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Abstract. We consider a general conservation law on the circle, in the presence
of a sublinear damping. If the damping acts on the whole circle, then the solution

becomes identically zero in finite time, following the same mechanism as the
corresponding ordinary differential equation. When the damping acts only locally

in space, we show a dichotomy: if the flux function is not zero at the origin, then

the transport mechanism causes the extinction of the solution in finite time, as
in the first case. On the other hand, if zero is a non-degenerate critical point of

the flux function, then the solution becomes extinct in finite time only inside the

damping zone, decays algebraically uniformly in space, and we exhibit a boundary
layer, shrinking with time, around the damping zone. Numerical illustrations

show how similar phenomena may be expected for other equations.

1. Introduction

We consider a general conservation law on the torus T = R/Z, in the presence of
a sublinear damping, possibly localized in space,

(1.1) ∂tu+ ∂x (f(u)) + a(x)
u

|u|α
= 0, (t, x) ∈ R+ × T,

with a smooth flux f ∈ C∞(R,R), 0 < α 6 1 and a = a(x) > 0. For the Cauchy
problem, we prescribe the initial datum

(1.2) u|t=0 = u0, x ∈ T.

In the case where a > 0 is constant, the sublinear nonlinearity is motivated by the
effect of friction forces that occur in almost every mechanism with moving parts, this
process arising between all surfaces in contact. The first concepts go back to the
work of Leonardo da Vinci on friction, rediscovered by Amontons [4] at the end of
the 17th century, and then developed by Coulomb [16] in the 18th century. The main
idea is that the friction is opposed to the movement and that the friction force is
independent of the speed v and the contact surface. The friction force, known today
as Coulomb friction, is therefore described as F = Fc sgn(v). Depending on how the
sign function is defined, it can be zero or take any value in the interval [−Fc, Fc]. In
the 19th century, the theory of hydrodynamics was developed leading to expressions
for the frictional force caused by the viscosity of lubricants, and is usually modeled by
F = Fvv. The linearity with respect to speed is not always correct and a more general
relation is F = Fv|v|δvsgn(v) where δv depends on the geometry of the application
(see e.g. [23, 1, 3] and references therein). The basic model for the motion of a body
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lying on a surface is given by the Newton law. It reduces to the ordinary differential
equation, for α ∈ (0, 1),

(1.3) u̇ = − u

|u|α
, t ∈ R, u(0) = u0 ∈ R.

By separating the variables, explicit integration yields, in terms of ρ = u2, since ρ > 0,

(1.4) ρ̇ = −2ρ1−α/2, hence ρ(t) =

{
(|u0|α − αt)2/α

if t 6 |u0|α/α,
0 if t > |u0|α/α.

Therefore, ρ becomes zero in finite time, and so does u. Note that for α = 1, the
equation (1.3) should be understood in the sense of Filippov (see [18, Chapter 2]):
u′ ∈ −Sign(u), in which Sign(u) is defined by

(1.5) Sign(u) =


{1} if u > 0,

{−1} if u < 0,

[−1, 1] if u = 0,

and the same argument as above still applies. Besides, note that solutions of the
above ODE (1.3), whether α ∈ (0, 1) or α = 1, are unique in positive time even if the
source term is not C 1 with respect to u, as a consequence of the one-sided Lipschitz
condition satisfied by hα(u) = −u/|u|α, see [18, Chapter 2, Section 10, Theorem 1],
which reads as follows: for all (u, v) ∈ R2,

(u− v)(hα(u)− hα(v)) 6 0.

Such sublinear damping models have been considered for some partial differential
equations: in the case of the wave equation [5, 24], in the case of various parabolic
equations [2, 7, 8, 9, 10, 11], and in the case of the Schrödinger equation [12, 13].
The aspect that we now wish to investigate is the effect of such a damping when it is
localized in space. Typically, the function a in (1.1) can be thought of as an indicating
function.

Some of the results that we present can be adapted to the case where the space
variable belongs to the whole line R. The reason why we consider the periodic case
is the following. On the whole line, the characteristics of the solution of (1.1) may
cross the support of a without undergoing such a strong affect as in (1.4), that is,
the sublinear damping occurs in too small a region to put u to zero. On the other
hand, in a periodic box, and in the case where transport phenomenon is present, the
solution will meet the support of a as long as it is not zero. These are typically the
possibilities which we want to understand.

Assumption 1.1. The function a is nonnegative, a(x) > 0 for all x ∈ T, bounded,
a ∈ L∞(T), and satisfies

sup
y>0

1

y

∫
T
|a(x+ y)− a(x)| dx <∞.

Typically, this condition is satisfied for a ∈ BV (T), see [17, Chapter 1 Theorem
1.7.1] (in fact, this is nearly equivalent of being in BV (T)). In particular, a may be
an indicating function, a(x) = 1ω(x) for some measurable set ω ⊂ T.
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1.1. Cauchy problem. The notion of solution, as well as the vanishing viscosity
method used to solve the Cauchy problem, follow from standard arguments (which
we borrow from [17]). We shall see that the presence of the damping term in (1.1)
requires only slight modifications of this approach. We emphasize however that the
case α = 1 is specific, and we shall treat it by adapting the approach of Filippov [18].

Definition 1.2 (Notion of solution, 0 < α < 1). Let α ∈ (0, 1). A bounded measurable
function u on [0, T ] × T is an admissible weak solution of (1.1)–(1.2), with u0 ∈
L∞(T), if the inequality

(1.6)

∫ T

0

∫
T

(
∂tψη(u) + ∂xψq(u)− aψη′(u)

u

|u|α

)
dxdt+

∫
T
ψ(0, x)η (u0(x)) dx > 0

holds for every convex function η ∈ W 1,∞, with q′ = f ′η′, and all nonnegative Lips-
chitz continuous test function ψ on [0, T ]× T.

Definition 1.3 (Notion of solution, α = 1). Let α = 1. A bounded measurable
function u on [0, T ] × T is an admissible weak solution of (1.1)–(1.2), with u0 ∈
L∞(T), if there exists h ∈ L∞((0, T )× T) such that

∂tu+ ∂x(f(u)) + h = 0, in D ′((0, T )× T),

with
h(t, x) ∈ a(x) Sign(u(t, x)), a.e. (t, x) ∈ (0, T )× T,

where Sign is defined in (1.5), and such that the inequality

(1.7)

∫ T

0

∫
T

(∂tψη(u) + ∂xψq(u)− ψη′(u)h(t, x)) dxdt+

∫
T
ψ(0, x)η (u0(x)) dx > 0

holds for every convex function η ∈ W 1,∞, with q′ = f ′η′, and all nonnegative Lips-
chitz continuous test function ψ on [0, T ]× T.

In all that follows, the notion of solution refers either to Definition 1.2 (case 0 <
α < 1), or to Definition 1.3 (case α = 1). We show that the Cauchy problem is
well-posed, regardless of the value of α ∈ (0, 1].

Proposition 1.4 (Cauchy problem). Assume that a satisfies Assumption 1.1 and
α ∈ (0, 1]. Let u0 ∈ L∞(T). There exists a unique, global, admissible weak solution u
of (1.1)–(1.2), u ∈ C 0(R+;L1(T)).

We will also need the following comparison result.

Proposition 1.5 (Comparison principles). Let α ∈ (0, 1].
1. Let a satisfying Assumption 1.1, u and v be solutions of (1.1) with respective initial
data u0, v0 ∈ L∞(T) such that u0 6 v0. Then

u(t, x) 6 v(t, x), ∀t > 0, a.e. x ∈ T.
Besides,

|u(t, x)| 6 ‖u0‖L∞(T), ∀t > 0, a.e. x ∈ T.
2. Let a1 and a2 satisfying Assumption 1.1 such that for almost all x ∈ T, a1(x) 6
a2(x). Then, denoting by u1 and u2 the respective solutions to (1.1)–(1.2) with the
same initial datum u0 ∈ L∞(T) with u0 > 0, we have

u1(t, x) > u2(t, x) > 0, ∀t > 0, a.e. x ∈ T.
Remark 1.6 (BV solutions). As a straightforward consequence of the proof of Propo-
sition 1.5, given in Section 2, one can show that if u0 ∈ BV (T), then the solution
remains in BV , u ∈ L∞(R+;BV (T)). However, we shall not use this property in this
paper.
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1.2. Extinction results. We now focus on the core of this article, and give several
results regarding the possible extinction of the solutions u of (1.1)–(1.2). The results
depend on the flux f (its behavior near the origin), and the damping coefficient a,
which is always assumed to satisfy Assumption 1.1.

The first case which we consider is the one corresponding to a damping coefficient
acting everywhere.

Proposition 1.7 (Finite time extinction with damping everywhere). Suppose that
there exists δ > 0 such that

(1.8) a(x) > δ > 0, ∀x ∈ T.

Let u0 ∈ L∞(T). There exists T > 0 such that the solution to (1.1)–(1.2) satisfies

u(t, x) = 0, ∀t > T, a.e. x ∈ T.

Besides, T can be chosen as

(1.9) T =
1

αδ
‖u0‖αL∞(T).

The proof of Proposition 1.7 is presented in Section 3 and is based on a Lyapunov
approach. More precisely, we derive Lp(T) estimates on the solutions of (1.1)–(1.2),
and let then p go to infinity, so that we obtain a differential inequality for the L∞(T)-
norm of the solutions of (1.1)–(1.2), which in turn implies its extinction in finite
time.

Next, as motivated above, we consider the case in which the damping coefficient
acts only in some part of the domain:

(1.10) ∃ an open interval ω ⊂ T and δ > 0 s.t. a(x) > δ, ∀x ∈ ω.

The extinction of the solution of (1.1)–(1.2) in this case will depend on the flux.
Namely, we will treat two different cases, depending whether f ′(0) vanishes or not.
The easier case corresponds to the presence of transport at the origin,

(1.11) f ′(0) 6= 0.

In this case, one expects that the transport phenomenon will steer the solution through
the set ω an arbitrary number of times, so that the strong friction term will make the
solution vanish after some finite time.

In agreement with these insights, in Section 4 we prove the following result:

Theorem 1.8 (Finite time extinction by transport). Assume that the flux f is smooth
and satisfies (1.11), and the damping profile a satisfies Assumption 1.1 and (1.10).
Let K be such that

(1.12) inf
s∈[−K,K]

|f ′(s)| > 0.

Then for any initial datum u0 ∈ L∞(T) satisfying

(1.13) ‖u0‖L∞(T) 6 K,

there exists T > 0 such that the solution u of (1.1)–(1.2) satisfies

(1.14) u(t, x) = 0, ∀t > T, a.e. x ∈ T.
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To illustrate the typical behavior of such a solution, we plot on Figure 1.1 the
evolution of the solution of the transport equation corresponding to f(u) = 2u with
initial datum u0(x) = 1.25 for (t, x) ∈ [0, 10] × (0, 1), a(x) = 1(0,1/4) and α = 1.
The solution is computed using the numerical procedure described in Section 6. The
dashed line indicates the position of the support of a. Note that Theorem 1.8 is
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Figure 1.1. Evolution of the solution for transport equation

a semi-global result, as it is valid for any initial datum u0 whose L∞(T)-norm is
bounded by the constant K, which is chosen in (1.12) to guarantee that the transport
phenomenon really occurs.

Our proof of Theorem 1.8 relies on Lyapunov functionals, in a similar spirit as the
one developed in Section 3 to address the proof of Proposition 1.7. However, as the
transport phenomenon is now essential to the decay process, we will introduce some
weights in space in the functional. This approach is inspired by some recent works
on the stabilization of hyperbolic systems of conservation laws, namely [15, 14] (see
the recent book [6] for further references).

In the case

(1.15) f ′(0) = 0,

corresponding for instance to the celebrated example of Burgers equation

(1.16) f(u) =
u2

2
,

the transport phenomenon competes with the dissipation of the solution, as the
smaller the solution is, the slower the characteristics propagate. Our goal thus is
to understand the interplay between these phenomena.



6 C. BESSE, R. CARLES, AND S. ERVEDOZA

Theorem 1.9. Let f be a smooth function such that

(1.17) f ′(0) = 0 and ∃K > 0, inf
s∈[−K,K]

|f ′′(s)| > 0.

Assume that the damping profile a = a(x) satisfies Assumption 1.1 and (1.10). Then,
for any initial datum u0 ∈ L∞(T) satisfying (1.13), the solution u of (1.1)–(1.2)
satisfies the following property: There exist a time t∗ > 0 and a constant C > 0 such
that for all t > t∗, there exists an open subinterval ω(t) ⊂ ω such that u(t)|ω(t) = 0,
and, for all t > t∗,

|ω \ ω(t)| 6 C

t1+α
, ‖u(t)‖L∞(T) 6

C

t
.

The proof of Theorem 1.9 is based on a precise description of the solution corre-
sponding to u0 = K, where K is constant, T is identified with (0, 1) with periodic
boundary conditions, and

(1.18) a(x) = δ1ω, with ω = (0, A).

We can then deduce Theorem 1.9 from a simple comparison argument based on Propo-
sition 1.5.

It is clear from these results that there still are cases which are not covered from
our results, in particular cases in which the initial datum has an L∞(T)-norm which
is larger than the best K in (1.12) or (1.17). Some particular instance is numerically
studied in Section 6, as well as other models for which the complete understanding of
a (localized) strong friction on the dynamics of a system is still not well understood.

1.3. Outline of the paper. The Cauchy problem is addressed in Section 2, where
Propositions 1.4 and 1.5 are established. The proof of Proposition 1.7 (finite time ex-
tinction with damping everywhere) is given in Section 3, thanks to suitable Lyapunov
functionals. Theorem 1.8 (finite time extinction by transport) is proved in Section 4,
by introducing refined Lyapunov functionals. For the case of the generalized Burgers
equation, Theorem 1.9, a longer Section 5 is needed, where we first construct a rather
explicit solution by following characteristics, which then turns out to be the solution
provided by Proposition 1.4. Finally, Section 6 provides numerical illustrations in the
case of (1.1) studied in this paper, as well as in the case of other equations for which
the corresponding analysis turns out to be a challenging issue.

Acknowledgements. The authors wish to thank Jean-François Coulombel, Frédéric
Lagoutière, Philippe Laurençot and Vincent Perrollaz for fruitful discussions.

2. Cauchy problem and comparison principle

In this section, we prove Propositions 1.4 and 1.5.
We consider more generally the Cauchy problem

(2.1) ∂tu+ ∂xf(u) + h(x, u) = 0 in R+ × T, u|t=0 = u0 in T,
with a fairly general semilinear term h, possibly depending on x, in order to generalize
the nonlinearity, typically of the form

(2.2) hα(x, u) = a(x)
u

|u|α
,

where α 6 1 corresponds to the case of (1.1), with the modification detailed in
Definition 1.3 in the case α = 1. We will use the following properties on the source
term h, which encompass the framework of Definition 1.2 when α < 1.
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Assumption 2.1. The map h = h(x, u) satisfies:

• h ∈ L∞loc(T× R).
• For all u ∈ R, h(x, u)u > 0, for almost all x ∈ T.
• For almost all fixed x ∈ T, the map u 7→ h(x, u) is nondecreasing on R.
• For every R > 0,

sup
|u|6R

sup
y>0

1

y

∫
T
|h(x+ y, u)− h(x, u)| dx <∞.

In the case (2.2), the first property corresponds to the assumption a ∈ L∞(T),
the second property to the fact that h is a damping term, the third property is
straightforward (even in the case α = 1 with the approach of Filippov), and the last
property is a consequence of Assumption 1.1.

Definition 2.2 (Notion of solution). Let h satisfy Assumption 2.1. A bounded
measurable function u on [0, T ] × T is an admissible weak solution of (2.1), with
u0 ∈ L∞(T), if the inequality

(2.3)

∫ T

0

∫
T

(∂tψη(u) + ∂xψq(u)− ψη′(u)h(x, u)) dxdt+

∫
T
ψ(0, x)η (u0(x)) dx > 0

holds for every convex function η ∈ W 1,∞, with q′ = f ′η′, and all nonnegative Lips-
chitz continuous test function ψ on [0, T ]× T.

Propositions 1.4 and 1.5 stem from the following result, which is slightly more
general in view of Assumption 2.1.

Proposition 2.3. Let Assumption 2.1 be satisfied.
(i) Let u0 ∈ L∞(T). There exists a unique, global, admissible weak solution u of
(2.1), u ∈ C 0(R+;L1(T)).
(ii) Let u and v be solutions of (2.1) with respective initial data u0, v0 ∈ L∞(T), and
u0(x) 6 v0(x) for almost all x ∈ T. Then

(2.4) u(t, x) 6 v(t, x), ∀t > 0, a.e. x ∈ T.

Besides,

(2.5) |u(t, x)| 6 ‖u0‖L∞(T), ∀t > 0, a.e. x ∈ T.

(iii) If h(1) and h(2) satisfy Assumption 2.1, and in addition,

(0 6)h(1)(x, u) 6 h(2)(x, u), a.e. (x, u) ∈ T× (0,∞),

then denoting by u1 and u2 the respective solutions to (2.1) with the same initial
datum u0 ∈ L∞(T), u0 > 0, we have

(2.6) u1(t, x) > u2(t, x) > 0, ∀t > 0, a.e. x ∈ T.

(iv) The same properties hold true for solutions of (1.1)–(1.2) for α = 1, when
considering solutions in the sense of Definition 1.3 and a satisfies Assumption 1.1.

Proof. When Assumption 2.1 is satisfied, we follow very closely the approach of [17,
Section 6.3], based on the method of vanishing viscosity.

• Uniqueness. For u and u two solutions in the sense of Definition 2.2, introduce
the entropy-entropy flux pair

η(u, u) = |u− u|, q(u, u) = sign(u− u) (f(u)− f(u)) .
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This is an entropy-entropy flux pair for u when u is fixed, and, conversely, for u when
u is fixed. For a nonnegative test function φ = φ(t, x, t, x), following successively the
two points of view mentioned above, we have,∫ T

0

∫
T

(∂tφ(t, x, t, x)η (u(t, x), u(t, x)) + ∂xφ(t, x, t, x)q (u(t, x), u(t, x))) dxdt

−
∫ T

0

∫
T
φ(t, x, t, x)sign (u(t, x)− u(t, x))h (x, u(t, x)) dxdt

+

∫
T
φ(0, x, t, x)η (u0(x), u(t, x)) dx > 0, (t, x) ∈ R+ × T,

∫ T

0

∫
T

(
∂tφ(t, x, t, x)η (u(t, x), u(t, x)) + ∂xφ(t, x, t, x)q (u(t, x), u(t, x))

)
dxdt

−
∫ T

0

∫
T
φ(t, x, t, x)sign (u(t, x)− u(t, x))h (x, u(t, x)) dxdt

+

∫
T
φ(t, x, 0, x)η (u(t, x), u0(x)) dx > 0, (t, x) ∈ R+ × T.

Integrating each of these inequalities with respect to the last two variables and sum-
ming up the two resulting inequalities yields∫ T

0

∫ T

0

∫∫
T2

(
∂t + ∂t

)
φ(t, x, t, x)η (u(t, x), u(t, x)) dxdxdtdt

+

∫ T

0

∫ T

0

∫∫
T2

(
∂x + ∂x

)
φ(t, x, t, x)q (u(t, x), u(t, x)) dxdxdtdt

−
∫ T

0

∫ T

0

∫∫
T2

φ(t, x, t, x)sign (u(t, x)− u(t, x)) (h (x, u(t, x))− h (x, u(t, x))) dxdxdtdt

+

∫ T

0

∫∫
T2

φ(0, x, t, x)η (u0(x), u(t, x)) dxdxdt

+

∫ T

0

∫∫
T2

φ(t, x, 0, x)η (u(t, x), u0(0, x)) dxdxdt > 0.

Pick φ of the form

φ(t, x, t, x) =
1

ε2
ψ

(
t+ t

2

)
ρ

(
t− t
2ε

)
ρ

(
x− x

2ε

)
,

where the nonnegative function ψ depends only on time, and the nonnegative com-
pactly supported function ρ is such that

∫
R ρ = 1, with an obvious abuse of notation

for the last factor above. Letting ε→ 0, we find:∫ T

0

∫
T
ψ′(t)η (u(t, x), u(t, x)) dxdt

−
∫ T

0

∫
T
ψ(t)sign (u(t, x)− u(t, x)) (h (x, u(t, x))− h (x, u(t, x))) dxdt

+

∫
T
ψ(0)η (u0(x), u0(x)) dx > 0.

In view of the third point in Assumption 2.1, this implies∫ T

0

∫
T
ψ′(t)η (u(t, x), u(t, x)) dxdt+

∫
T
ψ(0)η (u0(x), u0(x)) dx > 0.
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For 0 < τ < T and k ∈ N, we define ψ = ψk as

ψk(t) =


1 if 0 6 t < τ,

k(τ − t) + 1 if τ 6 t < τ +
1

k
,

0 if τ +
1

k
6 t < T.

Letting k →∞ now yields∫
T
η (u0(x), u0(x)) dx >

∫
T
η (u(τ, x), u(τ, x)) dx,

that is ‖u(τ) − u(τ)‖L1(T) 6 ‖u0 − u0‖L1(T), hence uniqueness for solutions in the
sense of Definition 2.2, since τ ∈ (0, T ) is arbitrary.

• Viscous approximation. For µ > 0, consider the equation

(2.7) ∂tuµ + ∂xf(uµ) + h(x, uµ) = µ∂2
xuµ in R+ × T, uµ|t=0 = u0 in T.

For a fixed µ > 0, the solution to (2.7) is obtained by a fixed point argument applied
to the associated Duhamel’s formula,

(2.8) uµ(t, x) = eµt∂
2
xu0(x)−

∫ t

0

eµ(t−s)∂2
x (∂xf(uµ(s, x)) + h (x, uµ(s, x))) ds,

where we recall that the heat semigroup on T acts on Fourier series as

eµt∂
2
x

(∑
n∈Z

ane
i2πnx

)
=
∑
n∈Z

ane
i2πnx−4µπ2n2t.

Up to considering the linear heat flow on R and its uniqueness property to relate it to
the heat flow on T, we readily see that if u0 ∈ L∞(T), there exists T > 0 depending
on ‖u0‖L∞(T) only and a unique solution uµ ∈ C 0([0, T ];L∞(T)) to (2.8).

• A priori estimate. The solution is global in time, uµ ∈ C 0(R+;L∞(T)), in view
of the a priori estimate

(2.9) ‖uµ(t)‖L∞(T) 6 ‖u0‖L∞(T), ∀t > 0,

which we now establish. For p > 2, multiply (2.7) by |uµ|p−2uµ, and integrate over
T. This yields

1

p

d

dt

(∫
T
|uµ|p

)
+

∫
T
f ′(uµ)|uµ|p−2uµ∂xuµ = −

∫
T
h(x, uµ)|uµ|p−2uµ

− µ(p− 1)

∫
T
|uµ|p−2(∂xuµ)2.

If g is such that g′(y) = pf ′(y)|y|p−2y, the second term on the left hand side is∫
T
g′(uµ)∂xuµ =

∫
T
∂xg(uµ) = 0.

The first term on the right hand side is non-positive in view of Assumption 2.1, and
the last term is obviously non-positive. We infer, for all p > 2,

d

dt
‖uµ‖pLp(T) 6 0,

hence (2.9) by integrating in time and letting p→∞.

• Entropy solution for (2.1). The next step consists in showing that up to extract-
ing a subsequence, uµ converges to an entropy solution (Definition 2.2). The above
uniqueness result shows that actually, no extraction is needed.
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If η is a smooth convex entropy, with associated entropy flux q, multiplying (2.7)
by η′(uµ) yields

∂tη(uµ) + ∂xq(uµ) + η′(uµ)h(x, uµ) = µ∂2
xη(uµ)− µη′′(uµ) (∂xuµ)

2
.

Multiply the above equation by a nonnegative test function ψ then yields, after an
integration by parts and since η′′ > 0,∫ T

0

∫
T

(∂tψη(uµ) + ∂xψq(uµ)− ψη′(uµ)h(x, uµ)) dxdt+

∫
T
ψ(0, x)η(u0(x))dx

> −µ
∫ T

0

∫
T
∂2
xψη(uµ)dxdt.(2.10)

The same holds when we just have η ∈W 1,∞ by using an approximating entropy, as
in the next paragraph.
Therefore, if for some sequence (µk) with µk ↓ 0, (uµk)k converges to some function
u, boundedly almost everywhere on [0,∞)×T, then u is an admissible weak solution
of (2.1) on [0,∞)× T.

• Comparison for the viscous solution. Introduce as in the proof of [17, Theo-
rem 6.3.2] the function ηε defined for ε > 0 by

ηε(w) =


0 for −∞ < w 6 0,
w2

4ε for 0 < w 6 2ε,

w − ε for 2ε < w <∞.

If uµ and ūµ solve (2.8), then by multiplying by η′ε(uµ− ūµ) the equation satisfied by
uµ − ūµ, we compute

∂tηε(uµ − ūµ) + ∂x (η′ε(uµ − ūµ) (f(uµ)− f(ūµ)))

− η′′ε (uµ − ūµ) (f(uµ)− f(ūµ)) ∂x(uµ − ūµ)

= −η′ε(uµ−ūµ) (h(x, uµ)− h(x, ūµ))+µ∂2
xηε(uµ−ūµ)−µη′′ε (uµ−ūµ) (∂x(uµ − ūµ))

2
.

The new term compared to the proof of [17, Theorem 6.3.2] is of course the first term
of the right hand side (where h is present). We have more precisely, for 0 < s < t <∞,
after integration on (s, t)× T,

(2.11)

∫
T
ηε(uµ(t)− ūµ(t))−

∫
T
ηε(uµ(s)− ūµ(s))

6
∫ t

s

∫
T
η′′ε (uµ − ūµ) (f(uµ)− f(ūµ)) ∂x(uµ − ūµ)

−
∫ t

s

∫
T
η′ε(uµ − ūµ) (h(x, uµ)− h(x, ūµ)) .

In the limit ε→ 0, the first term on the right hand side goes to zero, while the second
goes to

−
∫ t

s

∫
T

1uµ>ūµ (h(x, uµ)− h(x, ūµ)) .

By Assumption 2.1 (third point), this term is non-positive, and we infer∫
T

(uµ(t, x)− ūµ(t, x))+ dx 6
∫
T

(uµ(s, x)− ūµ(s, x))+ dx.
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By letting s→ 0, this implies

(2.12)

∫
T

(uµ(t, x)− ūµ(t, x))+ dx 6
∫
T

(u0(x)− ū0(x))+ dx,

and by interchanging the roles of uµ and ūµ,

‖uµ(t)− ūµ(t)‖L1(T) 6 ‖u0 − ū0‖L1(T).

Also, if

u0(x) 6 ū0(x), a.e. on T,
then (2.12) yields

uµ(t, x) 6 ūµ(t, x), ∀t > 0, a.e. x ∈ T.

This implies in particular uniqueness for (2.7).

• Compactness. To obtain compactness in space, as in [17], we consider ūµ(t, x) =
uµ(t, x+ y). In the case where h = 0 (or more generally if h depends on u only), then
ūµ is a solution to (2.7), so (2.12) can be used directly. In our case, and precisely
because we want to consider spatially localized damping, such ūµ does not solve (2.7),
and we have to resume the computations. Essentially, we go back to the previous
computations, and replace ūµ(t, x) with uµ(t, x+ y), noticing that h(x, ūµ) has to be
replaced by h(x+ y, uµ(t, x+ y)). We have∫

T
(uµ(t, x)− uµ(t, x+ y))+dx−

∫
T
(u0(x)− u0(x+ y))+dx 6

lim sup
ε→0

(
−
∫ t

0

∫
T
η′ε(uµ − ūµ) (h(x, uµ(τ, x))− h(x+ y, uµ(τ, x+ y))) dτdx

)
.

In the above integral, insert ±h(x + y, uµ(τ, x)). By the same argument as above
(third point in Assumption 2.1), we infer∫

T
(uµ(t, x)− uµ(t, x+ y))+dx−

∫
T
(u0(x)− u0(x+ y))+dx 6

lim sup
ε→0

(
−
∫ t

0

∫
T
η′ε(uµ − ūµ) (h(x, uµ(τ, x))− h(x+ y, uµ(τ, x))) dτdx

)
,

hence∫
T
(uµ(t, x)− uµ(t, x+ y))+dx−

∫
T
(u0(x)− u0(x+ y))+dx

6
∫ t

0

∫
T
|h(x, uµ(τ, x))− h(x+ y, uµ(τ, x))| dτdx.

In view of (2.9) and of the last point in Assumption 2.1, we conclude∫
T
(uµ(t, x)− uµ(t, x+ y))+dx 6

∫
T
(u0(x)− u0(x+ y))+dx+O(y),

and

(2.13)

∫
T
|uµ(t, x)− uµ(t, x+ y)|dx 6

∫
T
|u0(x)− u0(x+ y))|dx+O(y).

Equicontinuity in time is proved similarly by setting ūµ(t, x) = uµ(t + τ, x). Since h
depends on x and uµ only, the only extra term that we have to estimate is of the form∣∣∣∣∫ t+τ

t

∫
T
h(x, uµ(s, x))φ(x)dsdτ

∣∣∣∣ 6 τC (‖u0‖L∞(T)

)
‖φ‖L1(T),
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where we have used (2.9).

The above properties imply that the sequence (uµ)µ is uniformly bounded and
equicontinuous in (0,∞) × T, so there is a subsequence of (uµ)µ, which converges
boundedly almost everywhere on (0,∞) × T and strongly in L1

loc((0,∞) × T). We
infer from (2.10) that the limit u is an entropy solution, hence the entropy solution
by uniqueness of the entropy solution. We have thus proved the item (i), while item
(ii) follows from (2.12) and (2.9), after passing to the limit µ→ 0.

Remark 2.4. Dividing (2.13) by y yields the propagation of BV regularity mentioned
in Remark 1.6.

• Comparison when source terms are ordered. It remains to prove (iii). Since
we assume u0 > 0, we know from (ii) that u1(t, x), u2(t, x) > 0 for (t, x) ∈ (0,∞)×T,
and so h(2)(x, uj) > h(1)(x, uj) for j = 1, 2. We then consider the viscous approxima-
tions u1,µ and u2,µ of, respectively, u1 and u2. The analogue of (2.11) reads∫

T
ηε(u2,µ(t)− u1,µ(t))−

∫
T
ηε(u2,µ(s)− u1,µ(s)) 6∫ t

s

∫
T
η′′ε (u2,µ − u1,µ) (f(u2,µ)− f(u1,µ)) ∂x(u2,µ − u1,µ)

−
∫ t

s

∫
T
η′ε(u2,µ − u1,µ)

(
h(2)(x, u2,µ)− h(1)(x, u1,µ)

)
.

Passing to the limits ε→ 0, s→ 0, and finally µ→ 0, we infer, since u1 and u2 have
the same initial datum:∫

T
(u2(t)− u1(t))+ 6 −

∫ t

0

∫
T

1u2>u1

(
h(2)(x, u2)− h(1)(x, u1)

)
.

Now since the integrand of the right hand side can be decomposed as

1u2>u1

(
h(2)(x, u2)− h(2)(x, u1)

)
︸ ︷︷ ︸

>0, by Assumption 2.1

+1u2>u1

(
h(2)(x, u1)− h(1)(x, u1)

)
︸ ︷︷ ︸

>0, from above

,

we conclude that
∫
T (u2(t)− u1(t))+ = 0, hence u1 > u2 > 0 as announced.

• Item (iv): the case h(x, u) = a(x)u/|u|.
In this case, the uniqueness of admissible weak solutions in the sense of Definition
1.3 holds without change. The difficulty then is to prove existence of admissible
weak solutions. In order to do that, instead of approximating (1.1) by its viscous
approximation (2.7), we also add an approximation of the function h. Namely, we
consider the approximation given, for µ ∈ (0, 1), by

(2.14) ∂tuµ + ∂xf(uµ) + h1−µ(x, uµ) = µ∂2
xuµ in R+ × T, uµ|t=0 = u0 in T,

where h1−µ(x, u) is given by (2.2). For each µ > 0, all the computations performed
above can be repeated, so that the sequence of solutions (uµ)µ is uniformly bounded
and equicontinuous in (0,∞)×T, so up to some subsequence, it converges boundedly
almost everywhere on (0,∞)×T and strongly in L1

loc((0,∞)×T) to some u as µ→ 0,
so that a.e. (t, x) ∈ (0,∞)× T,

h1−µ(x, uµ(t, x))−→
µ→0

h(t, x),

where h(t, x) = a(x) u(t,x)
|u(t,x)| if u(t, x) 6= 0, and h(t, x) ∈ [−1, 1] if u(t, x) = 0.

It follows that u is an admissible weak solutions of (1.1)–(1.2) in the sense of
Definition 1.3, hence the admissible weak solution in the sense of Definition 1.3 by
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uniqueness. The comparison results can then be proved as before, by studying them
for the solutions of (2.14) and passing to the limit µ→ 0. �

3. Proof of Proposition 1.7: The case of a damping acting everywhere

Proof of Proposition 1.7. Let p > 2. In view of (1.1), we formally have

d

dt

∫
T
|u(t, x)|pdx = p

∫
T
|u|p−2u∂tudx = −p

∫
T
|u|p−2u∂xf(u)dx− p

∫
T
a(x)|u|p−αdx.

Writing formally p|u|p−2u∂xf(u) = p|u|p−2uf ′(u)∂xu, we have

p|u|p−2u∂xf(u) = ∂xgp(u), with g′p(z) = p|z|p−2zf ′(z),

and so ∫
T
|u|p−2u∂xf(u)dx = 0.

As a matter of fact, this reasoning is valid only for sufficiently smooth solutions.
However, the conclusion remains true in our context, as can be seen by using Defini-
tions 1.2 and 1.3 with p > 2, η(u) = |u|pu, ψ(t, x) = 1:

d

dt

∫
T
|u(t, x)|pdx 6 −p

∫
T
a(x)|u|p−αdx 6 − pδ

‖u(t)‖αL∞(T)

∫
T
|u(t, x)|pdx,

that is
d

dt
ln ‖u(t)‖Lp(T) 6 −

δ

‖u(t)‖αL∞(T)

.

By integration,

‖u(t)‖Lp(T) 6 ‖u0‖Lp(T) exp

(
−δ
∫ t

0

ds

‖u(s)‖αL∞(T)

)
,

and by letting p→∞,

(3.1) ‖u(t)‖L∞(T) 6 ‖u0‖L∞(T) exp

(
−δ
∫ t

0

ds

‖u(s)‖αL∞(T)

)
.

Set

Φ(t) =

∫ t

0

ds

‖u(s)‖αL∞(T)

.

The above inequality reads

Φ′(t) >
1

‖u0‖αL∞(T)

eαδΦ(t).

Since the solution to Ψ′ = CeαδΨ, Ψ(0) = 0, is given by

Ψ(t) = − 1

αδ
ln (1− Cαδt) , t 6

1

Cαδ
,

we conclude by comparison that Φ(t)→ +∞ as t→ ‖u0‖αL∞(T)/ (αδ), hence the result

thanks to (3.1), with

T =
‖u0‖αL∞(T)

αδ
,

which may not be the sharp extinction time, but an upper bound for it. �
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Remark 3.1 (Whole space). The above argument shows that the conclusion of Propo-
sition 1.7 remains valid if (1.8) is set up on the whole line, x ∈ R, provided that the
solution which we consider goes to zero at ±∞.
Otherwise, a similar proof can be given, by considering estimates of u(t) in Lp(A−(t), A+(t))
where

A−(t) = A0
− + t sup

s∈[−K,K]

f ′(s) and A+(t) = A0
+ + t sup

s∈[−K,K]

f ′(s)

for any pair (A0
−, A

0
+) ∈ R2; see e.g. the proof of Lemma 4.2 where the same kind of

arguments are developed.

4. Proof of Theorem 1.8: the transport case

The goal of this section is to prove Theorem 1.8. Thus, we consider the setting
of Theorem 1.8, and we assume in particular that f is smooth, satisfies (1.11), K
satisfies (1.12), and a satisfies Assumption 1.1 and (1.10).

4.1. Strategy. In order to ease the reading of the proof of Theorem 1.8, we decom-
pose it into two lemmas, the first one stating that in the setting of Theorem 1.8 the
solutions of (1.1)–(1.2) decay exponentially, while the second one will show that if the
initial datum is small enough, then the corresponding solution of (1.1)–(1.2) vanishes
in finite time.

Lemma 4.1. Within the setting of Theorem 1.8, there exist C > 0 and µ > 0 such
that for any initial datum u0 ∈ L∞(T) satisfying (1.13), any solution u of (1.1)–(1.2)
satisfies

(4.1) ‖u(t)‖L∞(T) 6 Ce
−µt‖u0‖L∞(T).

Lemma 4.2. Within the setting of Theorem 1.8, there exist ε0 > 0 and T0 > 0 such
that if

(4.2) ‖u0‖L∞(T) 6 ε0,

the solution u of (1.1)–(1.2) satisfies

(4.3) u(t, x) = 0, ∀t > T0, a.e. x ∈ T.

The proofs of Lemma 4.1 and Lemma 4.2 are given in Subsections 4.2 and 4.3,
respectively. The proof of Theorem 1.8 is then given in Subsection 4.4.

4.2. Proof of Lemma 4.1.

Proof. We first choose a function ϕ = ϕ(x) such that

ϕ ∈ C∞(T), with ϕ(x) = x, ∀x ∈ T \ ω.

Note that such a function ϕ satisfies in particular that

∀x ∈ T \ ω, ∂xϕ(x) = 1, and ∂xϕ ∈ C 0(T).

Now, let u0 ∈ L∞(T) and u the corresponding solution of (1.1)–(1.2). We consider
the Lyapunov functionals, indexed by p > 2 and some parameter λ ∈ R chosen later,

(4.4) Ep,λ(t) =

∫
T

∣∣∣e−λϕ(x)u(t, x)
∣∣∣p dx.
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Formally, these functionals satisfy:

dEp,λ(t)

dt
= p

∫
T
e−pλϕ(x)|u(t, x)|p−2u(t, x)∂tu(t, x) dx

= −p
∫
T
e−pλϕ(x)|u(t, x)|p−2u(t, x)∂x(f(u(t, x)) dx

− p
∫
T
a(x)e−pλϕ(x)|u(t, x)|p−α dx.

If u were smooth, we would write

p|u(t, x)|p−2u(t, x)∂x(f(u(t, x)) = pf ′(u(t, x))|u(t, x)|p−2u(t, x)∂xu(t, x)

= ∂x(gp(u(t, x))),

where gp is defined by

(4.5) gp(s) = p

∫ s

0

f ′(τ)|τ |p−2τ dτ,

so that we would write:

− p
∫
T
e−pλϕ(x)|u(t, x)|p−2u(t, x)∂x(f(u(t, x)) dx

= −pλ
∫
T
∂xϕ(x)e−pλϕ(x)gp(u(t, x)) dx.

Note in passing that gp has the same sign as f ′(0). As solutions u may contain shocks,
these estimates should be justified by using the definition of admissible weak solutions,
i.e. inequalities (1.6) or (1.7), choosing p > 2, η(u) = |u|pu and ψ(t, x) = e−pλϕ(x).
One obtains in that way:

dEp,λ(t)

dt
6 −pλ

∫
T
∂xϕ(x)e−pλϕ(x)gp(u(t, x)) dx

− p
∫
T
a(x)e−pλϕ(x)|u(t, x)|p−α dx

6 −pλ
∫
T
e−pλϕ(x)gp(u(t, x)) dx

+ p|λ|‖∂xϕ− 1‖L∞(T)

∫
ω

e−pλϕ(x) |gp(u(t, x))| dx

− pδ
∫
ω

e−pλϕ(x)|u(t, x)|p−α dx.

It is thus natural to study the function gp in (4.5). In order to do this, we first note
that if ‖u0‖L∞(T) 6 K, according to Proposition 1.5, for all time t > 0, the L∞-norm
of u(t) is bounded by K. Therefore, we introduce

β− = inf
s∈[−K,K]

|f ′(s)| and β+ = sup
s∈[−K,K]

|f ′(s)|,

so that for all (t, x) ∈ [0,∞)× T,

(4.6) β−|u(t, x)|p 6 |gp(u(t, x))| 6 β+|u(t, x)|p.
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Therefore, we obtain

dEp,λ(t)

dt
6 −pλ

∫
T
e−pλϕ(x)gp(u(t, x)) dx

+ p
(
|λ|‖∂xϕ− 1‖L∞(T)β+ − δ‖u(t)‖−αL∞(T)

)∫
ω

e−pλϕ(x)|u(t, x)|p dx.

In particular, for all t > 0, if

(4.7) |λ|‖∂xϕ− 1‖L∞(T)β+ 6 δ‖u(t)‖−αL∞(T),

we have

(4.8)
dEp,λ(t)

dt
6 −pλ

∫
T
e−pλϕ(x)gp(u(t, x)) dx.

As for all t, ‖u(t)‖L∞(T) 6 K, we therefore choose

λ∗ = sign (f ′(0))
δK−α

‖∂xϕ− 1‖L∞(T)β+
,

so that (4.7) is satisfied and (4.8) becomes:

dEp,λ∗(t)

dt
6 −p|λ∗|β−Ep,λ∗(t).

Therefore, we get that

‖e−λ∗ϕu(t)‖Lp(T) 6 e
−|λ∗|β−t‖e−λ∗ϕu0‖Lp(T), ∀t > 0.

As λ∗ does not depend on p, we can pass to the limit as p→∞, and obtain:

‖e−λ∗ϕu(t)‖L∞(T) 6 e
−|λ∗|β−t‖e−λ∗ϕu0‖L∞(T), ∀t > 0,

and thus,

‖u(t)‖L∞(T) 6 e
|λ∗|(supϕ−inf ϕ)−|λ∗|β−t‖u0‖L∞(T), ∀t > 0.

This concludes the proof of Lemma 4.1, as |λ∗| > 0. �

Remark 4.3. Note that one can go further and show that the L∞(T) norm of the
solutions of (1.1)–(1.2) decays in fact faster than an exponential in time.
Indeed, if we set

T1 =
2

β−
(supϕ− inf ϕ),

and use the explicit choice

λ∗ = sign (f ′(0))
δ‖u0‖−αL∞(T)

‖∂xϕ− 1‖L∞(T)β+
,

which is admissible according to the above proof, one in fact gets

‖u(T1)‖L∞(T) 6 e
−|λ∗|(supϕ−inf ϕ)‖u0‖L∞(T)

6 exp
(
−c0‖u0‖−αL∞(T)

)
‖u0‖L∞(T),

where c0 is given by

c0 = δ
(supϕ− inf ϕ)

‖∂xϕ− 1‖L∞(T)β+
.

Starting from there and using the semi-group property, we introduce a sequence of
time, indexed by n ∈ N,

Tn = nT1

(
=

2n

β−
(supϕ− inf ϕ)

)
,
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for which one gets immediately, for all n ∈ N,

‖u(Tn+1)‖L∞(T) 6 exp
(
−c0‖u(Tn)‖−αL∞(T)

)
‖u(Tn)‖L∞(T).

It is then easy to check that the sequence (‖u(Tn)‖L∞(T))n∈N goes to 0 faster than any
(non-trivial) geometric sequence, which in turn implies that the map t 7→ ‖u(t)‖L∞(T)

goes to 0 faster than any exponential.
It would be interesting to develop a direct proof of Theorem 1.8 based only on a

suitable choice of Lyapunov functionals in the spirit of the one used above.

4.3. Proof of Lemma 4.2.

Proof. To simplify the presentation, in the proof of this lemma, T is identified with
an interval centered in 0, and ω is identified with an interval of the form (−A,A).

The proof of Lemma 4.2 is divided in two steps. In the first step, we show that
if ε0 > 0 is chosen small enough, then necessarily, the solution u of (1.1)–(1.2) with
u0 ∈ L∞(T) satisfying ‖u0‖L∞(T) 6 ε0 vanishes in some part of the domain ω after
some (small) time. We then show that this implies that the solution u vanishes
everywhere after some time.

• Step 1. We introduce the paths

A−(t) = sup
[−K,K]

{f ′}t− A

2
, A+(t) = inf

[−K,K]
{f ′}t+

A

2
.

We fix τ∗ such for all t ∈ [0, τ∗),

−A < A−(t) < A+(t) < A,

that is

(4.9) τ∗ =
A

max
{

2 inf [−K,K] |f ′|, sup[−K,K] |f ′| − inf [−K,K] |f ′|
} .

We then set, for p > 2 and t ∈ [0, τ∗],

Ep,loc(t) =

∫ A+(t)

A−(t)

|u(t, x)|p dx.

Arguing as in the proof of Proposition 1.7, as [A−(t), A+(t)] ⊂ ω for all t ∈ [0, τ∗] and
inf f ′ 6 f ′(u(t, x)) 6 sup f ′ for all (t, x) ∈ R+ × T, we get, for all t > 0,

(4.10)
d

dt
Ep,loc(t) 6 − pδ

‖u(t)‖αL∞(A−(t),A+(t))

Ep,loc(t).

In fact, to prove this estimate rigorously, we use the definition of admissible weak
solutions, i.e. the inequalities (1.6) or (1.7), choosing p > 2, η(u) = |u|pu and
ψ(t, x) = ϕε(t, x), where

ϕε(t, x) = ϕ0
−

(
x−A−(t)

ε

)
1x∈(A−(t)−ε,A−(t)) + 1x∈(A−(t),A+(t))

+ ϕ0
+

(
x−A+(t)

ε

)
1x∈(A+(t),A+(t)+ε),

with ϕ0
−, ϕ0

+ non-negative smooth cut-off functions, taking value 1 on R+ and van-
ishing on (−∞,−1) for ϕ0

−, taking value 1 on R− and vanishing on (1,∞) for ϕ0
+.

We then pass to the limit ε→ 0 in the inequalities (1.6) or (1.7) to show the estimate
(4.10).
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This yields, for all t ∈ [0, τ∗],

d

dt

(
log(‖u‖Lp(A−(t),A+(t)))

)
6 − δ

‖u(t)‖αL∞(A−(t),A+(t))

.

Integrating this expression and letting p → ∞, we obtain, similarly as in (3.1), that
for all t ∈ [0, τ∗],

‖u(t)‖L∞(A−(t),A+(t)) 6 ‖u0‖L∞(−A/2,A/2) exp

(
−δ
∫ t

0

ds

‖u(s)‖αL∞(A−(s),A+(s))

)
.

Arguing as in the proof of Proposition 1.7, this implies that ‖u(τ0)‖L∞(A−(τ0),A+(τ0)) =
0 for

(4.11) τ0 =
εα0
αδ
,

which is smaller than τ∗ for ε0 > 0 small enough, i.e. for small enough initial datum
(recall (4.2)).
Using the same argument on the solutions u(·+ t0) for all t0 > 0, we see that in fact
we have obtained

(4.12) ∀t > τ0, ‖u(t)‖L∞(A−(τ0),A+(τ0)) = 0.

We end up this step by emphasizing that A−(τ0) < A+(τ0), so that (4.12) really
implies that u(t, ·) vanishes on a constant interval for all time t > τ0.

• Step 2. In this step, to fix the ideas, we assume that f ′(0) > 0, as a completely
similar proof can be adapted to the case f ′(0) < 0. We then look at the evolution of
the L2-norm of u(t) on the set (A−(τ0), B(t)), where B(t) = A+(τ0)+β−(t−τ0)+, with
β− = inf [−K,K] f

′ (recall that we have assumed f ′(0) > 0). Recall that u(t, x) = 0
for all t > τ0 and x ∈ [A−(τ0), A+(τ0)] according to (4.12). Using the definition of
admissible weak solutions, we infer:

d

dt

(∫ B(t)

A−(τ0)

|u(t, x)|2 dx

)
6 0.

Indeed, this comes from the definition of admissible weak solutions with η(u) = |u|2
and ψ(t, x) = ϕε(t, x), where

ϕε(t, x) = ϕ0
−

(
x−A+(τ0)

ε

)
1x∈(A+(τ0)−ε,A+(τ0)) + 1x∈(A+(τ0),B(t))

+ ϕ0
+

(
x−B(t)

ε

)
1x∈(B(t),B(t)+ε),

with ϕ0
−, ϕ0

+ non-negative smooth cut-off functions, taking value 1 on R+ and van-
ishing on (−∞,−1) for ϕ0

−, taking value 1 on R− and vanishing on (1,∞) for ϕ0
+.

Therefore, for all t > τ0, ∫ B(t)

A−(τ0)

|u(t, x)|2 dx = 0.

In particular, waiting a time T0 > τ0 such that B(T0) = A−(τ0) + |T|, for all t > T0,
for almost all x ∈ T, u(t, x) = 0. This concludes the proof of Lemma 4.2. �
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4.4. Proof of Theorem 1.8.

Proof. Theorem 1.8 easily follows from Lemma 4.1 and 4.2. Indeed, if one chooses an
initial datum u0 satisfying (1.13), the L∞(T)-norm of the corresponding solution u(t)
of (1.1)–(1.2) decays exponentially. Thus, after some time, it becomes smaller than
the parameter ε0 in Lemma 4.2. It will therefore vanish after some time according to
Lemma 4.2. �

4.5. A control theoretic interpretation of Theorem 1.8. Let us mention that
Theorem 1.8 is closely related to the following control problem: given ω a non-empty
subinterval of T, T > 0 and u0 ∈ L2(T), find a control function v ∈ L2((0, T ) × T)
such that the solution u of

(4.13)

{
∂tu+ ∂x (f(u)) + 1ωv = 0, (t, x) ∈ R+ × T,

u|t=0 = u0, x ∈ T.

satisfies

(4.14) u(T ) = 0 in T.

Assuming (1.11) and defining K by (1.12), Theorem 1.8 implies that, for an initial da-
tum u0 ∈ L∞(T) satisfying (1.13), choosing the control function v under the feedback
form

(4.15) v(t, x) = −δ u(t, x)

|u(t, x)|α
, (t, x) ∈ R+ × T,

for some δ > 0, the controlled trajectory u solving (4.13) will satisfy the controllability
requirement (4.14) in some time T > 0.
Looking more closely at the proof of Lemma 4.2, we can state the following result:

Proposition 4.4. Let f be a smooth flux function satisfying (1.11) and define K by
(1.12). Let ω a non-empty subinterval of T.
Given γ > 0, there exists a parameter δ in (4.15) such that, for any initial datum
u0 ∈ L∞(T) satisfying (1.13), the corresponding solution u of (4.13)–(4.15) vanishes
after the time

T = (1 + γ)
|T|

inf [−K,K] |f ′|
.

Proof. We do the same identifications as in the proof of Lemma 4.2. Indeed, choosing
γ > 0 smaller if necessary, one can assume γ|T|/ inf |f ′| < τ∗, with τ∗ as in (4.9).
Thus, taking

δ =
Kα

α

inf |f ′|
γ|T|

,

for solutions u0 ∈ L∞(T) satisfying (1.13), the time τ0 in (4.11) is smaller than τ∗
in (4.9) and than γ|T|/| inf f ′|, so that the proof of Lemma 4.2 easily yields that u
vanishes after the time T0 = (1 + γ)|T|/ inf |f ′|. �

Note that the time of extinction given by Proposition 4.4 can be made arbitrarily
close to the critical time expected to control (4.13), given by |T|/ inf [−K,K] |f ′|. In
this sense, we have produced a non-linear feedback operator which controls (4.13) in
almost sharp time.
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5. Proof of Theorem 1.9: The degenerate case

The goal of this section is to discuss the case of a flux satisfying f ′(0) = 0, with
f ′′(0) 6= 0, and prove Theorem 1.9. As said in the introduction, we first prove The-
orem 1.9 in the case of a constant initial datum and a strictly convex flux satisfying
(1.17). We then deduce the other instances of Theorem 1.9 by using symmetry argu-
ments and comparison arguments.

5.1. Computation and estimates for the solution u of (5.2) for a strictly
convex flux f with f ′(0) = 0. We first assume that f satisfies, for some K > 0:

(5.1) f ′(0) = 0 and ∃K > 0, inf
s∈[−K,K]

f ′′(s) > 0,

and the damping is given by a(x) = δ1(0,A).
Let u be the solution of

(5.2) ∂tu+ ∂xf(u) + δ1(0,A)
u

|u|α
= 0 in R+ × T, u|t=0 = K inT,

where K is the positive constant in (5.1), δ > 0 and (0, A) ⊂ T.
Obviously, as K > 0, the solution u will stay non-negative for all times.

We develop a precise analysis of the characteristics curves of the solution, illustrated
in Figure 5.1. We depict in Figure 5.1 both the evolution of the solution and its
characteristic curves for the Burgers equation. The simulations are made following
the process described in Section 6. The numerical parameters are α = 1, u0(x) = K =
1.25, A = 0.25, δ = 1, δx = δt = 5·10−5 and the final time is Tf = 10. The dashed line
indicates the location of the support of a. It appears that the solution becomes zero
inside the support of a, with corresponding characteristics becoming vertical straight
lines. Our goal in the following is to prove rigorously that this observed behavior
indeed coincides with the theoretical one.

5.1.1. Formal computation of the solution u of (5.2) for a strictly convex flux f with
f ′(0) = 0. We shall compute u using characteristics as if the solution were regular.
We will fully justify this assumption later (in Subsection 5.1.3, Lemma 5.1).
For α < 1, when u is smooth, for (t0, x0) ∈ R+ × T, the characteristics are given by

(5.3)


dX

dt
(t, t0, x0) = f ′(u(t,X(t, t0, x0))), t > 0,

X(t0, t0, x0) = x0,

and the solution u along the characteristics satisfies:

(5.4)
d

dt
(u(t,X(t, t0, x0))) = −a(X(t, t0, x0))

u(t,X(t, t0, x0))

|u(t,X(t, t0, x0))|α
.

The solutions of (5.3)–(5.4) are then solutions of

(5.5)
d

dt

(
X(t, t0, x0)

u(t,X(t, t0, x0))

)
= Fα(X(t, t0, x0), u(t,X(t, t0, x0))), t > 0,

where

(5.6) Fα(X,u) =

(
f ′(u)

−a(X)u/|u|α
)
.

Of course, when α = 1, similar computations can be performed as long as the solution
u stays positive, but the corresponding definition of Fα for α = 1 should be made
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Figure 5.1. Evolution of the solution (left) and of the characteristic
curves (right) for Burgers flux

more specific when u vanishes. We thus introduce

(5.7) F1(X,u) =

(
f ′(u)

−a(X) Sign(u)

)
,

where Sign is defined in (1.5), and the corresponding counterpart of (5.5) should then
read as

(5.8)
d

dt

(
X(t, t0, x0)

u(t,X(t, t0, x0))

)
∈ F1(X(t, t0, x0), u(t,X(t, t0, x0))), t > 0.

In the computations given afterward, we will use the fact that as u0(x) = K > 0, the

solution u of (5.2) stays non-negative, so that we can in fact write u/|u|α = u1−α,
which will make the various expressions slightly easier.
On the interval (A, 1). As a vanishes on (A, 1), (5.4) implies that the solution u stays
constant along the characteristics in (A, 1). Therefore, if we choose x0 = A, we get

u(t,X(t, t0, A)) = u(t0, A), as long as t 7→ X(t, t0, A) stays smaller than 1,

and therefore

X(t, t0, A) = A+ (t− t0)f ′(u(t0, A)) for t ∈
[
t0, t0 +

1−A
f ′(u(t0, A))

]
.

Thus, we can write, for all t > 0,

(5.9) u

(
t+

1−A
f ′(u(t, A))

, 0

)
= u

(
t+

1−A
f ′(u(t, A))

, 1

)
= u(t, A).
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Let us finally note that easy computations show that

∀t ∈
[
0,

1−A
f ′(K)

]
, u(t, 0) = u(t, 1) = K.

On the interval (0, A). We deal with this case as before. But now, as long as the
characteristic t 7→ X(t, t0, 0) defined for t > t0 stays in [0, A], we have

u(t,X(t, t0, 0)) = (u(t0, 0)α − δα(t− t0))
1/α
+ .

Therefore, the characteristic X(t, t0, 0) reaches x = A for the first solution t > t0 (if
any) of ∫ t−t0

0

f ′
(

(u(t0, 0)α − δατ)
1/α
+

)
dτ = A,

for which we have

u(t, A) = (u(t0, 0)α − δα(t− t0))
1/α
+ .

For t > 0, such that ∫ t

0

f ′
(

(Kα − δατ)
1/α
+

)
dτ < A,

we get

u(t, A) = (Kα − δαt)1/α
+ .

5.1.2. Justification of the above formulae. When the solution u is smooth and strictly
positive, all the above computations are fully justified.

Besides, for α ∈ (0, 1], we only have a priori existence results for solutions of (5.5)
or (5.8) due to Cauchy–Peano Theorem. Due to [18, Chapter 2 Section 10 Theorem 1],
we also have forward uniqueness of the solutions of (5.5) as long as X stays in (0, A)
or as long as X stays in (A, 1), as the function Fα satisfies the following one-sided
Lipschitz condition: there exists C > 0 such that for all (X1, u1) ∈ R2, (X2, u2) ∈ R2

with |u1|, |u2| 6 K, and (X1, X2) ∈ (0, A)2 ∪ (A, 1)2,

(5.10) ((X1, u1)− (X2, u2)) · (Fα(X1, u1)− Fα(X2, u2)) 6 C|(X1, u1)− (X2, u2)|2.

The uniqueness across the set {X = 0} in our setting will follow from the fact that
the solution u of (5.2) with constant initial datum u0(x) = K > 0 stays non-negative
for all times, and strictly positive at x = 0 for all times (see Section 5.1.3), so the
characteristics t 7→ X(t, t0, x0), when meeting {X = 0}, will simply follow the dy-
namics in (0, A). This argument can be invoked similarly when characteristics meet
the set {X = A} while u stays positive. However, as we will see, there will be some
time at which u(t, A) vanishes. There, uniqueness should also hold across the set
{X = A} simply by continuity of Fα(x, 0) across {X = A}, at least for α ∈ (0, 1).
This is however less clear to prove, especially when turning to the case α = 1.

Thus, to properly justify the above computations, we construct explicitly the solu-
tion u of (5.2) using the characteristics formulae above. In turn, this will guarantee
the characteristics formulae given above. Note that, strictly speaking, our arguments
construct a solution of (5.2), but by uniqueness of the admissible solution of (5.2), see
Proposition 1.4, this solution is the solution of (5.2) with initial datum u0(x) = K.
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5.1.3. Regularity of the solution u. The goal of this section is to prove the following
regularity result on the solution u of (5.2) with u0(x) = K.

Lemma 5.1. Let f and K as in (5.1), δ > 0 and (0, A) ⊂ T.
Then the solution u of (5.2) satisfies the following regularity properties: u ∈

C 0([0,∞)× T), u is piecewise C 1([0,∞)× T), and we have the more precise result:

• The set Z = {(t, x) ∈ [0,∞) × T, s.t.u(t, x) = 0}, if not empty, is a closed
set of [0,∞)× (0, A] whose boundary is globally Lipschitz and piecewise C 1.

• For all bounded open subset Ω such that Ω ⊂ ([0,∞) × T \ Z ), there exists
a finite number of smooth (C 1) curves Ci, which may intersect only transver-
sally, such that u is C 1 in the adherence of each of the connected component
of Ω \ Ci.

• For all bounded open subset Ω ⊂ ([0,∞) × T), there exists a finite number
of curves Ci (globally Lipschitz and piecewise C 1), which may intersect only
transversally, such that u is C 1 in each of the connected component of Ω \ Ci.

• For all t > 0, x 7→ u(t, x) is non-decreasing on [A, 1].

The proof of Lemma 5.1 relies on the explicit construction of u using characteristics
formula. As we will see in the proof, some curve of strong C 1 singularity (meaning
that at each point of the curve, the function u on each side on the curve cannot be
both extended as a C 1 function up to the curve) may appear when the characteristic
entering the zone in which the damping is active corresponds to a small value of u.
In this case, characteristics may become vertical and merge after some time. This
does not violate the forward uniqueness of the characteristics in the sense of Filippov.
Still, we emphasize that when the characteristics merge, we cannot use them backward
in time. This is in fact completely similar to the phenomenon which appears when
solving the ODE (1.3).

To be more precise, we introduce ε ∈ (0,K] as the solution, if it exists, of

(5.11)

∫ ∞
0

f ′((εα − δατ)
1/α
+ ) dτ = A,

and T∗ as

(5.12) T∗ = inf{t ∈ [0,∞), u(t, 0) 6 ε}.

The role of ε will appear clearly in the proof below. Loosely speaking, when u(t, 0) 6 ε,
the characteristic issued from (t, 0) will never reach the set {x = A}: in other words,
the characteristic issued from (t, 0) is of too low energy to overpass the damping set.

The curves C on which C 1 singularities may appear will be constructed with the
solution u itself. In fact, these curves will simply be

(5.13)


C0 : t 7→ (t,X(t, 0, 0)),
C1 : t 7→ (t,X(t, 0, A)),
C2 : t 7→ (t, 0),
C3 : t 7→ (t, A),

to which, if T∗ <∞, one should add the boundary of the set Z (if Z 6= ∅), that will
be shown to be delimited by

(5.14) C : t0 ∈ (T∗,∞) 7→ (t(t0), x(t0)),

where t(t0) = t0 +
(u(t0, 0))α

δα
, and x(t0) =

∫ ∞
0

f ′((u(t0, 0)α − δατ)
1/α
+ ) dτ,
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and a part of C3, namely {(t, A), for t > t∗} for

(5.15) t∗ = T∗ +
εα

δα
.

The various discontinuity curves, Z region and times T∗ and t∗ are displayed in
Figure 5.2.

Z

0 A 1 x

t

C0
C1
C2
C3
C
X(t, T∗, 0) for t ∈ [T∗, t∗]

T∗

t∗

Figure 5.2. Discontinuity curves, Z region and times T∗ and t∗.

Proof.
• Preliminary computations: Existence and uniqueness of ε in (5.11). We
first emphasize that condition (5.11) is satisfied by at most one parameter ε > 0 as
the map

(5.16) g : v 7→
∫ ∞

0

f ′((vα − δατ)
1/α
+ ) dτ

is well-defined and continuous on [0,K], g(0) = 0, and g is strictly increasing. Indeed,
if 0 6 v1 < v2 6 K, using the fact that f ′ is strictly increasing on [0,K] as f is
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assumed to be strictly convex,

g(v1) =

∫ ∞
0

f ′((vα1 − δατ)
1/α
+ ) dτ =

∫ vα1 /(δα)

0

f ′((vα1 − δατ)
1/α
+ ) dτ

<

∫ vα1 /(δα)

0

f ′((vα2 − δατ)
1/α
+ ) dτ 6 g(v2).

Thus, if g(K) > A, there exists a unique ε ∈ [0,K] satisfying (5.11). (In case
g(K) < A, there is no ε ∈ [0,K] satisfying (5.11).) Note in particular that, when
there exists ε ∈ (0,K] satisfying (5.11), for all v ∈ (ε,K], g(v) > A, so that

(5.17) ∀v ∈ (ε,K], A 6 f ′(v)
vα

δα
6 f ′(K)

Kα

δα
.

• Construction of u. In our construction below, we distinguish the cases t < T∗
and t > T∗. In particular, according to the definition (5.12) of T∗, for all t ∈ [0, T∗),
u(t, 0) > ε.

We restrict ourselves to the case T∗ > 0, since the case T∗ = 0 can be easily adapted
from the case T∗ > 0 and t > T∗. Hence we assume that T∗ > 0, and deal separately
with the cases t 6 T∗ and t > T∗.

We will not point out below, along the construction of u, that the curves delimiting
the C 1 singularities are exactly the ones in (5.13)–(5.14), but it will appear clearly
from the construction of u.

As a matter of fact, we construct a sequence of time-space domains which eventually
cover [0,∞) × T, and a function u on each of these time-space domains, such that
u is a globally C 0 function there, and is a piecewise C 1 function, where the curves
of C 1 discontinuities are given by (5.13)–(5.14). Besides, apart from these curves of
singularities, the solution u is constructed to satisfy the characteristics equations (5.5)
in the case α ∈ (0, 1), or (5.8) in the case α = 1 away from the set Z . The regularity
of the curves of C 1 discontinuities then allows to check easily that the solution u
constructed this way solves (5.2) in the sense of Definition 5.6 for α ∈ (0, 1) or of
Definition 5.7 when α = 1.

In the proof below, with a slight abuse of terminology, we call “smooth functions”
functions which are C 1.

Case t 6 T∗. As the velocities involved for the solution u should belong to [0, f ′(K)],
using the light cone of the equation, u should be fully determined in

T0 = {(t, x) with t ∈ [0, A/f ′(K)] and x ∈ [tf ′(K), A]}

by u(0, ·)|[0,A]. For (t, x) ∈ T0, we shall therefore look for x0 such that X(t, 0, x0) = x,
that is

x0 +

∫ t

0

f ′
(

(Kα − δατ)
1/α
+

)
dτ = x.

For fixed t ∈ [0, A/f ′(K)], it is easily seen that the map

[0, A] 3 x0 7→ kt(x0) = x0 +

∫ t

0

f ′
(

(Kα − δατ)
1/α
+

)
dτ

is smooth, and strictly increasing, with image containing [tf ′(K), A]. Therefore, for all
(t, x) ∈ T0, there exists a unique x0 ∈ [0, A] such that X(t, 0, x0) = x, so that we set

u(t, x) = (Kα − δαt)1/α
+ . As t 6 A/f ′(K), the bound (5.17) allows to guarantee that

for all (t, x) ∈ T0, Kα − δαt is strictly positive, so that u ∈ C 1(T0) and t 7→ u(t, A)
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is smooth on [0, A/f ′(K)], non-increasing, and strictly positive.
We then consider the triangle

T1 = {(t, x) with t ∈ [0, 1/f ′(K)] and x ∈ [tf ′(K), 1]},
and construct u in this set. Of course, as we have already shown that u is smooth
in the set T0, we only focus on the set T1 \ T0. We determine u in T1 \ T0 from
u(·, A)|[0,A/f ′(K)] and u(0, ·)|[A,1]. Introducing X(t, 0, A) = A + tf ′(u(0, A)) = A +
tf ′(K), for (t, x) ∈ T1 \ T0, we set u(t, x) = K if x ∈ [X(t, 0, A), 1], while if x ∈
[max{tf ′(K), A}, X(t, 0, A)], we find a time t0 ∈ [0, A/f ′(K)] such that X(t, t0, A) =
x, and set u(t, x) = u(t0, A). Indeed, this can be achieved since for t ∈ [0, 1/f ′(K)]
and x ∈ [max{tf ′(K), A}, X(t, 0, A)], finding t0 ∈ [0,min{t, A/f ′(K)}] such that
X(t, t0, A) = x amounts to solving the equation

A+ (t− t0)f ′(u(t0, A)) = x.

But the map

(5.18) ht : t0 7→ A+ (t− t0)f ′(u(t0, A))

satisfies:

• ht is strictly decreasing on the interval [0,min{t, A/f ′(K)}]. This is a conse-
quence of the fact that t0 7→ u(t0, A) is non-increasing and strictly positive
on [0, A/f ′(K)] and that f is strictly convex with f ′(0) = 0. Besides, for all
t0 ∈ [0,min{t, A/f ′(K)}],

h′t(t0) 6 −f ′(u(A/f ′(K), A)) < 0.

• ht(0) = A+ tf ′(K) = X(t, 0, A).
• If t 6 A/f ′(K), ht(t) = A, and if t > A/f ′(K),

ht

(
A

f ′(K)

)
= A+

(
t− A

f ′(K)

)
f ′
(
u
( A

f ′(K)
, A
))

6 A+

(
t− A

f ′(K)

)
f ′(K) 6 tf ′(K).

• ht is smooth.

It then follows that ht is a diffeomorphism from the interval [0,min{t, A/f ′(K)}] to
its image, which contains [max{tf ′(K), A}, X(t, 0, A)], so that we can write, for t ∈
[0, 1/f ′(K)] and x in the interval [max{tf ′(K), A}, X(t, 0, A)], u(t, x) = u(h−1

t (x), A).
These formula easily show that the function u is smooth for (t, x) ∈ T1 with

x ∈ [max{tf ′(K), A}, X(t, 0, A)], and it is clear that u is smooth for (t, x) ∈ T1 with
x ∈ [X(t, 0, A), 1]. However, though it is clear that u is continuous along the curve
t 7→ (t,X(t, 0, A)), u may not be locally C 1 in a neighborhood of this curve, even if it
can be extended as C 1 functions up to this curve from each side. It follows that u is
piecewise C 1(T1), and that t 7→ u(t, 1) is a piecewise C 1 non-increasing function on
[0, 1/f ′(K)], which remains strictly positive on the interval [0, 1/f ′(K)].

It is also easy to check that for all t ∈ [0, A/f ′(K)], x 7→ u(t, x) is non-decreasing
on [A, 1].

In fact, this is the starting point of an iterative argument showing that for all n ∈ N
with Tn = n/f ′(K) < T∗, one can construct a solution u of (5.2) in

T2n+1 = {(t, x) ∈ [0, (n+ 1)/f ′(K)]× [0, 1] with x ∈ [max{tf ′(K)− n, 0}, 1]},
such that:

• u is globally C 0 and piecewise C 1 on T2n+1
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• t 7→ u(t, A) is strictly positive and non-increasing on [0, (n+A)/f ′(K)].
• t 7→ u(t, 1) is strictly positive non-increasing on [0, (n+ 1)/f ′(K)].
• For all t ∈ [0, Tn +A/f ′(K)], x 7→ u(t, x) is non-decreasing on [A, 1].

Indeed, these properties are already proved for n = 0. Let us show that if they hold
for n ∈ N, they also hold for n+ 1 provided Tn+1 < T∗.
Using the above properties for n, we first consider the equation in the trapezoid

T2n+2 = {(t, x) ∈ [0, (n+1+A)/f ′(K)]×[0, A] with x ∈ [max{tf ′(K)−(n+1), 0}, A]},
and use the boundary condition u(·, 0)|[0,(n+1)/f ′(K)] and u(0, ·)|[0,A] to construct u in
T2n+2. In order to do this, we set, for t > 0,

x0(t) = min

{∫ t

0

f ′((Kα − δατ)
1/α
+ ) dτ,A

}
.

Now, let us fix t ∈ [0, (n + 1 + A)/f ′(K)] and x ∈ [0, A]. If x > x0(t), we define

u(t, x) = (Kα − δαt)1/α
+ . If x < x0(t), we look for t0 ∈ [0, t] such that X(t, t0, 0) = x,

i.e. such that ∫ t−t0

0

f ′
(

(u(t0, 0)α − δατ)
1/α
+

)
dτ = x.

We thus define, for t0 ∈ [0, t],

gt(t0) =

∫ t−t0

0

f ′
(

(u(t0, 0)α − δατ)
1/α
+

)
dτ.

It is not difficult to check that, for t 6 (n + 1 + A)/f ′(K), gt enjoys the following
properties:

• gt is strictly decreasing on [0,min{t, Tn}]. This is a consequence of the fact
that t 7→ u(t, 1) (= u(t, 0)) is non-increasing and strictly larger than ε on
[0, Tn]. Besides, gt is piecewise C 1 on [0,min{t, Tn}] and for all t0 such that
gt(t0) 6 A and for which gt is differentiable,

g′t(t0) 6 −f ′((u(t0, 0)α − δα(t− t0))
1/α
+ )

6 −f ′((u(min{t, Tn}, 0)α − δα(min{t, Tn} − t0))
1/α
+ ).

Note that, if f ′(((u(min{t, Tn}, 0)α−δα(min{t, Tn}−t0))
1/α
+ ) = 0 and gt(t0) 6

A, then g(u(min{t, Tn}, 0)) 6 A, which is not compatible with u(min{t, Tn}, 0) >
ε. Thus there exists γ > 0 such that for all t0 such that gt(t0) 6 A and for
which gt is differentiable, g′t(t0) 6 −γ.
• gt(t) = 0.

• gt(0) = x0(t) if
∫ t

0
f ′((Kα− δατ)

1/α
+ ) dτ 6 A, and is larger than A otherwise.

One then easily shows that for t 6 (n + 1 + A)/f ′(K), the map gt is a piecewise
C 1 function from [0,min{t, Tn}] to its image, which contains [0, x0(t)]. Besides,
there exists a unique t0(t, A) such that gt is a piecewise C 1 diffeomorphism from
[t0(t, A),min{t, Tn}] to [0, x0(t)]. We can then define u for t 6 (n+ 1 +A)/f ′(K) and
[0, x0(t)] by

u(t, x) = (u(g−1
t (x), 0)α − δα(t− g−1

t (x)))
1/α
+ ,

and, for x ∈ x0(t), by u(t, x) = (Kα − δαt)1/α
+ .

As gt depends smoothly on the time parameter t, this defines u as a globally C 0

and piecewise C 1 function in T2n+2 .
We then check that t 7→ u(t, A) is strictly positive, piecewise C 1 and non-increasing

on [0, (n + 1 + A)/f ′(K)]. It is obviously C 1 and decreasing in {t, x0(t) < A}, as
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u(t, A) = (Kα − δαt)1/α
+ , the positivity coming from the fact that K > ε and t 6

Tn+1 6 T∗. For {t, x0(t) = A}, which is an interval of the form [tA, (n+1+A)/f ′(K)],
u(t, A) is given by the formula

u(t, A) = (u(g−1
t (A), 0)α − δα(t− g−1

t (A)))
1/α
+ .

Now, one can check that for ta, tb ∈ [tA, (n + 1 + A)/f ′(K)] such that ta < tb,
defining ta0 and tb0 by the formula

gta(ta0) = A = gtb(t
b
0), i.e. ta0 = g−1

ta (A), tb0 = g−1
tb

(A),

the decay of t0 7→ u(t0, 0) on [0, Tn] implies that

ta0 6 t
b
0, and ta − ta0 > tb − tb0.

Consequently, since t0 7→ u(t0, 0) is non-increasing on [0, Tn+1], we immediately have
that t 7→ u(t, A) is non-increasing on [0, (n + 1 + A)/f ′(K)]. It is also obviously
piecewise C 1 on [0, (n+1+A)/f ′(K)]. The fact that u(t, A) is strictly positive comes
from the fact that t 7→ u(t, 0) stays strictly larger than ε for t 6 Tn.

We then construct the solution u in the set T2n+3 \ T2n+2, using the information
given by u(·, A)|[0,(n+1+A)/f ′(K)] and u(0, ·)|[A,1]. Again, as when working in T1, we
construct the solution u using characteristics and setting, for (t, x) ∈ T2n+3 with
x ∈ [A,min{A+ tf ′(K), 1}],

u(t, x) = u(h−1
t (x), A).

The other case, corresponding to x ∈ [min{A + tf ′(K), 1}, 1], lies in fact in T1, so
regularity issues have been dealt with before. We only need to check that for all
t ∈ [0, Tn+1 + A/f ′(K)], x 7→ u(t, x) is non-decreasing on [A, 1]: this is obvious if
x ∈ [min{A + tf ′(K), 1}, 1] as u(t, x) = K there; when x ∈ [A,min{A + tf ′(K), 1}],
the above formula and the facts that t 7→ u(t, A) is non-increasing and that h−1

t is
strictly decreasing imply that x 7→ u(t, x) is non-increasing on [A,min{A+tf ′(K), 1}].
Therefore, all the items in the above property also hold for n+ 1.

We can thus iterate these arguments while Tn = n/f ′(K) < T∗. If T∗ = ∞, this
concludes Lemma 5.1. If T∗ <∞, we perform a similar iteration in the trapeze

T = {(t, x) ∈ [0, T∗ + 1/f ′(K)]× [0, 1] with x ∈ [max{(t− T∗)f ′(K), 0}, 1]},

constructing a function u in T such that:

• u is a solution of (5.2), is piecewise C 1 on T and globally C 0 on T .
• t 7→ u(t, A) is strictly positive and non-increasing on [0, T∗ +A)/f ′(K)].
• t 7→ u(t, 0) is strictly positive non-increasing on [0, T∗ + 1/f ′(K)].
• u(T∗, 0) = ε.
• For all t ∈ [0, T∗ +A/f ′(K)], x 7→ u(t, x) is non-decreasing on [A, 1].

Case t > T∗. The difficulty when t > T∗ is to show that the solution u remains
continuous in time-space. In order to do this, we introduce (x∗(t), u∗(t)) given by

(5.19)


d

dt

(
x∗
u∗

)
= Fα

(
x∗
u∗

)
, t > T∗, if α ∈ (0, 1),

or
d

dt

(
x∗
u∗

)
∈ F1

(
x∗
u∗

)
, t > T∗, if α = 1,

(
x∗(T∗)
u∗(T∗)

)
=

(
0
ε

)
,

where Fα is defined in (5.6)–(5.7). Here, x∗ corresponds to the characteristicsX(t, T∗, 0)
t > T∗ and x∗(t) 6 A. Note that, due to the choice of ε in (5.11), there exists a time
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t∗ (= T∗ + εα/(δα)), such that the solution (x∗, u∗) satisfies

(5.20) ∀t ∈ [T∗, t∗), x∗(t) ∈ [0, A), and ∀t > t∗, (x∗(t), u∗(t)) = (A, 0),

thus guaranteeing the uniqueness of the solution of (5.19).
We then introduce the following sets:

R0 = {(t, x) ∈ [0,∞)× [0, A], such that, if t > T∗, x ∈ [x∗(t), A]},
R1 = {(t, x) ∈ [0,∞)× [A, 1]},
R2 = {(t, x), with t > T∗, x ∈ [0, x∗(t)]},

and, similarly as before, for n > 0,

T ∗2n = {(t, x) ∈ [0, T∗ + (n+A)/f ′(K)]× [0, 1] with x ∈ [((t− T∗)f ′(K)− n)+, A]},
T ∗2n+1 = {(t, x) ∈ [0, T∗ + (n+ 1)/f ′(K)]× [0, 1] with x ∈ [((t− T∗)f ′(K)− n)+, 1]}.

As before, we construct iteratively a solution u of (5.2) in T ∗2n+1 \R2 for all n ∈ N
such that:

• u is piecewise C 1 and globally C 0 in T ∗2n+1 \R2.
• t 7→ u(t, 1) is strictly positive non-increasing on [0, T∗ + (n + 1)/f ′(K)] and

piecewise C 1.
• for all t > T∗ u(t, x∗(t)) = u∗(t), where (x∗, u∗) is the solution of (5.19).
• For all t ∈ [0, T∗ + (n+A)/f ′(K)], x 7→ u(t, x) is non-decreasing on [A, 1].

Of course, the previous paragraph shows that this is true for n = 0. Let us then
assume that these properties are true for some n ∈ N and show that they are then
true for n+ 1.

Similarly as before, we work first on T ∗2n+2 ∩R0. The construction of the function
u in the set T ∗2n+2 ∩R0 can then be handled as for T2n+2, and following the same
arguments, we easily get that the function u there is piecewise C 1 in T ∗2n+2∩R0, and
that t 7→ u(t, A) is a non-increasing function on [0, T∗ + (n + 1 + A)/f ′(K)], strictly
positive while t 6 t∗, and vanishing for t > t∗.

The construction of the solution u in the set T ∗2n+3∩R1 can then be done similarly
as the one corresponding to T2n+3, and following the same lines, we get that the
solution u is piecewise C 1 in T ∗2n+3 ∩ R1. We nevertheless make the proof slightly
more precise: for (t, x) ∈ T ∗2n+3 ∩R1 \T1, u(t, x) is constructed by

u(t, x) = u(h−1
t (x), A),

where ht is given by (5.18). In particular, to establish the strict positivity of u(t, 1)
for t 6 T∗+ (n+ 2)/f ′(K), we just remark that t0 = h−1

t (x) is equivalent to A+ (t−
t0)f ′(u(t0, A)) = 1, so that u(t, x) = u(t0, A) cannot be zero.

The continuity of the function u constructed above in T ∗2n+3 \ R2 follows easily
from the continuity of u across the interfaces of T ∗2n+2 ∩R0, and T ∗2n+3 ∩R1.

The fact that for all t ∈ [0, T∗ + (n+ 1 +A)/f ′(K)], x 7→ u(t, x) is non-decreasing
in [A, 1] follows as before.

Our goal now is to construct u in R2 as a piecewise C 1 function such that u is
globally continuous on [0,∞)× T and solves (5.2) in [0,∞)× T.

As t 7→ u(t, 0) is strictly positive and non-increasing on [0,∞), we can show,
similarly as before that, for (t, x) ∈ R2, the map

gt(t0) =

∫ t−t0

0

f ′
(

(u(t0, 0)α − δατ)
1/α
+

)
dτ

has the following properties:
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• gt is decreasing on [T∗, t], takes values in [0, x∗(t)], and is surjective on
[0, x∗(t)],

• For all (ta0 , t
b
0) ∈ [T∗, t]

2, gt(t
a
0) = gt(t

b
0) implies ta0 = tb0 or (u(ta0 , 0)α − δα(t−

ta0))+ = (u(tb0, 0)α − δα(t− tb0))+.

It thus allows to set, for (t, x) ∈ R2,

(5.21) u(t, x) = (u(g−1
t (x), 0)α − δα(t− g−1

t (x)))
1/α
+ ,

where g−1
t (x) denotes any t0 ∈ [T∗, t] such that gt(t0) = x. Note that, according to

the second item above, the definition above does not depend on the choice of t0 such
that gt(t0) = x. Besides, u defined this way is continuous on R2 as one can easily
check, and if t > T∗, u(t, x∗(t)) = u∗(t), where (x∗, u∗) is the solution of (5.19).

We then remark that, for t > T∗, and T∗ 6 ta0 < tb0 6 t,

gt(t
a
0) =

∫ t−ta0

0

f ′
(

(u(ta0 , 0)α − δατ)
1/α
+

)
dτ

>
∫ t−tb0

0

f ′
(

(u(ta0 , 0)α − δατ)
1/α
+

)
dτ

>
∫ t−tb0

0

f ′
(

(u(tb0, 0)α − δατ)
1/α
+

)
dτ = gt(t

b
0).

In particular, analyzing the case of equality in the above estimates, we easily get that
for (t, x) ∈ R2 such that u(t, x) 6= 0, t0(t, x) = g−1

t (x) is uniquely defined and

(5.22) t− t0(t, x) 6
u(t0(t, x), 0)α

δα
6
εα

δα
.

Besides, gt is piecewise C 1 locally around t0(t, x) and

g′t(t0) = −f ′
(

(u(t0, 0)α − δα(t− t0)1/α
)

+ u(t0, 0)α−1∂tu(t0, 0)

∫ t−t0

0

f ′
(

(u(t0, 0)α − δατ)1/α
)

(u(t0, 0)α − δατ)1/α−1 dτ.

As u(t, x) 6= 0 and t0 7→ u(t0, 0) decays, this implies that

g′t(t0(t, x)) 6 −f ′
(

(u(t0, 0)α − δα(t− t0(t, x)))1/α
)

= −f ′(u(t, x)) < 0,

and the bound is uniform in a neighborhood of t and x. As t(t0, x) is defined by
gt(t0(t, x)) = x, we see that this implies that t0 is piecewise C 1 for (t, x) ∈ R2

such that u(t, x) 6= 0, so that the definition (5.21) shows that u is piecewise C 1 for
(t, x) ∈ R2 such that u(t, x) 6= 0.

It is thus also interesting to determine the area Z = {(t, x), s.t. u(t, x) = 0}∩R2.
For (t, x) ∈ R2, it is clear, from the relation gt(t0(t, x)) = x and from the fact that

t0 7→ u(t0, 0) decays, that for ta < tb such that (ta, x) and (tb, x) are in R2,

t0(ta, x) 6 t0(tb, x), and ta − t0(ta, x) 6 tb − t0(tb, x),

so that we easily derive from the decay of t0 7→ u(t0, 0) that

u(ta, x) 6 u(tb, x).

It follows that, for all x ∈ [0, A], the map t 7→ u(t, x) decays while (t, x) ∈ R2.
We can in particular define, for x ∈ (0, A], the time t∗(x) = inf{t, s.t. u(t, x) = 0}

(which may be infinite). If t∗(x) is finite, for t < t∗(x), u(t, x) 6= 0, so t0(t, x) is
well-defined and unique, and is an increasing function of time which is bounded by
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t∗(x). Thus, the limit of t0(t, x) as t → t−∗ exists, and we call it t0,∗(x). We then
easily get that

u(t0,∗(x), 0)α − δα(t∗(x)− t0,∗(x)) = 0,

so that

x = gt∗(x)(t0,∗(x)) = g (u(t0,∗(x), 0)) ,

where g is defined in (5.16). Let us now note that there exists only one t0 such that

(5.23) u(t0, 0)α − δα(t∗(x)− t0) = 0 and x = g(u(t0, 0)).

Indeed, the second equation determines uniquely u(t0, 0), and the first equation then
determines uniquely t0. Thus, if t0 satisfies (5.23), t0 = t0,∗(x) and t∗(x) = t0 +
u(t0, 0)α/(δα).

This suggests to study the parametric equation

(5.24) C : t0 ∈ (T∗,∞) 7→ (t(t0), x(t0)),

where t(t0) = t0 +
(u(t0, 0))α

δα
, and x(t0) = g(u(t0, 0)).

(This definition of course coincides with the definition of C in (5.14), recall the defini-
tion of g in (5.16).) It is clear that by construction u(t(t0), x(t0)) = 0 for all t0 > T∗.
Besides, for (t, x) ∈ R2, if there exists T0 > T∗ such that x = g(u(t0, 0)), then

• if t > inf{t(t0), for t0 s.t. x = g(u(t0, 0))}, then u(t, x) = 0;
• if t > inf{t(t0), for t0 s.t. x = g(u(t0, 0))}, then u(t, x) > 0.

These statements follow immediately from the decay of t 7→ u(t, x) and the non-
negativity of u. It follows that

(5.25) ∂Z = C ∪ {(t, A), s.t. t > t∗}.

We remark that, as t0 7→ u(t0, 0) is piecewise C 1 and strictly positive, except at
singularities (which are in finite number in any bounded interval), we have

d

dt0

(
t0 +

(u(t0, 0))α

δα
, g(u(t0, 0))

)
=

(
1 +

u(t0, 0)α−1∂tu(t0, 0)

δ
, g′(u(t0, 0))∂tu(t0, 0)

)
,

so that ∣∣∣∣ ddt0
(
t0 +

(u(t0, 0))α

δα
, g(u(t0, 0))

)∣∣∣∣ 6= 0.

This proves that the tangent, hence the normal, of the curve C is well-defined except at
a locally finite number of points. This indicates that C is a piecewise C 1 parametric
curve with finite limits at singularity points. It is thus a globally Lipschitz and
piecewise C 1 parametric curve.

We have thus proved the regularity properties stated in Lemma 5.1. In particular,
in all connected component of ([0,∞) × T) \ (∪4

i=1Ci ∪ C), the function u is C 1 and
satisfies, by construction

∂tu+ ∂x(f(u)) + h(t, x) = 0,

where h(t, x) = δ1(0,A)u(t, x)/|u(t, x)|α if u(t, x) > 0 and h(t, x) = 0 if u(t, x) = 0.
Since u is also continuous in the whole set [0,∞) × T, a straightforward application
of the integration by parts formula shows that the function u we constructed above
is an admissible solution of (5.2) in [0,∞)× T. �
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5.1.4. Dynamics of the solution u in the case of a strictly convex flux.

Lemma 5.2. Let f and K as in (5.1), δ > 0 and ω = (0, A) ⊂ T. Then the solution
u of (5.2) satisfies:

(i) T∗ defined in (5.12) is finite.
(ii) For all t > t∗ (defined in (5.15)), there exists an open subinterval ω(t) ⊂ ω

such that u(t)|ω(t) = 0, and

|ω \ ω(t)| 6 C

t1+α
, ‖u(t)‖L∞(T) 6

C

t
.

Proof of item (i) of Lemma 5.2. The proof of the first item of Lemma 5.2 follows
from the analysis of the solution u of (5.2) along the characteristics t 7→ X(t, 0, 0), in
particular when it crosses the set {x = 0}.

We thus introduce four sequences (un)n∈N, (tn)n∈N, (vn)n∈N, (τn)n∈N, initialized
by u0 = K and t0 = 0, and defined iteratively for n such that un > ε and vn > 0 as
follows:

• τn > tn is the unique solution of∫ τn−tn

0

f ′((uαn − δατ)
1/α
+ ) dτ = A.

• vn = (uαn − δα(τn − tn))
1/α
+ .

• tn+1 = τn + (1−A)/f ′(vn).
• un+1 = vn.

These choices are made so that for all n ∈ N such that un > ε, u(tn, 0) = un, and
u(τn, A) = vn.
We also set n0 the first integer (if any) for which un < ε or vn = 0. This index n0,
if any, is in fact such that un0

6 ε and vn0
= 0. Indeed, if un > ε, one easily checks

from the definition of ε that vn > 0.
Note that we easily deduce from the formula of vn that

∀n ∈ {0, · · · , n0 − 1}, δα(τn − tn) 6 uαn.

In order to study these sequences, it will be convenient to have a good estimate on
τn − tn in terms of un only. We thus define

β− = inf
[0,K]

f ′(s)

s
, β+ = sup

[0,K]

f ′(s)

s
,

which are finite as f ′(0) = 0 and which are both strictly positive as f is strictly
convex.
We then recall that 1/α > 1. Thanks to the convexity of the function s 7→ s1/α

at the point uα, its graph on [0, uα] is below the chord initiated from the origin,
i.e. s 7→ su1−α, and above its tangent s 7→ (1 − 1/α)u + su1−α/α, which yields the
following estimates: for all u > 0, τ > 0,

(u− δτu1−α)+ 6 (uα − δατ)
1/α
+ 6 (u− δατu1−α)+.

Combining the above two estimates, we infer

β−

∫ τn−tn

0

(un − δτu1−α
n )+ dτ 6 A 6 β+

∫ τn−tn

0

(un − δατu1−α
n )+ dτ,
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which implies in particular that

A >


β−
2δ
u1+α
n if uαn 6 δ(τn − tn),

β−un(τn − tn)− δβ−
2
u1−α
n (τn − tn)2 if uαn > δ(τn − tn),

and

A 6


β+

2αδ
u1+α
n if uαn 6 αδ(τn − tn),

β+un(τn − tn)− αδβ+

2
u1−α
n (τn − tn)2 if uαn > αδ(τn − tn).

We claim that we can deduce from this a lower bound on τn − tn of the form

∀n ∈ {0, · · · , n0 − 1}, αδ(τn − tn) > uαn min

{
α, 1−

√(
1− 2Aαδ

β+K1+α

)
+

}
.

Indeed, this is obvious when τn − tn > uαn/δ. Otherwise, when τn − tn 6 uαn/δ, we
have uαn > αδ(τn − tn) and thus one should have

Aαδ

2β+u
1+α
n

6
αδ

2

τn − tn
uαn

−
(
αδ

2

τn − tn
uαn

)2

.

But un 6 K as the sequence un is non-increasing, so that

Aαδ

2β+K1+α
6

(
αδ

2

τn − tn
uαn

)
−
(
αδ

2

τn − tn
uαn

)2

.

Consequently, if Aαδ/(2β+K
1+α) > 1/4, this cannot happen. Besides, if

Aαδ/(2β+K
1+α) 6 1/4,

we obtain immediately that

τn − tn
uαn

>
1

αδ

(
1−

√
1− 2Aαδ

β+K1+α

)
.

It follows from this estimate and the definition of vn that there exists c0 < 1 such
that for all n ∈ {0, · · · , n0 − 1},

un+1 = vn 6 c0un.

Therefore,

∀n ∈ {0, · · · , n0 − 1}, un 6 c
n
0K, and vn 6 c

n−1
0 K,

and there indeed exists n0 ∈ N such that un0
6 ε. One can also estimate tn0

and
show that it is finite, and thus T∗ is finite. �

Proof of item (ii) of Lemma 5.2. In order to prove item (ii) of Lemma 5.2, we look
at the solution u in [t∗,∞)× [A, 1], where t∗ is given by (5.15).

It follows from Lemma 5.1 that u is piecewise C 1 and continuous in [t∗,∞)×(A, 1),
non-negative there, and u(t, A) = 0 for all t > t∗. Consequently, for all t > t∗,

u(t, 1) = u(t∗, x0),

where x0 is the unique solution of

x0 + (t− t∗)f ′(u(t∗, x0)) = 1.
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In particular, one should have

β−u(t∗, x0) 6 f ′(u(t∗, x0)) 6
1

t− t∗
.

Therefore,

(5.26) ∀t > t∗, u(t, 1) 6
1

β−(t− t∗)
.

From Lemma 5.1 and the fact that for all t > 0, x 7→ u(t, x) is non-decreasing on
[A, 1] and non-negative, we get

∀t > t∗, ‖u(t)‖L∞(A,1) 6
1

β−(t− t∗)
.

Now, the set Z on which u = 0 is delimited by the curve {(t, A), for t > t∗} and
the curve C given by (5.14), that we now estimate: for t0 > T∗,

t0 +
(u(t0, 0))α

δα
6 t0 +

1

βα−(t− t∗)α
,

and∫ ∞
0

f ′((u(t0, 0)α − δατ)
1/α
+ ) dτ =

∫ u(t0,0)α/(δα)

0

f ′((u(t0, 0)α − δατ)
1/α
+ ) dτ

6 β+

∫ u(t0,0)α/(δα)

0

(u(t0, 0)α − δατu(t0, 0)1−α) dτ

6
β+

2δα
(u(t0, 0))1+α 6

β+

2δαβ1+α
−

1

(t− t∗)1+α
.

We then easily deduce that for t > t∗, there exists an open subinterval ω(t) ⊂ ω such
that u(t)|ω(t) = 0, and, for some constant C, for all time t > t∗,

|ω \ ω(t)| 6 C

t1+α
.

Besides, for t > t∗, we easily get from (5.21) and (5.22) that

∀x ∈ [0, A], 0 6 u(t, x) 6 max
t0∈[t−εα/(δα),t]

u(t, 0) 6
1

β−(t− t∗ − εα/(δα))
.

The item (ii) of Lemma 5.2 easily follows. �

5.2. Concave flux and positive constant initial datum. Let K > 0 and f be a
strictly concave flux, and consider the solution u of

(5.27) ∂tu+ ∂xf(u) + a(x)
u

|u|α
= 0, (t, x) ∈ R+ × T, u|t=0 = K.

Setting

v(t, x) = u(t,−x), (t, x) ∈ R+ × T, ã(x) = a(1− x), x ∈ T,
one easily checks that v formally solves

(5.28) ∂tv + ∂xg(v) + ã(x)
v

|v|α
= 0, (t, x) ∈ R+ × T, v|t=0 = K.

with g = −f , which satisfies g′(0) = 0 and inf [−K,K] g
′′ > 0. The fact that this

transformation maps an admissible solution u of (5.27) to an admissible solution v of
(5.28) is easy to check.

Therefore, the counterpart of Lemma 5.2 item (ii) also holds for solutions of (5.2)
when f only satisfies (1.17):
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Lemma 5.3. Let f and K satisfy (1.17), δ > 0 and ω = (0, A) ⊂ T. Then the
solution u of (5.2) satisfies the following property: There exists t∗ > 0 such that for
all t > t∗, there exists an open subinterval ω(t) ⊂ ω such that u(t)|ω(t) = 0, and

|ω \ ω(t)| 6 C

t1+α
, ‖u(t)‖L∞(T) 6

C

t
.

5.3. Negative constant initial datum. Let K > 0 and consider the solution u of

(5.29)

{
∂tu+ ∂xf(u) + a(x)

u

|u|α
= 0, (t, x) ∈ R+ × T,

u|t=0 = −K.
Then, setting

w(t, x) = −u(t, x), (t, x) ∈ R+ × T,
w formally solves

(5.30)

{
∂tw + ∂xh(w) + a(x)

w

|w|α
= 0, (t, x) ∈ R+ × T,

w|t=0 = K,

where the flux h is given by

∀s ∈ [−K,K], h(s) = −f(−s).
It is easy to check that h′(0) = 0 and inf [−K,K] |h′′(s)| > 0. Besides, this transforma-
tion also establishes the correspondence between the admissible solution u of (5.29)
and the admissible solution w of (5.30).

Therefore, Lemma 5.2 item (ii) also holds when the initial datum is constant = −K,
under the only condition that the flux f satisfies (1.17).

Lemma 5.4. Let f and K satisfy (1.17), δ > 0 and ω = (0, A) ⊂ T. Then the
solutions u± of

(5.31) ∂tu± + ∂xf(u±) + δ1(0,A)
u±
|u±|α

= 0 in R+ × T, u± |t=0= ±K inT.

satisfy the following property: There exists t∗ > 0 such that for all t > t∗, there exists
an open subinterval ω±(t) ⊂ ω such that u±(t)|ω±(t) = 0, and

|ω \ ω±(t)| 6 C

t1+α
, ‖u±(t)‖L∞(T) 6

C

t
.

5.4. Proof of Theorem 1.9. The proof of Theorem 1.9 follows by comparing the
solution u of (1.1)–(1.2) with initial datum u0 ∈ L∞(T) with some reference solutions.

Namely, we assume that a satisfies (1.10) for some open interval ω ⊂ T. Up to
a translation in space, we can assume that ω = (0, A). Therefore, the solution u
of (1.1)–(1.2) with initial datum u0 ∈ L∞(T) with ‖u0‖L∞ 6 K, K as in (1.12), is
sandwiched between the solutions u± of (5.31).

We then immediately conclude Theorem 1.9 from Lemma 5.4.

6. Numerical simulations and open problems

We present in this section some numerical experiments for various equations to
which our theoretical results do not apply. The main numerical technique relies on
the time-splitting scheme as time integrator. If one considers a general evolution
equation

(6.1)

{
∂tu = Au+ Bu, (t, x) ∈ R+ × T,
u(0, x) = u0(x), x ∈ T,
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where A and B are (possibly non-linear) operators which need not commute. For a
given time step δt > 0, set tn = nδt, n = 0, 1, 2, . . . Define the operators SA and SB
associated respectively to the evolution equations

∂tuA = AuA, ∂tuB = BuB, (t, x) ∈ R+ × T,

The operators satisfy the following relations involving the exact solutions of the as-
sociated equations:

uA(t+ δt) = SA(δt)uA(t) and uB(t+ δt) = SB(δt)uB(t).

The splitting idea (see for example [19]) consists in approximating the continuous flow
associated to (6.1) by a composition of operators SA and SB in the spirit of Trotter-
Kato formula, the key for an efficient implementation being to solve efficiently these
two reduced equations. We consider in this paper the second order Strang splitting
scheme. Let un(x) be the approximation of u(tn, x). The approximate solution to
(6.1) at time tn+1 reads

(6.2) un+1 = SA(δt/2)SB(δt)SA(δt/2)un.

6.1. Scalar conservation laws. Let us now describe how it is applied to the equa-
tion (1.1). It involves the two reduced equation

(6.3) ∂tu+ ∂xf(u) = 0, (t, x) ∈ R+ × T,

and

(6.4) ∂tu = −a(x)
u

|u|α
, (t, x) ∈ R+ × T.

The equation (6.3) is a standard nonlinear conservative hyperbolic equation. In the
second equation (6.4), the space variable can be considered as a parameter and the
equation reduced to an ordinary equation with solution

(6.5) u(t, x) = sign(u0(x)) (|u0(x)|α − αa(x)t)
1/α
+ .

If the flux f is linear, f(u) = cu, the solution to (6.3) is obviously

u(t, x) = u0(x− ct).

For a general flux, we compute an approximate solution thanks to Rusanov scheme
(see for example [22, p.233]). We identify the torus with (0, 1) endowed with periodic
boundary conditions and choose the spatial mesh size δx > 0 with δx = 1/J with J
denoting the number of nodes. The grid points are xj = jδx, j = 0, 1, · · · , J . Let unj
be the full approximation to u(tn, xj). The Rusanov scheme reads

un+1
j = unj −

δt

δx

(
Fnj+1/2 − F

n
j−1/2

)
,

where the Rusanov numerical flux is given by

Fnj+1/2 = FRus(unj , u
n
j+1)

=
f(unj ) + f(unj+1)

2
−

max(|f ′(unj )|, |f ′(unj+1)|)
2

(unj+1 − unj ).

The theoretical results of previous sections apply to fluxes with assumption f ′(0) 6= 0
or f ′(0) = 0 with convexity hypothesis (convex or concave flux). Some fluxes do not
satisfy such hypothesis. This is the case of the Buckley-Leverett flux which models
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two phase fluid flow in a porous medium ([21]). In one space dimension the equation
has the standard conservation law form (k > 0 is a parameter)

(6.6) fBLk (u) =
u2

u2 + k(1− u)2
.

We compute the evolution of the solution to (1.1) with fBL1/4 flux and the damping

function a(x) given by (1.18). The numerical parameters are u0(x) = K = 1.25,
A = 1/4, δ = 1, δt = 10−5 and δx = 5 · 10−5. The evolution of the solutions for
α = 3/4 and α = 1 are plotted on Figure 6.1 and the evolution of their characteristic
curves on Figure 6.2. The characteristic curves are computed as the evolution of a
vector field with velocity given by the solution to (1.1). We see that contrary to convex
(or concave) fluxes with f ′(0) = 0, shock and rarefaction waves appear in finite time.
Since the domain is a torus, the shock wave initiated from x = A = 1/4 propagates
until the influence of the damping function a is enough important to annihilate the
solution inside the support of a. We then recover a similar process as the one observed
on Figure 5.1 where characteristic curves become vertical lines in finite time inside
the support of the damping function a. The effect of decreasing α is to delay the
extinction of the solution in (0, A). The proof of this phenomenon is still missing.
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Figure 6.1. Evolution of the solution for Buckley-Leverett flux fBL1/4

with α = 0.75 (left) and α = 1 (right)
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Figure 6.2. Evolution of the characteristic curves for Buckley-
Leverett flux fBL1/4 with α = 0.75 (left) and α = 1 (right)

6.2. Viscous Burgers equations. We consider here the convection diffusion equa-
tion given for µ > 0 by

(6.7) ∂tu+ ∂x

(
u2

2

)
= µ∂2

xu− a(x)
u

|u|α
, (t, x) ∈ R+ × T.

We look at the solutions when a(x) = δ1ω, ω = (0, A), A < 1, the torus T being
the circle (0, 1). This equation involves three different operators. We have to apply a
second order three-operators splitting scheme which reads for the evolution equation
∂tu = (A+ B + C)u:

(6.8) un+1 = SA(δt/2)SB(δt/2)SC(δt)SB(δt/2)SA(δt/2)un,

where SA, SB and SC denote the flows associated to operators A, B and C. Since we
study the equation (6.7) on a torus, we benefit from the periodicity to use fast Fourier
transform in order to make space approximation of the solutions of the heat equation

∂tw = µ∂2
xw.

The spatial mesh size is defined by δx = 1/J , J = 2P , P ∈ N∗. Since we discretize the
heat equation by the Fourier spectral method, wnj and its Fourier transform satisfy
the following relations:

wnj =
1

J

J/2−1∑
m=−J/2

ŵnme
iξm(xj−x`), j = 0, · · · , J − 1,
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and

ŵnm =

J−1∑
j=0

wnj e
−iξm(xj−x`), m = −J

2
, · · · , J

2
− 1,

where ξm = 2πm for all m = −J2 , · · · ,
J
2 − 1. The discrete Laplace operator ∆P is

therefore define by

(̂∆P v)m = −ξ2
mv̂m, v ∈ CM .

We present on Figure 6.3 the evolution of the logarithm of the solution. We choose
the same numerical parameters used for Buckley-Leverett equation, the only difference
relying on the mesh size which is δx = 2−14. We present the logarithm to show that
like in the hyperbolic case, the solution becomes zero on the support of the damping
function a after a time T ∗ which depends on the parameter α. What is more surprising
is the fact that after the time T ∗, the solution on (A, 1) behaves like the solution of
the heat equation with homogeneous Dirichlet boundary conditions associated to the
first eigenvalues of the Laplacian. We know that this solution on (A, 1) is

v(t, x) = exp(−µλ2t) sin(λ(x−A)),

with λ = π/(1−A). We clearly identify this phenomenon by displaying the evolution
of the L∞ norm of the solution with respect to time on Figure 6.4. We plot both
the L∞ norm and a dashed line in log-scale with slope −µλ2. The sin-like behavior
of the solution on [A, 1] for time t = 10 is also clearly present on Figure 6.4. A
rigorous mathematical proof of the above observations is, to our knowledge, missing,
despite the works [8, 11], where conditions for complete extinctions of the solutions
are discussed (see also [7, 9, 10] for related results).
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Figure 6.3. Evolution of the log10 of the solution to (6.7) with α = 0.75

We end up this paragraph by emphasizing that (6.7) is a viscous approximation of
the Burgers equation, which is a conservation law fitting the assumptions of Theorem
1.9. It is thus completely natural to ask the behavior of (6.7) in large times, similarly
to what has been done in Theorem 1.9. Though, as our numerical simulations un-
derline, the large-time behavior of (6.7) is very different from the one of the Burgers
equations predicted by Theorem 1.9. This is an evidence of the fact that the limit of
large times and the limit of small viscosities do not commute, as observed in other
contexts for instance in [20].
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Figure 6.4. Evolution of the L∞ norm of the solution to (6.7) in
log-scale (left) and solution at time t = 10 (right) for α = 0.75

6.3. Wave equation. We consider now the wave equation with homogeneous Dirich-
let boundary conditions

(6.9)

 ∂2
t u− c2∂2

xu = −a(x)
∂tu

|∂tu|α
, (t, x) ∈ R+ × (0, 1),

u(t, 0) = u(t, 1) = 0,

completed with initial conditions u(0, x) = u0(x) and ∂tu(0, x) = u1(x).
To numerically simulate the solution to (6.9), we begin by transforming the equa-

tion as the first order hyperbolic system

∂t

(
u
v

)
=

(
0 1

c2∂2
x 0

)(
u
v

)
+

(
0

−a(x)v/|v|α
)
.

We can therefore apply the Strang splitting method (6.2). The solution to the ODE
∂tv = −a(x)v/|v|α is given by (6.5) and we approximate the free wave equation with
the Newmark scheme ([25])

(6.10)
un+1
j = unj + δtvnj + δt2

[
ζc2wn+1

j + (1/2− ζ)c2wnj
]
,

vn+1
j = vnj + δt

[
(1− θ)c2wnj + θc2wn+1

j

]
,

with u0
j = u0(xj), v

0
j = u1(xj) and wkj = (ukj+1 − 2ukj + ukj−1)/(δx)2. We select for

our numerical simulations θ = 1/2 and ζ = 1/4 for which the scheme is both second
order in space and time and unconditionally stable.

We select the initial conditions

u0(x) = K

 1− e1 exp(−0.1/(0.1− x)), if x < 0.1,
1, if 0.1 6 x 6 0.9,
1− e1 exp(−0.1/(x− 0.9)), if x > 0.9,

and u1(x) = 0. The damping function is a(x) = δ1ω, ω = (3/8, 5/8). The numerical
parameters are α = 1, c = 0.1, δt = 5 · 10−4, δx = 10−3/3, δ = 1 and K = 1.25.

As can be expected (see Figure 6.5), the time derivative of the solution is anni-
hilated on the support of a after a time T ∗, the solution u becoming constant for
t > T ∗.
Let us underline that the linear wave equation is the prototype of a 2 × 2 system
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Figure 6.5. Evolution of the solution to (6.9), u on the left and ∂tu
on the right

of conservation laws, which can be easily seen with the use of characteristics. It is
thus natural to consider such models as a generalization of (1.1)–(1.2). Note that the
behavior of the solution of (6.9) when the damping acts everywhere in the domain
has been studied in [5], or when the damping acts on the boundary [24], but the case
of a localized damping term involving ∂tu still does not seem to be precisely described
in the literature. In fact, the interested reader should also notice the close connection
of this problem with the non-linear damped oscillator of the form

mx′′ + δ
x′

|x′|α
+ ω2x = 0, t > 0,

with m > 0, α ∈ (0, 1], and ω > 0, whose large time behavior is rather subtle, see e.g.
[3, 26].

6.4. Schrödinger equation. The last equation we consider is the strongly damped
cubic nonlinear Schrödinger (NLS) equation, motivated by the works [12, 13] in which
the damping is effective everywhere. We thus wonder if the previous results for
hyperbolic equations can be extended to the Schrödinger equation

(6.11) i∂tu+ ∂2
xu = −q|u|2u− ia(x)

u

|u|α
, (t, x) ∈ R× T.

with initial datum u(0, x) = u0(x). If the damping function a is zero, then the cubic
NLS equation admits a special solution known as soliton. This solution is given by

(6.12) usol(t, x) =

√
2k

q
sech(

√
k(x− ct) exp(i

c

2
(x− ct)) exp(i(k +

c2

4
)t).

This solution evolves as the profile u0 propagating at velocity c with time phase
change. This solution for c = 20, k = 0.81 and the torus x ∈ (−10, 10) is plotted
on Figure 6.6. The numerical scheme again relies on the Strang splitting scheme for
three operators (6.8). As for the Burgers heat equation, the space approximation is
performed thanks to fast Fourier transform. The complex solution to ODE ∂tu =
−a(x)u/|u|α is given by

u(t, x) = (|u0|α − αa(x)t)
1/α
+ exp(iArg(u0)),
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Figure 6.6. Evolution of the modulus of the soliton (6.12) for c = 20
and k = 0.81.

whereas the solution to the ODE i∂tu = −q|u|2u is given by

u(t, x) = exp(itq|u0(x)|2)u0(x).

We present the effects of the damping function a(x) = δ1ω, ω = (−10,−6) ∪ (6, 10)
on the soliton for T = (−10, 10) and α = 1. The soliton initial datum overlaps the
support of a. The numerical parameters are δt = 5 · 10−4 and δx = 10 · 2−12. As
expected, the solution begins to propagate to the right direction and then vanishes
on the support of a (see Figure 6.7). This is more clear on log scale. Again, to our
knowledge, this behavior has not been proved rigorously in the literature.
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Figure 6.7. Evolution of the solution to (6.11) in standard scale
(left) and in log scale (right)
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