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Abstract

In this article, we discuss the stabilization of incompressible Navier-Stokes equations in a 2d
channel around a fluid at rest when the control acts only on the normal component of the upper
boundary. In this case, the linearized equations are not controllable nor stabilizable at an exponential
rate higher than νπ2/L2, when the channel is of width L and of length 2π and ν denotes the viscosity
parameter. Our main result allows to go above this threshold and reach any exponential decay rate
by using the non-linear term to control the directions which are not controllable for the linearized
equations. Our approach therefore relies on writing the controlled trajectory as an expansion of order
two taking the form εα+ ε2β for some ε > 0 small enough. This method is inspired by the previous
work [18] by J.-M. Coron and E. Crépeau on the controllability of the Korteweg de Vries equations.

1 Introduction

1.1 Setting and main result

The goal of this article is to discuss the stabilization of an incompressible fluid locally around the rest
state in a 2d channel. We set

Ω = T× (0, L), (1.1)

where T is the 1d torus, identified with (0, 2π) with periodic boundary conditions in the x1-variable, and
L > 0, see Figure 1.1. The Navier-Stokes equations read as follows:

∂tu+ (u · ∇)u− ν∆u+∇p = 0, in (0,∞)× Ω,
div u = 0, in (0,∞)× Ω,
u(t, x1, 0) = (0, 0), on (0,∞)× T,
u(t, x1, L) = (0, g(t, x1)), on (0,∞)× T,
u(0, x1, x2) = u0(x1, x2), in Ω.

(1.2)

Here, u = u(t, x1, x2) = (u1(t, x1, x2), u2(t, x1, x2)) denotes the velocity (∈ R2) of the fluid, p =
p(t, x1, x2) denotes the pressure and g(t, x1) is the boundary control. The viscosity coefficient ν > 0
is assumed to be a positive constant.

A simple stationary solution of system (1.2) is given by (u, p) = (0, 0, 0) with g = 0, corresponding
to a fluid at rest. Our goal is to prove a local stabilization result around this particular state at any
exponential decay rate ω > 0. The main difficulty for stabilizing the fluid is that the control function
g acts only on the normal component of the velocity. Therefore, due to the incompressibility condition
div u = 0, we necessarily have ∫

T
g(t, x1) dx1 = 0, ∀t > 0. (1.3)
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Figure 1: The domain Ω.

In particular, if we consider the linearized equations
∂tu− ν∆u+∇p = 0, in (0,∞)× Ω,
div u = 0, in (0,∞)× Ω,
u(t, x1, 0) = (0, 0), on (0,∞)× T,
u(t, x1, L) = (0, g(t, x1)), on (0,∞)× T,
u(0, x1, x2) = u0(x1, x2), in Ω,

(1.4)

and if we expand u into Fourier series

u(t, x1, x2) =
∑
k∈Z

uk(t, x2)eikx1 ,

then the 0-mode u0 defined by

u0(t, x2) =

∫
T
u(t, x1, x2) dx1 =

(
u0,1(t, x2)
u0,2(t, x2)

)
, (1.5)

satisfies the uncontrolled equation
∂tu0,1 − ν∂22u0,1 = 0, in (0,∞)× (0, L),
u0,1(t, 0) = u0,1(t, L) = 0, on (0,∞),

u0,1(0, x2) =

∫
T
u0(x1, x2) · e1 dx1, in (0, L),

u0,2(t, x2) = 0, in (0,∞)× (0, L).

(1.6)

In particular, this implies that any stabilization strategy based only on the linearized system (1.4) will
fail to stabilize the full system (1.2) at a rate higher than νπ2/L2, corresponding to the first eigenvalue
λ0,1 = −νπ2/L2 of the operator ν∂22 with Dirichlet boundary conditions on (0, L).

That leads to a natural restriction on the decay rate of the solutions if we use a strategy based on
the linearized system (1.4). We refer to the work [29] for decay results in this spirit for the linearized
system (1.4).

Our goal is to show that one can achieve the stabilization of the non-linear system (1.2) at a rate
higher than νπ2/L2 by using the effect of the non-linearity.

Before stating our main result, we introduce some functional spaces adapted to deal with systems
(1.2) and (1.4). Namely, we define

V1(Ω) =
{
u = (u1, u2) ∈ H1(Ω)×H1(Ω) | div u = 0 in Ω

}
, (1.7)

V1
0(Ω) =

{
u ∈ V1(Ω) |u(x1, 0) = u(x1, L) = 0 for x1 ∈ T

}
. (1.8)

In these spaces, let us recall that the functions are 2π periodic in the x1 variable, the periodicity with
respect to the x1-variable being encoded in the condition x1 ∈ T.

We are then in position to state our main result.
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Theorem 1.1 (Local open loop exponential stabilization). Let ω0 > 0. There exist γ > 0 and C > 0,
depending on ω0 such that, for all u0 ∈ V1

0(Ω) obeying∥∥u0
∥∥
V1

0(Ω)
6 γ, (1.9)

there exists g ∈ L2((0,∞)× T) satisfying (1.3) such that the solution (u, p) of system (1.2) satisfies

∀t > 0, ‖u(t)‖V1(Ω) 6 Ce−ω0t. (1.10)

The strategy used to prove Theorem 1.1 will be exposed in Section 3 and the detailed proof of
Theorem 1.1 will be given in Section 5.

Let us emphasize that we go beyond the threshold νπ2/L2 imposed by the linearized equations
(1.4). Therefore, due to the above remarks, Theorem 1.1 cannot be obtained as a consequence of the
stabilizability properties of the linearized equations (1.4) only, and the non-linearity in (1.2) shall be
used. In order to do that, we perform a power series expansion of the solution u in the spirit of [17,
Chap. 8], where such a strategy is explained for a control problem in a finite dimensional setting, and
of [18], see also [14, 15], where it is applied to obtain controllability results for the Korteweg de Vries
equation. We also refer to [8, 10] for applications of these techniques to the case of Schrödinger equations.

In fact, we will expand the solution u at order 2 in the form u = εα + ε2β, where ε > 0 is small,
see Section 3 for more details. This will allow us to somehow decouple the dynamics of the linearized
system (1.4) satisfied by α to the one of second order satisfied by β, in which the term α · ∇α can be
seen as an indirect control on the dynamics of β. With this respect, we are close to the setting developed
recently in [21] in a finite-dimensional context in which a second order expansion was used to propose
time-varying feedback laws to stabilize a class of quadratic systems, and [22] where a similar strategy is
developed to stabilize the Korteweg de Vries equation in a case in which the linearized equations are not
controllable. Still, our approach constructs an open loop control. We thus call the property stated in
Theorem 1.1 an open loop stabilization result, using the wording of [12, Part I, Chap.1, Definition 2.3]).
So far, we do not know if we can construct a time-periodic feedback to obtain stabilization results at any
rate for (1.2), but the works [21, 22] might suggest some ideas in this direction.

1.2 Related references

The stabilization of the linearized incompressible Navier-Stokes system in a 2d channel (with periodic
conditions with respect to x1) linearized around a steady-state parabolic laminar flow profile (P(x2), 0),
with P(x2) = C(x2

2 − Lx2) with C ∈ R (Poiseuille flow) has been studied in [29, 6, 5]. In particular, in
[29] the author proved that the linearized equations of (1.2) around the state (P(x2), 0) is exponentially
stabilizable with some decay rate ω0, 0 < ω0 6 νπ2/L2 by a finite-dimensional feedback control acting
on the normal velocity on the upper wall {x2 = L}. Similar stability results were obtained when the
controls act on the normal components of the velocity on both lower and upper walls {x2 ∈ {0, L}} in
[5]. In [6], it was shown that the exponential stability of the linearized system around (P(x2), 0) can be
achieved with probability 1 using a finite number of Fourier modes and a stochastic boundary feedback
controller acting on the normal component of velocity only.

Let us also mention that there are several results on the boundary stabilization of Navier-Stokes
equations [7, 28, 1, 4, 37, 33], all of them using the stabilization properties of the linearized equations.
Here, we emphasize that when using only one boundary control acting on the normal component of
velocity and trying to obtain a decay rate higher than νπ2/L2, further work is required.

Our approach is actually closely related to the question of local exact controllability to trajectories for
the Navier-Stokes equations when considering distributed controls with some vanishing components. On
this issue, let us mention [19]. There, the authors consider the two-dimensional Navier-Stokes system in
a torus and establish local null controllability with internal controls having one vanishing component. In
such a case, the linearized equations around the state 0 are not null-controllable. As in our case, a whole
family of solutions cannot be controlled directly. Thus, the authors use the non-linearity to recover the
controllability of the non-linear system, in the spirit of the return method, see e.g. [17]. Similar ideas were
also developed recently in [20] to show local null controllability for the three-dimensional Navier-Stokes
equations by using a distributed control with two vanishing components. Let us also mention that,
according to [23] and an easy extension argument, Navier-Stokes equations are locally null-controllable
when the controls act on the boundary. However, the controls constructed in that way act on both the
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tangential and normal components of the velocity. The possibility of controlling Navier-Stokes equations
with controls acting only on the normal component of the velocity does not seem to follow easily from
the construction in [17, 20].

In fact, our result is also related to the boundary controllability results obtained in the works [11, 2]
for particular linear parabolic systems with controls acting at the boundary on only some components
of the system. Still, as in our case there is an infinite number of directions on which the control does not
act (recall (1.6)), our strategy does not follow the ones developed in these articles.

We should also mention that one motivation to study the case of a control acting only on the normal
components of the boundary of the fluid comes from stabilization problems for fluid-structure models
when the structure is located at the boundary of the fluid and the control acts on the structure. We refer
to [33, 35] and [24, 25] for several models of this type. We have also to mention the works [26] which
studies a related unique continuation problem for Stokes equations and [30], where a unique continuation
result is proved in the case of a channel with Dirichlet boundary conditions on the whole boundary. See
also [31], [32] for more refined results of the same type.

1.3 Outline

In Section 2, we recall some results concerning the linearized system (1.4) and the unique continuation
properties of the eigenvectors of the Stokes operator, emphasizing the presence of eigenvectors for which
unique continuation fails. We also introduce some notations associated to our stabilization problem. In
Section 3, we present the general strategy of our approach and describe the main results we need, in
particular to control the Navier-Stokes equations in the vector space spanned by the eigenvectors of the
0-mode of (1.4) corresponding to eigenvalues larger than −ω0. In Section 4, we show how to control the
projection on this space. This contains the main technical difficulties of our work. In Section 5, we prove
Theorem 1.1 by collecting together all the estimates proved in the previous sections and showing the
exponential decay of the norm of the solution at rate ω0. Section 6 then provides some further comments.
The proof of some technical results are given in the appendix.

Acknowledgements. We deeply acknowledge Jean-Pierre Raymond for having pointed out this open
question to us and for his continuing encouragements during this work. We also deeply thank Jean-Michel
Coron for his encouragements and for having sent us the works [21, 22].

2 Preliminaries on the linearized system (1.4)

In this section, we recall some basic facts on the linearized equation (1.4) and give a modal description
adapted to our setting.

2.1 Functional framework

In the following, we will often deal with functions u defined in Ω taking values in R2, hence belonging
to functional spaces of the form (L2(Ω))2, or (Hs(Ω))2, s ∈ {1, 2}. To simplify notations, we will simply
denote by L2(Ω) and Hs(Ω), the spaces (L2(Ω))2 and (Hs(Ω))2 respectively.

Recall that Ω = T× (0, L) (see (1.1) and Figure 1.1). For convenience, we define Γ0 = {(x1, 0) |x1 ∈
T}, Γ1 = {(x1, L) |x1 ∈ T} the lower and upper boundaries, and Γ = Γ0 ∪ Γ1. In addition to the spaces
V1(Ω), V1

0(Ω) defined in (1.7)–(1.8), we introduce the spaces

V0(Ω) =
{
u = (u1, u2) ∈ L2(Ω) | div u = 0, 〈u.n, 1〉

H−
1
2 (Γ),H

1
2 (Γ)

= 0
}
, (2.1)

V0
n(Ω) =

{
u ∈ V0(Ω) |u · n = 0 on Γ

}
. (2.2)

We also introduce the Helmholtz operator P (also called Leray projector) as the orthogonal projection
operator from L2(Ω) onto V0

n(Ω). This operator P can be defined as follows

Pf = f −∇p−∇q,

where {
∆p = div f, in Ω,
p = 0, on Γ,

and

{
∆q = 0, in Ω,
∂nq = (f −∇p) · n, on Γ.
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The Stokes operator is then given by

A = νP∆, with domain D(A) = H2(Ω) ∩V1
0(Ω) on V0

n(Ω). (2.3)

It is well-known that A is the infinitesimal generator of a strongly continuous analytic semigroup
(etA){t>0} on V0

n(Ω) since A is maximal dissipative and self-adjoint. Besides, A has a compact re-
solvent, so the spectrum of A consists of a set of isolated real eigenvalues of finite multiplicity going to
−∞.

We now rapidly describe the functional setting adapted to the linearized equations (1.4).
As we mentioned, the control function g has to satisfy condition (1.3). We therefore introduce the

set

L2
0(T) =

{
g ∈ L2(T)

∣∣∣ ∫ 2π

0

g(x1)dx1 = 0

}
.

To put system (1.4) in an abstract form, we introduce the Dirichlet operator D ∈ L (L2
0(T),V0(Ω))

defined by

Dg = w, with


−ν∆w +∇p = 0, in Ω,
div w = 0, in Ω,
w = (0, 0), on Γ0,
w = (0, g), on Γ1.

(2.4)

Then the linearized equations (1.4) can be rewritten in the following abstract form Pu′ = ÃPu+ (−Ã)PDg, for t > 0,
(I − P)u = (I − P)Dg, for t > 0,
Pu(0) = Pu0,

(2.5)

where Ã is the extension to the space (D(A))′ of the unbounded operator A with domain D(Ã) = V0
n(Ω)

defined by the extrapolation method. Therefore, the control operator in (1.4) reads as

B = (−Ã)PD : L2
0(T) −→ D(A)′. (2.6)

The study of the Cauchy problem for (1.4) is done in [34]. For u0 ∈ V0
n(Ω) and g ∈ L2(0, T ;L2

0(T))
equation (1.4) admits a unique weak solution in L2(0, T ;V0(Ω)). But we will often use the following
regularity results on Stokes equations with source term and non-homogeneous Dirichlet boundary con-
ditions, that can be found in [34], see in particular [34, Theorem 2.3, item (ii)] and [34, Theorem 2.5]. If
u0 ∈ V1

0(Ω), f ∈ L2(0, T ;L2(Ω)) and g ∈ H1
0 (0, T ;L2

0(T)) ∩ L2(0, T ;H2(T)), then the solution u of Pu′ = ÃPu+ Pf + (−Ã)PDg, for t > 0,
(I − P)u = (I − P)(Dg), for t > 0,
Pu(0) = Pu0,

(2.7)

or equivalently 
∂tu− ν∆u+∇p = f, in (0,∞)× Ω,
div u = 0, in (0,∞)× Ω,
u(t, x1, 0) = (0, 0), on (0,∞)× T,
u(t, x1, L) = (0, g(t, x1)), on (0,∞)× T,
u(0, x1, x2) = u0(x1, x2), in Ω,

(2.8)

belongs to H1(0, T ;V0(Ω)) ∩ L2(0, T ;H2(Ω)) and

‖u‖H1(0,T ;V0(Ω))∩L2(0,T ;H2(Ω))

6 C
(∥∥u0

∥∥
V1

0(Ω)
+ ‖f‖L2(0,T ;L2(Ω)) + ‖g‖H1

0 (0,T ;L2
0(T))∩L2(0,T ;H2(T))

)
. (2.9)
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2.2 Stabilizable eigenvectors

Stabilizability for a given decay rate ω > 0 of the pair (A,B) appearing in (2.3), (2.6) reduces to show
the following unique continuation property (see e.g. [3]):

If A∗Φ = λΦ for some Re λ > −ω and if B∗Φ = 0, then Φ = 0. (2.10)

In (2.3), A∗ = A and therefore we have to verify (2.10) for λ ∈ R and λ > −ω. Note that we
already know that such a unique continuation property is violated for the eigenvectors corresponding to
the 0-mode (1.5)–(1.6). In Proposition 2.1 afterwards, we will show that it is the only case in which the
unique continuation property (2.10) fails.

We start by rewriting the equation AΦ = λΦ in its PDE form λΦ− ν∆Φ +∇q = 0, in Ω,
div Φ = 0, in Ω,
Φ = 0, on Γ.

(2.11)

The computation of B∗Φ yields to

B∗Φ(x1) = q(x1, L)− 1

2π

∫
T
q(x1, L)dx1, x1 ∈ T. (2.12)

Expanding (Φ, q) into Fourier series

(Φ, q) = (φ1, φ2, q) with



φ1(x1, x2) =
∑
k∈Z

φ1,k(x2)eikx1 , (x1, x2) ∈ Ω,

φ2(x1, x2) =
∑
k∈Z

φ2,k(x2)eikx1 , (x1, x2) ∈ Ω,

q(x1, x2) =
∑
k∈Z

qk(x2)eikx1 , (x1, x2) ∈ Ω,

(2.13)

the eigenvalue problem (2.11) for (φ1,k, φ2,k, qk) reads as follows
(λ+ νk2)φ1,k(x2)− νφ′′1,k(x2) + ikqk(x2) = 0, in (0, L),

(λ+ νk2)φ2,k(x2)− νφ′′2,k(x2) + q′k(x2) = 0, in (0, L),

ikφ1,k(x2) + φ′2,k(x2) = 0, in (0, L),

φ1,k(0) = φ1,k(L) = φ2,k(0) = φ2,k(L) = 0,

(2.14)

while the observation is
B∗Φ(x1) =

∑
k∈Z\{0}

qk(L)eikx1 , x1 ∈ T.

As explained in the introduction, under this form we immediately check that, the unique continuation
cannot hold for the 0-mode. But, B∗Φ = 0 implies that qk(L) = 0 for all k ∈ Z \ {0}. Based on that
remark, we will prove the following result.

Proposition 2.1. Assume that Φ satisfies AΦ = λΦ for some λ ∈ R and B∗Φ = 0. Expanding (Φ, q)
as in (2.13), for all k ∈ Z \ {0}, we have φ1,k = φ2,k = qk = 0 everywhere in (0, L).

Proof. If (Φ, q) written as in (2.13) solves (2.14) and if B∗Φ = 0, then we have qk(L) = 0 for k ∈ Z\{0}.
Therefore, for k ∈ Z \ {0}, φ2,k solves{

νφ
(4)
2,k(x2)− (λ+ 2νk2)φ′′2,k(x2) + k2(λ+ νk2)φ2,k(x2) = 0 in (0, L),

φ2,k(0) = φ2,k(L) = φ′2,k(0) = φ′2,k(L) = φ′′′2,k(L) = 0.
(2.15)

Obviously, if λ = 0, multiplying (2.15) by φ2,k, integrating over (0, L) and using the boundary conditions,
we get φ2,k = 0. Similarly, if λ = −νk2, multiplying (2.15) by φ2,k, integrating in space and using the
boundary conditions, we get φ′2,k = 0. Hence φ2,k = 0 thanks to the boundary conditions.
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We therefore focus on the case λ /∈ {0,−νk2}, and we look for a solution θ of the following problem:{
νθ(4)(x2)− (λ+ 2νk2)θ′′(x2) + k2(λ+ νk2)θ(x2) = 0 in (0, L),
θ(0) = θ′(0) = 0,

with θ′(L) 6= 0. (2.16)

As (2.16) is an ODE with constant coefficients, with roots ±k, ±
√
k2 + λ/ν (all distinct since λ /∈

{0,−νk2}), θ has to be of the form

θ(x2) = C1e
kx2 + C2e

−kx2 + C3e
(
√
k2+λ

ν )x2 + C4e
(−
√
k2+λ

ν )x2 , x2 ∈ (0, L),

for C1, C2, C3, C4 suitable constants. We then choose θ of the form

θ(x2) =

√
k2 +

λ

ν
sinh(kx2)− k sinh

(√
k2 +

λ

ν
x2

)
, x2 ∈ (0, L),

so that it satisfies the ODE (2.16)(1) in (0, L), the boundary condition θ(0) = θ′(0) = 0 and

θ′(L) = k

√
k2 +

λ

ν

(
cosh(kL)− cosh

(√
k2 +

λ

ν
L

))
.

As λ /∈ {0,−νk2}, θ′(L) 6= 0 (since λ ∈ R \ {0,−νk2},
√
k2 + λ/ν ∈ (R+ \ {0, k}) ∪ iR).

Using this function θ as a test function, we multiply (2.15) by θ and integrate, and we get φ′′2,k(L) = 0.
Therefore, φ2,k satisfies φ2,k(L) = φ′2,k(L) = φ′′2,k(L) = φ′′′2,k(L) = 0 and satisfies the linear ODE (2.15)
without source term. Hence φ2,k = 0 everywhere and φ1,k and qk also identically vanish in (0, L) thanks
to (2.14).

2.3 Projection

According to Proposition 2.1, a part of the spectrum of the operator A is detectable through B∗. Given
ω0 > 0, we introduce

ω > ω0,

and decompose the functional space V0
n(Ω) into the following vector spaces:

• The stable part corresponding to the vector space spanned by the eigenfunctions of A with eigen-
values smaller than −ω.

• The unstable undetectable part corresponding to the vector space spanned by the eigenfunctions
of A in the 0-mode with eigenvalues larger than or equal to −ω.

• The unstable detectable part corresponding to the vector space spanned by the eigenfunctions of
A which do not belong to the 0-mode with eigenvalues larger than or equal to −ω.

Note that the eigenvalues of A may be multiple so we need to be slightly more precise than these vague
statements.

The stable part is given by

Zs = Span {Φ |AΦ = λΦ, with λ < −ω},

while the unstable part is given by

Zu = Span {Φ |AΦ = λΦ, with λ > −ω}.

Now, the spectrum of the 0-mode is given by the sequence of eigenvectors

Ψ0,`(x1, x2) =

√
1

πL

 sin

(
`πx2

L

)
0

 , corresponding to the eigenvalue λ0,` = −ν`
2π2

L2
, (2.17)
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indexed by ` ∈ N∗.
Therefore we introduce the spaces

Zuu = Span {Ψ0,` with λ0,` > −ω}, (2.18)

Zud = Z
⊥L2(Ω)
uu ∩ Zu. (2.19)

corresponding respectively to the unstable undetectable and the unstable detectable parts of the spectrum.
In particular we have

V0
n(Ω) = Zs ⊕ Zud ⊕ Zuu.

We introduce the orthogonal projections Ps, Pu, Pud and Puu in L2(Ω) on Zs, Zu, Zud and Zuu respec-
tively.

3 Strategy

As said in the introduction, our approach is based on a power series method. To be more precise, we
assume that the controlled solution u and its control g in (1.2) can be expanded as

u = εα+ ε2β, p = εp1 + ε2p2, g = εg1 + ε2g2, (3.1)

for some ε > 0 small enough, where (α, β), (p1, p2), (g1, g2) are all of order 1. This allows us to look for
(g1, g2) such that the solution (α, β) of

∂tα− ν∆α+∇p1 = 0, in (0,∞)× Ω,
div α = 0, in (0,∞)× Ω,
α(t, x1, 0) = (0, 0), on (0,∞)× T,
α(t, x1, L) = (0, g1(t, x1)), on (0,∞)× T,
α(0, x1, x2) = α0(x1, x2), in Ω,

(3.2)

and 
∂tβ − ν∆β +∇p2 = −(α+ εβ) · ∇(α+ εβ), in (0,∞)× Ω,
div β = 0, in (0,∞)× Ω,
β(t, x1, 0) = (0, 0), on (0,∞)× T,
β(t, x1, L) = (0, g2(t, x1)), on (0,∞)× T,
β(0, x1, x2) = β0(x1, x2), in Ω,

(3.3)

is stable and decays exponentially at rate −ω0.
As the control function g1 cannot act on the 0-mode of α (recall (1.6)), we will put the component

of u on Zuu in the β-part. Our construction will therefore use the non-linear term α · ∇α in (3.3) to
indirectly control the projection of β on Zuu.

From now onwards we assume that the initial conditions (α0, β0) satisfy∥∥α0
∥∥2

V1
0(Ω)

+
∥∥β0

∥∥
V1

0(Ω)
6 1, with Puuα0 = 0. (3.4)

We then construct the open loop controlled trajectory u by an iterative process. We thus fix T > 0 (for
instance T = 1) and we introduce the time intervals (nT, (n+ 1)T ).

Initialization: the time interval (0, T ). During the first time interval, we look for a control function
g1 such that the projection on Zu of the solution α of (3.2) at time T vanishes. This can indeed be done:

Proposition 3.1. Given α0 ∈ V1
0(Ω) satisfying Puuα0 = 0, there exists a control function g1 ∈

H1
0 (0, T ;L2

0(T)) ∩ L2(0, T ;H2(T)) such that the solution α of (3.2) on (0, T ) satisfies the controllability
requirement

Puα(T ) = 0. (3.5)

We can further impose the following estimates:

‖α(T )‖V1
0(Ω) + ‖α‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) + ‖g1‖H1

0 (0,T ;L2
0(T))∩L2(0,T ;H2(T)) 6 C

∥∥α0
∥∥
V1

0(Ω)
. (3.6)
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Actually, Proposition 3.1 is a rather easy consequence of Proposition 2.1, the fact that Zu is finite
dimensional and the fact that Puuα0 = 0. The detailed proof of a slightly more general result stated in
Proposition A.1 (yielding Proposition 3.1 as an immediate corollary) is given in Appendix A.

The control g2 is simply taken to be 0 on the time interval (0, T ) and β is the corresponding solution
of (3.3) on the time interval (0, T ).

The iterative process. Let n ∈ N \ {0} and assume that we have constructed α on (0, nT ) such that

α(nT ) ∈ V1
0(Ω), β(nT ) ∈ V1

0(Ω), (3.7)

and
Puα(nT ) = 0. (3.8)

Obviously, one could maintain that last condition (3.8) of vanishing projection on Zu for t > nT simply
by taking g1(t) = 0 for t > nT . But we will need to use the non-linear term α · ∇α in the equation (3.3)
of β to control the projection on Zuu of β at time (n+1)T , so we shall not take g1 = 0 on (nT, (n+1)T ).

Instead, we shall build the control function g1 on the time interval (nT, (n+ 1)T ) by using following
result:

Theorem 3.2. Let β̃0 ∈ Zuu and f ∈ L2(0, T ;H2(Ω)) ∩ H1(0, T ;V0(Ω)). Then there exists a control
function g̃1 ∈ H1

0 (0, T ;H2(T) ∩ L2
0(T)) such that the solution α̃ of

∂tα̃− ν∆α̃+∇p̃1 = 0, in (0, T )× Ω,
div α̃ = 0, in (0, T )× Ω,
α̃(t, x1, 0) = (0, 0), on (0, T )× T,
α̃(t, x1, L) = (0, g̃1(t, x1)), on (0, T )× T,
α̃(0, x1, x2) = 0, in Ω,

(3.9)

satisfies
α̃(T ) = 0 in Ω, (3.10)

and such that the solution β̃ of
∂tβ̃ − ν∆β̃ +∇p̃2 = −(f + α̃) · ∇(f + α̃), in (0, T )× Ω,

div β̃ = 0, in (0, T )× Ω,

β̃(t, x1, 0) = β̃(t, x1, L) = (0, 0), on (0,∞)× T,
β̃(0, x1, x2) = β̃0(x1, x2), in Ω,

(3.11)

satisfies
Puuβ̃(T ) = 0. (3.12)

We can further impose the following estimates:

‖α̃‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) +
∥∥∥β̃∥∥∥

L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω))
+ ‖g̃1‖2H1

0 (0,T ;H2(T))

6 C

(
‖f‖2L2(0,T ;H2(Ω))∩H1(0,T ;V0(Ω)) +

∥∥∥β̃0
∥∥∥
V1

0(Ω)

)
. (3.13)

Theorem 3.2, whose proof is postponed to Section 4, is the delicate point of our approach, as it shows
that the non-linearity can be used to control the projection on the unstable undetectable space. With
this respect, Theorem 3.2 should be compared with [18, Proposition 8] and [15, Proposition 3.1] in the
context of Korteweg de Vries equations, or [10, Proposition 8] in the context of Schrödinger equations.

We now describe how Theorem 3.2 is applied in our argument. On the interval (nT, (n + 1)T ), we
introduce the solution α̂ of

∂tα̂− ν∆α̂+∇p̂1 = 0, in (nT, (n+ 1)T )× Ω,
div α̂ = 0, in (nT, (n+ 1)T )× Ω,
α̂(t, x1, 0) = α̂(t, x1, L) = (0, 0), on (nT, (n+ 1)T )× T,
α̂(nT, x1, x2) = α(nT, x1, x2), in Ω.

(3.14)
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Note that Puα̂((n+ 1)T ) = 0 since Puα(nT ) = 0.
We then use Theorem 3.2 with

β̃0 = Puuβ(nT ) and f(t) = α̂(t− nT ),

and let α̃n, g̃1,n and β̃n be the functions given by Theorem 3.2, and for t ∈ (nT, (n+ 1)T ) we set

α̃(t) = α̃n(t− nT ), g1(t) = g̃1,n(t− nT ), β̃(t) = β̃n(t− nT ),

so that we have
α̃((n+ 1)T ) = 0, and Puuβ̃((n+ 1)T ) = 0.

We then choose the control function g2 on (nT, (n + 1)T ) given by Proposition A.1 such that the

solution β̂ of 

∂tβ̂ − ν∆β̂ +∇p̂2 = 0, in (nT, (n+ 1)T )× Ω,

div β̂ = 0, in (nT, (n+ 1)T )× Ω,

β̂(t, x1, 0) = (0, 0), on (nT, (n+ 1)T )× T,
β̂(t, x1, L) = (0, g2(t, x1)), on (nT, (n+ 1)T )× T,
β̂(nT, x1, x2) = (I − Puu)β(nT, x1, x2), in Ω,

(3.15)

satisfies
Pudβ̂((n+ 1)T ) = −Pudβ̃((n+ 1)T ) = −Puβ̃((n+ 1)T ). (3.16)

This can be done thanks to Proposition A.1, which moreover shows that Puuβ̂((n + 1)T ) = 0 since

Puuβ̂(nT ) = 0. So

Puβ̂((n+ 1)T ) = −Puβ̃((n+ 1)T ), (3.17)

or equivalently

Pu
(
β̂((n+ 1)T ) + β̃((n+ 1)T )

)
= 0.

The above construction provides g1 and g2 on (nT, (n+ 1)T ). The functions α and β are then simply
given by equations (3.2)–(3.3) during the time interval (nT, (n+ 1)T ).

By construction, on the time interval (nT, (n+ 1)T ), we have the identity

α = α̂+ α̃, (3.18)

implying in particular that α((n+ 1)T ) = α̂((n+ 1)T ) + α̃((n+ 1)T ) = α̂((n+ 1)T ), so Puα((n+ 1)T ) =
Puα̂((n+ 1)T ). Therefore condition (3.8) at time (n+ 1)T holds, i.e. Puα((n+ 1)T ) = 0.

On the other hand, β should be close to β̃ + β̂ in the time interval (nT, (n+ 1)T ) up to terms of the
order of ε. Indeed,

βε = β − (β̃ + β̂), (3.19)

satisfies 
∂tβε + ε2βε∇βε − ν∆βε +∇q2 = −fε, in (nT, (n+ 1)T )× Ω,
div βε = 0, in (nT, (n+ 1)T )× Ω,
βε(t, x1, 0) = βε(t, x1, L) = (0, 0), on (nT, (n+ 1)T )× T,
βε(nT, x1, x2) = 0, in Ω,

(3.20)

with

fε = ε(βε + β̃ + β̂) · ∇α+ εα · ∇(βε + β̃ + β̂) + ε2
(

(βε + β̃ + β̂) · ∇(βε + β̃ + β̂)− βε∇βε
)

= div
(
ε(β̃ + β̂)⊗ α+ εα⊗ (β̃ + β̂) + ε2(β̃ + β̂)⊗ (β̃ + β̂)

)
(3.21)

+ div
(
εβε ⊗ (α+ ε(β̃ + β̂)) + ε(α+ ε(β̃ + β̂))⊗ βε

)
.

In Section 4, we shall then present a detailed proof of Theorem 3.2, which is the main point in our
argument. Section 5 will then put together all the required estimates to show the exponential decay of
the solution u at a rate ω0 and conclude Theorem 1.1.

Let us finally mention that all the above functions α, α̃, α̂, β̃ and β̂ are defined independently on ε
on each time interval of the form (nT, (n+1)T ). Still, these functions depend on Puα(nT ) and Puβ(nT ),
this latter one involving ε through βε in (3.19). However, we will not make explicit this dependence in

ε in the functions α, α̃, α̂, β̃ and β̂ for simplicity of notations.
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4 Proof of Theorem 3.2

To simplify notations, in this section we omit the superscript ·̃ in Theorem 3.2.
The proof of Theorem 3.2 will require several preliminary steps.
We will begin by showing that the 1-modes of the solutions α of (3.9) are exactly controllable to

trajectories, see Section 4.1.
Based on this result, given ` ∈ N, we will construct two independent null-controlled solutions αa` and

αb` of (3.9)–(3.10) such that for
α = aαa` + bαb`, (a, b) ∈ R2,

the corresponding solution β of
∂tβ − ν∆β +∇p2 = −α · ∇α, in (0, T )× Ω,
div β = 0, in (0, T )× Ω,
β(t, x1, 0) = β(t, x1, L) = (0, 0), on (0,∞)× T,
β(0, x1, x2) = 0, in Ω,

(4.1)

satisfies
〈β(T ),Ψ0,`〉L2(Ω) = ab,

see Section 4.2.
In Section 4.3, we then deduce that, given any β1 ∈ Zuu, one can find a controlled solution α solving

(3.9)–(3.10) such that the corresponding solution β of (4.1) satisfies Puuβ(T ) = β1.
Once this will be done, the proof of Theorem 3.2 will follow easily, see Section 4.4.

4.1 Null controllability of the 1-modes of (3.9)

In this section, we are only interested in the 1-modes of the solutions α of (3.9). This means that we
restrict ourselves to functions (α, p) such that

α0(x1, x2) = α0,c(x2) cos(x1) + α0,s(x2) sin(x1),
α(t, x1, x2) = αc(t, x2) cos(x1) + αs(t, x2) sin(x1),
p(t, x1, x2) = pc(t, x2) cos(x1) + ps(t, x2) sin(x1),

(4.2)

with control functions g chosen as

g(t, x1) = gc(t) cos(x1) + gs(t) sin(x1). (4.3)

Easy computations show that (α, p) in (4.2) is a solution of (3.9) with control function g of the form
(4.3) if and only if (αc1, α

s
2, p

s) solves

∂tα
c
1 + ναc1 − ν∂22α

c
1 + ps = 0, in (0, T )× (0, L),

∂tα
s
2 + ναs2 − ν∂22α

s
2 + ∂2p

s = 0, in (0, T )× (0, L),
−αc1 + ∂2α

s
2 = 0, in (0, T )× (0, L),

αc1(t, 0) = αc1(t, L) = αs2(t, 0) = 0, in (0, T ),
αs2(t, L) = gs(t), in (0, T ),

(αc1(0, x2), αs2(0, x2)) = (α0,c
1 (x2), α0,s

2 (x2)), in (0, L),

(4.4)

and (αs1, α
c
2, p

c) solves

∂tα
s
1 + ναs1 − ν∂22α

s
1 − pc = 0, in (0, T )× (0, L),

∂tα
c
2 + ναc2 − ν∂22α

c
2 + ∂2p

c = 0, in (0, T )× (0, L),
αs1 + ∂2α

c
2 = 0, in (0, T )× (0, L),

αs1(t, 0) = αs1(t, L) = αc2(t, 0) = 0, in (0, T ),
αc2(t, L) = gc(t), in (0, T ),

(αs1(0, x2), αc2(0, x2)) = (α0,s
1 (x2), α0,c

2 (x2)), in (0, L).

(4.5)
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Of course, the two systems (4.4) and (4.5) behave similarly since one can be obtained from the other by
the transformation (α1, α2, p)→ (−α1, α2, p). We therefore focus on the controllability property of

∂tα1 + να1 − ν∂22α1 − p = 0, in (0, T )× (0, L),
∂tα2 + να2 − ν∂22α2 + ∂2p = 0, in (0, T )× (0, L),
α1 + ∂2α2 = 0, in (0, T )× (0, L),
α1(t, 0) = α1(t, L) = α2(t, 0) = 0, in (0, T ),
α2(t, L) = g(t), in (0, T ),
(α1(0, x2), α2(0, x2)) = (α0

1(x2), α0
2(x2)), in (0, L).

(4.6)

We now introduce the functional spaces

V0(0, L) = {(α1, α2) ∈ L2(0, L)|α1 + ∂2α2 = 0 in (0, L)},
V0
n(0, L) = {(α1, α2) ∈ L2(0, L)|α1 + ∂2α2 = 0 in (0, L), α2(0) = α2(L) = 0},

V1
0(0, L) = {(α1, α2) ∈ H1

0(0, L)|α1 + ∂2α2 = 0 in (0, L)},
V1(0, L) = {(α1, α2) ∈ H1(0, L)|α1 + ∂2α2 = 0 in (0, L), α1(0) = α1(L) = α2(0) = 0},

which are the natural functional spaces to work with when considering (4.6), corresponding for V0(0, L),
V0
n(0, L) and V1

0(0, L) to the projection on the 1-modes of V0(Ω), V1
0(Ω) and V1

0(Ω) respectively.
We will not recall the whole Cauchy theory for (4.6), which can be deduced easily from the results

in [34] by projecting on the first Fourier mode the Stokes equation (1.4). We shall in particular use
extensively the following result: if (α0

1, α
0
2) ∈ V1(0, L) and g ∈ H1(0, T ) with α0

2(L) = g(0), then the
solution α of (4.6) belongs to L2(0, T ;H2(0, L))∩H1(0, T ;V0(0, L)) and, similarly as in (2.9), we get an
estimate of the form

‖α‖L2(0,T ;H2(0,L))∩H1(0,T ;V0(0,L)) 6 C
(∥∥(α0

1, α
0
2)
∥∥
V1(0,L)

+ ‖g‖H1(0,T )

)
. (4.7)

The goal of Section 4.1 is to prove the following lemma:

Lemma 4.1. System (4.6) is null controllable in any time T > 0 with controls in H1
0 (0, T ). To be more

precise, for any (α0
1, α

0
2) ∈ V1

0(0, L), there exists a control function g ∈ H1
0 (0, T ) such that the solution

(α1, α2) of (4.6) satisfies
(α1(T, x2), α2(T, x2)) = (0, 0) in (0, L). (4.8)

Besides, the controlled trajectory α lies in L2(0, T ;H2(0, L)) ∩H1(0, T ;V0(0, L)).

Before going into the proof of Lemma 4.1, let us mention that we prove null controllability with
controls in H1

0 (0, T ). This regularity is needed to obtain the regularity of the controlled trajectory.
Let us also note that, as pointed out in the recent work [16], similar arguments as the one used for

establishing Lemma 4.1 can be developed to show that for all k ∈ N \ {0}, the k-mode of the equation
(1.4) is null-controllable with controls in L2(0, T ). The work [16] also shows that this family of equations
is null-controllable uniformly with respect to the Fourier parameter k ∈ N\{0} through a deeper spectral
analysis as the one we propose here. Still, we have chosen to present a detailed proof of Lemma 4.1 to
underline how controls in H1

0 (0, T ) can be constructed and to introduce several spectral computations
that will be useful afterwards.

An easy argument also shows the following corollary, which is the result we will actually use in the
proof of Theorem 3.2:

Corollary 4.2. Given (α0
1, α

0
2) ∈ V1(0, L) and a trajectory α ∈ L2(0, T ;H2(0, L)) ∩H1(0, T ;V0(0, L))

satisfying (4.6) with control function g ∈ H1(0, T ), there exists a control function g ∈ H1(0, T ) with
g(0) = α0

2(L) and g(T ) = g(T ) such that the solution α = (α1, α2) of (4.6) satisfies

α(T ) = α(T ) in (0, L). (4.9)

and α ∈ L2(0, T ;H2(0, L)) ∩H1(0, T ;V0(0, L)).

Proof of Corollary 4.2. We work on α̃ = α − α. The control problem is then equivalent to find a null-
control g̃ for α̃ solution of (4.6) with initial condition α̃0 ∈ V1(0, L) and satisfying the null-controllability
requirement α̃(T ) = 0. We therefore start by choosing a smooth function g̃ on (0, T/2) such that
g̃(0) = α̃0

2(L) and vanishing at time T/2. We then have α̃(T/2) ∈ V1
0 (0, L), and we can apply Lemma 4.1

to construct g̃ ∈ H1
0 (T/2, T ) such that α̃(T ) = 0, i.e. (4.9). The regularity result on α easily follows.
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Proof of Lemma 4.1. We start with the remark that by a scaling argument in time, we can restrict
ourselves to ν = 1 without loss of generality.

As usual, our strategy is based on the observability of the adjoint equation of (4.6). But as we want
to use H1

0 (0, T ) controls, we start by extending system (4.6) with an integrator. Namely, instead of
considering (4.6), we consider

∂tα1 + α1 − ∂22α1 − p = 0, in (0, T )× (0, L),
∂tα2 + α2 − ∂22α2 + ∂2p = 0, in (0, T )× (0, L),
α1 + ∂2α2 = 0, in (0, T )× (0, L),
α1(t, 0) = α1(t, L) = α2(t, 0) = 0, in (0, T ),
α2(t, L) = g(t), in (0, T ),
g′(t) = h(t), in (0, T ),
(α1(0, x2), α2(0, x2), g(0)) = (α0

1(x2), α0
2(x2), 0), in (0, L),

(4.10)

where the control function h will be looked for in L2(0, T ) and the control objective is

(α1(T, x2), α2(T, x2)) = (0, 0) in (0, L) and g(T ) = 0.

The adjoint state (w1, w2, ξ) then satisfies the following equation:

−∂tw1 + w1 − ∂22w1 − q = 0, in (0, T )× (0, L),
−∂tw2 + w2 − ∂22w2 + ∂2q = 0, in (0, T )× (0, L),
w1 + ∂2w2 = 0, in (0, T )× (0, L),
w1(t, 0) = w1(t, L) = w2(t, 0) = w2(t, L) = 0, in (0, T ),
−ξ′(t) = q(t, L), in (0, T ),
(w1(T, x2), w2(T, x2), ξ(T )) = (wT1 (x2), wT2 (x2), ξT ), in (0, L).

(4.11)

The observability property for (4.11) corresponding by duality to the null-controllability of (4.10) with
controls h ∈ L2(0, T ) is the following: There exists a constant C > 0 such that all solutions (w1, w2, ξ)
of (4.11) satisfy

‖(w1(0), w2(0), ξ(0))‖V0(0,L)×R 6 C ‖ξ‖L2(0,T ) . (4.12)

System (4.11) is triangular: the Stokes part (4.11)(1,2,3,4) can be solved independently, and corresponds
to the projection on the 1-modes of the Stokes operator A in (2.3), and the ODE (4.11)(5) can be solved
a posteriori.

Our primary goal is therefore to check the following observability property: There exists a constant
C > 0 such that all solutions (w1, w2, ξ) of (4.11) satisfy

‖(w1(0), w2(0))‖V0(0,L) 6 C ‖ξ‖L2(0,T ) . (4.13)

This a priori weaker observability result will be shown using a spectral approach and a suitable Müntz-
Szász lemma.

We thus consider the spectrum of the operator

A1 = P1(∂22 − I),with domain D(A1) = V1
0(0, L) ∩H2(0, L) on V0

n(0, L), (4.14)

where P1 is the orthogonal projection from L2(0, L) to V0
n(0, L). As A1 is negative self-adjoint with

compact resolvent (this follows from the fact that it corresponds to the projection on the 1-mode of
the operator A), there is an orthonormal basis of V0

n(0, L) formed by eigenfunctions (Φ1,j)j∈N of A1

corresponding to real eigenvalues (λ1,j)j∈N going to −∞. For generic eigenvalue λ of A1 of the form
λ = λ1,j for some j ∈ N, we will also use the notation Φλ to denote Φ1,j .

We then study the eigenvalue problem
λφ1 + φ1 − ∂22φ1 − q = 0, in (0, L),
λφ2 + φ2 − ∂22φ2 + ∂2q = 0, in (0, L),
φ1 + ∂2φ2 = 0, in (0, L),
φ1(0) = φ1(L) = φ2(0) = φ2(L) = 0,

(4.15)

for which an easy energy identity shows that λ < −1 is needed to get a non-trivial solution. Besides,
Proposition 2.1 yields that each eigenvalue is simple: otherwise, one could combine them in a non-trivial
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way in order to construct an eigenvector for which the corresponding observation would vanish, i.e.
φ′′′2 (L) = 0.

Arguing as in (2.15), φ2 solves

φ
(4)
2 − (λ+ 2)φ′′2 + (λ+ 1)φ2 = 0 in (0, L), φ2(0) = φ2(L) = φ′2(0) = φ′2(L) = 0,

so that φ2 can be expanded as

φ(x2) = C1e
x2 + C2e

−x2 + C3e
µx2 + C4e

−µx2 , with µ =
√

1 + λ.

Here, the complex square root denotes the one of non-negative imaginary part. Thus, the eigenvalues of
(4.15) are given by the equation

detM(µ) = 0 where M(µ) =


1 1 1 1
1 −1 µ −µ
eL e−L eµL e−µL

eL −e−L µeµL −µe−µL

 .

Recalling λ < −1, we necessarily have µ =
√

1 + λ ∈ iR, and we write µ = iµ̃ with µ̃ ∈ R. The equation
detM(µ) = 0 then reads in µ̃ as follows:

[sinh(L) sin(µ̃L)]µ̃2 − 2[1− cosh(L) cos(µ̃L)]µ̃− sinh(L) sin(µ̃L) = 0. (4.16)

Therefore, the solution of that equation for large µ̃ should satisfy sin(µ̃L) ' 0. To be more precise,
comparing the solutions of (4.16) with the roots of [sinh(L) sin(µ̃L)]µ̃2, by Rouché’s theorem, we get
that there exists `0 > 0 such that:

• for all ` > `0, there exists a unique solution µ̃` in the ball B(`π/L, π/4), which in fact lies in the
interval (`π/L − π/4, `π/L + π/4) as we know that the eigenvalues λ correspond to real µ̃. The
solution µ̃` of (4.16) corresponds to λ1,` = −µ̃2

` − 1.

• there is no solution µ̃ of (4.16) between µ̃` and µ̃`+1 for ` > `0.

• µ̃` − `π/L→ 0 as `→∞.

For ` > `0, The corresponding eigenfunction (φ1,`, φ2,`) of (4.15) is such that φ2,` takes the form

φ2,`(x2) = C1(µ`)e
x2 + C2(µ`)e

−x2 + C3(µ`)e
µ`x2 + C4(µ`)e

−µ`x2 .

Using M(µ̃`)(AdjM(µ̃`)) = detM(µ̃`)I = 0, where AdjM(µ̃`) is the transpose of the cofactor matrix
(i.e. the adjugate) of M(µ̃`), and the fact that the eigenvalue λ` is simple (thus implying that AdjM(µ̃`)
is non-trivial), one set of suitable coefficients for φ2,` is

C1(µ`) = µ2
`

(
e−(µ`+1)L − e(µ`−1)L

)
+ µ`

(
2− e−(µ`+1)L − e(µ`−1)L

)
,

C2(µ`) = µ2
`

(
e(µ`+1)L − e−(µ`−1)L

)
+ µ`

(
2− e(µ`+1)L − e−(µ`−1)L

)
,

C3(µ`) = µ`

(
2− e−(µ`+1)L − e−(µ`−1)L

)
+
(
e−(µ`+1)L − e−(µ`−1)L

)
,

C4(µ`) = µ`

(
2− e(µ`+1)L − e(µ`−1)L

)
+
(
e(µ`+1)L − e(µ`−1)L

)
.

Recalling µ` ∈ iR, we get from these expressions

‖φ2,`‖H1
0 (0,L) 6 K|µ`|2

and, following,
‖(φ1,`, φ2,`)‖L2(0,L) 6 K|µ`|2,
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while

φ′′′2,`(L) = C1(µ`)e
L − C2(µ`)e

−L + C3(µ`)(µ`)
3eµ`L − C4(µ`)(µ`)

3e−µ`L

= 2(µ2
` − 1)

(
µ2
`(e

µ`L − e−µ`L)− µ`(eL − e−L)
)

= −4i(µ2
` − 1)(µ̃2

` sin(µ̃`L) + µ̃` sinh(L))

= −4i(µ2
` − 1)

(
µ̃`

(
2

sinh(L)
(1− cosh(L) cos(µ̃`L)) + sinh(L)

)
+ sin(µ̃`L)

)
,

where we have used (4.16) to write:

µ̃2
` sin(µ̃`L) =

2µ̃`
sinh(L)

(1− cosh(L) cos(µ̃`L)) + sin(µ̃`L).

Therefore, as µ̃` − `π/L→ 0 as `→∞, we deduce the existence of `1 such that for ` > `1,

|φ′′′2,`(L)| > c|µ̃`|3 = c|µ`|3,

for some c > 0 independent of `.
We therefore have shown that all the eigenvalues λ1,` for ` > `1 and corresponding normalized

eigenvector (φ1,`, φ2,`) satisfy

λ1,` 6 −c
`2π2

L2
, λ1,` − λ1,`+1 > c, |φ′′′2,`(L)| > c.

for some c > 0 independent of ` > `1.
The other eigenvalues λ correspond to µ̃ = −i

√
λ+ 1 bounded by `1π/L, and therefore are in finite

number: we write them (λ1,j)j∈J where J is finite, each one of multiplicity one. Indeed, this is a
straightforward a consequence of Proposition 2.1 as the corresponding eigenvectors (φ1,j , φ2,j) of λ1,j all
satisfy φ′′′2,j(L) 6= 0 from Proposition 2.1.

Therefore we get the following properties:∑
λ eigenvalue of A1

1

|λ|
<∞, inf

`
{λ1,` − λ1,`+1} > 0, (4.17)

and there exists c > 0 such that each normalized eigenvector (φ1,λ, φ2,λ) of A1 corresponding to a pressure
qλ,

|φ′′′2,λ(L)| = |qλ(L)| > c. (4.18)

Let us now consider a solution (w1, w2, ξ) of (4.11). According to the spectral theory of A1, (w1, w2) can

be expanded as (
w1(t)
w2(t)

)
=

∑
λ eigenvalue of A1

aλe
λ(T−t)Φλ. (4.19)

In particular, we can compute

ξ(t) =

ξ(T )−
∑

λ eigenvalue of A1

aλqλ(L)

λ

+
∑

λ eigenvalue of A1

aλqλ(L)

λ
eλ(T−t). (4.20)

Therefore, using (4.17), Müntz-Szász Lemma (stated under the present form in [27, Proposition 3.2])
applies:

e−T

ξ(T )−
∑

λ eigenvalue of A1

aλqλ(L)

λ

2

+
∑

λ eigenvalue of A1

∣∣∣∣aλqλ(L)

λ

∣∣∣∣2 e(λ−1)T

6 C

∫ T

T/2

|et−T ξ(t)|2 dt. (4.21)
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This obviously implies ∑
λ eigenvalue of A1

∣∣∣∣aλqλ(L)

λ

∣∣∣∣2 eλT 6 C

∫ T

0

|ξ(t)|2 dt. (4.22)

Using (4.18), we derive ∑
λ eigenvalue of A1

|aλ|2e2λT 6 C

∫ T

0

|ξ(t)|2 dt.

With the orthogonality of the eigenvectors of (Φ1,`)`∈N of A1 in (4.14) and the expansion (4.19), we
deduce (4.13) for any arbitrary T > 0.

The proof of (4.12) can then be done by a simple contradiction argument (note that it can also be
deduced from (4.20) and (4.21) above). Indeed, assume that we get a sequence (wn1 , w

n
2 , ξ

n) of solutions
of (4.11) such that

lim
n→∞

‖ξn‖L2(0,T ) = 0, ‖(wn1 (0), wn2 (0), ξn(0))‖V0(0,L)×R = 1. (4.23)

From (4.13), we immediately have ‖(wn1 (0), wn2 (0))‖V0(0,L) → 0 as n → ∞. Besides, from (4.13) on

the time interval (T/2, T ), ‖(wn1 (T/2), wn2 (T/2))‖V0(0,L) converges to 0 as n → ∞. As the semigroup

generated by A1 is analytic, ‖(wn1 (T/4), wn2 (T/4))‖D(A2
1) goes to 0, and ‖qn(t, 1)‖L2(0,T/4) converges to

0 as n→∞. Following, ξn also strongly converges to 0 in H1(0, T/4) as n→∞ and consequently ξn(0)
converges to 0 as n→∞, contradicting (4.23) and therefore concluding the proof of (4.12).

Remark 4.3. The proof given above can be easily adapted to show the following result: For any T > 0,
there exists C > 0, such that any solution (w1, w2) of

−∂tw1 + w1 − ∂22w1 − q = 0, in (0, T )× (0, L),
−∂tw2 + w2 − ∂22w2 + ∂2q = 0, in (0, T )× (0, L),
w1 + ∂2w2 = 0, in (0, T )× (0, L),
w1(t, 0) = w1(t, L) = w2(t, 0) = w2(t, L) = 0, in (0, T ),
(w1(T, x2), w2(T, x2)) = (wT1 (x2), wT2 (x2)), in (0, L)

(4.24)

satisfies
‖(w1(0), w2(0))‖V0(0,L) 6 C ‖q‖L2(0,T ) . (4.25)

4.2 Entering one missing direction

The goal of this subsection is to show the following theorem:

Theorem 4.4. Let ` ∈ N∗ and T > 0.
There exists two control functions ga` and gb` in H1

0 (0, T ;H2(T) ∩ L2
0(T)) such that for all a and b in

R, if we denote by α the solution of (3.9) with control function g = aga` + bgb` , α(T ) = 0 and the solution
β of (4.1) satisfies

〈β(T ),Ψ0,`〉L2(Ω) = ab. (4.26)

We can further impose that α and β belong to L2(0, T ;H2(Ω)) ∩H1(0, T ;V0(Ω)) with respective norms
bounded by |a|+ |b| and (|a|+ |b|)2.

Besides, for `1 6= `, there exists a coefficient γ`,`1 ∈ R such that

〈β(T ),Ψ0,`1〉L2(Ω) = ab γ`1,`. (4.27)

The next paragraphs aim at proving Theorem 4.4. Basically, Theorem 4.4 states that we can enter
in the undetectable direction Ψ0,`.

Remark 4.5. Let us point out the recent work [9] which, roughly speaking, states that considering an
order two expansion of a dynamical system is in general a bad idea for small time local controllability
when considering scalar control inputs. Theorem 4.4 is not in contradiction with this result as in our
case, for all t > 0, the control g belongs to a two-dimensional vector space.

In the rest of this section, when no confusion arises, we will forget the index ` to lighten the notations.
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4.2.1 Proof of Theorem 4.4, part 1: Computation of the component of β on Ψ0,`

To begin with, for β solution of (4.1), we compute

βuu(t) :=
√
πL〈β(t),Ψ0,`〉L2(Ω) =

∫
Ω

β1(t, x1, x2) sin

(
`πx2

L

)
dx1dx2.

Using (4.1), we obtain

d

dt
βuu(t) =

∫
Ω

∂tβ1(t, x1, x2) sin

(
`πx2

L

)
dx1dx2

=

∫
Ω

(ν∆β1 − ∂1p2 − α1∂1α1 − α2∂2α1) sin

(
`πx2

L

)
dx1dx2

= −ν`
2π2

L2
βuu(t) +

`π

L

∫
Ω

α1(t, x1, x2)α2(t, x1, x2) cos

(
`πx2

L

)
dx1dx2. (4.28)

As β0 = 0, we get

eν`
2π2T/L2

βuu(T ) =
`π

L

∫ T

0

∫
Ω

eν`
2π2t/L2

α1(t, x1, x2)α2(t, x1, x2) cos

(
`πx2

L

)
dx1dx2dt.

If we choose the control function g in (3.9) of the form (4.3) for gc and gs two null-controls of (4.5) and
(4.4) respectively, the solution α of (3.9) writes as in (4.2) and

L

π`
eν`

2π2T/L2

βuu(T ) =

∫ T

0

∫
Ω

eν`
2π2t/L2

α1(t, x1, x2)α2(t, x1, x2) cos

(
`πx2

L

)
dx1dx2dt

=

∫ T

0

∫ L

0

∫ 2π

0

eν`
2π2t/L2

(αc1(t, x2) cos(x1) + αs1(t, x2) sin(x1))

× (αc2(t, x2) cos(x1) + αs2(t, x2) sin(x1)) cos

(
`πx2

L

)
dx1dx2dt

= π

∫ T

0

∫ L

0

eν`
2π2t/L2

[αc1(t, x2)αc2(t, x2) + αs1(t, x2)αs2(t, x2)] cos

(
`πx2

L

)
dx2dt

= π

∫ T

0

〈(
αc1(t)
αs2(t)

)
, F (t)

〉
L2(0,L)

dt,

where F (t, x2) = cos

(
`πx2

L

)
eνπ

2`2t/L2

(
αc2(t, x2)
αs1(t, x2)

)
. (4.29)

It is therefore convenient to introduce the adjoint equation of (4.6), namely
−∂tZ + νZ − ν∂22Z +

(
q
∂2q

)
= F (t, x2), in (0, T )× (0, L),

−Z1 + ∂2Z2 = 0, in (0, T )× (0, L),
Z(t, 0) = Z(t, L) = (0, 0), in (0, T ),
Z(T, x2) = 0, in (0, L).

(4.30)

We then easily get that

L

`π2
eν`

2π2T/L2√
πL〈β(t),Ψ0,`〉L2(Ω) =

L

`π2
eν`

2π2T/L2

βuu(T ) =

∫ T

0

gs(t)q(t, L) dt. (4.31)

Note that F depends only on αc2 and αs1 which are prescribed by gc (recall (4.5)). Following, Z in
(4.30) and q in (4.31) only depends on gc. Therefore, the projection of β on Ψ0,` is actually given by a
quadratic form in (gs, gc) which is linear in each variable, gs and gc respectively. In particular, taking
gs(t) = agsref(t) and gc(t) = bgcref(t) for some controls of reference gsref, g

c
ref and a and b in R, from the

above computation we have

〈β(t),Ψ0,`〉L2(Ω) = ab
`π2

√
πLL

e−ν`
2π2T/L2

∫ T

0

gsref(t)qref(t, L) dt, (4.32)
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where β solves (4.1) with α solving (3.9) with control g(t, x1) = agsref(t) sin(x1)+ bgcref(t) cos(x1), and qref

denotes the pressure obtained by solving (4.30) with source term

Fref(t, x2) = cos

(
`πx2

L

)
eνπ

2`2t/L2

(
αc2,ref(t, x2)

αs1,ref(t, x2)

)
, (4.33)

where (αs1,ref, α
c
2,ref) is the solution of (4.5) with control gcref.

Thus, our goal is to now design two control functions of reference gcref and gsref such that, with the
above notations,

`π2

√
πLL

e−ν`
2π2T/L2

∫ T

0

gsref(t)qref(t, L) dt = 1.

This will be precisely the goal of Section 4.2.2. Of course, these controls will a priori depend on `.
To end this section, let us point out that the identity (4.32) does not use the specific choice of `, so

for `1 ∈ N, we will also have

〈β(t),Ψ0,`1〉L2(Ω) = ab
`1π

2

√
πLL

e−ν`
2
1π

2T/L2

∫ T

0

gsref(t)qref,`1(t, L) dt,

where qref,`1 is the pressure obtained by solving (4.30) with source term

Fref,`1(t, x2) = cos

(
`1πx2

L

)
eνπ

2`21t/L
2

(
αc2,ref(t, x2)

αs1,ref(t, x2)

)
.

This immediately implies (4.27).

4.2.2 End of the proof of Theorem 4.4 up to a technical lemma

According to the above computations, the main point in the following will be to prove the following
Lemma:

Lemma 4.6. There exists gcref ∈ H1
0 (0, T ) such that the corresponding solution (αs1,ref, α

c
2,ref) starting

from (α0,s
1,ref, α

0,c
2,ref) = (0, 0) of (4.5) is null-controlled at time t = T , and the corresponding solution

(Zref, qref) of (4.30) with source term Fref in (4.33) satisfies∫ T

0

|qref(t, L)|2 dt 6= 0. (4.34)

We can furthermore impose gcref = 0 on (3T/4, T ), (αs1,ref, α
c
2,ref) = 0 on (3T/4, T ) and (Zref, qref) = 0

on (3T/4, T ).

We postpone the proof of Lemma 4.6 to Section 4.2.3 and conclude the proof of Theorem 4.4 assuming
Lemma 4.6.

Let gcref be as in Lemma 4.6 with gcref = 0 on (3T/4, T ), (αs1,ref, α
c
2,ref) = 0 on (3T/4, T ) and

(Zref, qref) = 0 on (3T/4, T ). We then choose gsref ∈ H1
0 (0, 3T/4) such that∫ 3T/4

0

gsref(t)qref(t, L) dt =

√
πLL

`π2
eν`

2π2T/L2

.

The solution (αc1,ref, α
s
2,ref) of (4.4) starting from (α0,c

1,ref, α
0,s
2,ref) = (0, 0) with control function gsref on

(0, 3T/4) then reaches some unknown state (αc1,ref(3T/4), αs2,ref(3T/4)) ∈ V1
0 (0, 1). Using Lemma 4.1, we

can find gsref ∈ H1
0 (3T/4, T ) such that at time T , (αc1,ref(T ), αs2,ref(T )) = (0, 0). Besides, as qref = 0 on

the time interval (3T/4, T ), we have the following identity:∫ T

0

gsref(t)qref(t, L) dt =

√
πLL

`π2
eν`

2π2T/L2

.

It follows that if we take control functions g of the form

g(t, x1) = agsref(t) sin(x1) + bgcref(t) sin(x1),
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the solution α of (3.9) writes

α = a

(
αc1,ref(t, x2) cos(x1)

αs2,ref(t, x2) sin(x1)

)
+ b

(
αs1,ref(t, x2) sin(x1)

αc2,ref(t, x2) cos(x1)

)
,

and satisfies (3.10), while from (4.32) the solution β of (4.1) satisfies (4.26). This concludes the proof of
Theorem 4.4 up to Lemma 4.6 which is proved afterwards.

4.2.3 Proof of Lemma 4.6 up to a technical result

Below, we omit the index “ref” for simplifying notations.
The proof of Lemma 4.6 is based on a 4-steps construction of the controlled function gc and the

corresponding controlled trajectory (αs1, α
c
2) solution of (4.5). The main point is to introduce an inter-

mediate time interval in which the solution α will have a prescribed form and for which the corresponding
pressure q cannot vanish on the boundary.

Namely, we decompose (0, T ) into the intervals (0, T/4), (T/4, T/2), (T/2, 3T/4) and (3T/4, T ).
For µ ∈ R that will be suitably chosen later, we introduce the solution (α∗(x2), p∗(x2)) of the

stationary Stokes equation:
µα∗1 + να∗1 − ν∂22α

∗
1 − p∗ = 0, in (0, L),

µα∗2 + να∗2 − ν∂22α
∗
2 + ∂2p

∗ = 0, in (0, L),
α∗1 + ∂2α

∗
2 = 0, in (0, L),

α∗1(0) = α∗1(L) = α∗2(0) = 0, α∗2(L) = 1.

(4.35)

Such solution exists provided µ/ν does not belong to the spectrum of A1 in (4.14). Then

α(t, x2) = eµt(α∗1(x2), α∗2(x2)), g(t) = eµt,

solves (4.5).
We then construct the control function gc and (αs1, α

c
2) solution of (4.5) as follows:

• During the time interval (0, T/4), gc ∈ H1(0, T/4) is chosen as a control function satisfying gc(0) =
0 and gc(T/4) = g(T/4) such that the solution (αs1, α

c
2) of (4.5) starting at (0, 0) reaches α(T/4)

at time T/4. This can be done thanks to Corollary 4.2.

• During the time interval (T/4, T/2), gc(t) = eµt so that the controlled trajectory (αs1, α
c
2) of (4.5)

satisfies (αs1, α
c
2)(t) = α(t) for all t ∈ (T/4, T/2).

• During the time interval (T/2, 3T/4), gc ∈ H1(T/2, 3T/4) is chosen such that the controlled trajec-
tory (αs1, α

c
2) of (4.5) starting from α(T/2) at time T/2 reaches the state 0 at time 3T/4. This can

be done thanks to Corollary 4.2 with the additional conditions gc(T/2) = g(T/2), gc(3T/4) = 0.

• During the time interval (3T/4, T ), the control gc is set to 0, and the corresponding controlled
trajectory (αs1, α

c
2) of (4.5) vanishes identically.

This whole construction depends on the parameter µ introduced in (4.35). Our next goal is to show
that one can choose µ such that, if (Z, q) denotes the solution of (4.30), then q(t, L) does not identically
vanish on (T/4, T/2). We perform a contradiction argument and assume that

q(t, L) = 0 in (T/4, T/2). (4.36)

On (T/4, T/2), Z satisfies the equation

−∂tZ + νZ − ν∂22Z +

(
q
∂2q

)
= e(µ+ν`2π2/L2)t cos

(
`πx2

L

)(
α∗2(x2)
α∗1(x2)

)
, in

(
T

4
,
T

2

)
× (0, L),

−Z1 + ∂2Z2 = 0, in

(
T

4
,
T

2

)
× (0, L),

Z(t, 0) = Z(t, L) = (0, 0), in

(
T

4
,
T

2

)
.

(4.37)
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Therefore, setting

Z∗(t, x2) = e−(µ+ν`2π2/L2)tZ(t, x2) and q∗(t, x2) = e−(µ+ν`2π2/L2)tq(t, x2), (4.38)

and differentiating the equation satisfied by Z∗ in time, we get

−∂t∂tZ∗ −
(
µ+

ν`2π2

L2

)
∂tZ

∗ + ν∂tZ
∗ − ν∂22∂tZ

∗ +

(
∂tq
∗

∂2∂tq
∗

)
= 0, in

(
T

4
,
T

2

)
× (0, L),

−∂tZ∗1 + ∂2∂tZ
∗
2 = 0, in

(
T

4
,
T

2

)
× (0, L),

∂tZ
∗(t, 0) = ∂tZ

∗(t, L) = (0, 0), in

(
T

4
,
T

2

)
,

(4.39)
while

∂tq
∗(t, L) = 0 in

(
T

4
,
T

2

)
. (4.40)

Applying then the observability inequality (4.25) to e(µ+ν`2π2/L2)t∂tZ
∗ on the time interval (T/4, T/2),

we deduce from (4.40) that

(∂tZ
∗, ∂tq

∗) = (0, 0) in

(
T

4
,
T

2

)
, i.e. (Z∗(t, x2), q∗(t, x2)) = (Z∗(x2), q∗(x2)) in

(
T

4
,
T

2

)
× (0, L).

so that the equation of Z∗ is
−
(
µ+

ν`2π2

L2

)
Z∗ + νZ∗ − ν∂22Z

∗ +

(
q∗

∂2q
∗

)
= cos

(
`πx2

L

)(
α∗2(x2)
α∗1(x2)

)
, in (0, L),

−Z∗1 + ∂2Z
∗
2 = 0, in (0, L),

Z∗(0) = Z∗(L) = (0, 0).

(4.41)

and condition (4.36) reads
q∗(L) = 0. (4.42)

This defines an application µ→ α∗ solution of (4.35) for µ/ν not in the spectrum of A1 and µ→ Z∗ by
(4.41) and µ→ q∗(L) by (4.42) when µ/ν and −µ/ν − `2π2/L2 do not belong to the spectrum of A1. If
we are able to find µ ∈ R for which q∗(L) 6= 0, we get a contradiction with (4.36) and conclude the proof
of Lemma 4.6. We claim that this can be done:

Lemma 4.7. There exists µ ∈ R such that µ/ν and −µ/ν − π2`2/L2 do not belong to the spectrum of
A1 and such that solving (4.35) and (4.41) yields q∗(L) 6= 0.

The proof of Lemma 4.7 relies on explicit lengthy computations given below, and concludes the proof
of Lemma 4.6 by yielding a choice of µ such that (4.42) is violated, so that (4.36) cannot hold.

4.2.4 Proof of Lemma 4.7

For convenience, we introduce W ∗ solution of
−
(
µ+

ν`2π2

L2

)
W ∗ + νW ∗ − ν∂22W

∗ +

(
r∗

∂2r
∗

)
= 0, in (0, L),

−W ∗1 + ∂2W
∗
2 = 0, in (0, L),

W ∗(0) = (0, 0), W ∗(L) = (0, 1),

(4.43)

so that multiplying (4.41) by W ∗, we get

q∗(L) =

∫ L

0

cos

(
`πx2

L

)(
α∗1(x2)W ∗2 (x2) + α∗2(x2)W ∗1 (x2)

)
dx2. (4.44)

Therefore, to compute q∗(L) corresponding to µ ∈ R given, we solve (4.35) and (4.43), which can be
done similarly, and we then compute the quantity∫ L

0

cos
(πx2

L

)(
α∗1(x2)W ∗2 (x2) + α∗2(x2)W ∗1 (x2)

)
dx2.
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Note that, replacing µ by µ/ν if necessary, we can assume ν = 1 in (4.35) and in (4.43) without loss of
generality.

Computation of α∗. In order to compute α∗, we start by computing the equation satisfied by α∗2: (µ+ 1− ∂22)(1− ∂22)α∗2 = 0, in (0, L),
α∗1 + ∂2α

∗
2 = 0, in (0, L),

α∗2(0) = ∂2α
∗
2(0) = ∂2α

∗
2(L) = 0, α∗2(L) = 1.

(4.45)

If µ /∈ {0,−1}, setting k =
√
µ+ 1, α∗2 can be expanded as

α∗2(x2) = C1e
x2 + C2e

−x2 + C3e
kx2 + C4e

−kx2 ,

while
α∗1(x2) = −C1e

x2 + C2e
−x2 − C3ke

kx2 + C4ke
−kx2 ,

where the coefficients C1, C2, C3, C4 are determined by the equation

Mα∗(k)


C1

C2

C3

C4

 =


0
0
1
0

 with Mα∗(k) =


1 1 1 1
1 −1 k −k
eL e−L ekL e−kL

eL −e−L kekL −ke−kL

 ,

which is invertible if and only if µ /∈ {0,−1} and µ does not belong to the spectrum of A1. One may
thus write

Det(Mα∗(k))


C1

C2

C3

C4

 = AdjMα∗(k)


0
0
1
0

 ,

i.e. the third line of the cofactor matrix.
Computation of W ∗. This can be done as for α∗ by replacing µ by −(µ+`2π2/L2). Therefore, setting

ρ =
√

1− (µ+ `2π2/L2) and assuming that −(µ + π2`2/L2) /∈ {0,−1} and that it does not belong to
the spectrum of A1, we get

W ∗2 (x2) = D1e
x2 +D2e

−x2 +D3e
ρx2 +D4e

−ρx2 ,

W ∗1 (x2) = D1e
x2 −D2e

−x2 +D3ρe
ρx2 −D4ρe

−ρx2 ,

where the coefficients D1, D2, D3, D4 are given by

MW∗(ρ)


D1

D2

D3

D4

 =


0
0
1
0

 with MW∗ =


1 1 1 1
1 −1 ρ −ρ
eL e−L eρL e−ρL

eL −e−L ρeρL −ρe−ρL

 .

Similarly as before, one gets:

Det(MW∗(ρ))


D1

D2

D3

D4

 = AdjMW∗(ρ)


0
0
1
0

 ,

Computation of q∗(L). Based on (4.44) and the above formula for the computation of α∗ and W ∗, we
can compute q∗(L) explicitly. For that let us denote

k =
√
µ+ 1, ρ =

√
−(µ+

π2`2

L2
) + 1. (4.46)

We then compute

q̃(k, ρ) = (QAdjMα∗(k)b) · (AdjMW∗(ρ)b), where b =


0
0
1
0

 ,
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where Q is the matrix given by

Q =


0 0 (ρ− 1)I(ρ+ 1, `) −(ρ+ 1)I(1− ρ, `)
0 0 (ρ+ 1)I(ρ− 1, `) (1− ρ)I(−1− ρ, `)

(1− k)I(k + 1, `) −(k + 1)I(k − 1, `) (ρ− k)I(k + ρ, `) −(k + ρ)I(k − ρ, `)
(k + 1)I(−k + 1, `) (k − 1)I(−k − 1, `) (k + ρ)I(−k + ρ, `) (k − ρ)I(−k − ρ, `)

 ,

where I(a, `) =

∫ L

0

eax2 cos

(
`πx2

L

)
dx2 =

a

a2 + `2π2/L2
((−1)` exp(aL)− 1).

In particular, for k and ρ as in (4.46), we have the identity:

q̃(k, ρ) = Det(Mα∗(k))Det(MW∗(ρ))q∗(L). (4.47)

Computations performed in Maxima1 yield the following formula for q̃(k, ρ):

q̃(k, ρ) = J1(k, ρ) + J2(k, ρ) + J3(k, ρ) + J4(k, ρ), (4.48)

where

J1(k, ρ) = (2ρe−ρL − ρeL + eL − ρe−L − e−L)×(
(ρ− k)(ρ+ k)

π2`2/L2 + (ρ+ k)2
(2ke−kL − keL + eL − ke−L − e−L)((−1)`e(ρ+k)L − 1)

+
(−ρ− k)(k − ρ)

π2`2/L2 + (k − ρ)2
(2kekL − keL − eL − ke−L + e−L)((−1)`e(k−ρ)L − 1)

+
(1− k)(k + 1)

π2`2/L2 + (k + 1)2
(k2ekL − kekL − k2e−kL − ke−kL + 2ke−L)((−1)`e(k+1)L − 1)

+
(−k − 1)(k − 1)

π2`2/L2 + (k − 1)2
(−k2ekL − kekL + k2e−kL − ke−kL + 2ke−L)((−1)`e(k−1)L − 1)

)
,

J2(k, ρ) = (2ρeρL − ρeL − eL − ρe−L + e−L)×(
(ρ− k)(ρ+ k)

π2`2/L2 + (ρ− k)2
(2ke−kL − keL + eL − ke−L − e−L)((−1)`e(ρ−k)L − 1)

+
(−ρ− k)(k − ρ)

π2`2/L2 + (−k − ρ)2
(2kekL − keL − eL − ke−L + e−L)((−1)`e(−k−ρ)L − 1)

+
(1− k)(k + 1)

π2`2/L2 + (1− k)2
(k2ekL − kekL − k2e−kL − ke−kL + 2ke−L)((−1)`e(1−k)L − 1)

+
(−k − 1)(k − 1)

π2`2/L2 + (−k − 1)2
(−k2ekL − kekL + k2e−kL − ke−kL + 2ke−L)((−1)`e(−k−1)L − 1)

)
,

J3(k, ρ) = (ρ2eρL − ρeρL − ρ2e−ρL − ρe−ρL + 2ρe−L)×(
(ρ− 1)(ρ+ 1)

π2`2/L2 + (ρ+ 1)2
(2ke−kL − keL + eL − ke−L − e−L)((−1)`e(ρ+1)L − 1)

+
(−ρ− 1)(1− ρ)

π2`2/L2 + (1− ρ)2
(2kekL − keL − eL − ke−L + e−L)((−1)`e(1−ρ)L − 1)

)
,

and

J4(k, ρ) = (−ρ2eρL − ρeρL + ρ2e−ρL − ρe−ρL + 2ρeL)×(
(ρ− 1)(ρ+ 1)

π2`2/L2 + (ρ− 1)2
(2ke−kL − keL + eL − ke−L − e−L)((−1)`e(ρ−1)L − 1)

+
(−ρ− 1)(1− ρ)

π2`2/L2 + (−1− ρ)2
(2kekL − keL − eL − ke−L + e−L)((−1)`e(−1−ρ)L − 1)

)
.

1The corresponding file is available on S.E.’s webpage.
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We then take an increasing sequence µn ∈ R∗+ indexed by n ∈ N∗ going to infinity so that

ρn =

√
−(µn +

π2`2

L2
) + 1,

satisfies
exp(ρnL) = 1.

We then take kn =
√
µn + 1 ∈ R, so that we have kn ' −iρn and kn → ∞ in the limit n → ∞. Using

the Landau notation on(1) for a quantity which goes to 0 as n→∞, this allows to show that

J1(kn, ρn) = 2ρn(1− cosh(L))(1 + on(1))×( (i− 1)

(i + 1)
(−2kn cosh(L))(−1)`eknL +

(−i− 1)

(1− i)
(2kne

knL)(−1)`eknL

+(−1)(k2
ne
knL)(−1)`eknLeL + (−1)(−k2

ne
knL)(−1)`eknLe−L

)
= (−1)`+12ik3

ne
2knL(1− cosh(L)) sinh(L)(1 + on(1)).

Besides, one can easily show that

|J2(kn, ρn)|+ |J3(kn, ρn)|+ |J4(kn, ρn)| 6 k3
ne

2knLon(1). (4.49)

This implies in particular that the sequence (|q̃(kn, ρn)|) tends to +∞ as n→∞. Now, we consider the
function

Q̃ : µ ∈ R∗+ 7→ q̃

(√
µ+ 1,

√
−(µ+

π2`2

L2
) + 1

)
.

It is clear from (4.48) and the formulas giving J1(k, ρ), J2(k, ρ), J3(k, ρ), J4(k, ρ) that the function Q̃ is
analytic in a neighborhood of infinity of the form [µ0,∞). Besides, we know that Q̃ has isolated zeros
as Q̃(µn) with µn →∞ given above goes to infinity as n→∞.

Furthermore, k 7→ Det(Mα∗(k)) is an holomorphic function of k which does not vanish identically
(its roots correspond to the spectrum of the operator A1, see the proof of Lemma 4.1), so its roots are
isolated. Therefore, the roots of the function

µ 7→ Det
(
Mα∗

(√
µ+ 1

))
are isolated. Similarly, the roots of the function

µ 7→ Det

(
MW∗

(√
−(µ+

π2`2

L2
) + 1

))

are isolated.
Therefore, there exists µ ∈ [µ0,∞) such that

q̃

(√
µ+ 1,

√
−(µ+

π2`2

L2
) + 1

)
6= 0,

Det
(
Mα∗

(√
µ+ 1

))
6= 0,

Det

(
MW∗

(√
−(µ+

π2`2

L2
) + 1

))
6= 0,

so that we can conclude q∗(L) 6= 0 with this choice of µ from the identity (4.47).
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4.3 Controllability of β in Zuu

Theorem 4.8. Let T > 0.
There exists a finite-dimensional vector space G ⊂ H1

0 (0, T ;H2(T) ∩ L2
0(T)) such that for any β1 ∈

Zuu, there exists a control function g ∈ G such that if we denote by α the solution of
∂tα− ν∆α+∇p1 = 0, in (0, T )× Ω,
div α = 0, in (0, T )× Ω,
α(t, x1, 0) = (0, 0), on (0, T )× T,
α(t, x1, L) = (0, g(t, x1)), on (0, T )× T,
α(0, x1, x2) = 0, in Ω,

(4.50)

we have α(T ) = 0 in Ω, and the solution β of (4.1) satisfies

Puuβ(T ) = β1. (4.51)

We can further impose that the control function can be chosen such that the map G : β1 ∈ Zuu 7→ g ∈ G
is continuous, and the corresponding solutions α of (4.50) with g = G(β1) and β of (4.1) belong to
L2(0, T ;H2(Ω)) ∩H1(0, T ;V0(Ω)) with norms bounded as follows:

‖α‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω))+‖β‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω))+‖g‖2H1
0 (0,T ;H2(T)) 6 C

∥∥β1
∥∥
V1

0(Ω)
. (4.52)

Proof. The basic idea of the proof of Theorem 4.8 is to combine Theorem 4.4 with the fact that, when
time evolves and the control is shut down, the projections t 7→ 〈β(t),Ψ0,`〉L2(Ω) evolve differently. We
shall thus combine periods of time in which the control is active with periods of time during which all
the controls are switched off.

Let `0 be the largest integer such that ν`20π
2/L2 6 ω, i.e. the dimension of the space Zuu. Set then

T ∗ = T/(2`0 − 1). Applying then Theorem 4.4 in time T ∗ for ` ∈ {1, · · · , `0}, for each ` ∈ {1, · · · , `0},
there exist control functions ga` and gb` such that for all a` and b` in R, the solution α` of (4.50) with
control function g = a`g

a
` + b`g

b
` satisfies α`(T

∗) = 0 and the solution β` of (4.1) satisfies

Puuβ`(T ∗) = a`b`

`0∑
j=1

γj,`Ψ0,j , with γ`,` = 1. (4.53)

We then set Tk = (2k − 1)T ∗ for k ∈ {1, · · · , `0}. For k ∈ {2, · · · , `0}, we introduce time parameters
τk ∈ [0, T ∗], to be chosen later. The strategy to choose the control is then as follows:

• For t ∈ [0, T1], we choose g(t, x1) = a1g
a
1 (t, x1) + b1g

b
1(t, x1) for x1 ∈ T;

• For k ∈ {2, · · · , `0} and t ∈ [Tk − T ∗ − τk, Tk − τk], we choose the control function g(t, x1) =
akg

a
k(t− (Tk − T ∗ − τk), x1) + bkg

b
k(t− (Tk − T ∗ − τk), x1) for x1 ∈ T;

• Otherwise, i.e. for t ∈ O = [0, T ] \ ([0, T1] ∪`0k=2 [Tk − T ∗ − τk, Tk − τk]), we set g(t, x1) = 0 for
x1 ∈ T.

It is easy to check that, if α denotes the solution α of (4.50) with the above controls, α(T ) = 0 in Ω and
the solution β of (4.1) will satisfy, for all ` ∈ {1, · · · , `0},

〈β(T ),Ψ0,`〉L2(Ω) =

`0∑
k=1

γ`,kakbke
− νπ2`2

L2 (T−(Tk−τk)), (4.54)

where for simplicity of notations we have introduced the parameter τ1, that we immediately fix by τ1 = 0.
In other words, we get the following matrix identity:

〈β(T ),Ψ0,1〉L2(Ω)

〈β(T ),Ψ0,2〉L2(Ω)

...
〈β(T ),Ψ0,`0〉L2(Ω)

 = Mτ


a1b1
a2b2

...
a`0b`0

 where (Mτ )`,k = γ`,ke
− νπ2`2

L2 (T−(Tk−τk)). (4.55)
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Note now that the matrix Mτ depends on the choice of the free parameters τ = (τk)k∈{2,··· ,`0}. We shall
therefore show that there exists suitable choices of coefficients τk ∈ [0, T ∗] such that the matrix Mτ is

invertible. In order to prove this, for all k ∈ {1, · · · , `0}, we introduce the matrix M
(k)
τ formed by the

first k lines and columns of Mτ . It is clear that each matrix M
(k)
τ depends only on the choice of the

parameters (τ2, · · · , τk). We shall then show by induction that for all k ∈ {1, · · · , `0}, there exists a

choice of parameters (τ2, · · · , τk) such that the matrix M
(k)
τ is invertible.

For k = 1, M
(1)
τ = (γ1,1e

− νπ2

L2 (T−T1)) = (e−
νπ2

L2 (T−T1)), which is obviously invertible.
Then we assume that for some k ∈ {1, · · · , `0− 1}, we have found a choice of parameters (τ2, · · · , τk)

such that the matrix M
(k)
τ is invertible. We then compute the determinant of the matrix M

(k+1)
τ by

developing the last column and using that γk+1,k+1 = 1:

Det(M (k+1)
τ ) = Det(M (k)

τ )e−
νπ2(k+1)2

L2 (T−(Tk+1−τk+1))

+

k∑
j=1

(−1)j+k+1Det((M (k+1)
τ )j,k+1)γj,k+1e

− νπ
2j2

L2 (T−(Tk+1−τk+1)), (4.56)

where (M
(k+1)
τ )j,k+1 is the minor of the matrix M

(k+1)
τ obtained after having removed the j-th line and

the k+1-th column. One then remarks that the matrices (M
(k+1)
τ )j,k+1 do not depend on τk+1. Therefore,

using that Det(M
(k)
τ ) 6= 0 from the induction assumption and that any finite family of real exponentials

of the form (t 7→ eµjt) is linearly independent on R as soon as the family of the µj are all distinct, the

function τk+1 7→ Det(M
(k+1)
τ ) is not identically zero. Besides, as the function τk+1 7→ Det(M

(k+1)
τ ) is

analytic, there exists τk+1 ∈ [0, T ∗] such that Det(M
(k+1)
τ ) 6= 0.

By recursion, we deduce that there exists a choice of parameters τ = (τk)k∈{1,··· ,`0} with τ1 = 0 and
τk ∈ [0, T ∗] for all k ∈ {2, · · · , `0} such that the matrix Mτ is invertible. From now on, we take a choice
of parameters τ = (τk)k∈{1,··· ,`0} with τ1 = 0 and τk ∈ [0, T ∗] for all k ∈ {2, · · · , `0} such that the matrix
Mτ is invertible.

We can then conclude the proof of Theorem 4.8 as follows. For β1 ∈ Zuu, we compute
A1

A2

...
A`0

 = M−1
τ


〈β1,Ψ0,1〉L2(Ω)

〈β1,Ψ0,2〉L2(Ω)

...
〈β1,Ψ0,`0〉L2(Ω)

 , (4.57)

and
∀` ∈ {1, · · · , `0}, a` = Sign(A`)

√
|A`|, b` =

√
|A`|, (4.58)

where Sign is the sign function (with the convention Sign(0) = 0), and we choose the control function as

g(t, x1) =

`0∑
k=1

(
akg

a
k(t− (Tk − T ∗ − τk), x1) + bkg

b
k(t− (Tk − T ∗ − τk), x1)

)
1t−(Tk−T∗−τk)∈[0,T∗].

(4.59)
First, it is clear that the control function g constructed above belongs to a finite-dimensional space
G spanned by the functions gak(t − (Tk − T ∗ − τk), x1)1t−(Tk−T∗−τk)∈[0,T∗], and gbk(t − (Tk − T ∗ −
τk), x1)1t−(Tk−T∗−τk)∈[0,T∗]. Besides, as each of these functions belong to H1

0 (0, T ;H2(T) ∩ L2
0(T)),

G ⊂ H1
0 (0, T ;H2(T) ∩ L2

0(T)).
By construction, the control function g in (4.59) is such that if we denote by α the solution of (4.50)

with control function g, we have α(T ) = 0, and the solution β of (4.1) satisfies (4.51). Besides, we easily
check that the map β1 ∈ Zuu 7→ g ∈ G given by the above construction is continuous.

Using the explicit construction above, we immediately have that

‖g‖H1
0 (0,T ;H2(T)) 6 C

√
‖β1‖V1

0(Ω).

Starting from this estimate, we easily derive (4.52). This concludes the proof of Theorem 4.8.
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4.4 Proof of Theorem 3.2

Let β0 ∈ Zuu and f ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;V0(Ω)).
Our goal is to perform a fixed point argument. We thus introduce the mapping

G : g ∈ G 7→ G(−Puu(β(T ))) ∈ G, (4.60)

where G is the finite dimensional subspace of H1
0 (0, T ;H2(T) ∩ L2

0(T)) given by Theorem 4.8 and G is
the mapping defined in Theorem 4.8, and β is the solution of

∂tβ − ν∆β +∇p2 = −(f · ∇f)− (α · ∇f + f · ∇α), in (0, T )× Ω,
div β = 0, in (0, T )× Ω,
β(t, x1, 0) = β(t, x1, L) = (0, 0), on (0,∞)× T,
β(0, x1, x2) = β0(x1, x2), in Ω,

(4.61)

with α the solution of 
∂tα− ν∆α+∇p1 = 0, in (0, T )× Ω,
div α = 0, in (0, T )× Ω,
α(t, x1, 0) = (0, 0), on (0, T )× T,
α(t, x1, L) = (0, g(t, x1)), on (0, T )× T,
α(0, x1, x2) = 0, in Ω.

(4.62)

If we find a control function g ∈ G such that G (g) = g, then by construction the solution α of (4.62) is
such that the solution β̌ of

∂tβ̌ − ν∆β̌ +∇p̌2 = −(α · ∇ α), in (0, T )× Ω,

div β̌ = 0, in (0, T )× Ω,

β̌(t, x1, 0) = β̌(t, x1, L) = (0, 0), on (0,∞)× T,
β̌(0, x1, x2) = 0, in Ω,

satisfies Puu(β̌(T )) = −Puu(β(T )) so that the function β̃ = β̌ + β solves (3.11) with α̃ = α and satisfies
(3.12). We have thus reduced the proof of Theorem 3.2 to the proof of the existence of a fixed point to
the map G in (4.60) and to estimates on such a fixed point.

It is clear that the map G in (4.60) is continuous (we do not need to make precise with which topology
G is endowed as it is a finite dimensional vector space). Besides, the solution α of (4.62) satisfies,

‖α‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 C ‖g‖H1
0 (0,T ;H2(T)) ,

while the solution β of (4.61) satisfies:

‖Puuβ(T )‖V1
0(Ω) + ‖β‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 C ‖f‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω))

+ C ‖f‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) ‖α‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) + C
∥∥β0

∥∥
V1

0(Ω)
,

Using then the estimate (4.52) in Theorem 4.8, we thus deduce that

‖G g‖2H1
0 (0,T ;H2(T))

6 C ‖f‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) + C ‖f‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) ‖g‖H1
0 (0,T ;H2(T)) + C

∥∥β0
∥∥
V1

0(Ω)

6 C ‖f‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) +
1

2
‖g‖2H1

0 (0,T ;H2(T)) + C
∥∥β0

∥∥
V1

0(Ω)
,

Therefore, setting
R2

2
= C ‖f‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) + C

∥∥β0
∥∥
V1

0(Ω)
,

the compact convex set
GR = G ∩ {‖g‖H1

0 (0,T ;H2(T)) 6 R}
is stable by the map G . Consequently, by Brouwer fixed point theorem, the map G has a fixed point g
in GR. According to the above choice of R, this fixed point automatically satisfies

‖g‖2H1
0 (0,T ;H2(T)) 6 2C ‖f‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) + 2C

∥∥β0
∥∥
V1

0(Ω)
,

which entails the estimate (3.13).
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5 Proof of Theorem 1.1

The aim of this section is to prove Theorem 1.1. In order to do it, we follow the strategy exposed in
Section 3 and give estimates at each steps, allowing to conclude the exponential decay at rate ω0 of the
norm of the solution u = εα+ ε2β of (1.2).

Section 5.1, respectively 5.2, gives the estimates satisfied by α and β on the time interval (0, T ),
respectively (nT, (n+ 1)T ).

Section 5.3 then deduce from these estimates the decay of α and β at times nT for n ∈ N and ε small
enough. Section 5.4 then improves the decay estimates on the function α, allowing to conclude Theorem
1.1 in Section 5.5.

5.1 The initialization step

Recall that (α0, β0) are chosen such that (3.4) holds, assumption that we recall here for convenience:∥∥α0
∥∥2

V1
0(Ω)

+
∥∥β0

∥∥
V1

0(Ω)
6 1, with Puuα0 = 0. (5.1)

Our goal is then to show that there exists ε0 > 0 such that for all ε ∈ [0, ε0],

‖α(T )‖2V1
0(Ω) + ‖β(T )‖V1

0(Ω) 6 C(
∥∥α0

∥∥2

V1
0(Ω)

+
∥∥β0

∥∥
V1

0(Ω)
). (5.2)

Estimates (3.6) already gives the estimate we need on α. We complete them with an estimate on β
deduced from Corollary B.2. In order to use Corollary B.2, we remark that β solves (B.1) with F as in
(B.5) with the choice

F0 = α⊗ α and F1 = α,

as we can write

α · ∇α+ εβ · ∇α+ εα · ∇β = div (α⊗ α+ εβ ⊗ α+ εα⊗ β) = div (F0 + ε(F1 ⊗ β + β ⊗ F1)).

Now, we have

‖F0‖L2(0,T ;H1(Ω)) 6 C ‖α‖2L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 C
∥∥α0

∥∥2

V1
0(Ω)

6 C,

where the last estimates comes from (5.1), and

‖F1‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 C
∥∥α0

∥∥
V1

0(Ω)
6 C

from (3.6) and (3.4).
Consequently, according to Corollary B.2, there exists ε0 > 0 such that for all ε ∈ [0, ε0], the solution

β of (3.3) in (0, T ) belongs to L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)) and the following estimate holds:

‖β(T )‖V1
0(Ω) + ‖β‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 C

(∥∥α0
∥∥2

V1
0(Ω)

+
∥∥β0

∥∥
V1

0(Ω)

)
. (5.3)

This completes the proof of (5.2).

5.2 The iterative process

Let n ∈ N∗.
We first remark that all the construction on the time interval (nT, (n+1)T ) depends on the quantities

(α(nT ),Psβ(nT ),Puβ(nT )). In order to be able to show the decay of the solution, we shall therefore get
an estimate on (α((n+ 1)T ),Psβ((n+ 1)T ),Puβ((n+ 1)T )).

To begin with, we call Dn > 0 a suitable combination of the norms of α(nT ) and β(nT ), namely:

Dn = ‖α(nT )‖2V1
0(Ω) + ‖β(nT )‖V1

0(Ω) . (5.4)

In the proof below, C will be used to denote several constants, which may change from line to line
but are all independent of the iteration n (n ∈ N) and of the parameter ε (ε ∈ [0, 1]).
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Straightforward estimates on α̂ solving (3.14) yields

‖α̂‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) 6 C ‖α(nT )‖V1
0(Ω) . (5.5)

Besides, as α(nT ) satisfies (3.8) and α̂(nT ) = α(nT ), we have

‖α̂((n+ 1)T )‖V1
0(Ω) 6 e−ωT ‖α̂(nT )‖V1

0(Ω) 6 e−ωT ‖α(nT )‖V1
0(Ω) . (5.6)

As α̃((n+ 1)T ) = 0 by construction and α = α̃+ α̂ (recall (3.18)), we obtain

‖α((n+ 1)T )‖V1
0(Ω) = ‖α̂((n+ 1)T )‖V1

0(Ω) 6 e−ωT ‖α(nT )‖V1
0(Ω) . (5.7)

Based on Theorem 3.2, we deduce the following estimate on (α̃, β̃):

‖α̃‖2L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) +
∥∥∥β̃∥∥∥

L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

6 C
(
‖α̂‖2L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;V0(Ω)) + ‖Puuβ(nT )‖V1

0(Ω)

)
6 C

(
‖α(nT )‖2V1

0(Ω) + ‖Puβ(nT )‖V1
0(Ω)

)
. (5.8)

This estimate in particular implies∥∥∥β̃((n+ 1)T )
∥∥∥
V1

0(Ω)
6 C

(
‖α(nT )‖2V1

0(Ω) + ‖Puβ(nT )‖V1
0(Ω)

)
, (5.9)

and, as α = α̃+ α̂,

‖α‖2L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) 6 C
(
‖α(nT )‖2V1

0(Ω) + ‖Puuβ(nT )‖V1
0(Ω)

)
(5.10)

From Proposition A.1, the solution β̂ of the control problem (3.15)–(3.16) satisfies:∥∥∥β̂∥∥∥
L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

6 C

(
‖(I − Puu)β(nT )‖V1

0(Ω) +
∥∥∥Pud(β̃((n+ 1)T ))

∥∥∥
V1

0(Ω)

)
6 C

(
‖α(nT )‖2V1

0(Ω) + ‖β(nT )‖V1
0(Ω)

)
. (5.11)

and∥∥∥Psβ̂((n+ 1)T )
∥∥∥
V1

0(Ω)
6 e−ωT ‖Psβ(nT )‖V1

0(Ω) + C
∥∥∥Puβ̂(nT )

∥∥∥
V1

0(Ω)
+ C

∥∥∥Pud(β̃((n+ 1)T ))
∥∥∥
V1

0(Ω)

6 e−ωT ‖Psβ(nT )‖V1
0(Ω) + C

(
‖α(nT )‖2V1

0(Ω) + ‖Puβ(nT )‖V1
0(Ω)

)
. (5.12)

We then have to estimate the solution βε of (3.20) with the source term fε defined in (3.21). Note
that βε solves equation (B.1) translated on the time interval (nT, (n+ 1)T ) with F as in (B.5) and

F0 = ε(β̃ + β̂)⊗ α+ εα⊗ (β̃ + β̂) + ε2(β̃ + β̂)⊗ (β̃ + β̂), (5.13)

F1 = α+ ε(β̃ + β̂), (5.14)

In order to apply Corollary B.2, we shall thus use the bound (5.10) on α and the following bound on

β̃ + β̂ which can be deduced from (5.8) and (5.11):∥∥∥β̃ + β̂
∥∥∥
L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

6 C
(
‖α(nT )‖2V1

0(Ω) + ‖β(nT )‖V1
0(Ω)

)
6 CDn. (5.15)

This allows to obtain the following estimate on F0 in (5.13):

‖F0‖L2(nT,(n+1)T ;H1(Ω))

6 Cε
∥∥∥β̃ + β̂

∥∥∥
L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

‖α‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

+Cε2
∥∥∥β̃ + β̂

∥∥∥2

L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

6 Cρε,n

∥∥∥β̃ + β̂
∥∥∥
L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

6 Cρε,nDn, (5.16)
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where we have set

ρε,n = ε ‖α‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

+ ε2
∥∥∥β + β̃

∥∥∥
L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

, (5.17)

which, from (5.10) and (5.15), satisfies

ρε,n 6 C(ε
√
Dn + ε2Dn). (5.18)

An estimate on F1 in (5.14) can be deduced directly from (5.10) and (5.15):

‖F1‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) 6 C(
√
Dn + εDn).

In particular, recalling that ε ∈ [0, 1], we have

‖F0‖L2(nT,(n+1)T ;H1(Ω)) + ‖F1‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) 6 C(
√
Dn +Dn).

so that Corollary B.2 applies: There exists ε̃n = e∗(C(
√
Dn +Dn)) > 0 such that for all ε ∈ [0, ε̃n],

‖βε‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) 6 Cρε,nDn 6 C
(
ε
√
Dn + ε2Dn

)
Dn, (5.19)

where we have used the estimates (5.16)–(5.18).
Setting εn = min{ε̃n, 1/Dn}, for all ε ∈ [0, εn] we have

‖βε‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) 6 C
√
εDn. (5.20)

Since β = βε + (β̃ + β̂) and Pu[β̂((n+ 1)T ) + β̃((n+ 1)T )] = 0, combining the estimates (5.9), (5.12)
and (5.20), we get

‖Psβ((n+ 1)T )‖V1
0(Ω) 6 (e−ωT + C

√
ε) ‖Psβ(nT )‖V1

0(Ω) + C ‖Puβ(nT )‖V1
0(Ω) + C ‖α(nT )‖2V1

0(Ω) ,

‖Puβ((n+ 1)T )‖V1
0(Ω) 6 C

√
ε ‖Psβ(nT )‖V1

0(Ω) + C
√
ε ‖Puβ(nT )‖V1

0(Ω) + C
√
ε ‖α(nT )‖2V1

0(Ω) .

(5.21)
for all ε ∈ [0, εn].

At this stage, it is important to notice that the estimates (5.21) are valid for ε ∈ [0, εn] in which εn
is given by

εn = e0(Dn), where e0(D) = min

{
e∗(C(

√
D +D)),

1

D

}
, (5.22)

and e∗ is the decreasing function given by Corollary B.2. Accordingly, e0 is a decreasing function of D.
Thus, the next step is to check that infn εn > 0.

5.3 The decay of α and β at times nT

From (5.7), we immediately have that for all n ∈ N∗,

‖α(nT )‖V1
0(Ω) 6 e−ω(n−1)T ‖α(T )‖V1

0(Ω) . (5.23)

To show the decay of (‖Psβ((n+ 1)T )‖V1
0(Ω) , ‖Puβ((n+ 1)T )‖V1

0(Ω)), we rewrite (5.21) as a vector in-

equality: for all n ∈ N, if ε ∈ [0, εn],(
‖Psβ((n+ 1)T )‖V1

0(Ω)

‖Puβ((n+ 1)T )‖V1
0(Ω)

)
6 Kε

(
‖Psβ(nT )‖V1

0(Ω)

‖Puβ(nT )‖V1
0(Ω)

)
+ C ‖α(nT )‖2V1

0(Ω)

(
1√
ε

)
,

where Kε =

(
e−ωT + C

√
ε C

C
√
ε C

√
ε

)
, (5.24)
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and the sign 6 has to understood component-wise. As Kε has non-negative entries, we immediately
have, for all n ∈ N∗ and ∀ε ∈ [0, inf

j6n−1
εj ],

(
‖Psβ(nT )‖V1

0(Ω)

‖Puβ(nT )‖V1
0(Ω)

)
6 Kn−1

ε

(
‖Psβ(T )‖V1

0(Ω)

‖Puβ(T )‖V1
0(Ω)

)
+

n−1∑
j=1

C ‖α(jT )‖2V1
0(Ω)K

n−1−j
ε

(
1√
ε

)
. (5.25)

Now remark that the matrix K0 obviously has two eigenvalues, 0 and e−ωT . We thus choose ω1 ∈
(ω0, ω), and as the spectrum of a matrix depends continuously of its coefficients, we can find ε∗ ∈ (0, 1]
such that for all ε ∈ [0, ε∗], Kε has two distinct eigenvalues and both eigenvalues of Kε are smaller than
e−ω1T . By diagonalizing Kε and using continuity with respect to ε , we get the existence of a constant
C such that

‖Kn
ε ‖L (R2) 6 Ce−nω1T for all n ∈ N and ε ∈ [0, ε∗].

Using this estimate and (5.23) in (5.25), we obtain, for all n ∈ N∗ and ε ∈ [0,min{ε∗, inf
j6n−1

εj}],

‖β(nT )‖V1
0(Ω) 6 Ce−(n−1)ω1T ‖β(T )‖V1

0(Ω) + C ‖α(T )‖2V1
0(Ω)

n−1∑
j=1

e−2ω(j−1)T e−(n−1−j)ω1T

6 Ce−(n−1)ω1T
(
‖α(T )‖2V1

0(Ω) + ‖β(T )‖V1
0(Ω)

)
. (5.26)

Combining the estimates (5.23) and (5.26), we get that for all n ∈ N∗ and ε ∈ [0,min{ε∗, inf
j6n−1

εj}],

Dn 6
(
e−2(n−1)ω1T + Ce−nω1T

)
D1. (5.27)

In particular, taking N such that e−2(N−1)ω1T + Ce−Nω1T 6 1 and ε ∈ [0,min{ε∗, inf
j6N−1

εj}], from

(5.27), DN 6 D1. Consequently, as εN = e0(DN ) where e0 is a decaying function (recall (5.22)), we
have εN > ε1, so that from (5.27), we also have DN+1 6 D1 for all ε ∈ [0,min{ε∗, inf

j6N−1
εj}]. An easy

induction argument then shows that for all n > N and ε ∈ [0,min{ε∗, inf
j6N−1

εj}], Dn 6 D1 and εn > ε1.

We thus set

ε = min

{
ε∗, inf

j6N−1
εj

}
, (5.28)

which is obviously positive and for which, from the above discussion, the estimate (5.26) holds for all
n ∈ N∗.

Combining (3.6), (5.3), (5.23) and (5.26), we thus obtain a constant C > 0 such that for all n ∈ N,

‖α(nT )‖V1
0(Ω) 6 Ce−ω1nT

∥∥α0
∥∥
V1

0(Ω)
, (5.29)

‖β(nT )‖V1
0(Ω) 6 Ce−ω1nT

(∥∥α0
∥∥2

V1
0(Ω)

+
∥∥β0

∥∥
V1

0(Ω)

)
, (5.30)

which imply in particular that
Dn 6 Ce−ω1nTD0. (5.31)

The estimates in Sections 5.1–5.2 easily yields that, for all t > 0,

‖α(t)‖2V1(Ω) 6 Ce−ω1t
(∥∥α0

∥∥2

V1
0(Ω)

+
∥∥β0

∥∥
V1

0(Ω)

)
, (5.32)

‖β(t)‖V1(Ω) 6 Ce−ω1t
(∥∥α0

∥∥2

V1
0(Ω)

+
∥∥β0

∥∥
V1

0(Ω)

)
. (5.33)

The decay of β is the one we are looking for, but the decay of α stated in (5.32) is slower than the one
stated in Theorem 1.1, except at times nT . The goal of the next section is to show that estimate (5.32)
can be improved to obtain a time decay on α as exp(−ω1t).
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5.4 Improving the decay of the norm α

In this section, we do a bootstrap argument to improve the estimate (5.32) on the decay of the norm of
α.

In order to improve the estimate (5.32), we recall that α = α̂ + α̃. But from (5.5) and (5.29), it is
clear that α̂ satisfies, for all t > 0,

‖α̂(t)‖V1(Ω) 6 Ce−ω1t
∥∥α0

∥∥
V1

0(Ω)
. (5.34)

We shall thus focus on the decay of the norm of α̃. In order to do this, for n ∈ N∗, using (5.33) and
(5.34), we bound ρε,n in (5.17) by

ρε,n 6 C ‖α̃‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) + Ce−ω1nT .

Consequently, the estimate (5.19) yields, for all n ∈ N∗,

‖βε‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω))

6 C(‖α̃‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) + e−ω1nT )e−ω1nTD0.

Now, as Puβ((n+ 1)T ) = Puβε((n+ 1)T ), we have, for all n ∈ N∗,

‖Puβ((n+ 1)T )‖V1
0(Ω) 6 C(‖α̃‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) + e−ω1nT )e−ω1nTD0.

Consequently, from (5.29), the estimate (5.8) yields, for all n ∈ N∗,

‖α̃‖2L2((n+1)T,(n+2)T ;H2(Ω))∩H1((n+1)T,(n+2)T ;L2(Ω))

6 Ce−2ω1(n+1)TD0 + C ‖α̃‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) e
−ω1nTD0. (5.35)

Now, let us show that for all k ∈ N, there exists Ck > 0 such that for all n ∈ N∗,

‖α̃‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) 6 Cke
−(1−2−k)ω1nTD

1/2
0 . (5.36)

We prove it by induction. For k = 1, this is simply estimate (5.32). Now, if we assume that (5.36) holds
for some k ∈ N∗, from (5.35), we have for all n ∈ N∗,

‖α̃‖2L2((n+1)T,(n+2)T ;H2(Ω))∩H1((n+1)T,(n+2)T ;L2(Ω)) 6 CCke
−(2−2−k)ω1nTD0,

so that there exists a constant Ck+1 such that for all n ∈ N∗,

‖α̃‖L2((n+1)T,(n+2)T ;H2(Ω))∩H1((n+1)T,(n+2)T ;L2(Ω)) 6 Ck+1e
−(1−2−(k+1))ω1(n+1)TD

1/2
0 .

We have thus proved (5.36) for all k ∈ N∗.
We then take k large enough so that (1− 2−k)ω1 > ω0, so that we have for all n ∈ N,

‖α̃‖L2(nT,(n+1)T ;H2(Ω))∩H1(nT,(n+1)T ;L2(Ω)) 6 Ce−ω0nTD
1/2
0 . (5.37)

Combined with (5.34), this implies in particular the existence of a constant C > 0 such that for all t > 0,

‖α(t)‖V1(Ω) 6 Ce−ω0tD
1/2
0 . (5.38)

5.5 End of the proof of Theorem 1.1

With γ = ε2 in (1.9), where ε > 0 is given by (5.28), any initial datum u0 satisfying (1.9) can be
expanded as u0 = εα0 + ε2β0 with (α0, β0) as in (3.4) by taking α0 = (I − Puu)u0 and β0 = Puuu0.

The construction presented in Section 3 then yields controlled trajectories (α, β) and control functions
(g1, g2) such that

• the function u = εα+ ε2β solves the original problem (1.2) with control function g = εg1 + εg2;
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• the couple (α, β) satisfies the decay estimates (5.38) and (5.33).

This entails estimate (1.10) on the solution u of (1.2) with control function g.
The last point which remains to be checked is that the control function g = εg1 + ε2g2 belongs to

L2(0,∞;L2
0(T)). In fact, this follows immediately from the above estimates (5.38) and (5.33) on α and

β at times nT and the construction of g1 and g2 at each iteration, allowing to obtain from (3.6) and
Theorem 3.2 for g1 and from Proposition A.1 for g2 that, for all n ∈ N,

‖g1‖H1
0 (nT,(n+1)T ;L2

0(T))∩L2(nT,(n+1)T ;H2(T)) + ‖g2‖H1
0 (nT,(n+1)T ;L2

0(T))∩L2(nT,(n+1)T ;H2(T)) 6 Ce−ω0nT .

As ω0 is strictly positive, we immediately have that g ∈ L2(0,∞;L2
0(T)), and the additional estimate

that geω0t/(1 + t2) ∈ H1(0,∞;L2
0(T)) ∩ L2(0,∞;H2(T)).

6 Further comments and open problems

6.1 Alternative constructions

Our construction gives the solution u of (1.2) under the form u = εα + ε2β with α and β of size one
and ε small enough. Still, we draw the attention of the reader to the fact that, in this expansion, we
can guarantee that the function α belongs to the stable space Zs only at times nT , n ∈ N. Indeed, the
function α̃ constructed from Theorem 3.2 has no reason to satisfy Puα̃(t) = 0 for t not in {nT, n ∈ N}.
This could seem surprising at first, but actually, it does not impact our proof and result.

In fact, we could have made the choice to construct the solution α̃ in Theorem 3.2 such that Puα̃(t) = 0
by choosing α̃ in the proof of Theorem 3.2 containing only Fourier modes k for large enough k (such that
νk2 > ω) instead of considering α̃ containing only Fourier mode 1 as we did.

6.2 Null controllability issues

It would be interesting to know if one can get the null-controllability of (1.2) by the choice of suitable
controls g ∈ L2((0, T )× T) satisfying (1.3).

As we said in Section 2, all the Fourier modes except the Fourier mode 0 satisfy the unique continua-
tion property. The article [16], which basically extends Lemma 4.1 to any non-zero Fourier mode, shows
that the linearized system (1.4) can be controlled to zero provided the initial datum contains no Fourier
mode 0.

The question thus is reduced to control the 0-mode of the non-linear equation. Our approach can
be seen as a preliminary step in this direction as Theorem 3.2 allows to control any finite number of
eigenvectors of the 0-mode to zero for the second order approximation of (1.2).

As said in the introduction, this question is very much related to the works concerned with null-
controllability of Navier-Stokes equations with controls having some vanishing components as in [19, 20]
in which the case of distributed controls is considered.

A Controllability of the unstable space

The goal of this section is to prove the following classical result, slightly more general than Proposition 3.1:

Proposition A.1. Given α0 ∈ V1
0(Ω) and αf ∈ Zud, there exists a control function

g1 ∈ H1
0 (0, T ;L2

0(T)) ∩ L2(0, T ;H2(T)) (A.1)

such that the solution α of (3.2) on (0, T ) satisfies the controllability requirement

Pudα(T ) = αf . (A.2)

We can further impose the following estimates:

‖Puα‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) + ‖g1‖H1
0 (0,T ;L2

0(T))∩L2(0,T ;H2(T))

6 C
∥∥Puα0

∥∥
V1

0(Ω)
+ C

∥∥αf∥∥
V1

0(Ω)
, (A.3)
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‖α‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 C
∥∥α0

∥∥
V1

0(Ω)
+ C

∥∥αf∥∥
V1

0(Ω)
, (A.4)

and
‖Psα(T )‖V1

0(Ω) 6 e−ωT
∥∥Psα0

∥∥
V1

0(Ω)
+ C

∥∥Puα0
∥∥
V1

0(Ω)
+ C

∥∥αf∥∥
V1

0(Ω)
. (A.5)

The projection Puuα(T ) cannot be controlled, but satisfies the following property:

If Puuα0 = 0, then Puuα(T ) = 0. (A.6)

Proof. Identity (A.6) follows immediately from the fact that if α solves (3.2), then for all ` ∈ N

d

dt

(
〈α(t),Ψ0,`〉L2(Ω)

)
= −νπ

2`2

L2
〈α(t),Ψ0,`〉L2(Ω),

where we have used the fact that for all ` ∈ N, B∗Ψ0,` = 0.
In order to prove the existence of a control function g1, we project the dynamical system (3.2) on

Zud via the orthogonal projection operator Pud : V0
n(Ω)→ Zud with kernel Zs ⊕ Zuu:{

Pudα′ = (PudAPud)Pudα+ PudBg1, for t > 0,
Pudα(0) = Pudα0,

(A.7)

where we use the identities PudA = PudA((Id− Pud) + Pud) = PudAPud = PudAP2
ud.

Kalman’s criterion (see e.g. [36, Corollary 1.4.10]) then applies to (PudAPud,PudB) thanks to Propo-
sition 2.1, so that given α0 ∈ V1

0(Ω) and αf ∈ Zud, there exists a control g1 such that the solution Pudα
of (A.7) satisfies Pudα(0) = Pudα0 and Pudα(T ) = αf .

We look for a control function g1 ∈ H1
0 (0, T ;L2

0(T)) ∩ L2(0, T ;H2(T)) so we need to make slightly
more precise how we choose it. We introduce η = η(t) a smooth non-negative cut-off function flat at
t = 0 and at t = T and η(t) = 1 for t ∈ (T/3, 2T/3). Then we introduce the functional

J(γT ) =
1

2

∫ T

0

η(t) ‖B∗Pudγ‖2L2
0(T) dt+ 〈γ(0),Pudα0〉Zud − 〈γT , αf 〉Zud , (A.8)

defined for γT ∈ Zud, where γ is the solution of the adjoint equation{
−γ′ = PudAPudγ, for t ∈ (0, T ),
γ(T ) = γT ∈ Zud.

(A.9)

Thanks to Kalman’s criterion, the functional J in (A.8) admits a unique minimizer γ̂T corresponding to
a controlled trajectory γ̂ of (A.9), and∥∥γ̂T∥∥

Zud
6 C

(∥∥Pudα0
∥∥
V0(Ω)

+
∥∥αf∥∥Zud) . (A.10)

Setting
g1(t) = η(t)B∗P∗udγ̂(t), t ∈ (0, T ), (A.11)

we easily check that if α solves (3.2) with initial data α0 and control function g1, α satisfies the control-
lability requirement (A.2). We therefore only need to check that g1 and α satisfy the regularity results
claimed by Proposition A.1. They can be easily deduced for g1 from the formula (A.11) and the fact
that γ̂ satisfies the finite dimensional equation (A.9) with an initial data γ̂T satisfying (A.10). The
introduction of the cut-off function is used at that step to ensure g1(0) = g1(T ) = 0. The fact that for
all t ∈ [0, T ], g1(t) ∈ L2

0(T) comes from (A.11) and the form of B∗ in (2.12). This concludes the proof of
estimate (A.3).

Once g1 is estimated by (A.3), the estimate (A.4) follows easily from the results in [34] (recall (2.9)).
The estimate (A.5) also comes easily from the equation satisfied by Psα:{

Psα′ = (PsAPs)Psα+ PsBg1, for t > 0,
Psα(0) = Psα0,

and the fact that the semi-group exp(t(PsAPs)) satisfies, by definition of the set Zs and self-adjointness
of A, ‖exp(t(PsAPs))‖L (V1

0(Ω)) 6 exp(−tω) for all t > 0.
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B Estimates on Navier-Stokes equations

In this section, we present regularity results for the Navier-Stokes equations with homogeneous boundary
conditions: 

∂tz
ε + ε2(zε · ∇)zε − ν∆zε +∇pε = −div F, in (0, T )× Ω,

div zε = 0, in (0, T )× Ω,
zε(t, x1, 0) = zε(t, x1, L) = (0, 0), on (0, T )× T,
zε(0, x1, x2) = z0(x1, x2), in Ω.

(B.1)

We prove the following result based on the computations in [13, Chapter 5 Sections 1 and 2]:

Proposition B.1. Let z0 ∈ V0
n(Ω) and F ∈ L2(0, T ;L2(Ω)). Then the solution zε of (B.1) belongs to

L∞(0, T ;V0(Ω))∩L2(0, T ;V1
0(Ω)) and the following estimate holds (uniformly with respect to ε ∈ [0, 1]):

‖zε‖L∞(0,T ;V0(Ω))∩L2(0,T ;V1
0(Ω)) 6 C0

(
‖F‖L2(0,T ;L2(Ω)) +

∥∥z0
∥∥
V0
n(Ω)

)
. (B.2)

If we further assume that z0 ∈ V1
0(Ω) and F ∈ L2(0, T ;H1(Ω)), the solution zε of (B.1) belongs to

L∞(0, T ;V1
0(Ω)) ∩ L2(0, T ;H2(Ω)2) ∩ H1(0, T ;V0(Ω)), and the following estimate holds: There exist

C1 > 0 and a decreasing function e1 : R+ → (0, 1], such that for all d > 0, if

‖F‖L2(0,T ;H1(Ω)) +
∥∥z0
∥∥
V1

0(Ω)
6 d, (B.3)

then, for all ε ∈ [0, e1(d)], the solution zε of (B.1) satisfies

‖zε‖L∞(0,T ;V1
0(Ω))∩L2(0,T ;H2(Ω))∩H1(0,T ;V0(Ω))

6 C1e
C1ε

6‖zε‖3
L∞(0,T ;V0(Ω))∩L2(0,T ;V1

0(Ω))

(
‖F‖L2(0,T ;H1(Ω)) +

∥∥z0
∥∥
V1

0(Ω)

)
. (B.4)

Proof. Estimate (B.2) follows from a classical energy argument. Formally, multiplying equation (B.1)
by zε, we get, for all t ∈ (0, T ),

1

2

d

dt

(
‖zε(t)‖2L2(Ω)

)
+ ν ‖∇zε(t)‖2L2(Ω) =

∫
Ω

F∇zε,

hence
d

dt

(
‖zε(t)‖2L2(Ω)

)
+ ν ‖∇zε(t)‖2L2(Ω) 6

1

ν
‖F (t)‖2L2(Ω) ,

and we integrate this last estimate. To make this argument fully rigorous, we refer to the proof of
Theorem V.1.4 in [13].

Estimate (B.4) is trickier. We first recall that setting Az = P(∆z) = ∆z−∇p, we have the following
classical estimate (see e.g. [13, Th. IV.5.8]):

‖z‖H2(Ω) 6 C ‖Az‖L2(Ω) for all z ∈ H2(Ω) ∩V1
0(Ω).

As before, to justify completely the computations which are done afterwards, one should be cautious and
perform these estimates for instance on Galerkin approximations of (B.1) following the proof of Theorem
V.2.1 in [13]. We will skip these arguments for conciseness and refer the reader to [13, Section V.2] for
precise justifications.

We thus formally multiply (B.1) by Azε = ∆zε −∇p and we obtain, for all t ∈ (0, T ),

1

2

d

dt

(
‖∇zε‖2L2(Ω)

)
+ ν ‖Azε(t)‖2L2(Ω)

6 ‖F (t)‖H1(Ω) ‖Az
ε(t)‖L2(Ω) + ε2

∫
Ω

(zε · ∇zε)Azε dx

6
1

ν
‖F (t)‖2H1(Ω) +

ν

4
‖Azε(t)‖2L2(Ω) + ε2 ‖Azε(t)‖L2(Ω) ‖z

ε(t) · ∇zε(t)‖L2(Ω) .
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Using interpolation results, we have

ε2 ‖Azε(t)‖L2(Ω) ‖z
ε(t) · ∇zε(t)‖L2(Ω) 6 Cε2 ‖Azε(t)‖L2(Ω) ‖z

ε(t)‖L6(Ω) ‖∇z
ε(t)‖L3(Ω)

6 Cε2 ‖Azε(t)‖L2(Ω)

(
‖zε(t)‖1/3L2(Ω) ‖∇z

ε(t)‖2/3L2(Ω)

)(
‖∇zε(t)‖2/3L2(Ω) ‖Az

ε(t)‖1/3L2(Ω)

)
6 Cε2 ‖Azε(t)‖4/3L2(Ω) ‖z

ε(t)‖1/3L2(Ω) ‖∇z
ε(t)‖4/3L2(Ω)

6
ν

4
‖Azε(t)‖2L2(Ω) + Cε6 ‖zε(t)‖L2(Ω) ‖∇z

ε(t)‖4L2(Ω) .

Therefore, we deduce, for all t ∈ (0, T ),

d

dt

(
‖∇zε‖2L2(Ω)

)
+ ν ‖Azε(t)‖2L2(Ω) 6 C ‖F (t)‖2H1(Ω) + Cε6 ‖∇zε(t)‖4L2(Ω) ‖z

ε(t)‖L2(Ω) .

We introduce

G(t) = Cε6

∫ t

0

‖∇zε(τ)‖2L2(Ω) ‖z
ε(τ)‖L2(Ω) dτ, t ∈ (0, T ),

and we write the above estimate in the form

d

dt

(
‖∇zε‖2L2(Ω) e

−G(t)
)

+ ν ‖Azε(t)‖2L2(Ω) e
−G(t) 6 C ‖F (t)‖2H1(Ω) e

−G(t).

Integrating this last expression in time and using

‖G‖L∞(0,T ) 6 Cε6 ‖zε‖3L∞(0,T ;V0
n(Ω))∩L2(0,T ;V1

0(Ω))

we obtain

‖zε‖L∞(0,T ;V1
0(Ω)) + ‖Azε‖L2(0,T ;L2(Ω))

6 Ce
Cε6‖zε‖3

L∞(0,T ;V0
n(Ω))∩L2(0,T ;V1

0(Ω))

(
‖F‖L2(0,T ;H1(Ω)) +

∥∥z0
∥∥
V1

0(Ω)

)
.

To conclude the proof of Proposition B.1, we should add to the previous estimate that ∂tz
ε = νAzε −

P(ε2zε · ∇zε)− P(div (F )), so an estimate on ∂tz
ε in L2(0, T ;V0(Ω)) easily follows by choosing e1(d) =

d−1/2, according to the following estimates:∥∥P(ε2zε · ∇zε)
∥∥
L2(0,T ;V0(Ω))

6 Cε2 ‖zε‖L∞(0,T ;V1
0(Ω)) ‖z

ε‖L2(0,T ;H2(Ω))

6 Cε2e
2Cε6‖zε‖3

L∞(0,T ;V0
n(Ω))∩L2(0,T ;V1

0(Ω))

(
‖F‖L2(0,T ;H1(Ω)) +

∥∥z0
∥∥
V1

0(Ω)

)2

6 Ce
2Cε6‖zε‖3

L∞(0,T ;V0
n(Ω))∩L2(0,T ;V1

0(Ω))

(
‖F‖L2(0,T ;H1(Ω)) +

∥∥z0
∥∥
V1

0(Ω)

)
.

We will use Proposition B.1 in particular when F in (B.1) takes the form

F = F0 + ε(F1 ⊗ zε + zε ⊗ F1). (B.5)

In that case, as a Corollary of Proposition B.1, we get the following result:

Corollary B.2. Let z0 ∈ V1
0(Ω) and F = F0 +ε(F1⊗zε+zε⊗F1) as in (B.5) with F0 ∈ L2(0, T ;H1(Ω))

and F1 ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)). There exist C2 > 0 and a decreasing function e∗ : R+ →
(0, 1], such that for all d > 0 if∥∥z0

∥∥
V1

0(Ω)
+ ‖F0‖L2(0,T ;H1(Ω)) + ‖F1‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 d, (B.6)

then, for all ε ∈ [0, e∗(d)], the solution zε of (B.1) satisfies

‖zε‖L∞(0,T ;V1
0(Ω))∩L2(0,T ;H2(Ω))∩H1(0,T ;V0(Ω)) 6 C2

(
‖F0‖L2(0,T ;H1(Ω)) +

∥∥z0
∥∥
V1

0(Ω)

)
. (B.7)
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Proof. The existence of a solution zε of (B.1) with F as in (B.5) in the class of strong solutions, i.e.
L∞(0, T ;V1

0(Ω))∩L2(0, T ;H2(Ω))∩H1(0, T ;V0(Ω)), can be done in a classical manner by using a fixed
point argument for ε > 0 small enough. Uniqueness can be done easily using for instance the energy
estimates in Proposition B.2.

Using (B.2) with F as in (B.5), we get

‖zε‖L∞(0,T ;V0(Ω))∩L2(0,T ;V1
0(Ω)) 6 C0

(
‖F0‖L2(0,T ;L2(Ω))

+ε ‖F1‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) ‖z
ε‖L∞(0,T ;V0(Ω))∩L2(0,T ;V1

0(Ω)) +
∥∥z0
∥∥
V0
n(Ω)

)
.

Thus, from (B.6), for ε ∈ [0, e2(d)] with e2(d) = min{1, 1/(2C0d)}, we have

‖zε‖L∞(0,T ;V0
n(Ω))∩L2(0,T ;V1

0(Ω)) 6 2C0

(
‖F0‖L2(0,T ;L2(Ω)2) +

∥∥z0
∥∥
V0
n(Ω)

)
6 2C0d.

Plugging this estimate in (B.4), we get, for ε ∈ [0, e3(d)] with e3(d) = min{e1(d), e2(d)},

‖zε‖L∞(0,T ;V1
0(Ω))∩L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 C1e

8C1C
3
0ε

6d3
(
‖F0‖L2(0,T ;H1(Ω)) +

∥∥z0
∥∥
V1

0(Ω)

+ε ‖F1‖L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) ‖z
ε‖L∞(0,T ;V1

0(Ω))∩L2(0,T ;H2(Ω))

)
.

We then set e4(d) = min{1, e−8C1C
3
0d

3

/(2C1d)}, so that for all ε ∈ [0, e4(d)],

C1de
8C1C

3
0ε

6d3

ε 6
1

2
.

Consequently, for all ε ∈ [0,min{e3(d), e4(d)}] we get

‖zε‖L∞(0,T ;V1
0(Ω))∩L2(0,T ;H2(Ω))∩H1(0,T ;L2(Ω)) 6 2C1e

8C1C
3
0ε

6d3
(
‖F0‖L2(0,T ;H1(Ω)) +

∥∥z0
∥∥
V1

0(Ω)

)
.

Therefore, the estimate (B.7) holds for all ε ∈ [0, e∗(d)] with e∗(d) = min{e3(d), e4(d), 1/
√
d}. As

d 7→ e3(d), d 7→ e4(d) and d 7→ 1/
√
d are all decreasing functions of d, d 7→ e∗(d) also is a decreasing

function of d.
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