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Abstract

The goal of this article is to provide backward uniqueness results for several models of parabolic equations
set on the half line, namely the heat equation, and the heat equation with quadratic potential and with
purely imaginary quadratic potentials, with non-homogeneous boundary conditions. Such result can thus
also be interpreted as a strong lack of controllability on the half line, as it shows that only the trivial initial
datum can be steered to zero. Our results are based on the explicit knowledge of the kernel of each equation,
and standard arguments from complex analysis, namely the Phragmén Lindelöf principle.

1 Introduction

1.1 Settings

This note aims at discussing the strong lack of controllability of the following parabolic equations:

• The classical heat equation: 
∂ty − ∂xxy = 0, in (0, T )× R∗+,
∂xy(t, 0) = u(t), in (0, T ),
y(0, x) = y0(x), in R∗+.

(1.1)

• A parabolic heat equation with real quadratic potential:
∂ty − ∂xxy + x2y = 0, in (0, T )× R∗+,
∂xy(t, 0) = u(t), in (0, T ),
y(0, x) = y0(x), in R∗+.

(1.2)

• A parabolic heat equation with purely imaginary quadratic potential:
∂ty − ∂xxy + ıx2y = 0, in (0, T )× R∗+,
∂xy(t, 0) = u(t), in (0, T ),
y(0, x) = y0(x), in R∗+.

(1.3)

For each equation, y denotes the state, u is a control function acting on the boundary x = 0, and y0 is the
initial condition.

∗e-mail: jeremi.darde@math.univ-toulouse.fr.
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Our goal is to discuss the strong lack of controllability of each of these models. Roughly speaking, we
aim at showing that if the solution y of (1.1), respectively (1.2) or (1.3), satisfies for some time T > 0,

y(T, ·) = 0, in R∗+, (1.4)

then necessarily y0 = 0 in R∗+ and u = 0 in (0, T ).
Written as above, such property underlines the strong lack of controllability of the models (1.1), (1.2)

and (1.3), asserting that there are no non-trivial datum which can be steered to zero. This property is also
called backward uniqueness as it also states that any solution of (1.1), (1.2) or (1.3) satisfying the condition
(1.4) should vanish identically.

1.2 Main results

From now on, we use the following normalization of the Fourier transform: for g ∈ L2(R) and ξ ∈ R,

F (g)(ξ) =

∫
R
g(x)e−ıξx dx.

We shall prove the following results.

Theorem 1.1 (The heat equation (1.1)). Let T > 0. If y is a solution of (1.1) with an initial condition y0

satisfying

y0e ∈ S ′(R) and ∃ρ ∈ [0, 2), ∃M > 0, s.t. ∀ξ ∈ R, |F (y0e)(ξ)| 6M exp(M |ξ|ρ), (1.5)

where y0e denotes the Fourier transform of the even extension of y0, that is

y0e(x) = y0(|x|), ∀x ∈ R,

and with a control function u satisfying
u ∈ L2(0, T ), (1.6)

such that y(T ) satisfies condition (1.4), i.e. vanishes on R∗+, then necessarily y0 = 0 in R∗+ and u = 0 in
(0, T ).

Theorem 1.2 (The parabolic equation with a real quadratic potential (1.2)). Let T > 0. If y is a solution
of (1.2) with an initial condition y0 satisfying

∃ρ ∈ [0, 2), ∃M > 0, s.t. ∀x ∈ R∗+, |y0(x)| 6M exp(M |x|ρ), (1.7)

and with a control function u satisfying (1.6), such that y(T ) satisfies condition (1.4), i.e. vanishes on R∗+,
then necessarily y0 = 0 in R∗+ and u = 0 in (0, T ).

Theorem 1.3 (The parabolic equation with a purely imaginary quadratic potential (1.3)). Let T > 0. If y
is a solution of (1.3) with an initial condition y0 satisfying (1.7), and with a control function u satisfying
(1.6), such that y(T ) satisfies condition (1.4), i.e. vanishes on R∗+, then necessarily y0 = 0 in R∗+ and u = 0
in (0, T ).

Before commenting each of these results, let us briefly explain how we prove them (details of the proofs
will be given in Section 3, and more details on the Cauchy theory corresponding to each equation will be
given in Section 2.2). In fact, in each case, our approach is exactly the same. We first extend the solution
y of (1.1), (1.2) or (1.3), in an even manner so that we can consider the equations in R with a source term
−2u(t)δx=0 involving the control function u. Then we use that in each of the above cases, we explicitly know
the fundamental solutions G0 of (1.1), G1 of (1.2) and Gı of (1.3), see Section 2.1 for their explicit form.
We will thus be able to write down explicitly (1.4) as a relation on the initial datum y0 and the control u
taking the form

∀x ∈ R,
∫
R
G(T, x, x0)y0e(x0) dx0 = 2

∫ T

0

u(t)G(T − t, x, 0) dt.,

where y0e denotes the even extension of y0. The next step then consists in taking the Fourier transform
x→ ξ of this identity. Introducing then some new function F(y0) depending on ξ ∈ R (which coincides with
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the usual Fourier transform of y0e when considering the case (1.1), but is slightly different in the other cases
(1.2) and (1.3)), F(y0) can necessarily be extended holomorphically on the whole complex plane, bounded
by a constant in the two complex quadrants {ξ ∈ C, with |<(ξ)| 6 |=(ξ)|} (or some slightly smaller sets in
the case of (1.3), see Lemma 3.2). The conditions (1.5) or (1.7) will then allow to show, using Phragmén
Lindelöf principle, that F(y0) is thus bounded on the whole complex plane, so that it is constant. We then
get easily that necessarily y0 = 0 in R∗+ and u = 0 in (0, T ).

The differences on the assumptions (1.5) and (1.7) may seem surprising at first. In fact, using the quasi-
conformal transforms (sometimes called Appell transforms, see [41, 15]) for the heat equation will allow us
to deduce the following corollary of Theorem 1.1, in which condition (1.5) is replaced by an assumption
which is weaker than (1.7):

Corollary 1.4 (of Theorem 1.1). Let T > 0 and y be a solution of (1.1) with a control function u ∈ L2(0, T ),
satisfying

∃M > 0, ∀(t, x) ∈ [0, T ]× R∗+, |y(t, x)| 6M exp(M |x|2), (1.8)

and such that y(T ) vanishes on R∗+. Then y0 = 0 in R∗+ and u = 0 in (0, T ).

We refer to Section 3.2.2 for the proof of Corollary 1.4.

1.3 Comments

1.3.1 Concerning Theorem 1.1 and Corollary 1.4

Backward uniqueness theorems for the heat equation (1.1) are well-known, and we shall refer in particular to
the work [16] for such statements when the controlled trajectory y of (1.1) satisfies (1.8), which is a natural
condition in view of the construction in [23]. Besides, the work [16] applies more generally to the case of
heat equations with bounded potentials, which our method does not allow, and to higher dimensional cases.

Note however that the required conditions (1.8) and (1.5) do not seem to be comparable, in the sense
that none implies the other. Somehow, condition (1.5) is a Fourier dual version of (1.8).

We also point out that several works have pursued the analysis performed in [16] and proved similar
results in various geometric settings, in particular in cones with controls on the boundary of the cones, see
[29], [42], [38]. In fact, when finishing our work, we find out that a complex analysis based argument was
used in [39] to establish the backward uniqueness of the heat equation in half-space, in a very close spirit to
the one we developed here.

Among the interests of backward uniqueness results, one should quote the work [21] which discusses
application of these results to uniqueness results for Navier-Stokes equations. But it is also strongly related
to controllability results for the heat equation. Indeed, Theorem 1.1 can be seen as a strong lack of control-
lability of the heat equation (1.1) as it states that only the zero initial condition can be driven to zero when
acting on the boundary x = 0. This is in strong contrast to what happens in bounded domains (see [14, 17]
in 1-d, [27, 19] in higher dimensions) in which any state in L2 can be driven to zero with controls acting
from any non-empty open subset of the boundary of the domain.

Regarding controllability aspects, Theorem 1.1 is strongly linked to the work [30], which proves that the
solution of (1.1) cannot be controlled to zero when the initial datum y0 belongs to the weighted Sobolev
space L2(R∗+, exp(x2/4)dx) (and y0 6≡ 0). Such problem has also been studied from the observability point
of view, which is a dual property of the controllability one. For instance, it was proved in [32] that the heat
equation (1.1) is not observable through x = 0, no matter what the time T is, meaning that there is no
T > 0 and constant C > 0 such that for all solutions ϕ of

∂tϕ−∆ϕ = 0 in (0, T )× R∗+
∂xϕ(t, 0) = 0, in (0, T ),
ϕ(0, ·) ∈ L2(R∗+),

(1.9)

the observability inequality
‖ϕ(T )‖L2(R∗

+) 6 C ‖ϕ(t, 0)‖L2(0,T ) (1.10)

is satisfied.
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But, from the controllability perspective, disproving the observability property (1.10) for (1.9) only shows
that there exists initial datum y0 which cannot be steered to 0 with a control acting in x = 0 as in (1.1).
Thus, from the controllability point of view, Theorem 1.1 is stronger than the one in [32].

It is also of interest to note the work [1], which shows that, for all T > 0, the set of all functions y(T, ·)
which are obtained by solving 

∂ty − ∂xxy = 0, in (0, T )× R∗+,
y(t, 0) = u(t), in (0, T ),
y(0, x) = 0 in R∗+,

(1.11)

with u ∈ L2(0, T ; t−1dt) is exactly the set of traces on R∗+ of functions w which can be extended holomor-

phically in the complex sector D = {0 6 |=(z)| < <(z)} such that wez
2/4T ∈ L2(D). Theorem 1.1 deals

with the heat equation controlled from the Neumann boundary condition, but we claim that it can also be
applied when the control acts in the Dirichlet boundary condition (see Section 4.2), and then, in view of the
result of [1], it means that, for all non-trivial y0 ∈ L2(R∗+) satisfying (1.5), the solution y of

∂ty − ∂xxy = 0, in (0, T )× R∗+,
y(t, 0) = 0, in (0, T ),
y(0, x) = y0 in R∗+,

(1.12)

cannot be extended as an holomorphic function w on D such that wez
2/4T ∈ L2(D).

1.3.2 Concerning Theorem 1.2

The controllability properties of (1.2) were analyzed in [30] for initial data y0 ∈ L2(R∗+), and it was shown
that there is no non-trivial initial condition in L2(R∗+) which can be driven to 0 with control functions u ∈
L2(0, T ) (in fact, [30] focuses of the equation ∂tz−∂xxz−x∂xz/2 = 0 in R∗+ in the class L2(R∗+, exp(x2/4) dx),
which corresponds to y solution of (1.2) by setting ỹ(t, x) = z(t, x) exp(t/4 + x2/8) and y(t, x) = ỹ(4t, 2x)).
Theorem 1.2 is more general, as we prove the same result under the only condition that y0 satisfies the
growth condition (1.7).

Equation (1.2) was studied from the observability point of view in [35], showing that equation (1.2) with
u = 0 is not observable through x = 0. Similarly as for the heat equation, this result implies that there exists
an initial condition y0 ∈ L2(R∗+) which cannot be steered to 0 by a suitable choice of the control function
u ∈ L2(0, T ). In this sense, Theorem 1.2 generalizes the result of [35].

In fact, one of the specificity of equation (1.2) is that it somehow constitutes a limiting case of con-
trollability. Indeed, the spectrum of the harmonic oscillator H = −∂xx + x2 in L2(R∗+) with domain
D(H ) = {ψ ∈ H2(R∗+), x2ψ ∈ L2(R∗+), ∂xψ(0) = 0} is given by 4N+ 1 (see e.g. [20, Section 2.1]). It is thus
critical to apply Müntz-Szász theorem and spectral methods to prove observability properties, as in [17]. In
fact, as pointed out in [35] (see also [13]), for each k ∈ N \ {0, 1}, the parabolic operators ∂t − ∂xx + x2k

are controllable on R∗+ when controlled from x = 0. This critical behavior of the spectrum actually is
something that is also present in the works on the controllability of parabolic equations ∂t + (−∂xx)1/2 with
scalar controls, where (−∂xx)1/2 is the square root of the Laplace operator −∂xx in L2(0, 1) with domain
H2 ∩ H1

0 (0, 1). With this respect, we shall quote the work [31], which proves that no non-trivial initial
data in L2(0, 1) can be steered to 0 in this case, see also [34], and more recently [24], which shows that the
operator ∂t + (−∂xx)1/2 is not null-controllable when the control is a function in L2((0, T )× (a, b)).

In fact, one of the motivations of (1.2) is the strong links it has with the controllability of Grushin
equations set in Ω = (0, L)× (0, π):

(∂t − ∂2
1 − x21∂2

2)f(t, x1, x2) = 0 , (t, x1, x2) ∈ (0, T )× Ω ,
f(t, x1, x2) = u(t, x2)1x1=0 , (t, x1, x2) ∈ (0, T )× ∂Ω ,
f(0, ., .) = f0 ∈ L2(Ω) ,

(1.13)

where u ∈ L2((0, T )× (0, π)) is the control function.
The Grushin equations (1.13) are degenerate in {x1 = 0}, so the controllability properties of the usual

heat equations may be modified: in fact, according to [3], there might exist a minimal time T∗ > 0 such
that system (1.13) is not null controllable when T < T∗ and system (1.13) is null controllable when T > T∗.
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In the above case, similarly as for the usual heat equation, the critical time is T∗ = 0 according to [6]. But
when the control acts away from the singularity, the computation of the critical time is still not so clear: we
refer to [6] when Ω is of the form (−L,L)× (0, π) and the controls act on both lateral boundaries, in which
case the critical time is T∗ = L2/2, and to the recent work [4] when Ω is of the form (−L,L) × (0, π) and
the control acts on one lateral boundary. Note also that when one horizontal strip does not meet the control
region and Ω is of the form (−L,L)× (0, π), null-controllability never holds, whatever the time T > 0 is, see
[24].

The link between equations (1.13) and (1.2) may not be completely obvious. In order to explain it, we
use the fact that f in (1.13) can be expanded in Fourier in the x2-variable, so that the controllability of
(1.13) is equivalent to the uniform null controllability of the following family of 1-d heat equations indexed
by the Fourier parameter n:

(∂t − ∂2
x + n2x2)fn(t, x) = 0 , (t, x) ∈ (0, T )× (0, L) ,

fn(t, 0) = un, fn(t, L) = 0 , t ∈ (0, T ) ,
fn(0, .) = f0,n ∈ L2(0, L) ,

(1.14)

Now, introducing the scaling

gn(
√
nt, n1/4x) = fn(t, x), (t, x) ∈ (0, T )× (−L,L), i.e.

gn(t̃, x̃) = fn(n−1/2t̃, n−1/4x̃), (t, x) ∈ (0,
√
nT )× (−n1/4L, n1/4L),

the function gn solves
(∂t − ∂2

x + x2)gn(t, x) = 0 , (t, x) ∈ (0, Tn)× (0, Ln) ,
gn(t, 0) = vn(t), gn(t, Ln) = 0 , t ∈ (0, Tn) ,
gn(0, .) = g0,n ∈ L2(0, Ln) ,

with Tn =
√
nT , and Ln = n1/4L, and vn(t) = un(n−1/2t). When n → ∞, it then means that we are

looking at the controllability property of an asymptotic regime converging formally to (1.2) in infinite time.
With this respect, Theorem 1.2 brings more light to the intricate controllability properties of the Grushin
equations (1.2).

For instance, in view of the negative results in [24], which state that the Grushin equation (1.13) is not
null-controllable when u is supported in L2((0, T ) × ((0, π) \ I)) and Ω = (−L,L) × (0, π), when I is any
non-empty open set I of (0, π), one can ask if there exists non-trivial initial data f0 ∈ L2(Ω) whose solution
of (1.13) can be steered to zero with a control function u ∈ L2((0, T )× ((0, π) \ I)).

1.3.3 Concerning Theorem 1.3

The motivation to study the equation (1.3) is that it does not seem to be a case which can be handled easily
using spectral techniques. Indeed, as the operator −∂xx + ıx2 is not self-adjoint, the spectral properties of
this operator are not so obvious. We refer for instance to the works [10, 11, 8, 12] where the pseudo-spectrum
of this operator is analyzed.

Similarly as above, we shall mention that one of the motivation for the study of (1.3) is the strong link
between the equation (1.3) and the ‘v2’ Kolmogorov equation set in Ω = (0, L)× T:

(∂t − ∂2
1 + x21∂2)f(t, x1, x2) = 0 , (t, x1, x2) ∈ (0, T )× Ω ,

f(t, x1, x2) = u(t, x2)1x1=0 , (t, x1, x2) ∈ (0, T )× ∂Ω ,
f(0, ., .) = f0 ∈ L2(Ω) ,

(1.15)

which has been studied in the works [2, 5] and for which the null-controllability property depends on a
critical time, similarly to what happens for (1.13). Namely, there might exist a critical time T∗ > 0 such
that for all T < T∗, the equation (1.15) is not null-controllable, while for T > T∗, equation (1.15) is null
controllable. In fact, the value of the critical time in the above case is, to our knowledge, still unknown.

Again, after Fourier transform in the x2-variable and a suitable scaling argument, this result amounts to
analyze the controllability properties of the family of equations

(∂t − ∂2
x + ıx2)gn(t, x) = 0 , (t, x) ∈ (0, Tn)× (0, Ln) ,

gn(t, 0) = vn(t), gn(t, Ln) = 0 , t ∈ (0, Tn) ,
gn(0, .) = g0,n ∈ L2(−Ln, Ln) ,
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with Tn =
√
nT and Ln = n1/4L, in the asymptotic n → ∞. Theorem 1.3 thus highlights some properties

of the formal limit system (1.3).

1.4 Outline

Section 2 aims at providing the reader some preliminaries and some more or less standard facts, including
the fundamental solutions corresponding to (1.1), (1.2) and (1.3), some results on the well-posedness on each
equation, and briefly recalls the Phragmén Lindelöf principle. Section 3 then presents the proofs of Theorem
1.1, Corollary 1.4, and Theorems 1.2 and 1.3. Section 4 provides further comments and open problems.

2 Preliminaries

2.1 Computations of fundamental solutions

In this paragraph, we do some computations which will be helpful in the sequel. For α ∈ C with <(α) > 0
and x0 ∈ R, let us denote by Gα = Gα(t, x, x0) the solution of{

∂tGα − ∂xxGα + αx2Gα = 0, in (0, T )× R,
Gα(0, ·, x0) = δx0 , in R. (2.1)

When α = 0, G0 is the usual gaussian kernel:

G0(t, x, x0) =
1√
4πt

exp

(
− (x− x0)2

4t

)
, (t, x, x0) ∈ R∗+ × R2. (2.2)

When α = 1, the kernelG1 is known as the Mehler kernel, see e.g. [9, Section 4.3]: For (t, x, x0) ∈ R∗+×R2,

G1(t, x, x0) =
1√

2π sinh(2t)
exp

(
− coth(2t)

x2 + x20
2

+
xx0

sinh(2t)

)
(2.3)

=
1√

2π sinh(2t)
exp

(
−coth(2t)

2

(
x− x0

cosh(2t)

)2

− tanh(2t)

2
x20

)
. (2.4)

To compute the kernel Gα for general α ∈ C \ {0} with <(α) > 0, a nice trick is to remark that1

(t, x, x0) 7→ G1(
√
αt, 4
√
αx, 4
√
αx0)

solves (2.1)(1), so that it is a good candidate for being Gα. Looking at the condition (2.1)(2) (see also [8,
Section 4]), one easily gets

Gα(t, x, x0) = 4
√
αG1(

√
αt, 4
√
αx, 4
√
αx0),

=
4
√
α√

2π sinh(2
√
αt)

exp

(
−
√
α coth(2

√
αt)

x2 + x20
2

+
√
α

xx0
sinh(2

√
αt)

)

=
4
√
α√

2π sinh(2
√
αt)

exp

(
−
√
α

coth(2
√
αt)

2

(
x− x0

cosh(2
√
αt)

)2

−
√
α

tanh(2
√
αt)

2
x20

)
.

In this latter formula, the term
√

sinh(2
√
αt) has to be understood in the usual sense when t is close

to 0 (namely t < π/(2|=(
√
α|))), but it has to be understood as exp(

√
αt)
√

1− exp(−4
√
αt)/
√

2 when
t > π/(2|=(

√
α|)) (Indeed, when α ∈ C \ R+ with <(α) > 0, t 7→ sinh(2

√
αt) cross the negative axis when t

is larger than π/(2|=(
√
α|))).

In particular, in our case of interest α = ı, we obtain

Gı(t, x, x0) =
4
√
ı√

2π sinh(2
√
ıt)

exp

(
−
√
ı
coth(2

√
ıt)

2

(
x− x0

cosh(2
√
ıt)

)2

−
√
ı
tanh(2

√
ıt)

2
x20

)
1In all what follows, we will take roots of complex numbers. Each time, we will use the complex root function which coincides

with the function defined on R∗+ and which has R− as a branch cut.
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with √
ı = eıπ/4, 4

√
ı = eıπ/8.

For later use, let us compute the Fourier transform of the kernelsGα(t, ·, x0), denoted by F (Gα(t, ·, x0)) =

Ĝα: For (t, x0) ∈ (0, T )× R and ξ ∈ R,

Ĝ0(t, ξ, x0) = exp(−ξ2t− ıξx0),

Ĝ1(t, ξ, x0) =
1√

cosh(2t)
exp

(
− tanh(2t)

2
x20 −

tanh(2t)

2
ξ2 − ıξx0

cosh(2t)

)
,

Ĝı(t, ξ, x0) =
1√

cosh(2
√
ıt)

exp

(
−
√
ı tanh(2

√
ıt)

2
x20 −

tanh(2
√
ıt)

2
√
ı

ξ2 − ıξx0
cosh(2

√
ıt)

)
,

or, more generally, for α ∈ C \ {0} with <(α) > 0,

Ĝα(t, ξ, x0) =
1√

cosh(2
√
αt)

exp

(
−
√
α tanh(2

√
αt)

2
x20 −

tanh(2
√
αt)

2
√
α

ξ2 − ıξx0
cosh(2

√
αt)

)
. (2.5)

Here again, due to the branch cut of the square root function on C, when α /∈ R,
√

cosh(2
√
αt) should

be replaced in the above formula by the expression exp(
√
αt)
√

1 + exp(−4
√
αt)/
√

2 for large t, namely

t > π/(2|=(
√
α|). In the following, we will keep the notation

√
cosh(2

√
αt) for α /∈ R∗+, as it will underline

the similarities between the various cases. (Besides, most of your computations in the case α =
√
ı are in

fact done for t small, see e.g. (3.28), thus allowing to take the formula
√

cosh(2
√
αt) instead of the seemingly

more intricate one exp(
√
αt)
√

1 + exp(−4
√
αt)/
√

2.)

2.2 On the well-posedness of (1.1), (1.2) and (1.3)

2.2.1 Well-posedness of (1.1)

It is well-known that the classical heat equation{
∂ty − ∂xxy = 0, in (0, T )× R,
y(0, x) = y0(x), in R, (2.6)

is well-posed for y0 ∈ L2(R), in the sense that there exists a unique solution y of (2.6) in the class
C([0, T ];L2(R)) for instance. Besides, the solution y of (2.6) is given by the formula:

∀(t, x) ∈ (0, T ]× R, y(t, x) =

∫
R
G0(t, x, x0)y0(x0) dx0. (2.7)

One easily checks that the formula (2.7) still makes sense for y0 satisfying, for some ρ < 2 and some constant
C > 0,

∀x ∈ R, |y0(x)| 6 C exp(C|x|ρ), (2.8)

and the formula (2.7) still provides a solution of (2.6) (One can even take ρ = 2 in (2.8), see [22, Chapter
7, Sections 1.(a) and 1.(b)], and get a local existence result via formula (2.7)). Besides, as underlined
in [22, p.217], this solution is unique by the maximum principle among all solutions of (2.6) such that
y exp(−C|x|2) ∈ L∞((0, T )×R). This actually is the functional setting corresponding to the one in Corollary
1.4.

In fact, formula (2.7) also shows that for y0 ∈ S (R), the solution y of (2.6) belongs to C∞([0,∞),S (R))
(see [37, Section 3.6 Theorem 1]. Consequently, formula (2.7) understood by duality also holds for y0 ∈ S ′(R)
and gives a solution y of (2.6) in C∞([0,∞),S ′(R)).

Corresponding to the setting of Theorem 1.1 however, we shall rather assume that the initial datum y0

belongs to S ′(R) and satisfies, for some ρ < 2 and some constant C > 0,

∀ξ ∈ R, |F (y0)(ξ)| 6 C exp(C|ξ|ρ). (2.9)
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Here, we impose y0 ∈ S ′(R) in order to be able to take the Fourier transform of y0. When y0 ∈ S ′(R) and
condition (2.9) is satisfied, we define the solution y of (2.6) as follows:

y(t, x) = (F )−1(exp(−ξ2t)F (y0)(ξ))(x). (2.10)

It is clear that this formula makes sense for y0 ∈ S ′(R) satisfying (2.9). It is also clear that this formula
yields the same solution as the one given by formula (2.7) for y0 ∈ S (R).

Finally note that equation (1.1) is set on R∗+ with boundary conditions at x = 0. As we shall consider
u in some L2(0, T ) class, the well-posedness of (1.1) with y0 = 0 is classical. Therefore, we shall only make
precise the definition of the solution of (1.1) when u = 0: in this case, we will always consider the solution
of (1.1) as being the solution of (2.6) obtained after even extension.

2.2.2 Well-posedness of (1.2)

When considering {
∂ty − ∂xxy + x2y = 0, in (0, T )× R,
y(0, x) = y0(x), in R, (2.11)

with y0 ∈ L2(R), there exists a unique solution y of (2.11) in the class C0([0, T ];L2(R)), which is given by

∀(t, x) ∈ (0, T ]× R, y(t, x) =

∫
R
G1(t, x, x0)y0(x0) dx0. (2.12)

Again, it is clear that this formula makes sense when y0 only satisfies (2.8). In fact, arguing as in [22,
Chapter 7 Section 1 paragraph (b)], one easily checks that the solution (2.12) is the unique solution of (2.11)
in the class of functions y satisfying, for some C > 0, y exp(−C|x|2) ∈ L∞((0, T )× R).

2.2.3 Well-posedness of (1.3)

Let us finally mention the case of the equation{
∂ty − ∂xxy + ıx2y = 0, in (0, T )× R,
y(0, x) = y0(x), in R, (2.13)

with y0 ∈ L2(R). Classical results give the existence of a unique solution y of (2.13) in C0([0, T ];L2(R)),
(for instance, because the numerical range of the operator −∂xx + ıx2 is included in {<(z) > 0} so that [36,
Chapter 1, Theorem 3.9] applies), which is given by

∀(t, x) ∈ (0, T ]× R, y(t, x) =

∫
R
Gı(t, x, x0)y0(x0) dx0. (2.14)

Again, it is clear that this formula makes sense for T > 0 small enough when y0 only satisfies (2.8). However
now, it is not clear that formula (2.14) gives the unique solution of (2.13) in such class as the uniqueness
results we are aware of in such class all strongly rely on the maximum principle.

Still, in all that follows, we will consider the solution y of (2.13) given by formula (2.14).
For later use, we also mention the following lemma:

Lemma 2.1. Let T > 0. Then there exists ε > 0 such that if y0 satisfies, for some C > 0,

|y0(x)| 6 C exp

(
ε
|x|2

2

)
, x ∈ R, (2.15)

then the solution y of (2.13) given by (2.14) satisfies y(T ) ∈ L∞(R).

Proof. Let T > 0 and y0 satisfying (2.15) for some ε > 0 (to be determined). For x ∈ R, we estimate the
solution y of (2.13) as follows

|y(T, x)| 6
∣∣∣∣∫

R
Gı(T, x, x0)y0(x0) dx0

∣∣∣∣
6 C

∫
R

exp

(
−<(
√
ı coth(2

√
ıT ))

x2 + x20
2

+ <
( √

ı

sinh(2
√
ıT )

)
xx0 + ε

|x0|2

2

)
dx0,
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where C does not depend on x. Thus, we aim at showing that

sup
x

∫
R

exp

(
−A(T )

x2 + x20
2

+B(T )xx0 + ε
|x0|2

2

)
dx0 <∞,

where we have set

A(T ) = <(
√
ı coth(2

√
ıT )), B(T ) = <

( √
ı

sinh(2
√
ıT )

)
.

Explicit computations yield:

A(T ) =
1

2
√

2

sinh(2
√

2T ) + sin(2
√

2T )

sinh2(
√

2T ) + sin2(
√

2T )
, B(T ) =

1√
2

sinh(
√

2T ) cos(
√

2T ) + cosh(
√

2T ) sin(
√

2T )

sinh2(
√

2T ) + sin2(
√

2T )
,

Under this form, we immediately check that A(T ) > 0. We shall then take ε ∈ (0, A(T )), so that∫
R

exp

(
−A(T )

x2 + x20
2

+B(T )xx0 + ε
|x0|2

2

)
dx0

6 exp

(
−A(T )

x2

2

)∫
R

exp

(
B(T )2

(A(T )− ε)
x2

2
− A(T )− ε

2

(
x0 −

B(T )x

A(T )− ε

)2
)
dx0

6
C√

A(T )− ε
exp

(
−
(
A(T )− B(T )2

A(T )− ε

)
x2

2

)
.

We thus want to choose ε ∈ (0, A(T )) such that

A(T )(A(T )− ε) > B(T )2.

A natural choice thus is to take ε = (1− λ)A(T ), where λ ∈ (0, 1) is such that

λ >
B(T )2

A(T )2
.

We shall then show thatB(T )/A(T ) belongs to (−1, 1), so that we can choose ε = (1−|B(T )|/|A(T )|)|A(T )| =
A(T )− |B(T )|. We thus introduce the function g defined on (0,∞) by

g(t) =
B(t)

A(t)
= 2

sinh(
√

2t) cos(
√

2t) + cosh(
√

2t) sin(
√

2t)

sinh(2
√

2t) + sin(2
√

2t)
.

It is easy to check that g can be extended by continuity as t→ 0 by g(0) = 1, and that

g′(t) = −4
√

2 sin(
√

2t) sinh(
√

2t)

(
sinh(2

√
2t)− sin(2

√
2t)
)

(sinh(2
√

2t) + sin(2
√

2t))2
,

so that, to prove that |g(T )| < 1, it is enough to verify that |g(tk)| < 1 for tk = kπ/
√

2 with k ∈ N∗. We
then check that for all k ∈ N∗,

|g(tk)| = 2 sinh(kπ)

sinh(2kπ)
,

which is obviously strictly smaller than 1 for all k ∈ N∗ by strict convexity of sinh.

2.3 Phragmén Lindelöf principle

We will repeatedly use the Phragmén Lindelöf principle in cones. We recall its precise statement here for
the convenience of the reader.

Let us introduce the sector S(α, β), defined for α, β ∈ R2 with α < β < α+ 2π by

S(α, β) = {z ∈ C, such that Arg(z exp(−ıα)) ∈ [0, β − α]}.

Phragmén Lindelöf principles in a sector of the form S(α, β) writes as follows:
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Theorem 2.2 (Phragmén Lindelöf principle). Let α, β ∈ R2 with α < β < α + 2π. Let us consider an
holomorphic function f such that

• f is holomorphic on S(α, β),

• f satisfies
∀ξ ∈ ∂S(α, β), |f(z)| 6 1,

• f satisfies, for some γ, 0 < γ < π/(β − α), and some constant C > 0,

∀ξ ∈ S(α, β), |f(z)| 6 C exp(C|z|γ).

Then
∀ξ ∈ S(α, β), |f(z)| 6 1.

We refer the interested reader to [28, Lecture 6] for the proof of this result.

3 Proofs of the main results

The proofs of Theorems 1.1, 1.2 and 1.3 all follow the same strategy and are thus all given in this section.
They all start by writing condition (1.4) using the explicit expression of the kernels Gα given in Section 2.1,
see Section 3.1.

We then focus on the proof of Theorem 1.1 and Corollary 1.4 in Section 3.2, of Theorem 1.2 in Section
3.3, and of Theorem 1.3 in Section 3.4. Each proof has some specificity coming from the specificity of their
kernel, and we have chosen to present them in an increasing order of difficulty.

3.1 Writing Condition (1.4) using the kernels Gα

All the equations (1.1), (1.2) and (1.3) can be represented by the equation
∂ty − ∂xxy + αx2y = 0, in (0, T )× R∗+,
∂xy(t, 0) = u(t), in (0, T ),
y(0, x) = y0(x), in R∗+,

(3.1)

where α is a parameter satisfying <(α) > 0. To be more precise, the equations (1.1), (1.2) and (1.3)
respectively correspond to the cases α = 0, α = 1, and α = ı.

Let y be the solution of (3.1) and define ye its even extension:

ye(t, x) = y(t, |x|), for all (t, x) ∈ (0, T )× R, y0e(x) = y0(|x|), for all x ∈ R.

Then one easily checks that ye solves the equation:{
∂tye − ∂xxye + αx2ye = −2δx=0u(t), in (0, T )× R,
ye(0, x) = y0e(x), in R. (3.2)

Note in particular that condition (1.4) rewrites in terms of ye as follows:

∀x ∈ R, ye(T, x) = 0.

Now, using the fundamental solutions computed in Section 2.1, we obtain that the identity (1.4) is
equivalent to the following one:

∀x ∈ R,
∫
R
Gα(T, x, x0)y0e(x0) dx0 = 2

∫ T

0

Gα(T − t, x, 0)u(t) dt. (3.3)

In particular, when α ∈ C \ {0} with <(α) > 0, taking the Fourier transform in the variable x, we obtain,
see (2.5),

∀ξ ∈ R,
∫
R

1√
cosh(2

√
αT )

exp

(
−
√
α tanh(2

√
αT )

2
x20 −

tanh(2
√
αT )

2
√
α

ξ2 − ıξx0
cosh(2

√
αT )

)
y0e(x0) dx0

= 2

∫ T

0

1√
cosh(2

√
α(T − t))

exp

(
− tanh(2

√
α(T − t))

2
√
α

ξ2
)
u(t) dt,
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which can be rewritten as

∀ξ ∈ R,
∫
R

exp

(
−
√
α tanh(2

√
αT )

2
x20 −

ıξx0
cosh(2

√
αT )

)
y0e(x0) dx0

= 2

∫ T

0

√
cosh(2

√
αT )

cosh(2
√
α(T − t))

exp

(
tanh(2

√
αT )− tanh(2

√
α(T − t))

2
√
α

ξ2
)
u(t) dt. (3.4)

It is easy to check that, when α ∈ C \ {0} with <(α) > 0, condition (3.4) is equivalent to the condition (1.4)
for solutions y of (3.1).

Similar computations also give the case α = 0: When α = 0, the solution y of (1.1) satisfies the condition
(1.4) if and only if

∀ξ ∈ R,
∫
R

exp (−ıξx0) y0e(x0) dx0 = 2

∫ T

0

exp
(
tξ2
)
u(t) dt. (3.5)

3.2 Proofs of Theorem 1.1 and Corollary 1.4

3.2.1 Proof of Theorem 1.1

Under the conditions of Theorem 1.1, using Section 3.1, we get formula (3.5). In particular, the Fourier
transform F (y0e) satisfies, for all ξ ∈ R,

F (y0e)(ξ) = 2

∫ T

0

exp
(
tξ2
)
u(t) dt.

The right hand side of this identity defines a holomorphic function on C. Thus, F (y0e) can be extended on
the whole complex plane C and we have

∀ξ ∈ C, F (y0e)(ξ) = 2

∫ T

0

exp
(
tξ2
)
u(t) dt. (3.6)

In particular, using u ∈ L2(0, T ), for all ξ ∈ C with <(ξ2) 6 0, i.e. for all ξ ∈ {|<(ξ)| 6 |=(ξ)|},

|F (y0e)(ξ)| 6 2
√
T ‖u‖L2(0,T ) , (3.7)

while, for all ξ ∈ C,
|F (y0e)(ξ)| 6 2

√
T ‖u‖L2(0,T ) exp(|ξ|2T ). (3.8)

The next step is to use two successive Phragmén Lindelöf principles to get that the holomorphic function
F (y0e) is bounded in C. The first application of Phragmén Lindelöf principle is not completely classical and
is thus detailed below.

We introduce S(0, π/4) = {ξ ∈ C with 0 6 =(ξ) 6 <(ξ)}. With ρ and M as in (1.5), and ε > 0, we set

gε(ξ) = F (y0e)(ξ) exp
(
−M(ξ + ε)ρ − ε(ξe−ıπ/8)3

)
, ξ ∈ S(0, π/4). (3.9)

It is easy to check that:

• gε is holomorphic on S(0, π/4).

• gε is bounded on {=(ξ) = <(ξ) > 0} according to (3.7): for all ξ ∈ {=(ξ) = <(ξ) > 0},

|gε(ξ)| 6 2
√
T ‖u‖L2(0,T ) .

• gε is bounded on R+ according to assumption (1.5): for all ξ ∈ R+

|gε(ξ)| 6M,

• gε goes to zero as |ξ| → ∞ according to (3.8): there exists C > 0 such that

∀ξ ∈ S(0, π/4), |gε(ξ)| 6 C exp

(
|ξ|2T − ε|ξ|3 cos

(
3π

8

))
.

11



As a consequence of the above properties, gε attains its maximum on the boundary of S(0, π/4), i.e.

∀ξ ∈ S(0, π/4), |gε(ξ)| 6 max{M, 2
√
T ‖u‖L2(0,T )}.

As the constant in the right hand-side does not depend on ε > 0, we pass to the limit in ε→ 0 and deduce
that

∀ξ ∈ S(0, π/4), |F (y0e)(ξ)| 6 max{M, 2
√
T ‖u‖L2(0,T )}e

M|ξ|ρ .

The same arguments can be done in the sector S(−π/4, 0) = {ξ ∈ C with −<(ξ) 6 =(ξ) 6 0}, yielding that

∀ξ ∈ S(−π/4, 0), |F (y0e)(ξ)| 6 max{M, 2
√
T ‖u‖L2(0,T )}e

M|ξ|ρ .

Consequently, in the sector S(−π/4, π/4) = {ξ ∈ C with |=(ξ)| 6 <(ξ)}, we have

∀ξ ∈ S(−π/4, π/4), |F (y0e)(ξ)| 6 max{M, 2
√
T ‖u‖L2(0,T )}e

M|ξ|ρ . (3.10)

Now, the classical Phragmén Lindelöf theorem (Theorem 2.2) in the sector S(−π/4, π/4) applies, as F (y0e)
is bounded by a constant on the boundary ∂S(−π/4, π/4) of the quadrant, see (3.7). Consequently,

∀ξ ∈ S(−π/4, π/4), |F (y0e)(ξ)| 6 max{M, 2
√
T ‖u‖L2(0,T )}. (3.11)

Of course, similar arguments can be performed in the sector S(3π/4, 5π/4) = {ξ ∈ C with |=(ξ)| 6 −<(ξ)},
so that we also have

∀ξ ∈ S(3π/4, 5π/4), |F (y0e)(ξ)| 6 max{M, 2
√
T ‖u‖L2(0,T )}. (3.12)

The bounds (3.7), (3.11) and (3.12) indicate that the holomorphic function F (y0e) is bounded everywhere
in the complex plane C. It is therefore constant on C. We call this constant c0:

∀ξ ∈ C, F (y0e)(ξ) = c0. (3.13)

Considering (3.6), it follows that the Fourier transform (in time) of the function u1[0,T ] is constant equals
to c0/2. As u ∈ L2(0, T ), this is possible only if the constant c0 is zero. This implies in particular that u = 0
in (0, T ) as its Fourier transform in time is zero. Besides, recalling the identity (3.13), this also implies that
y0e = 0 in R.

3.2.2 Proof of Corollary 1.4

The basic idea to prove Corollary 1.4 is to use Appell transforms (see [41, 15]). Let us start by considering
a trajectory y solving (1.1) satisfying condition (1.8) with constant M and vanishing at time T > 0.

If T < 1/(16M), where M is the constant in (1.8), then we introduce the function z defined such that
for all (t, x) ∈ (0, T )× R∗+,

y(t, x) =
1√

1− 8Mt
z

(
1

8M

1

1− 8Mt
,

x

1− 8Mt

)
exp

(
2M

1− 8Mt
x2
)
.

This identity defines z in the time interval (T0, T1) with T0 = 1/(8M) and T1 = 1/(8M(1− 8MT )), and in
the space interval R∗+. Besides, computations show that z satisfies the heat equation

∂tz − ∂xxz = 0, in (T0, T1)× R∗+,
∂xz(t, 0) = ũ(t), in (T0, T1),
z(T0, x) = y0(x) exp(−2Mx2), in R∗+,

where ũ(t) ∈ L2(T0, T1). According to (1.8), we can thus apply Theorem 1.1 to z and deduce that z and ũ
vanish identically on [T0, T1], and consequently y and u vanish identically on the time interval [0, T ].

If T > 1/(16M), we set n = d32MT e and Tn = T/n. We can thus apply the previous result on the time
interval [T − Tn, T ] and deduce that y and u vanish on the time interval [T − Tn, T ]. We then iterate this
argument on each interval [T − kTn, T − (k − 1)Tn] for k ∈ {1, · · · , n} to show that y and u vanish on each
time interval of the form [T − kTn, T − (k − 1)Tn] with k ∈ {1, · · · , n}. Thus y and u vanish on the whole
time interval [0, T ], concluding the proof of Corollary 1.4.
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3.3 Proof of Theorem 1.2

Under the conditions of Theorem 1.2, using Section 3.1, we get formula (3.4). It is then natural to introduce,
for ξ ∈ R,

F1(y0e)(ξ) =

∫
R

exp

(
− tanh(2T )

2
x20 −

ıξx0
cosh(2T )

)
y0e(x0) dx0. (3.14)

Note that

F1(y0e)(ξ) = F (e− tanh(2T )x2/2y0e)

(
ξ

cosh(2T )

)
, (3.15)

so that the function F1(y0e) can be interpreted as a kind of Fourier transform of y0e . In particular, condition

(1.7) easily implies e− tanh(2T )x2/2y0e ∈ L1(R), so that

∃C > 0, ∀ξ ∈ R, |F1(y0e)(ξ)| 6 C. (3.16)

As formula (3.4) reads

∀ξ ∈ R, F1(y0e)(ξ) = 2

∫ T

0

√
cosh(2T )

cosh(2(T − t)) exp

(
tanh(2T )− tanh(2(T − t))

2
ξ2
)
u(t) dt, (3.17)

and the right hand-side of this identity is holomorphic in C, the function F1(y0e) can be extended holomor-
phically on C by the above identity. Besides, there exists C > 0 such that for all ξ ∈ C with <(ξ2) 6 0, i.e.
for ξ ∈ {|<(ξ)| 6 |=(ξ)},

|F1(y0e)(ξ)| 6 C, (3.18)

while, for all ξ ∈ C,
|F1(y0e)(ξ)| 6 C exp

(
tanh(2T )|ξ|2/2

)
. (3.19)

Using Phragmén-Lindelöf principle (Theorem 2.2) in each sector S(0, π/4), S(−π/4, 0), S(3π/4, π), and
S(−π,−3π/4) based on the bounds (3.16), (3.18) and (3.19), we easily derive that F1(y0e) is bounded in the
whole complex plane C. As a consequence, F1(y0e) is constant on C. We call c0 this constant:

∀ξ ∈ C, F1(y0e)(ξ) = c0. (3.20)

As

F

(
y0e exp

(
− tanh(2T )

2
x20

))
(ξ) = F1(y0e)(ξ cosh(2T )), (3.21)

we have that the Fourier transform of y0e exp
(
− tanh(2T )x2/2

)
is constant. As this function belongs to

L2(R) from (1.7), y0e ≡ 0.
Using then (3.17), doing the change of variable τ = (tanh(2T ) − tanh(2(T − t)))/2, i.e. t = T −

tanh−1(tanh(2T )− 2τ)/2 in the right hand-side of (3.17) and setting

ũ(τ) = u

(
T − 1

2
tanh−1(tanh(2T )− 2τ)

)
,

we have, for all ξ ∈ C,

0 =

∫ tanh(2T )/2

0

√
cosh(2T )

cosh(tanh−1(tanh(2T )− 2τ))
exp(τξ2)ũ(τ)

dτ

1 + (tanh(2T )− 2τ)2
.

In particular, the Fourier transform (in the time variable τ) of the function

2× 1τ∈(0,tanh(2T ))

√
cosh(2T )

cosh(tanh−1(tanh(2T )− 2τ))

ũ(τ)

1 + (tanh(2T )− 2τ)2

equals to 0, hence u vanishes identically.

Remark 3.1. One can in fact slightly weaken the growth assumption (1.7) and replace it by the following
one instead: the trajectory y solving (1.2) satisfies, for some ε = ε(T ) > 0,

y exp(−ε|x|2) ∈ L∞((0, T )× R∗+). (3.22)

Indeed, taking ε(T ) = tanh(2T )/4, the proof above readily applies.
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3.4 Proof of Theorem 1.3

Writing the null-controllability condition (1.4). Under the conditions of Theorem 1.3, using
Section 3.1 formula (3.4), we get the identity:

∀ξ ∈ R,
∫
R

exp

(
−
√
ı tanh(2

√
ıT )

2
x20 −

ıξx0
cosh(2

√
ıT )

)
y0e(x0) dx0

= 2

∫ T

0

√
cosh(2

√
ıT )

cosh(2
√
ı(T − t))

exp

(
tanh(2

√
ıT )− tanh(2

√
ı(T − t))

2
√
ı

ξ2
)
u(t) dt. (3.23)

Similarly as in previous section, we thus introduce, for ξ ∈ R,

Fı(y0e)(ξ) =

∫
R

exp

(
−
√
ı tanh(2

√
ıT )

2
x20 −

ıξx0
cosh(2

√
ıT )

)
y0e(x0) dx0. (3.24)

This definition makes sense for ξ ∈ C under condition (1.7) on y0e as we have the identity

tanh(2
√
ıT ) =

sinh(2
√

2T ) + ı sin(2
√

2T )

cosh(2
√

2T ) + cos(2
√

2T )
,

implying in particular,

<(
√
ı tanh(2

√
ıT )) =

1√
2

sinh(2
√

2T )− sin(2
√

2T )

cosh(2
√

2T ) + cos(2
√

2T )
> 0. (3.25)

Let us also note that condition (3.23), which a priori holds only for ξ ∈ R, also holds in the whole complex
plane as both sides of the identity (3.23) are entire functions of the variable ξ.

Bound on Fı(y
0
e). Setting

ΓT = {ξ ∈ C, such that ξ = λ cosh(2
√
iT ) for λ ∈ R},

it is clear from (3.24), condition (1.7) and (3.25), that there exists a constant C > 0 such that

∀ξ ∈ ΓT , |Fı(y0e)(ξ)| 6 C. (3.26)

Note that the line ΓT can be rewritten as eıαTR, where

αT = arctan
(

tanh(
√

2T ) tan(
√

2T )
)
, (3.27)

which implies in particular that ΓT is a line of C which is close to R when T is small.

Bound on the right hand-side of (3.23). We claim the following:

Lemma 3.2. Let us define

Q =

{
ξ ∈ C with Arg(ξ) ∈

[
−2π

3
,−π

3

]
∪
[
π

3
,

2π

3

]}
.

If T is such that

T 6
1

2
√

2
Argsh

(
1

2

)
, (3.28)

then for all t ∈ [0, T ] and ξ ∈ Q,

<
(

tanh(2
√
ıT )− tanh(2

√
ı(T − t))

2
√
ı

ξ2
)

6 0. (3.29)

14



Proof. Replacing t by T − t, we see that (3.29) is equivalent to show for all t ∈ [0, T ] and ξ ∈ Q,

<
(

tanh(2
√
ıT )− tanh(2

√
ıt)

2
√
ı

ξ2
)

6 0. (3.30)

Explicit computations show that

tanh(2
√
ıT )− tanh(2

√
ıt)

2
√
ı

=
1

2
√

2

(
sinh(2

√
2T ) + sin(2

√
2T )

cosh(2
√

2T ) + cos(2
√

2T )
− sinh(2

√
2t) + sin(2

√
2t)

cosh(2
√

2t) + cos(2
√

2t)

)
+

ı

2
√

2

(
sin(2

√
2T )− sinh(2

√
2T )

cosh(2
√

2T ) + cos(2
√

2T )
− sin(2

√
2t)− sinh(2

√
2t)

cosh(2
√

2t) + cos(2
√

2t)

)
.

Writing ξ ∈ Q as ξ = |ξ|eiθ with cos(2θ) 6 −1/2, we see that condition (3.30) is equivalent to the following
one: for all θ satisfying cos(2θ) 6 −1/2, the function hθ defined on (0, T ) by

hθ(t) = cos(2θ)

(
sinh(2

√
2T ) + sin(2

√
2T )

cosh(2
√

2T ) + cos(2
√

2T )
− sinh(2

√
2t) + sin(2

√
2t)

cosh(2
√

2t) + cos(2
√

2t)

)
− sin(2θ)

(
sin(2

√
2T )− sinh(2

√
2T )

cosh(2
√

2T ) + cos(2
√

2T )
− sin(2

√
2t)− sinh(2

√
2t)

cosh(2
√

2t) + cos(2
√

2t)

)
(3.31)

satisfies
sup
[0,T ]

hθ(t) 6 0.

But the function hθ satisfies hθ(T ) = 0 and for all t ∈ [0, T ],

h′θ(t) = −4
√

2

(
cos(2θ)(1 + cos(2

√
2t) cosh(2

√
2t)) + sin(2θ) sinh(2

√
2t) sin(2

√
2t)

(cosh(2
√

2t) + cos(2
√

2t))2

)
In particular, if cos(2θ) 6 −1/2 and T is such that for all t ∈ [0, T ], cos(2

√
2t) > 0 and sinh(2

√
2t) 6 1/2,

we get, for all t ∈ [0, T ],

cos(2θ)(1 + cos(2
√

2t) cosh(2
√

2t)) + sin(2θ) sinh(2
√

2t) sin(2
√

2t) 6 −1

2
+

1

2
6 0,

so that the function hθ is increasing on [0, T ]. We then simply note that if T satisfies (3.28), we have
both conditions cos(2

√
2T ) > 0 and sinh(2

√
2T ) 6 1/2, so that we can conclude that for all θ satisfying

cos(2θ) 6 −1/2, for all t ∈ [0, T ], hθ(t) 6 hθ(T ) = 0. This concludes the proof of Lemma 3.2.

Of course, the main consequence of Lemma 3.2 is that, for all T satisfying (3.28), there exists a constant
C > 0 such that for all ξ in Q,∣∣∣∣∣2

∫ T

0

√
cosh(2

√
ıT )

cosh(2
√
ı(T − t))

exp

(
tanh(2

√
ıT )− tanh(2

√
ı(T − t))

2
√
ı

ξ2
)
u(t) dt

∣∣∣∣∣ 6 C ‖u‖L1(0,T ) 6 C. (3.32)

Proof of Theorem 1.3 for T small enough. According to (3.27), there exists T0 > 0 such that for
all T ∈ (0, T0],

|αT | <
π

6
,

and we have the following bound
∀ξ ∈ eıαTR, |Fı(y0e)(ξ)| 6 C. (3.33)

We now assume

T ∈ (0, T1], where T1 = min

{
T0,

Argsh(1/2)

2
√

2

}
, (3.34)

so that from (3.23) and (3.32) we also get

∀ξ ∈ Q, |Fı(y0e)(ξ)| 6 C. (3.35)
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Besides, we easily have from (3.23) that

∀ξ ∈ C, |Fı(y0e)(ξ)| 6 C exp(C|ξ|2). (3.36)

We can then use Phragmén Lindelöf principle (Theorem 2.2) in each sector delimited by ∂Q and the
line eıαTR, namely S(αT , π/3), S(−π/3, αT ), S(2π/3, αT + π), S(αT − π,−2π/3), each of which is a cone
of aperture at most |αT |+ π/3 < π/2. As a consequence, Fı(y0e) is bounded on the whole complex plane, so
it is constant: there exists c0 such that

∀ξ ∈ C, Fı(y0e)(ξ) = c0.

But for all ξ ∈ R,

F (y0ee
−
√
i tanh(2

√
iT )x2/2)(ξ) = Fı(y0e)(ξ cosh(2

√
ıT )) = c0.

As y0ee
−
√
i tanh(2

√
iT )x2/2 ∈ L2(R) from (1.7) and (3.25), we deduce that necessarily c0 = 0 and consequently

y0e = 0 on R.
Of course, for t ∈ (0, T ), the solution y(t) of (1.3) is then given by

y(t, x) =

∫ t

0

Gı(t− τ, x, 0)u(τ) dτ,

so that y(t) belongs to L∞(R). We can thus apply the same strategy as above on the time interval [t, T ],
so that we get the same result: y(t) ≡ 0 on R. As a consequence, the solution y of (1.3) vanishes for all
t ∈ [0, T ] and x ∈ R, so that we deduce from the equation (1.3) that u vanishes as well on [0, T ].

Proof of Theorem 1.3 for any T . If T 6 T1, the previous paragraph allows to conclude.
If T > T1, we set n = dT/T1e and Tn = T/n. We then apply the previous paragraph on the time interval

[T −Tn, T ], which is allowed as Lemma 2.1 easily implies that y(T −Tn) belongs to L∞(R) when y0 satisfies
(1.7). We can thus conclude that y and u vanish on the time interval [T − Tn, T ]. Iterating this argument
n times, we easily show that in fact y and u vanish identically on the whole time interval [0, T ].

Remark 3.3. In view of (3.25), the condition (1.7) in Theorem 1.3 on the initial condition can be slightly
relaxed. Indeed, the above proof readily applies to prove that, replacing (1.7) by (3.22) with constant ε = ε(T ),
the statement of Theorem 1.3 still holds, where ε(T ) is given by

ε(T ) =
1

2
√

2

sinh(2
√

2T )− sin(2
√

2T )

cosh(2
√

2T ) + cos(2
√

2T )
for T 6 T1,

and, for T > T1,
ε(T ) = ε(T/dT/T1e).

4 Further comments

4.1 Lack of controllability with distributed controls

Theorems 1.1, 1.2, and 1.3 focus on the case of boundary control, but our proof can be adapted to the case
of distributed control. To fix the ideas, we focus on the case corresponding to (1.2).

Namely, we consider L > 0 and the controllability problem:{
∂ty − ∂xxy + x2y = u1(−L,L), in (0, T )× R,
y(0, x) = y0(x), in R, (4.1)

where y0 ∈ L2(R) and u ∈ L2((0, T )× (−L,L)).
We claim the following result:
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Theorem 4.1. Let T > 0. If y is a solution of (4.1) with an initial condition y0 satisfying

∃ρ ∈ [0, 2), ∃M > 0, s.t. ∀x ∈ R, |y0(x)| 6M exp(M |x|ρ), (4.2)

and with a control function u ∈ L2((0, T )× (−L,L)), such that y(T ) satisfies

y(T, ·) = 0 in R, (4.3)

then necessarily y0 is supported in [−L,L].

This result is a counterpart of Theorem 1.2 in the distributed case. Though, note that its conclusion is
weaker than Theorem 1.2, as y0 is not necessarily vanishing in the whole domain. This is in fact expected
for the following reason:

Proposition 4.2. If y0 ∈ L2(R) is supported in [−L0, L0] for some L0 < L, then for any T > 0, one can
construct a controlled trajectory of (4.1) satisfying (4.3).

The proof of Proposition 4.2 is mainly straightforward for readers accustomed to control theory, and is
therefore postponed to the end of this paragraph.

Proof of Theorem 4.1. Similarly as in the proof of Theorem 1.2, we consider y0 and u such that the solution
y of (4.1) satisfies (4.3). This implies that

∀x ∈ R,
∫
R
G1(T, x, x0)y0(x0) dx = −

∫ T

0

∫ L

−L
G1(T − t, x, x0)u(t, x0) dx0dt.

Taking the Fourier transform of this identity in the x variable, we get, instead of (3.17), for all ξ ∈ R,

F1(y0)(ξ) = −
∫ T

0

∫ L

−L

√
cosh(2T )

cosh(2(T − t))e
tanh(2T )−tanh(2(T−t))

2
ξ2− tanh(2(T−t))

2
x20−

ıξx0
cosh(2(T−t)) u(t, x0) dx0dt,

(4.4)
where F1 is defined in (3.14).

Using the fact that F1(y0) is the Fourier transform of a L1(R) function due to the condition (4.2) (recall
(3.15)), we have the estimate

∃C > 0, ∀ξ ∈ R, |F1(y0e)(ξ)| 6 C, (4.5)

which is similar to (3.16).
The right hand-side of identity (4.4) is an holomorphic function on C, which allows to consider F1(y0)

as an entire function defined by identity (4.4) for all ξ ∈ C.
Besides, for all ξ ∈ C such that <(ξ2) 6 0, i.e. such that |<(ξ)| 6 |=(ξ)|, the identity (4.4) allows to

immediately derive

∀ξ ∈ C with |<(ξ)| 6 |=(ξ)|, |F1(y0)(ξ)| 6 C exp (|=(ξ)|L) . (4.6)

Furthermore, identity (4.4) also gives

∀ξ ∈ C, |F1(y0)(ξ)| 6 C exp
(
tanh(2T )|ξ|2 + |=(ξ)|L

)
. (4.7)

Using the bounds (4.5), (4.6), (4.7), the repeated use of Phragmén-Lindelöf principle (Theorem 2.2),
to F1(y0)(ξ) exp(ıξL) in the sectors S(0, π/4) and S(3π/4, π), and to F1(y0)(ξ) exp(ıξL) in the sectors
S(−π/4, 0) and S(−π,−3π/4), shows that there exists a constant C such that

∀ξ ∈ C, |F1(y0)(ξ)| 6 C exp (|=(ξ)|L) . (4.8)

Now, using (3.21), setting z0(x) = y0(x)e− tanh(2T )x2/2, the Fourier transform of z0 satisfies:

∀ξ ∈ C, |F (z0)(ξ)| 6 C exp (|=(ξ)|L cosh(2T )) .

As z0 is in L2(R) by assumption (recall (4.2)), Paley-Wiener theorem (see [28, Lecture 10]) implies that
z0 is supported in [−L cosh(2T ), L cosh(2T )], which immediately implies the same for y0. With the same
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arguments, it is not difficult to obtain that for all t in [0, T ), y(t, .) is supported in [−L cosh(2T ), L cosh(2T )].
But for all (t, x) ∈ (0, T )× R, we have

y(t, x) =

∫
R
G1(t, x, x0)y0(x0) dx+

∫ t

0

∫ L

−L
G1(t− s, x, x0)u(s, x0) dx0dt,

which shows that, for all t ∈ (0, T ], y(t, .) is analytic in R \ [−L,L]. Hence, necessarily for all t ∈ (0, T ],
y(t, .) is supported in [−L,L], which concludes the proof of Theorem 4.1.

As a corollary of Theorem 4.1, we can also prove the following result:

Corollary 4.3. Let T > 0. If y is a solution of (4.1) with an initial condition y0 satisfying (4.2), and with
a control function u ∈ L2((0, T )× (−L,L)), such that y(T ) satisfies

y(T, ·) = 0 in R \ [−L,L], (4.9)

then necessarily y0 is supported in [−L,L].

Proof. Let us consider a solution y of (4.1) with an initial condition y0 satisfying (4.2), and with a control
function u ∈ L2((0, T )× (−L,L)), such that y(T ) satisfies (4.9). Let then L∗ > L, and T∗ > T . According
to Proposition 4.2, one can construct a control function u∗ ∈ L2((T, T∗)× (−L∗, L∗)) such that the solution
y of (4.1) satisfies y(T∗) = 0 in R. We can thus apply Theorem 4.1 to y, and we get Supp(y0) ⊂ [−L∗, L∗].
As L∗ is any real number satisfying L∗ > L, Supp(y0) ⊂ [−L,L], which proves Corollary 4.3.

We now prove Proposition 4.2.

Proof of Proposition 4.2. Let y0 ∈ L2(R) be supported in [−L0, L0] for some L0 < L, and T > 0. Setting

θ ∈ C∞([0, T ]), such that θ(0) = 1, θ(T ) = 0,

η ∈ C∞(R), such that Supp η ⊂ [−L,L], and ∀x ∈ [−L0, L0], η(x) = 1,

and z the solution of {
∂tz − ∂xxz + x2z = 0, in (0, T )× R,
z(0, x) = y0(x), in R,

the trajectory y given by
y(t, x) = θ(t)η(x)z(t, x), (t, x) ∈ (0, T )× R,

solves (4.1) with control function u(t, x) = θ′(t)η(x)z(t, x)− θ(t)[∂xx, η]z(t, x) satisfies y(T ) = 0 in R.

4.2 Lack of controllability with boundary controls on domains (a,∞)

It might seem from the previous results that our results apply only when the symmetry induced by the
operator is preserved. This is not the case. Let us for instance consider, instead of equation (1.2) set on
(0,∞) the following equation:

∂ty − ∂xxy + x2y = 0, in (0, T )× (a,∞),
∂xy(t, a) = u(t), in (0, T ),
y(0, x) = y0(x), in (a,∞),

(4.10)

which is set on (a,∞), where a ∈ R.
We claim that we have the following result:

Theorem 4.4. Let T > 0 and a ∈ R. If y is a solution of (4.10) with an initial condition y0 satisfying

∃ρ ∈ [0, 2),∃M > 0, s.t. ∀x ∈ (a,∞), |y0(x)| 6M exp(M |x|ρ), (4.11)

and with a control function u ∈ L2(0, T ) such that y(T ) vanishes on (a,∞), then necessarily y0 = 0 in (a,∞)
and u = 0 in (0, T ).

18



Proof. Let y be a solution of (4.10) with an initial condition y0 satisfying (4.11) with a control function
u ∈ L2(0, T ) and such that y(T, ·) = 0 in (a,∞).

We shall distinguish the cases a > 0 and a 6 0.
Case a > 0. Let us take a0 > a, and introduce a cut-off function η = η(x) such that η(a) = η′(a) = 0

and η(x) = 1 for all x > a. Then the function ỹ(t, x) = η(x)y(t, x)1x>a solves (4.1) with control function
ũ(t, x) = [∂xx, η]y(t, x)1x>a supported in space in [−a0, a0], and initial condition η(x)y0(x). We can thus
apply Theorem 4.1, and we get that η(x)y0(x) is supported in [−a0, a0]. In particular, y0(·) = 0 in (a0,∞).
As a0 can be chosen arbitrarily close to a, y0 = 0 in (a,∞). Now, we can apply the same computations
on each time interval (t, T ), so that we can conclude that for all t ∈ [0, T ], y(t, ·) vanishes on (a,∞).
Consequently, u vanishes on (0, T ) as well.

Case a 6 0. We can then take the trace at x = 0 and obtain a solution of (1.2) which satisfies all the
assumptions of Theorem 1.2. Consequently, we get that y(t, x) = 0 for all (t, x) ∈ (0, T ) × R∗+. We then
use the fact that solutions y of (4.10) are analytic in the space variable for all times t ∈ (0, T ]. Indeed, the
extension ye of the solution y of (4.10) by 0 for x < a satisfies{

∂tye − ∂xxye + x2ye = −u(t)δa + y(t, xa)∂xδa, in (0, T )× R,
ye(0, x) = y0(x0)1x>a, in R,

so that for all (t, x) ∈ (0, T )× R,

ye(t, x) =

∫ ∞
a

G1(t, x, x0)y0(x0) dx0 −
∫ t

0

G1(t− τ, x, a)u(τ) dτ +

∫ t

0

∂xG1(t− τ, x, a)y(t, x, a)dτ.

But the function ye coincides with y in (0, T )× (a,∞), and thus vanishes on (0, T )× (0,∞). Now, the above
formula and the analyticity properties of the fundamental solution G1 in (2.3) imply that y necessarily vanish
in (0, T )× (a,∞).

Let us finally end this section by pointing out that, although we focused on controls acting on the normal
derivative of the solution, the same results also hold true when considering controls acting on the Dirichlet
boundary conditions. We leave the details to the reader as it can be derived easily from Theorems 1.2 and
4.1 using the above proof of Theorem 4.4.

4.3 Higher dimensional settings

The approach presented in this article can be readily applied in tensorized situations allowing to reduce the
problem to one of the 1-d problem (1.1), (1.2) or (1.3).

But it would be very interesting to further develop the strategy here to exhibit some non-trivial higher
dimensional geometric settings in which only the trivial initial conditions (i.e. the initial condition y0 = 0
or, in the case of distributed controls, the initial conditions supported in the control set) can be driven to
zero with controls in L2. In particular, can we characterize the sets for which there are only the trivial initial
data which can be led to zero?

With that respect, let us emphasize that the situation is not completely clear, even for the heat equation
in conical domains Cθ = {(x1, x2) ∈ R2, with |x2| 6 x1 tan(θ/2)} of aperture θ ∈ (0, 2π). The best result
so far is, to our knowledge, the work [38], which states that when θ > 95◦, there is no non-trivial initial
condition which can be steered to zero. On the other hand, an example of Escauriaza (see e.g. [29]) shows
that when θ < π/2, there exists non-trivial solutions of the heat equation which vanishes at time T .

Let us emphasize that there are several conditions in the literature ensuring that the multi-dimensional
heat equation is observable from a given control set. We refer to the recent work [40] for a characterization
of these sets (we also refer to [33, 26, 7]). Note that if the condition of γ-thickness (see [40] for a precise
definition) is not satisfied, one can only conclude that there exists some initial condition which cannot be led
to zero, which is of course a much weaker statement than the strong lack of controllability stated in Theorem
1.1. Thus, describing precisely the geometric settings in which there is a strong lack of controllability seems
to be highly challenging.
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4.4 On the cost of approximate controllability

Each of the equation (1.1), (1.2) or (1.3) is approximately controllable in any time T > 0 (for instance,
because unique continuation for the adjoint equation is obvious by Holmgren’s uniqueness theorem), but is
strongly not null controllable according to Theorems 1.1, 1.2 and 1.3. It is thus natural to ask what is the
cost of approximate controllability in each of the above cases. So far, this seems widely open.

Regarding approximate controllability, we should refer to the work [18] regarding the heat equation and
to [25] for general hypoelliptic equations on compact manifolds. We shall also quote the more recent work
[40], which considers weak observability inequalities in geometric settings in which observability does not
hold, and which gives some leads to address this problem.
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