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Abstract
The goal of this note is to prove observability estimates for the wave equation with a density

which is only continuous in the domain, and satisfies some multiplier type condition only in the
sense of distributions. Our main argument is that one can construct suitable approximations
of such density by a sequence of smooth densities whose corresponding wave equations are
uniformly observable. The end of the argument then consists in a rather standard passage to
the limit.

Résumé
Le but de cette note est de démontrer des estimées d’observabilité pour l’équation des ondes

avec une densité continue dans le domaine, et qui satisfait une condition de type multiplicateur
seulement au sens des distributions. Notre argument est essentiellement basé sur le fait que l’on
peut alors construire des approximations convenables d’une telle fonction de densité par des
fonctions régulières pour lesquelles les équations des ondes correspondantes sont uniformément
observables. La preuve se termine alors par un passage à la limite relativement standard.

Keywords: Wave equation, observability, Non-smooth coefficients.

1 Introduction

1.1 Setting and main result
The goal of this note is to study observability estimates for the wave equation with a density
having low regularity. More precisely, we consider the wave equation

ρ(x)∂2
t u−∆xu = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,
(u(0), ∂tu(0)) = (u0, u1) in Ω.

(1.1)

Here, Ω is a smooth bounded domain of Rd. The function ρ = ρ(x) represents the density of
the medium in which the wave of amplitude u propagates.
Our goal is to provide observability estimates for the wave equation (1.1) under weak regularity
assumptions on the density ρ. Namely, we will assume the following regularity conditions:
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• The density ρ is strictly positive and bounded in Ω: there exist ρ1 > 0 and ρ2 > 0 such
that

∀x ∈ Ω, 0 < ρ1 ≤ ρ(x) ≤ ρ2. (1.2)

• The density ρ is continuous in Ω:
ρ ∈ C0(Ω). (1.3)

The assumptions (1.2)–(1.3) are natural as they guarantee the well-posedness of the equation
(1.1) for (u0, u1) ∈ H1

0 (Ω)×L2(Ω). Indeed, in this framework, the work [19, Chapter 3, Sections
8–9] (see also [13] and the paper by F. Colombini et al [7] for an overview on this question) shows
that system (1.1) admits a unique solution u(t, x) in the energy space C0([0,+∞[, H1

0 (Ω)) ∩
C1([0,+∞[, L2(Ω)). Moreover, the solution u of (1.1) has a constant energy as time evolves,
i.e.

E[u](t) :=
1

2

∫
Ω

ρ(x)|∂tu(t, x)|2dx+
1

2

∫
Ω

|∇xu(t, x)|2dx (1.4)

is independent from the time t and satisfies

∀t ∈ [0, T ], E[u](t) = E[u](0). (1.5)

We will now consider an observability problem from an open subset ω which is an open neighbor-
hood (in Ω) of an open subset Γ of the boundary satisfying the celebrated multiplier condition
[18, 17, 14]. Namely, we assume that Γ satisfies the following condition:

{x ∈ ∂Ω, such that x · nx > 0} ⊂ Γ, (1.6)

where for x ∈ ∂Ω, nx denotes the outward normal to the boundary ∂Ω at the point x and

ω is an open neighborhood in Ω of Γ. (1.7)

In order to simplify the presentation of our work, we will assume that the density ρ is defined
on a smooth domain Ω1 containing Ω and satisfies assumptions (1.2)–(1.3) in Ω1. Otherwise,
one should assume that there exists a suitable extension of ρ to Ω1 satisfying (1.2)–(1.3) and
the appropriate conditions given afterwards.
We then assume that the density ρ satisfies the following condition:

∃α ∈ (0, 2], such that x · ∇ρ(x) + (2− α)ρ(x) ≥ 0 in the sense of D ′(Ω1). (1.8)

We emphasize that condition (1.8) does not require any new regularity condition on ρ as the
inequality in (1.8) only holds in the sense of distributions, meaning that:

∀ϕ ∈ D(Ω1), with ϕ ≥ 0,

∫
Rd

ρ(x) (−div (xϕ(x)) + (2− α)ϕ(x)) dx ≥ 0. (1.9)

We are now in position to state our main result:

Theorem 1.1. Let ω be an open subset of Ω as in (1.6)–(1.7), Ω1 be a smooth domain of Rd
containing Ω, and let ρ satisfy the assumptions (1.2)–(1.3) on Ω1 and (1.8) for some α ∈ (0, 2]
if d ≥ 2 or α = 2 if d = 1.
We further assume that one of the two following conditions is satisfied: 0 /∈ Ω1,

or
ρ is C1 in a neighborhood of 0.

(1.10)

Then, if we set
R = sup{|x|, x ∈ Ω },

for all T satisfying
αT > 4R

√
ρ2, (1.11)

there exists a constant C > 0 such that the observability estimate

E[u](0) ≤ C
∫ T

0

∫
ω

|∂tu(t, x)|2dxdt (1.12)

holds true for every solution u of (1.1) with initial data in H1
0 (Ω)× L2(Ω).
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The proof of Theorem 1.1 will be done using classical multiplier techniques for suitable
smooth approximations of the density. Indeed, classical multiplier techniques apply only when
the density ρ belongs to C1(Ω) under the condition (1.8). Here, we do not assume that the
density ρ has such regularity, so we approximate it by suitable smooth regularizations ρε
satisfying condition (1.8) uniformly with respect to the regularization parameter ε.
In fact, the main novelty of Theorem 1.1 lies in the regularity of the density ρ which is only
assumed to be continuous on Ω.
Let us also briefly comment the choice of α in Theorem 1.1. In particular, it might seem
surprising that the conditions on α are more restrictive in dimension d = 1 than in dimension
d ≥ 2. But in fact, as we will note in Section 4.1, Theorem 1.1 applies in any dimension and for
any α > 0, but the proof would then require a slightly more subtle argument that we present
briefly in Section 4.1. We made the choice of stating Theorem 1.1 as above only to make the
arguments easier.
As explained hereafter in Section 1.2, the condition α > 0 is nonetheless rather natural, as
otherwise one can construct rays of Geometric Optics that violate the observability property,
even for smooth densities.

1.2 Some insights on the condition (1.8)
Let us now give some insights on the condition (1.8). In this section, we discuss this condition
under the following assumptions:

• ρ is smooth (C2(Ω) is sufficient),

• condition (1.8) is satisfied pointwise,

• ω is a neighborhood of the whole boundary ∂Ω.

In such case, one can define bicharacteristic rays associated to the wave operator (1.1) of symbol
p(t, x; τ, ξ) = ρ(x)τ2 − |ξ|2 as follows. Away from the boundary, a bicharacteristic ray γ issued
from (t0, x0; τ0, ξ0) satisfying p(t0, x0; τ0, ξ0) = 0 and x0 ∈ Ω is given by the ODE

dt

ds
= 2τρ(x),

dτ

ds
= 0,

dx

ds
= −2ξ,

dξ

ds
= −τ2∇ρ(x).

(1.13)

Using then that along the flow, p(t(s), x(s); τ(s), ξ(s)) = 0 for all s, one easily computes

d2

ds2

(
|x(s)|2

)
= 2τ2 (x · ∇ρ(x) + 2ρ(x)) ≥ 2τ2αρ1, (1.14)

where the last inequality comes from condition (1.8) assumed to be satisfied pointwise , and
(1.2).
This strict convexity of s 7→ |x(s)|2 implies in particular that any bicharacteristic ray has to
enter in ω (assumed here to be a neighborhood of the whole boundary ∂Ω) in finite time. Thus
the celebrated geometric control condition of [1, 2] is satisfied and observability holds.
It is also remarkable to note that if there exists a sphere S(r0) of radius r0 included in Ω \ ω
in which ρ satisfies1

∀x ∈ S(r0), x · ∇ρ(x) + 2ρ(x) = 0, (1.15)

then, taking x0 ∈ S(r0), ξ0 ∈ Rd such that x0 · ξ0 = 0, and τ0 = |ξ0|/
√
ρ(x0), from (1.14) the

ray given by (1.13) satisfies

d2

ds2

(
|x(s)|2

)
= 0 and

d

ds

(
|x(s)|2

) ∣∣∣
s=0

= 0,

so that the corresponding bicharacteristic ray stays in S(r0) for all s and the geometric control
condition is violated. This computation underlines the geometric relevance of the condition
α > 0 in (1.8), even if it is naturally stronger than the celebrated geometric control condition
of [1, 2].

1One can for instance take ρ(x) = 1/|x|2 in a neighborhood of S(r0).
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1.3 Scientific context
The question of observability estimates for the wave equation was intensively studied in the lit-
erature mainly because its deep connection with the problem of exact controllability. Boundary
or internal observability estimates were first obtained by classical multiplier techniques (see for
instance [11, 17, 14]) under global geometric conditions similar to (1.8), e.g the Γ-condition of
J.-L. Lions. Later, at the beginning of the 90th, C. Bardos, G. Lebeau and J. Rauch introduced
in their papers [1, 2] the so-called Geometric Control Condition (GCC) which turned out to be
almost equivalent to observability (see [4]). For internal observation, this condition essentially
asserts that every geodesic of the domain Ω traveling with speed one, enters in the observation
zone in a uniform time.
Proving observability estimates by the first techniques (i.e. multipliers) requires some regular-
ity for the coefficients of the wave operator: in general, they are asked to be at least of class
C1 to handle commutations with vector fields (multipliers) and integration by parts. Proofs
under GCC are of micro local nature and essentially deal with pseudo differential calculus; they
are based on some micro local ingredients as wave front sets and micro local defect measures.
Therefore, these proofs are only efficient for smooth coefficients, and work in general in the C∞

framework (see [4] and [3] for cases of low regularity under these assumptions).
From this point of view, it is natural to address the question of observability estimates for the
wave equation with non smooth coefficients. This problem has already received some answers
by E. Zuazua and his collaborators, in [5, 6], and more recently in [9]. More precisely, in [5, 6],
the authors prove a lack of observability of waves in highly heterogeneous media, i.e. when
the density is of low regularity. In [9], the authors establish observability with coefficients in
the Zygmund class and also observability with loss when the coefficients are log-Zygmund or
log-Lipschitz. Furthermore, this result is sharp since they proved an infinite loss of derivatives
in the case of a regularity worse than log-Lipschitz.
But let us remark that all these works are achieved in one space dimension. In this framework,
for smooth coefficients all the light rays reach the boundary in uniform time and there cannot be
any problem of captive geodesics. Secondly, the proofs are based on a specific one-dimensional
technique, namely sidewise energy estimates. The underlying idea consists in exchanging the
role of the time and space variables and, in fine, to prove hyperbolic energy estimates for waves
with rough coefficients.
Unfortunately, this method does not apply any longer in space dimension greater than one.
Furthermore, in this case, the bicharacteristic flow is not well defined due to the low regularity
of the coefficients. Therefore micro local tools as propagation of wave front sets or supports of
micro local defect measures cannot be used.

The present work comes in this context. It aims to establish internal observability for
the wave equation with continuous density, in general space dimension. Notice finally that
assumption (1.8) (or equivalently (1.9)) prevents high oscillations of the density in the “direction
of the multiplier” (here in the radial direction as we chose the center of our multiplier in x = 0)
and thus does not contradict the counterexamples in [5, 9].
Let us in particular mention that our approach allows very strong oscillations in the tangential
directions. Let us for instance consider the 2-d case in which Ω = B(0, R0) \ B(0, r0) and a
density written in radial coordinates under the form ρ(r, θ) = ρrad(r)ρtang(θ). In this case, we
simply require the two following assumptions:

• Both tangential and radial parts are continuous and strictly positive.

• There exists α > 0 such that

r∂rρrad + (2− α)ρrad ≥ 0 in the sense of D ′(r0, R0).

In particular, the tangential part ρtang can be very rough, as it is simply required to be con-
tinuous and strictly positive. The radial part, on the other hand, is such that r 7→ r2−αρrad(r)
is strictly positive, continuous, bounded and increasing. As it is classical, such function is
differentiable almost everywhere, but this does not imply that such function is necessarily dif-
ferentiable. Indeed, one can take for instance the sum of a positive constant and the Cantor
function (also called Devil’s staircase) or construct increasing positive continuous bounded
functions which do not belong to any Hölder space by gluing functions of the form r 7→ r1/n
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for n ∈ N, for instance taking, for r ∈ (r0, R0),

ρrad(r) = 1 +
∑
n≥1

1

2n

((
r − r0 −

1

2n

)
+

)1/n

,

where (f(r))+ = max{f(r), 0} denotes the positive part of a generic function f = f(r).

Let us finally point out that, by duality (see e.g. [17]), Theorem 1.1 immediately implies
the following controllability result:

Corollary 1.2. Under the assumptions of Theorem 1.1, for all T satisfying (1.11) and for
all (y0, y1) ∈ H1

0 (Ω) × L2(Ω), there exists a control function f ∈ L2((0, T ) × ω) such that the
solution y of 

ρ(x)∂2
t y −∆xy = 1ωf in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,
(y(0), ∂ty(0)) = (y0, y1) in Ω,

(1.16)

satisfies the controllability requirement:

(y(T ), ∂ty(T )) = (0, 0), in Ω. (1.17)

The proof of Corollary 1.2 simply consists in a classical duality argument (cf [17]) and is
therefore left to the reader.

1.4 Outline
This note is organized as follows. Section 2 presents several approximation results, first on the
possibility of approximating ρ satisfying (1.8) by smooth densities still satisfying (1.8), and then
on the convergence of the solutions of the corresponding wave equations. Section 3 presents
the proof of Theorem 1.1 and in particular recalls how the multiplier argument applies in our
context. Section 4 aims at discussing various improvements of Theorem 1.1 (more general α,
boundary observation) and possible extensions to our work.

2 Approximation results
This section gathers several approximation results. Section 2.1 exhibits suitable approximations
of densities ρ satisfying the assumption of Theorem 1.1. Section 2.2 then shows the stability
of the solutions of (1.1) with respect to the density ρ.

2.1 Smooth approximations of the density ρ

The goal of this section is to prove the following approximation result:

Proposition 2.1. Let Ω1 be a smooth domain containing Ω and let ρ satisfy the assumptions
(1.2)–(1.3) on Ω1 and (1.8), and further assume (1.10).
Let η be a real valued non negative smooth function on Rd supported in the unit ball B(0, 1)
and such that ∫

Rd

η(x) dx = 1 and ∀i ∈ {1, · · · , d},
∫
Rd

xiη(x) dx = 0. (2.1)

Then there exists ε0 > 0 such that for all ε ∈ (0, ε0), the sequence of functions (ρε)ε>0 defined
on Ω by  ∀x ∈ Ω \ {0}, ρε(x) = (ε|x|)−d

∫
Ω1

ρ(y)η

(
x− y
ε|x|

)
dy,

If 0 ∈ Ω, ρε(0) = ρ(0),

(2.2)

satisfies the following properties:

(i) For each ε ∈ (0, ε0), ρε satisfies conditions (1.2).

(ii) For each ε ∈ (0, ε0), ρε belongs to C1(Ω);

(iii) The sequence ρε strongly converges in L∞(Ω) to ρ as ε→ 0:

lim
ε→0
‖ρε − ρ‖L∞(Ω) = 0. (2.3)
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(iv) For each ε ∈ (0, ε0), condition (1.8) is satisfied pointwise in x ∈ Ω, i.e.

∀x ∈ Ω, x · ∇ρε(x) + (2− α)ρε(x) ≥ 0. (2.4)

Proof. Let us first remark that the definition of ρε in (2.2) can also be written, for ε > 0 small
enough, as

∀x ∈ Ω \ {0}, ρε(x) = (ε|x|)−d
∫
Rd

ρ(y)η

(
x− y
ε|x|

)
dy (2.5)

=

∫
Rd

ρ(x− ε|x|z)η(z) dz, (2.6)

in which the value of ρ outside Ω1 is irrelevant as y 7→ η((x− y)/ε|x|) vanishes outside Ω1 for
x ∈ Ω and ε ∈ (0, ε0) small enough. Formula (2.5) has the advantage to underline that ρε is in
fact some kind of convolution, thus explaining the regularity properties of ρε. Besides that, the
kernel takes some mean value approximation of ρ(x) over balls of center x and size ε|x|. This
induces some radial scaling which appears in fact naturally when designing approximations ρε
of ρ such that ρε satisfies (2.4) pointwise when ρ satisfies (1.8) in the sense of distributions.

Proof of item (i). In order to prove item (i), we simply remark that from (2.1) for all x ∈ Rd,∫
Rd

η

(
x− y
ε|x|

)
dy = (ε|x|)d.

One then easily gets that ρε satisfies (1.2) on Ω.

Proof of item (ii). The proof of item (ii) is rather straightforward in Ω \ {0}, where it is an
immediate consequence of the smoothness of η by using formula (2.5).
When 0 belongs to Ω, the situation is slightly more intricate. We first remark that in fact
formula (2.2) actually defines ρε in an open neighborhood of Ω, so that 0 can always be
considered as an interior point of Ω by slightly enlarging the set Ω if needed. In order to check
that ρε is differentiable at 0 when 0 belongs to Ω, we use the fact that ρ is differentiable at 0,
that is

δ(y) = ρ(y)− ρ(0)− y · ∇ρ(0) satisfies δ(y) = o|y|→0(|y|). (2.7)

Therefore, for x ∈ Ω \ {0},

ρε(x) = (ε|x|)−d
∫
Rd

(ρ(0) + y · ∇ρ(0) + δ(y))η

(
x− y
ε|x|

)
dy

= ρ(0) +∇ρ(0)(ε|x|)−d
∫
Rd

yη

(
x− y
ε|x|

)
dy + (ε|x|)−d

∫
Rd

δ(y)η

(
x− y
ε|x|

)
dy.

But from (2.1),

(ε|x|)−d
∫
Rd

yη

(
x− y
ε|x|

)
dy = x,

and from (2.7),

δε(x) = (ε|x|)−d
∫
Rd

δ(y)η

(
x− y
ε|x|

)
dy satisfies δε(x) = o|x|→0(|x|).

We can thus conclude that ρε is differentiable at 0 and ∇ρε(0) = ∇ρ(0).
To show that ρε is C1(Ω), we then simply have to check the continuity of ∇ρε close to 0.
As ρ is C1 close to 0, there exists a small ball B(0, r0) ⊂ Ω in which ∇ρ is well-defined and
continuous. Therefore, there exists r1 ∈ (0, r0) such that differentiating (2.6), we can write for
all x ∈ B(0, r1) \ {0},

∇ρε(x) =

∫
Rd

η(z)

(
I − ε x|x|z

t

)
∇xρ(x− ε|x|z) dz.

Under this form, using (2.1), one easily checks that ∇ρε(x) goes to ∇ρ(0) as |x| → 0 as ∇xρ is
continuous in a neighborhood of 0. This concludes the proof of item (ii).

Proof of item (iii). Since ρ is continuous on Ω1, it is uniformly continuous on Ω1: For every
β > 0, there exists γ(β) > 0 such that

∀(x, y) ∈ Ω1
2
, with |x− y| ≤ γ(β), |ρ(x)− ρ(y)| ≤ β. (2.8)
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We then remark that

∀x ∈ Ω, ρε(x)− ρ(x) = (ε|x|)−d
∫

(ρ(y)− ρ(x))η(
x− y
ε|x| )dy. (2.9)

Therefore, if we set R1 = max{|x|, for x ∈ Ω1}, for all β > 0, as soon as εR1 ≤ γ(β) given
above in (2.8), we obtain |ρε(x) − ρ(x)| ≤ β for every x ∈ Ω providing ε < min{ε0, γ(β)/R1}.
This concludes the proof of item (iii).

Proof of item (iv). Differentiating formula (2.5), we obtain for all x ∈ Ω \ {0},

x · ∇ρε(x) =

d∑
i=1

xi∂xiρε(x)

= (ε|x|)−d
∫
Rd

ρ(y)
∑
i,j

∂xjη

(
x− y
ε|x|

)[
1

ε|x|

(
xiδij − (xj − yj)

x2
i

|x|2

)]
dy − dρε(x)

= (ε|x|)−d−1

∫
Rd

ρ(y)y · ∇xη
(
x− y
ε|x|

)
dy − dρε(x).

We then remark that
∇xη

(
x− y
ε|x|

)
= −ε|x|∇y

(
η

(
x− y
ε|x|

))
.

We thus get, for all x ∈ Ω \ {0},

x · ∇ρε(x) = −(ε|x|)−d
∫
ρ(y)y · ∇y

(
η

(
x− y
ε|x|

))
dy − dρε(x)

= −(ε|x|)−d
∫
ρ(y)div y

(
y η

(
x− y
ε|x|

))
dy.

Using (1.9), we thus deduce for all x ∈ Ω \ {0} that

x · ∇ρε(x) + (2− α)ρε(x) ≥ 0.

This condition can also be checked immediately close to 0 if 0 ∈ Ω by using that in this case
ρ is C1 in a neighborhood of 0, which implies that condition (1.8) is satisfied pointwise in a
neighborhood of 0, so (2− α)ρ(0) ≥ 0.

2.2 Stability of the solutions of the wave equation with respect
to the density
Here we discuss the convergence of solutions of the wave equation (1.1) when the density
converges in C0(Ω). This will be important in the following as our arguments to prove Theorem
1.1 will be developed for the smooth approximations ρε of ρ given by Proposition 2.1 and we
will therefore need afterwards to pass to the limit ε→ 0.
Namely, we will use the following result:

Proposition 2.2. Let (ρε)ε>0 be a sequence of C1(Ω) satisfying (1.2) uniformly with coeffi-
cients ρ1 and ρ2 and strongly convergent to ρ in L∞(Ω):

lim
ε→0
‖ρε − ρ‖L∞(Ω) = 0. (2.10)

Let (u0, u1) ∈ H1
0 (Ω)× L2(Ω). For each ε > 0, we denote by uε the solution of

ρε(x)∂2
t uε −∆xuε = 0 in (0, T )× Ω,

uε = 0 on (0, T )× ∂Ω
(uε(0), ∂tuε(0)) = (u0, u1) in Ω,

(2.11)

and by u the solution of (1.1).
We then have the strong convergence of uε to u in L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)):

lim
ε→0
‖uε − u‖L2(0,T ;H1

0 (Ω))∩H1(0,T ;L2(Ω)) = 0. (2.12)
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Before going into the proof, let us first remark that the convergence (2.10) implies in par-
ticular that ρ belongs to C0(Ω) and satisfies (1.2) with coefficients ρ1 and ρ2.
For convenience, we also introduce the notation Eε for describing the energy of solutions uε of
(2.11):

Eε[uε](t) :=
1

2

∫
Ω

ρε(x)|∂tuε(t, x)|2dx+
1

2

∫
Ω

|∇xuε(t, x)|2dx (2.13)

We can now go into the proof of Proposition 2.2.

Proof. Let us first note that, according to (2.10),

|Eε[uε](t = 0)− E[u](t = 0)| ≤ ‖ρε(x)− ρ(x)‖L∞(Ω) ‖u1‖2L2(Ω) →ε→0
0. (2.14)

As Eε[uε](t) = Eε[uε](t = 0) and E[u](t) = E[u](t = 0), it follows that

lim sup
ε→0

‖uε‖C0([0,T ];H1
0 (Ω))∩C1([0,T ];L2(Ω)) <∞. (2.15)

and
lim
ε→0

sup
t∈[0,T ]

|Eε[uε](t)− E[u](t)| = 0. (2.16)

These two conditions immediately imply that

lim
ε→0
‖uε‖L2(0,T ;H1

0 (Ω))∩H1(0,T ;L2(Ω;ρ dx)) = ‖u‖L2(0,T ;H1
0 (Ω))∩H1(0,T ;L2(Ω;ρ dx)) , (2.17)

where L2(Ω; ρ dx) corresponds to the Hilbert space constructed from the scalar product

〈f, g〉 =

∫
Ω

f(x)g(x)ρ(x) dx.

Therefore, if we manage to show that the sequence uε converges in D ′(Ω) to u as ε→ 0, then
the strong convergence of uε to u as ε → 0 in L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω; ρ dx)) follows
since (2.17) guarantees the convergence of the norms. The strong convergence in (2.3) can then
be easily deduced from the fact that the topologies in L2(Ω; ρ dx) and L2(Ω) are equivalent
under the assumption (1.2).
We thus focus on the proof of the weak convergence of uε to u in the sense of distributions. In
order to do so, we introduce, for t ∈ [0, T ] and x ∈ Ω,

zε(t, x) =

∫ t

0

(
uε(s, x)− u(s, x)

)
ds. (2.18)

Then zε solves the following system:
ρ(x)∂2

t zε −∆xzε = (ρ(x)− ρε(x))(∂tuε − u1) in (0, T )× Ω,
zε = 0 on (0, T )× ∂Ω
(zε(0), ∂tzε(0)) = (0, 0) in Ω.

(2.19)

From (2.12) (2.15), the source term belongs to C0([0, T ];L2(Ω)) and strongly converges to 0 in
that space:

‖(ρ(x)− ρε(x))(∂tuε − u1)‖L∞(0,T ;L2(Ω))

≤ ‖ρ− ρε‖L∞(Ω)

(
‖uε‖H1(0,T ;L2(Ω)) + ‖u1‖L2(Ω)

)
→
ε→0

0. (2.20)

The solution zε of (2.19) therefore belongs to C0([0, T ];H1
0 (Ω)) ∩ C1(0, T ;L2(Ω; ρ dx)) and

strongly converges to 0 in that space. In particular,

lim
ε→0
‖∂tzε‖L2(0,T ;L2(Ω; ρ dx)) = 0. (2.21)

Recalling the definition of zε in (2.18), we get that the sequence uε converges to u strongly in
L2(0, T ;L2(Ω; ρ dx)). As explained above, combined with the strong convergence in (2.17), this
implies the strong convergence of uε to u in L2(0, T ;H1

0 (Ω))∩H1(0, T ;L2(Ω)), thus concluding
the proof of Proposition 2.2.
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3 Proof of Theorem 1.1
Let us emphasize that in our proof below, we will consider only real-valued functions. This
concerns in particular the displacement and all test functions. Let us point out that nonetheless,
all our arguments apply as well for complex-valued solutions since the density remains real-
valued.

3.1 Multiplier argument for smooth densities
Here, we recall the classical multiplier argument for smooth densities, see [17]. Namely, we
consider a generic density σ satisfying

σ ∈ C1(Ω),

∃(ρ1, ρ2) s.t. ∀x ∈ Ω, 0 < ρ1 ≤ σ(x) ≤ ρ2,

∃α ∈ (0, 2] s.t. ∀x ∈ Ω, x · ∇σ(x) + (2− α)σ(x) ≥ 0,

If d = 1, α = 2.

(3.1)

Of course, these assumptions are remanent from the ones obtained on the sequence of smooth
densities ρε in Proposition 2.1.
For such σ, we shall consider the corresponding wave equation

σ(x)∂2
t u−∆xu = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω
(u(0), ∂tu(0)) = (u0, u1) in Ω,

(3.2)

for (u0, u1) ∈ H1
0 (Ω) × L2(Ω). In such case, the solution u is uniquely defined, belongs to

C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) and has a constant energy: the quantity

Eσ[u](t) :=
1

2

∫
Ω

σ(x)|∂tu(t, x)|2dx+
1

2

∫
Ω

|∇xu(t, x)|2dx

is independent of the time t.
We then get the following result:

Proposition 3.1. Let ω be an open subset of Ω satisfying assumptions (1.6)–(1.7), and let σ
satisfy (3.1).
For all T satisfying (1.11), there exists a constant C > 0 depending only on (ρ1, ρ2, α, T ) and
the geometrical setting such that for all (u0, u1) ∈ H1

0 (Ω) × L2(Ω), the solution u of (3.2)
satisfies the following observability inequality:

Eσ[u](0) ≤ C
∫ T

0

∫
ω

(
|∂tu(t, x)|2 + |u(t, x)|2

)
dxdt. (3.3)

Proof. In this proof, all the constants will be denoted by C. Their value may change from line
to line, but they all depend only on the geometrical setting and the constants ρ1, ρ2, α in (3.1),
and the time parameter T > 0.
Step 1. An observability estimate up to localized lower order terms at time t = 0 and t = T . We
choose an open set ω0 of Rd such that ω0 is an open neighborhood in Ω of Γ and ω0 b ω. We
then introduce a smooth cut-off function ψ = ψ(x) ∈ C∞(Ω) with values in [0, 1] and satisfying
ψ(x) = 1 for x ∈ Ω \ ω0 and vanishing in a neighborhood of Γ included in ω0, and we set

v(t, x) = ψ(x)u(t, x) for (t, x) ∈ [0, T ]× Ω. (3.4)

One then easily gets that v ∈ C0([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)) and satisfies:

σ(x)∂2
t v −∆xv = f in (0, T )× Ω,

v = 0 on (0, T )× ∂Ω,
∂nv = 0 on (0, T )× Γ.
(v(0), ∂tv(0)) = (ψu0, ψu1) in Ω,

(3.5)

where f is given by

f(t, x) = [∆x, ψ(x)]u(t, x) for (t, x) ∈ [0, T ]× Ω. (3.6)
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Multiplying equation (3.5)(1) by x ·∇xv+λv, where λ is some constant that will be fixed later,
and integrating over the cylinder (0, T )× Ω, we get:∫ T

0

∫
Ω

(
σ∂2

t v −∆xv
)

(x · ∇xv + λv) dxdt =

∫ T

0

∫
Ω

f (x · ∇xv + λv) dxdt.

Straightforward computations yield:∫ T

0

∫
Ω

σ∂2
t v (x · ∇xv + λv) dxdt =

∫
Ω

σ∂tv (x · ∇xv + λv) dx

∣∣∣∣T
0

+
1

2

∫ T

0

∫
Ω

|∂tv|2 (x · ∇σ) dxdt+
d− 2λ

2

∫ T

0

∫
Ω

σ|∂tv|2 dxdt,

and∫ T

0

∫
Ω

(−∆xv) (x · ∇xv + λv) dxdt

=
2(λ+ 1)− d

2

∫ T

0

∫
Ω

|∇xv|2 dxdt−
1

2

∫ T

0

∫
∂Ω

x · n|∂nv|2dΓdt.

Putting these identities together and using (3.1)(3), we obtain:

α− 2 + d− 2λ

2

∫ T

0

∫
Ω

σ|∂tv|2 dxdt+
2(λ+ 1)− d

2

∫ T

0

∫
Ω

|∇xv|2 dxdt

+

∫
Ω

σ∂tv (x · ∇xv + λv) dx

∣∣∣∣T
0

− 1

2

∫ T

0

∫
∂Ω

x · n|∂nv|2dΓdt

≤
∫ T

0

∫
Ω

f (x · ∇xv + λv) dxdt.

We thus set
λ =

d

2
+
α

4
− 1, (3.7)

so that
α− 2 + d− 2λ = 2(λ+ 1)− d =

α

2
.

Using then that x · n < 0 on ∂Ω \ Γ and that ∂nv = 0 on (0, T )× Γ, we obtain:

α

4

∫ T

0

∫
Ω

σ|∂tv|2 dxdt+
α

4

∫ T

0

∫
Ω

|∇xv|2 dxdt

+

∫
Ω

σ∂tv (x · ∇xv + λv) dx

∣∣∣∣T
0

≤
∫ T

0

∫
Ω

f (x · ∇xv + λv) dxdt. (3.8)

Recalling the definition of v, one easily checks that∣∣∣∣α4
∫ T

0

∫
Ω

σ|∂tv|2 dxdt+
α

4

∫ T

0

∫
Ω

|∇xv|2 dxdt−
αT

2
Eσ[u](0)

∣∣∣∣
≤ C

∫ T

0

∫
ω0

(
|∂tu|2 + |∇xu|2 + |u|2

)
dxdt.

Besides, we have∣∣∣∣∫
Ω

σ∂tv (x · ∇xv + λv) dx

∣∣∣∣ ≤ ∥∥√σ∥∥L∞(Ω)

∥∥√σ∂tv∥∥L2(Ω)
‖x · ∇xv + λv‖L2(Ω) .

Therefore, using Komornik’s remark [18],

‖x · ∇xv + λv‖2L2(Ω) =

∫
Ω

|x · ∇xv|2 + λ

∫
Ω

x · ∇x(|v|2) dx+ λ2

∫
Ω

|v|2 dx

≤ R2

∫
Ω

|∇xv|2 dx+
(
λ2 − dλ

) ∫
Ω

|v|2 dx

≤ R2 ‖∇xv‖2L2(Ω) (3.9)

10



as λ ∈ [0, d] from (3.1)(3)−(4) and (3.7), and we get∣∣∣∣∫
Ω

σ∂tv (x · ∇xv + λv) dx

∣∣∣∣ ≤ R
√
ρ2

∥∥√σ∂tu∥∥L2(Ω)

(
‖∇xu‖L2(Ω) + C ‖u‖L2(ω0)

)
≤ R

√
ρ2Eσ[u] + CR

√
ρ2

√
Eσ[u] ‖u‖L2(ω0) . (3.10)

We finally remark that f in (3.6) is supported in ω0, so that we easily obtain∣∣∣∣∫ T

0

∫
Ω

f (x · ∇xv + λu) dxdt

∣∣∣∣ ≤ C ∫ T

0

∫
ω0

(
|∇xu|2 + |u|2

)
dxdt.

Putting all these estimates in (3.8), we obtain

(αT − 4R
√
ρ2)Eσ[u](0) ≤ C

∫ T

0

∫
ω0

(
|∂tu|2 + |∇xu|2 + |u|2

)
dxdt

+ C
√
Eσ[u](0)

(
‖u0‖L2(ω0) + ‖u(T )‖L2(ω0)

)
.

Thus, for T as in (1.11), we get the existence of a constant depending on T such that

Eσ[u](0) ≤ C
∫ T

0

∫
ω0

(
|∂tu(t, x)|2 + |∇xu(t, x)|2 + |u(t, x)|2

)
dxdt

+ C
√
Eσ[u](0)

(
‖u0‖L2(ω0) + ‖u(T )‖L2(ω0)

)
. (3.11)

Step 2. An observability estimate without terms localized at time t = 0 or t = T . If ω̃ is an
open set of Rd such that ω̃ is an open neighborhood in Ω of Γ and ω0 b ω̃ b ω, we can show
that

‖u0‖2L2(ω0) + ‖u(T )‖2L2(ω0) ≤ C
∫ T

0

∫
ω̃

(
|∂tu(t, x)|2 + |∇xu(t, x)|2 + |u(t, x)|2

)
dxdt. (3.12)

Indeed, we introduce a smooth cut-off function ψ1 taking value 1 in ω0 and vanishing in Ω \ ω̃,
and we multiply the equation (3.2)(1) by t(T − t)ψ1(x)u(t, x) and integrate in time and space.
This leads to

T

2

∫
Ω

ψ1σ
(
|u0|2 + |u(T )|2

)
dx

=

∫ T

0

∫
Ω

t(T − t)ψ1σ|∂tu|2 dxdt−
∫ T

0

∫
Ω

t(T − t)ψ1|∇xu|2 dxdt

+

∫ T

0

∫
Ω

ψ1σ|u|2 dxdt+
1

2

∫ T

0

∫
Ω

t(T − t)∆xψ1|u|2 dxdt.

The conditions on the support of ψ1 then obviously imply (3.12).
Finally, using (3.12) in (3.11), we immediately get

Eσ[u](0) ≤ C
∫ T

0

∫
ω̃

(
|∂tu(t, x)|2 + |∇xu(t, x)|2 + |u(t, x)|2

)
dxdt. (3.13)

Step 3. Removing the observation in gradient. Now, we finish the proof of (3.3) and drop the
gradient term from the right hand side of (3.13), the price to pay being a space integration
over ω instead of ω̃. Since the problem is invariant with respect to time translation, we first
notice that estimate (3.13) can be written as

Eσ[u](0) = Eσ[u](τ0) ≤ C
∫ T−τ0

τ0

∫
ω̃

(
|∂tu(t, x)|2 + |∇xu(t, x)|2 + |u(t, x)|2

)
dxdt. (3.14)

where the real number τ0 is chosen such that 0 < 4τ0 < T − 4α−1R
√
ρ2.

Let then ψ2 = ψ2(x) be a smooth non negative cut-off function taking value 1 in ω̃ and sup-
ported in ω, and ϕ = ϕ(t) a time dependent smooth non negative cut-off function taking value
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1 in [τ0, T − τ0] and supported in [0, T ]. Multiplying the equation (3.2)(1) by ϕ(t)ψ2(x)u(t, x)
and integrating over (0, T )× Ω, we obtain:∫ T

0

∫
Ω

ϕ(t)ψ2(x)|∇xu|2 dxdt =

∫ T

0

∫
Ω

ϕ(t)ψ2(x)σ|∂tu|2dxdt

− 1

2

∫ T

0

∫
Ω

ϕ′′(t)ψ2(x)σ(x)|u|2 dxdt+
1

2

∫ T

0

∫
Ω

ϕ(t)∆xψ2|u|2 dxdt

This easily yields:∫ T−τ0

τ0

∫
ω̃

|∇xu(t, x)|2 dxdt ≤
∫ T

0

∫
Ω

ϕ(t)ψ2(x)|∇xu(t, x)|2dxdt

≤ C

∫ T

0

∫
ω

(
|∂tu(t, x)|2 + |u(t, x)|2

)
dxdt.

The observability estimate (3.3) immediately follows by plugging this last estimate into
(3.14).

3.2 End of the proof of Theorem 1.1
Step 1. An observability inequality for (1.1) with an observation containing a lower order
term. We now finish the proof of Theorem 1.1, and consider ρ satisfying the assumptions of
Theorem 1.1.
First, using Proposition 2.1, we construct a sequence ρε of C1(Ω) densities satisfying (1.2) and
(2.4) uniformly with respect to ε and the strong convergence (2.3).
We can therefore apply Proposition 3.1 for each ε > 0 and get uniform observability estimates
for (2.11). Namely, for T > 0 satisfying (1.11), there exists a constant C > 0 such that for all
ε > 0 and all uε solution of (1.1) with initial data in H1

0 (Ω)× L2(Ω), we have:

Eε[uε](0) ≤ C
∫ T

0

∫
ω

(
|∂tuε(t, x)|2 + |uε(t, x)|2

)
dxdt. (3.15)

Using then the results of Proposition 2.2, in particular the strong convergence (2.12), we can
pass to the limit ε→ 0 in (3.15). We get that for all (u0, u1) in H1

0 (Ω)×L2(Ω), the solution u
of (1.1) satisfies:

E[u](0) ≤ C
∫ T

0

∫
ω

(
|∂tu(t, x)|2 + |u(t, x)|2

)
dxdt (3.16)

Step 2. A contradiction argument. Finally, to conclude the proof, it remains to drop from this
estimate the compact term ∫ T

0

∫
ω

|u(t, x)|2 dxdt.

For this purpose, we argue by contradiction and assume the existence of a sequence of initial
data (uk0 , u

k
1) ∈ H1

0 (Ω)× L2(Ω) such that the corresponding solutions uk(t, x) of (1.1) satisfy
lim
k→∞

∫ T

0

∫
ω

|∂tuk(t, x)|2 dxdt = 0

and

E[uk](0) = 1.

(3.17)

The sequence uk(t, x) is thus bounded in the energy space C0([0, T ], H1
0 (Ω))∩C1([0, T ], L2(Ω))

and therefore, we may assume that, up to a subsequence, it weakly converges to some function
u in L2([0, T ], H1

0 (Ω)) ∩H1([0, T ], L2(Ω)), satisfying
ρ(x)∂2

t u−∆xu = 0 in (0, T )× Ω,
u = 0 on (0, T )× ∂Ω
∂tu = 0 in (0, T )× ω.

(3.18)

On the other hand, for 0 < τ1 <
1
2
(T−4α−1R

√
ρ2), the observability estimate (3.16) is satisfied

with T − τ1 instead of T . Consider then the function

vτ (t, x) =
1

τ
(u(t+ τ, x)− u(t, x)) , (3.19)

12



where τ ∈]0, τ1[. It clearly solves the wave equation (1.1) and the third identity of (3.18)
implies that vτ = 0 in (0, T − τ1) × ω. So (3.16) leads to vτ = 0 in (0, T − τ1) × Ω for all
τ ∈]0, τ1[. Consequently, passing to the limit τ → 0 we obtain ∂tu = 0 in (0, T − τ1)×Ω, hence
in (0, T ) × Ω as τ1 can be arbitrarily small. Therefore, we have u = u(x) and system (3.18)
yields in particular {

−∆xu = 0 in Ω,
u = 0 on ∂Ω.

(3.20)

We easily conclude that the weak limit u vanishes identically in (0, T )×Ω. Applying then (3.16)
to the sequence (uk)k, and using (3.17)(1) and the compact embedding of L2([0, T ], H1

0 (Ω)) ∩
H1([0, T ], L2(Ω)) into L2([0, T ] × Ω), we see that limk→∞ E[uk](0) = 0. This contradicts
(3.17)(2) and finishes the proof of Theorem 1.1.

4 Comments

4.1 On the restrictions on the parameter α

Here, we worked under the condition α ∈ (0, 2] in dimension d ≥ 2 and α = 2 in dimension 1.
Let us briefly comment these assumptions.
These assumptions appear in the proof of Proposition 3.1 in (3.9). There, we use the fact that,
with λ as in (3.7), λ ∈ [0, d] as α ∈ [4 − 2d, 2d + 4] (recall that we have chosen α ∈ (0, 2] for
d ≥ 2, α = 2 for d = 1).
But one can in fact remove that condition to the price of adding some arguments. Namely we
can prove the following extension of Theorem 1.1:

Theorem 4.1. Under the same assumptions as Theorem 1.1 except on α that we now assume
only strictly positive, system (1.1) is observable in any time T satisfying (1.11).

We will not give the full details of the proof of Theorem 4.1, but we will rather point out
the differences with the one of Theorem 1.1 and briefly explain how the new difficulties can be
overcome.

Sketch of the proof of Theorem 4.1. The proof of Theorem 4.1 will mainly follow the strategy
of the proof of Theorem 1.1. But we will not prove the observability estimate (3.3) obtained
in Proposition 3.1 directly as the estimate (3.9) fails to be true. Instead, for σ satisfying
assumption (3.1)(1,2,3), one can obtain an observability estimate of the form: Any solution u
of (3.2) with initial data (u0, u1) ∈ H1

0 (Ω)× L2(Ω) satisfies

Eσ[u](0) ≤ C
∫ T

0

∫
ω

(
|∂tu(t, x)|2 + |u(t, x)|2

)
dxdt+ C ‖(u0, u1)‖2L2(Ω) ×H−1(Ω) , (4.1)

in which T satisfies (1.11) and the constant C > 0 only depends on (ρ1, ρ2, α, T ) and the
geometrical setting.
Proof of (4.1). The proof of (4.1) mimics the proof of Proposition 3.1. However, instead of
(3.9), we shall rely on the following estimate:

‖x · ∇xv + λv‖L2(Ω) ≤ R ‖∇xv‖L2(Ω) + |λ| ‖v‖L2(Ω) . (4.2)

This implies that estimate (3.10) should be replaced by:∣∣∣∣∫
Ω

σ∂tv(t) (x · ∇xv(t) + λv(t)) dx

∣∣∣∣
≤ R

√
ρ2

∥∥√σ∂tu(t)
∥∥
L2(Ω)

(
‖∇xu(t)‖L2(Ω) + C ‖u(t)‖L2(Ω)

)
≤ R

√
ρ2Eσ[u] + CR

√
ρ2

√
Eσ[u] ‖u(t)‖L2(Ω) , (4.3)

so that we get, instead of (3.11), the following estimate:

Eσ[u](0) ≤ C
∫ T

0

∫
ω0

(
|∂tu(t, x)|2 + |∇xu(t, x)|2 + |u(t, x)|2

)
dxdt

+ C
√
Eσ[u](0)

(
‖u0‖L2(Ω) + ‖u(T )‖L2(Ω)

)
. (4.4)
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To derive (4.1), we shall then use the hyperbolic energy estimate at level L2 ×H−1

‖u(T )‖L2(Ω) ≤ C ‖(u0, u1)‖L2(Ω)×H−1(Ω) ,

which holds for some constant C > 0 depending only on (ρ1, ρ2) according to [19, Chapter 3,
Section 9]. This concludes the proof of estimate (4.1).

Based on estimate (4.1) for σ satisfying (3.1)(1,2,3), following the Step 1 in Section 3.2,
one would prove that solutions of the wave equation (1.1) should satisfy the following relaxed
observability inequality:

E[u](0) ≤ C
∫ T

0

∫
ω

(
|∂tu(t, x)|2 + |u(t, x)|2

)
dxdt+ C ‖(u0, u1)‖2L2(Ω) ×H−1(Ω) . (4.5)

One should therefore adapt the Step 2 of the argument in Section 3.2. In this paragraph,
we use the same notations as in Section 3.2, Step 2. The main point in order to show (1.12)
for solutions of (1.1) is to show that the set of solutions u ∈ L2(0, T ;H1

0 (Ω))∩H1(0, T ;L2(Ω))
of (1.1) such that ∂tu = 0 on (0, T ) × ω, called the invisible set, reduces to the zero set. Let
us briefly indicate how this can be done. Let us take u in the invisible set. One can first show
that using (4.5), the corresponding functions vτ in (3.19) are bounded in L2(0, T −τ1;H1

0 (Ω))∩
H1(0, T − τ1;L2(Ω)), uniformly for τ ∈ (0, τ1). Thus, passing to the limit τ → 0, ∂tu belongs
to L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)). Therefore, u satisfies

E[∂tu](0) ≤ C ‖(u0, u1)‖2H1
0 (Ω) ×L2(Ω) ,

for the constant C in (4.5). It follows that the unit ball of the invisible set is compact for the
topology of L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;L2(Ω)), so that the invisible set is of finite dimension.
Besides, from the arguments above, ∂t acts on the invisible set. Consequently, there should be
an eigenvector to the operator ∂t in the invisible set, i.e. a non-trivial function u = u(x) and
a constant γ ∈ C satisfying 

γ2ρu−∆xu = 0 in Ω,
u = 0 on ∂Ω,
γu = 0 in ω.

(4.6)

The case γ = 0 cannot happen as one would then obviously get u = 0 by an immediate energy
estimate. In the case γ 6= 0, the classical unique continuation result for elliptic operators applies
(see e.g. [12, Chap. VIII]) and shows u = 0. It follows that the invisible set necessarily reduces
to 0.
The contradiction arguments developed in the Step 2 of Section 3.2 can then be easily modified
in order to conclude Theorem 4.1.

4.2 The case of boundary observation
Our main result (Theorem 1.1) concerns the case of an internal observation. This choice may
seem surprising as the multiplier method is much more direct when working with boundary
observation (see e.g. [17] or [14]). But the problem is that the operator corresponding to a
boundary observation is not bounded, and therefore one needs to prove a hidden regularity (or
admissibility) result for the solutions of the wave equation (1.1). Namely, one would require
a result of the form: if u solves (1.1) with initial data (u0, u1) ∈ H1

0 (Ω) × L2(Ω), then ∂nu
belongs to L2((0, T )× ∂Ω) and satisfies the estimate:

‖∂nu‖L2((0,T )×∂Ω) ≤ C ‖(u0, u1)‖H1
0 (Ω)×L2(Ω) . (4.7)

To our knowledge, such result is, so far, missing for non-smooth densities.
It turns out that the usual way to prove the hidden regularity property for solutions of the
wave operator is based on a multiplier argument similar to the one developed in Proposition
3.1, see [17, 14]. If one follows this approach, it will be easy to check that the admissibility
property (4.7) holds for solutions u of (3.2) provided σ ∈ C1(Ω), but the constant C will a
priori not be uniform with respect to coefficients σ satisfying (3.1).
However, the multiplier argument to get (4.7) can be made locally close to the boundary on
which the observation is done. Therefore, if ρ belongs to C1 in a neighborhood of the boundary
∂Ω, one would be able to show (4.7) for solutions u of (1.1). In this case, one can show the
following result:
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Theorem 4.2. Let Γ be an open subset of ∂Ω as in (1.6), Ω1 be a smooth domain of Rd
containing Ω, and let ρ satisfy the assumptions (1.2)–(1.3) on Ω1, (1.8) for some α > 0, and
assume that ρ belongs to C1 in a neighborhood of ∂Ω.
If we further assume (1.10), for all T satisfying (1.11), there exists a constant C > 0 such that
the observability estimate

E[u](0) ≤ C
∫ T

0

∫
Γ

|∂nu(t, x)|2dxdt (4.8)

holds true for every solution u of (1.1) with initial data in H1
0 (Ω)× L2(Ω).

The details of the proof are left to the reader.

4.3 A general strategy
At this point, we would like to underline the general strategy underlying this work. It is
mainly based on this elementary fact: Given a “rough” density ρ, if one manages to construct a
sequence of approximate density ρε strongly converging to ρ and for which the corresponding
wave equations are observable uniformly with respect to ε > 0, one can then pass to the limit
and deduce the observability of the wave equation corresponding to ρ.
In that argument, one sees that the main point is to get uniform estimates for sequences of
densities. It is therefore important there to be able to rely on explicit proofs of observability
results, which are so far very low developed in the context of sharp geometric control conditions,
as we also underlined in our previous work [8]. We should however quote the recent works
[15, 16] by C. Laurent and M. Léautaud on this topic. But even if their argument is constructive,
it is not clear if it can be adapted easily in our context. So far, this is an open problem.
In fact, this strategy may probably be applied to prove Carleman estimates as in [10, Chapter
4] for wave equations with very rough coefficients. This could be of interest in the context of
inverse problems. We plan to explore these questions in a near future.
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