o= 07 [P0l ~ VOO - A0) 470 [ Ol
Qh h
Computation of Iss. Using here Az = ¢|Vi|*> + O, (Th),

Iy = — 3t /Qh|v|2 (902 (8t1/})2 - Az) (90|6t¢|2 - A3)

= 7t [ Pl — [P+ [ O,
Qn Qn
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Computation of Is3. Finally, using (A.3) we get

Ly = — 208 / (¢ @) — A2 ) v (9 O Brw — Ty Ar i)

— / [0?0; (92101 — A2) ¢ 91) —Tu/ [0 3210k (ALk(*0] = Az2))

T3M3 h2

S | 0faRok (s ol - ).

,,k

But we have

0 ((9®|0ny* — A2)p0))

= 3up’|0,0 (10102 — |VU?) + @®0ut (10002 — [VOI?) + 20710, 20t + O, (Th),
Sk Ok (ALk(@?|0i0]* — Ag))

= 3u@’ VY (10 — Vo) + *A¢ (1000 = [VYI?) = @* V- V(IVY?) + Ou(Th),
O (Ar (P00l = A2)) = 00, (6% 0,0 (1000 — VY1) + Ou(Th) = O, (1),

so that we obtain

e N G A S MU LR DI Ry
#7015 (Q0uslOnl? + Vo VAV +77 [ Ourhlol + 75 [ Ourhof ol
Final computation. Gathering all the terms, one can write

gh,lvghﬂv = Iv + Iav + IF + ITych» (Bl)
Qn

where I, = |v|2F(¢)) contains all the terms in |v|? with
Qn

F) = arm? 1P (|0 * — |V ) (0ut — Av) + 7212 0* (2000 |V | + Vb - V(|V]?))
+ 27310 3 (|0 — |V1/J|2)2—|—73(9u(7'h) +70,(1) ;

Iy, contains all the terms involving first-order derivatives of v:

Iy, = QT,uQ/ |8tv|2go |8tw|2 + 2Tu2/ |Vpo - V¢|2<p - 47/QL2 0w O p Vyu - Vb
Qn Qn Qn

o / 194020 (20 — 01 (D) — A)) + 7S / 0 0P (01 (Ot — A) + 20,1, 1)
Qn k Q;k

+2m2z</

where Ip, contains all the terms involving O,, terms (and a first-order derivative of v);
It contains all the boundary terms:

h,k

|0 01201021 — /Q|5h,kv|2<ﬁ|3m1/)|2>+fow

) / 0340 9ry 0+ Olr)) + 7Sy [ 1000 (000 + Oulrh)

hok Xk
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Ityen contains the terms corresponding to the Tychonoff regularization:

.
ITych = ?#Zk/_ |ha}tk8tv|28}tk‘417k

h,k

-
+ ?'u /Q‘ ‘hait13ii2v\2 (82_72771;,1((1 + Ag1)A12) + 5';:17712'72((1 + Ao,z)A1,1)) ]
h

e Step 2. Bounding each term from below.
Step 2.1. Dealing with the O order terms in v. Since Vi - V(|V|?) = 4|Vy|? = 16|z — z,|?, Ay =4
and 9,9 = —2f and denoting X = |0;%|? — |0,1|?, one can obtain

F) = Pute* (20X2 = 201(8 + )X +16(1 = Bl — waf?) +7°0,(vh) + 7O, (1),

G(4)
Since x, ¢ Q, inf(g 1)2 [z — 24|? is strictly positive and we have

G(Y) > 2uX? =201 (B+2)X +¢, with c=16(1 — B) ([i)rif)Q |z — 24]% > 0.

Thus, there exists pg > 1 such that for u = po, G(¢) > 0 uniformly. Therefore, we get ¢g > 0
independent of h such that

L2 2007 [ o6t = (120 () + 70,0 (1) [ (o 2 cor® [ o = 720, (rh) [ o (B2)
Qn Qn Qn Qn

where the last line is obtained by bounding ¢ from below by 1 and by taking 7 > 7 to absorb the
O, (1)-term. From now, we fix p = pg and we simply write O,, instead of O, .
Step 2.2. Dealing with the first-order derivatives. The first line in Iy, is positive as

1 1
’/ atvatwvhv-vw‘ < 5/ |8tv|2cp|8tz/}|2+§/ Vv - V| 2.
Qn Qn Qn

The second line of Iy, can be computed explicitly as 0yt) = =25, Op,2, % = 2 and Ay = 4:
20y ) — a1 (Ou) — AY) = =45 4201 (24 B); a1 (Outh — Atp) + 20k = —2a1(2 + B) + 4.

Hence the choice oy = (84 1)/(8 + 2) makes each term strictly positive and equal to 2(1 — 3) (recall
B € (0,1)), so that

- / 0020 (20010 — (Ot — Aw)) + 7Y / 107 0P (1 (Bueth — Ad) + 20400)
Qn k Y Qnk 7

— 2(1 - B)ru ( /Q 0+ /Q ) |a,tkv|2> .
h k h,k

We now remark that the third line of Iy, is negligible. Indeed, writing 9y, xv = m;, k(@; xU), one easily
checks that

/ 10 0P l0 b / 100 0020100, 0 > — /Q 0ol
h h.,k

Qi Qn
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Concerning the terms in Ip,, the only term that needs to be discussed are the ones coming from Io3:
But using that h?Ay, ; is a discrete operator with norm bounded by 8, we get

Th2/ (Ap1v(0L4(1)0h,2v + O,(1)0w) +Th2/ (Ap2v (0,(1)0h1v + O,(1)0w)

h

<c</ ol + 3 [ ol | |>
Qn k YQnk Qn

Combining these estimates, for 7 large enough, we obtain constants ¢; > 0, Cy > 0 such that

Iy, > 017/ |atv|2+cl7—2k/ |aftk“|2
Qn h

h,k

. ou(m)@uﬁ—@k/ q(mﬂa;m?—co#/ W (B.3)
Qn Qnx ' Qn

Step 2.3. The boundary terms. Since min_p r)xo{@0s, ¥} > 0 (recall z, ¢ Q), then there exists
€1 > 0 such that taking 7h < ¢,

< i .
Ourm) < | min {o(t2)0r, v(t.2))

so there exists C' > 0 independent of 7 and h such that

oz -2, [ etz -CrS [ ol (B.4)
Jk

h, h,k
Step 2.4. The Tychonoff regularization. We have a,j),cALk = |0y, >+ 0ppa, ¥+ Opu(th) = O, (1)

and 8;;km;’£((1 + Ao o)Ark) = p@l0n¥? + © 0 + Ou(th). Thus, for Th small enough, i.e.
Th < g9 for some g5 € (0,1),

(8;;2771;1((1 + Ao1)Ar2) + Oy ymif (1 + Ao,le,l)) >0,

and the term involving 82:182:211 is positive, whereas the other term in Ir., is negative. We bound
it directly and get a constant C' > 0 independent of 7 and A such that

Tryen > — ofzk/f 0oy L Bro?. (B.5)

h,k

e Step 3. End of the proof of Proposition , Collecting the results (B.2))—(B.5|) of Step 2, we have
proved that for 7 > 79 and 7h < &9,

Lhav Lpov > 0073/ \fu|2+017/ |5‘tv|2+0172k/ |8}tkv|270072/ |v|?
Qn Qn .

h,k Qn

Qn

*CTZk /2+ |a};kv‘2*072k/_ |haftkatv‘2

h,k Qi

77'3/ O#(Th)|1}|277'/ Ou(Th)|8tv|QfTZk/ O#(Th)|5';:kv|2.
Qn Qn h

hyk
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Therefore, taking 7 large enough so that co7® > 2Co7? and 7h small enough such that |0, (Th)| <
min {cg, ¢1,e2}, which defines £y > 0, we obtain, for some constant Cy > 0,

T/ |8tv|2+72k/ |8}tkv\2+73/ |v|?
Qn Q. Qnr

h,k

S Cl gh,lvfh’ﬂ)ﬁ-Cszk/

+
Qn =

|8;;kv|2+0172k/7 1o} By
k

h,k

From ([2.19)), there exists Cy > 0 such that

g/
Qr

ol + 7T, [ 105l [ WP+ [ Al
h ¥

v h.,k Q Qn

g02/ \ghvm@/ |@hv|2+cﬂzk/+ |a,;kv|2+cgrzk/ oy Brl>. (B.6)
Q1 h h

h Q Zh,,k Qh,k

/ B §072/ W,
Qhn Qn

which can also be absorbed by the left hand side of by taking 7 large enough, thus yielding to
(12.20]). O

But

C Proof of an elliptic regularity result

Proof of Lemma[{-4 Multiplying the equation (4.14]) by wj, using the discrete Poincaré’s inequality,
one easily obtains that

Wh € H&,h(Qh) with ”wh”Hé,h(Qh) <C th”Li(Qh)’ (C.1)

for some constant C' = C(m) > 0 independent of A > 0. Accordingly, replacing g, by gn — gnwn, we
are reduced to the case g, = 0, that we assume from now.

Since 2, = (hZ)?N (0, 1)2, we first propose to extend wy, a priori defined on the discrete domain Q,
t0 Qewe.n = (WZ)? N (—1,2)? as follows. First, for x5, € {(0,0), (1,0), (1,1),(0,1)}, we set @y, (x;) = 0.

Then, for z, = (xp,1,2h2) € [0,1] X (—1,2) N Qext n, We set Wy (zn) = —wp(Th1, —xh,2) for zpoe €
(—1,0) and wy(zp) = —wp(zn1,1 — (2, — 1)) for xp0 € (1,2). This defines wy, on [0,1] x (=1,2) N
Qext,n. We then extend it for zp = (X140, 22.0) € Qext,n by setting Wy, (xp) = —wp(—xp1,22,5) for
zp1 € (—1,0) and Wy (xp) = —wp(1 — (zp1 — 1), zp2) for z51 € (1,2). We do a similar extension gy,

of g5, on Qeyy p, taking care of choosing g, = 0 on 0, U {(0,0), (1,0), (1,1),(0,1)}.
We thus have constructed a solution wy, of

— A}ﬂf]h = gh in Qext,h and ’II]}L =0on 6Qext,h- (02)

We then choose a function y € C°((—1,2)?) such that xy = 1 on [0, 1]? and we multiply (C.2) by
—XnA1,pWp, with xp, = 1p,(x): After some integrations by parts where all the boundary terms vanish
due to the choice of x, we obtain:

[ lbmamP [ oo o (©3)
Qext,h

Qext,h

_ ~ ~ + + o+ + .+ + o+ + o+ -
—_/Q ><h£7hAh,1wh+/Q 8h,2xhah,2whmh,2Ah71wh_/Q 8h,1mh,2thh,1ah,2whah,1ah,2wh'

ext,h ext,h ext,h
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Of course, since x = 1 on [0, 1]2, the left hand-side of (C.3) is bounded from below by

2
A - Ha+ o ‘ .
” h,lwhHL}ZL(Qh,) + h,1%,2Wh 12 @)

On the other hand, using that w;, and g are symmetric extensions of wy, and gy, the right hand-side

of (C.3) is bounded from above by
L%&n)) ’

+ ot
8wl + [0z, o < (ol + lonlla, @)

C (lgnl iz @) + lwnll g o)) (nAh,lwhnLﬁ(m) + |05 107 |

for some constant C' independent of A~ > 0. We thus obtain

which, together with (C.1) and —Ap swi = (gn — qrwr) + Ap1wp, , yields (4.15). O
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