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Abstract
In this article, we consider the wave equation in a bounded domain Ω of Rd with a potential

q. Our goal then is to show that the high-frequency part of the corresponding solutions weakly
depends on the potential. We will in particular focus on two instances of interest arising in
data assimilation and control theory, respectively corresponding to the problem of recovering
an initial data from a measurement and to the problem of computing a control. In these two
cases, we derive an explicit bound on the error of the high-frequency part of the solution in-
duced by a W s,p(Ω)-error on the potential for s ∈ (0, 1] and p ∈ (max{d, 2},∞]. In order to do
that and to express it in a quantified form, we introduce spectral truncations. Our main tool
is a commutator estimate.

Keywords: wave equation, controllability, high-frequency.

1 Introduction
The goal of this article is to study how the high-frequencies of waves depend on the potential.

More precisely, we focus on that particular system:
�y + qy = f, in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω,
(y(0), ∂ty(0)) = (y0, y1),

(1.1)
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Here, Ω will be assumed to be a smooth bounded domain of Rd. The solution y of (1.1) is the
displacement of the waves. The potential function q = q(x) will always be assumed to be in
Lp(Ω) with p ∈ (max{d, 2},∞] and we further assume that q takes real-value.

The source term f and the initial datum (y0, y1) will be taken in an appropriate functional
setting that may change depending on the problem under consideration. We refer to [23,
Chap.III, Sect. 8–9] for details on the well-posedness of (1.1) for real valued potentials in Lp(Ω)
with p ∈ (max{d, 2},∞]. In the following, we shall extensively use the two following settings: if
(y0, y1) ∈ H1

0 (Ω)×L2(Ω) and f ∈ L1((0, T );L2(Ω)), the solution y of (1.1) belongs to the space
of finite energy solutions C([0, T ];H1

0 (Ω))∩C1([0, T ];L2(Ω)); if (y0, y1) ∈ L2(Ω)×H−1(Ω) and
f ∈ L1((0, T );H−1(Ω)), there is a unique solution y ∈ C([0, T ];L2(Ω)) ∩C1([0, T ];H−1(Ω)) of
(1.1) in the sense of transposition.

Our goal is to derive new results on two related aspects:

• Data assimilation: When trying to recover the initial data of the waves from localized
measurements, the knowledge of the potential in the wave equation is not really needed
to get good approximations of the high-frequency part of the solutions.

• Control theory: When controlling the wave equation from an open subset ω ⊂ Ω,
the control given by the Hilbert Uniqueness Method of Lions (see [22]) does not depend
significantly on the potentials at high-frequency.

Of course, these statements are very natural since potentials appear as low order perturbations
of the wave operator. The main novelty of our approach rather is to give a precise quantified
description of these statements. This will be done using the Littlewood-Paley decomposition.

The setting. We now come back to the wave equation (1.1) and let ω be an open subdomain
of Ω such that the Geometric Control Condition (GCC) of C. Bardos, G. Lebeau and J. Rauch
[4] holds in some time T > 0. Let us here briefly recall this property.
Definition 1.1. We say that the open set ω satisfies the geometric control condition (GCC in
short) at time T if every geodesic ray of Ω traveling with speed one and starting at t=0 enters
the open set ω in a time t < T .

These geodesic rays have to be understood as the projection on the basis Ω of the generalized
bicharacteristic rays of the wave operator, the so-called Melrose-Sjöstrand flow, for which we
refer to [15, Chap. XXIV] and [24, 25]. We will always assume that there is no contact of
infinite order between the boundary ∂Ω and the bicharacteristic rays of the wave operator in
the free space, so that the Melrose-Sjöstrand flow is well defined.

When the GCC holds, it is by now well-known (see [8]) that, for any q ∈ L∞(Ω), there
exists a constant C(q) > 0 such that any solution ϕ[q] of

�ϕ+ qϕ = 0, in (0, T )× Ω,
ϕ = 0 on (0, T )× ∂Ω,
(ϕ(0), ∂tϕ(0)) = (ϕ0, ϕ1),

(1.2)

satisfies the following observability inequality

‖(ϕ0, ϕ1)‖2L2×H−1 ≤ C(q)

∫ T

0

∫
ω

|ϕ[q]|2 dxdt. (1.3)

To be more precise, we will introduce a smooth (e.g. W 2,∞(Ω)) non-negative function aω =
aω(x) defined on Ω that approximates the characteristic function of ω and satisfies ω ⊂ {aω > 0}
so that (1.3) can be weakened into

‖(ϕ0, ϕ1)‖2L2×H−1 ≤ C(q)

∫ T

0

∫
Ω

a2
ω|ϕ[q]|2 dxdt. (1.4)
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Our first result, proved in Section 3, provides a uniform observability estimate for poten-
tials q lying only in Lp(Ω) for p ∈ (max{d, 2},∞], thus improving the results in [8] on the
integrability of the potential.

Proposition 1.2. Assume that (Ω, ω, T ) satisfies the geometric control condition GCC and let
p ∈ (max{d, 2},∞].

For all m > 0, there exists a constant Cm such that for all q ∈ Lp(Ω) of Lp(Ω)-norm smaller
than m, any solution ϕ[q] of (1.2) with initial data (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω) satisfies

‖(ϕ0, ϕ1)‖2L2×H−1 ≤ Cm
∫ T

0

∫
ω

|ϕ[q]|2 dxdt. (1.5)

At this stage, note that we strongly use the fact that the potential q = q(x) does not depend
on t ∈ (0, T ). Otherwise, the same question would be much harder since unique continuation
properties may fail, see [1].

In the sequel, we always assume the geometric control condition (see Definition 1.1) and
the integrability parameter p ∈ (max{d, 2},∞]. Moreover, we shall denote solutions of a wave
equation with a potential q using the notation [q] to underline the dependence on the potential q.

Spectral decomposition. To state our results precisely, we shall first recall the Littlewood
Paley decomposition. Let −∆D be the Laplace operator on Ω defined as an unbounded operator
on H−1(Ω) and with domain H1

0 (Ω). Since this operator is self-adjoint, positive definite and
has compact resolvent, its spectrum is given by an increasing sequence of positive eigenvalues
λ2
j corresponding to eigenfunctions ej :

−∆ej = λ2
jej in Ω, ej = 0 on ∂Ω, j ≥ 1. (1.6)

In the following, the operator −∆D will simply be denoted by −∆.
If θ(ξ) denotes a smooth non-negative function taking value one between 0 and 1/2 and

vanishing for ξ > 1, we can define

ψ(ξ) = θ(ξ)− θ(2ξ) and, for k ∈ N∗, ψk(ξ) = ψ(ξ2−k), (1.7)

that satisfy

∀ξ ∈ R+, θ(ξ) +

∞∑
k=1

ψk(ξ) = 1. (1.8)

We then define the operators ψk(−∆) as follows: for f =
∑
j ajej ,

ψk(−∆)f =
∑
j

ψk(λ2
j )ajej , (1.9)

which correspond to localize in the set of frequencies in the dyadic ring λ2
j ∈ (2k−2, 2k), and

the operators ηk(−∆) for k ∈ N∗,

ηk(−∆) =

∞∑
`=k

ψ`(−∆), (1.10)

which rather correspond to look at the frequencies λj such that λ2
j ≥ 2k−2.

In Section 2, we discuss some properties of these spectral operators with a particular em-
phasis on their commutation properties, as it will be the main tools to achieve our results.
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A data assimilation problem. Let us consider the solution Φ[Q] of the wave equation
�Φ[Q] +QΦ[Q] = 0, in (0, T )× Ω,
Φ[Q] = 0 on (0, T )× ∂Ω,
(Φ[Q](0), ∂tΦ[Q](0)) = (Φ0,Φ1).

(1.11)

and assume that we know the measurement of aωΦ = aωΦ[Q] in (0, T ) × Ω (note that aω
localizes the measurement close to the set ω̄), where ω is a subdomain of Ω such that (Ω, ω, T )
satisfies the GCC.

It is by now well-known that, if the potential Q is known, then the initial datum (Φ0,Φ1) ∈
L2(Ω) × H−1(Ω) can be recovered directly from the knowledge of aωΦ[Q], for instance by
minimizing

J [Q](ϕ0, ϕ1) =
1

2

∫ T

0

∫
Ω

a2
ω|ϕ[Q]− Φ[Q]|2 dxdt, (1.12)

over (ϕ0, ϕ1) ∈ L2(Ω) × H−1(Ω), where ϕ[Q] is the solution of (1.2) with q = Q. Note that
this minimization problem is well-posed due to (1.4).

Of course, the question is much more difficult when the potential Q is unknown. In that
case, assume we have a guess q (for instance q = 0 if we do not have any clever guess), and
instead of minimizing J [Q], minimize

J [q](ϕ0, ϕ1) =
1

2

∫ T

0

∫
Ω

a2
ω|ϕ[q]− Φ[Q]|2 dxdt, (1.13)

over (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω), where ϕ[q] is the solution of (1.2). Note that this minimization
problem is again well-posed due to (1.4) and therefore J [q] admits a unique minimizer.

Before stating our next result, we also introduce, for s ≥ 0, p ∈ [1,∞] and m > 0 the class

W s,p
≤m(Ω) = {q ∈W s,p(Ω) such that ‖q‖Ws,p ≤ m}.

We then obtain the following result:

Theorem 1.3. Assume the geometric control condition GCC. Let m > 0, p ∈ (max{d, 2},∞]
and s ∈ [0, 1], and assume that Q and q belong to W s,p

≤m(Ω).
Let (Φ0,Φ1) ∈ L2(Ω) ×H−1(Ω) and let Φ[Q] be the corresponding solution of (1.11). Let

(Φ0[q],Φ1[q]) be the minimizer of J [q] in (1.13).
Then there exists a constant C independent of k, (Φ0,Φ1) and q,Q ∈ W s,p

≤m(Ω) such that
for all k ≥ 1,

‖ηk(−∆)((Φ0,Φ1)− (Φ0[q],Φ1[q]))‖L2×H−1 ≤ C2−ks/2 ‖aωΦ[Q]‖L2(L2) ‖q −Q‖Ws,p . (1.14)

In other words, even without knowing precisely the potential Q, the measurement aωΦ[Q]
allows to recover a good approximation of the high-frequencies of the initial data.

The proof of Theorem 1.3 is given in Section 4.

A control problem. Let us consider the following control problem:
Find u ∈ L2((0, T )× ω) such that the solution y of

�y + qy = aω u, in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω,
(y(0), ∂ty(0)) = (y0, y1),

(1.15)

satisfies
(y(T ), ∂ty(T )) = (0, 0). (1.16)
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It is well-known that such problem can be solved for (y0, y1) ∈ H1
0 (Ω)×L2(Ω) with control

u ∈ L2((0, T )× Ω) when the observability estimate (1.4) holds for the adjoint system.
Besides, the control u of minimal L2((0, T )×Ω)-norm can be computed through the mini-

mization of the functional K[q] defined by

K[q](ϕ0, ϕ1) =
1

2

∫ T

0

∫
Ω

a2
ω|ϕ[q]|2 dxdt+ 〈(ϕ0, ϕ1), (y0, y1)〉L2×H−1,H1

0×L2 (1.17)

over (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω) where ϕ[q] is the solution of (1.2) and the duality product is
defined by

〈(ϕ0, ϕ1), (y0, y1)〉L2×H−1,H1
0×L2 =

∫
Ω

ϕ0y1 −
∫

Ω

∇(−∆)−1ϕ1 · ∇y0. (1.18)

Then, if (Φ0[q],Φ1[q]) denotes the minimum of K[q], which is uniquely defined thanks to
(1.4), denoting by Φ[q] the corresponding solution of (1.2), we get that u[q] = aωΦ[q] is the
control of minimal L2((0, T ) × Ω)-norm for (1.15), see [22], which we refer to as the HUM
control in the following (HUM stands for Hilbert Uniqueness Method, see [22]).

We then get the following result, proved in Section 5:

Theorem 1.4. Assume the geometric control condition GCC. Let m > 0, p ∈ (max{d, 2},∞]
and s ∈ [0, 1], and consider two potentials qa, qb ∈W s,p

≤m(Ω).
Let (y0, y1) ∈ H1

0 (Ω) × L2(Ω) and denote by (Φ0[qa],Φ1[qa]) and (Φ0[qb],Φ1[qb]) the mini-
mizers of, respectively, K[qa] and K[qb].

Then there exists a constant C independent of k, (y0, y1) and qa, qb ∈ W s,p
≤m(Ω) such that

for all k ≥ 1,∥∥∥ηk(−∆)aω(Φ[qa]− Φ[qb])
∥∥∥
L2(L2)

≤ C2−ks/2 ‖(y0, y1)‖H1
0×L2

∥∥∥qa − qb∥∥∥
Ws,p

. (1.19)

Besides, we also have the following estimate:∥∥∥ηk(−∆)(Φ0[qa]− Φ0[qb],Φ1[qa]− Φ1[qb])
∥∥∥
L2×H−1

≤ C2−ks/2 ‖(y0, y1)‖H1
0×L2

∥∥∥qa − qb∥∥∥
Ws,p

. (1.20)

Again, this result means that the high-frequency components of the HUM controls do not
see the potential in a significant manner. Indeed, setting

u[qa] = aωΦ[qa] and u[qb] = aωΦ[qb],

which are the control functions corresponding to the initial data (y0, y1) for the potentials qa

and qb respectively, (1.19) reads as:∥∥∥ηk(−∆)(u[qa]− u[qb])
∥∥∥
L2(L2)

≤ C2−ks/2 ‖(y0, y1)‖H1
0×L2

∥∥∥qa − qb∥∥∥
Ws,p

.

Comments and related references. On the observability of waves. Numerous works
have been devoted to study the observability properties of waves, for instance [22, 19] where
multiplier methods were developed under the so-called Gamma condition (1.21): the set ω
should be a neighborhood of a part Γ of the boundary for which there exists x0 /∈ Ω such that

Γ ⊃ {x ∈ ∂Ω, with (x− x0) · n > 0} and T > 2 sup
x∈Ω
{|x− x0|}. (1.21)
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Later on, using microlocal analysis, it has been shown that the geometric control condition
(see Definition 1.1) is a sufficient and necessary condition for observability to hold [3, 4, 8]. But
the microlocal proof of observability relies on two fundamental facts: a propagation property
(of wave front, compactness, etc) and a unique continuation result.

The first property is based on the hyperbolicity of the wave operator, see [15, 20]. For
propagation of the H1- wave front set, it applies to the wave equation with smooth coefficients
and a potential q ∈ L∞(Ω). Our proof of Proposition 1.2 relies on an improvement of this
propagation property for potentials in Lp(Ω) with p > max{d, 2} (see Corollary 3.2).

On the other hand, the unique continuation property is quite intricate when potentials are
involved. Precisely, the question is the following: does any finite energy solution of the system

�y + qy = 0, in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω,
y = 0 on (0, T )× ω,

(1.22)

vanish identically ?
If the potential does not depend on time, we have the original proof of [4]: one can show that

the time derivative operator acts on the set of trajectories on which the observation vanishes
(the invisible solutions) and thus that this set has to be reduced to the trivial one (see Section
3). Therefore, under the GCC, if the potential does not depend on time, the wave equation is
observable. However, if the potential does depend on time, this argument is no longer available
and one needs an “additional” unique continuation property. Indeed, in that case, one can
actually construct counterexamples to unique continuation for (1.22) for general hypersurfaces,
see [1]. On the other hand, by [27, 29], unique continuation holds true if q is analytic with
respect to the time variable t. Moreover, it has been remarked that when q = q(t, x) depends
on both time and space variables, observability can be proved under the Gamma-conditions
(1.21) for q ∈ L∞(0, T ;Ld(Ω)), by using Carleman estimates (see [16, 31, 13, 11]). For instance,
these conditions are satisfied when ω surrounds the whole boundary.

To summarize, in the context of the microlocal condition GCC, it is natural to restrict our
study to the case of a time independent potential q = q(x). But we keep in mind that all our
results can be stated for potentials q = q(t, x) depending on both time and space variables
under the Gamma-condition (1.21).

On the data assimilation problem. Though the approach presented here is well-known in
the context of data assimilation, it seems that the dependences of this strategy with respect to
possible errors on the potentials have not received a thorough study so far, but several related
works are worth mentioning.

In the context of inverse problems, numerous results are concerned with the problem of
recovering a potential in the equation from the flux measured on the boundary or an interior
domain, but with known initial data. We refer to [7] for uniqueness without stability results,
and then [26, 30, 17, 6] for stability issues. However, these works [26, 30, 17, 6] require the
proof of Carleman estimates. In particular, all these works need a stronger geometric condition,
namely the Gamma-conditions (1.21) of Lions [22]. Let us also mention the work [5] which
precisely studies these issues and proposes an algorithm to recover the potential based on these
Carleman estimates.

In a slightly different context but with a more geometric point of view that does not require
the Gamma-conditions (1.21), we also refer to the recent work [28] for uniqueness and stability
issues.

On the control problem. The works concerning the controllability properties of semilinear
wave equations can be seen as studies of the dependence of the control with respect to the
potential and we refer to [33, 32, 10, 9] for several results in this direction. Here again, the
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results in [5] (see also [11] for related results) study the dependence of controls with respect
to potentials but for the controls constructed using the Carleman weights. In particular, it
is proved that the relative errors for the controls can be reduced arbitrarily by taking large
parameter in the Carleman weights. This Carleman parameter can be seen as a deformation of
the L2(L2) space that gives more weight to the high-frequency part of the solutions, thus making
the results in [5] perfectly compatible with the ones above, though the controls computed using
HUM given by the functional K[q] in (1.17) are not the same as the ones in [5].

Outline. In Section 2, we discuss several commutator estimates involving the spectral pro-
jections ψk(−∆), ηk(−∆) that will be needed afterwards. In Section 3, we prove Proposition
1.2. In Section 4, we focus on the applications to data assimilation and prove Theorem 1.3. In
Section 5, we give the proof of Theorem 1.4 along the same lines of the one of Theorem 1.3.
Finally, in Section 6, we provide the reader with some further comments.

2 Commutator estimates
In this section we present several commutator estimates that will be usefull in the sequel. We
work in the spirit of [9] where they have been used to study thoroughly the HUM control
operator for the wave equation. One can also quote the work [21] for a numerical illustration of
the results in [9] and [12] for a generalization to abstract conservative linear systems. Finally,
let us also mention that related commutator estimates have been obtained independently in
the recent work [2].

Our main goal is to prove the following result:

Proposition 2.1. For all p ∈ (max{d, 2},∞] and s ∈ [0, 2], there exists a constant C > 0 such
that for all potentials q ∈W s,p(Ω) and k ∈ N∗,

‖[ηk(−∆), q]‖L(H1
0 (Ω),L2(Ω)) ≤ C2−ks/2 ‖q‖Ws,p(Ω) , (2.1)

‖[ηk(−∆), q]‖L(L2(Ω),H−1(Ω)) ≤ C2−ks/2 ‖q‖Ws,p(Ω) . (2.2)

This type of commutation properties has been proved in [9] for smooth functions. Their
proof is based on the so-called Helffer-Sjöstrand formula which allows to compute functions
of an operator through resolvent estimates and basic estimates on [−∆, q]. Here, dealing first
with a W 2,p potential, we follow the same strategy and get precise estimates with respect to
the potential. Then, using interpolation arguments, we deduce Proposition 2.1 and variants of
it with less regular potentials.

We end this section with an estimate guaranteeing the regularizing property of commutators
of the form [(−∆)α/2, χ] for smooth function χ and α < 0, which will be used in Section 3.

2.1 Main commutator estimates
In this section, we consider a smooth (C∞) compactly supported function ρ : R∗+ → R and for
R > 0, we introduce the operator ρR(−∆) defined for f =

∑
j ajej by

ρR(−∆)

(∑
j

ajej

)
=
∑
j

ajejρ(λ2
j/R)

and work directly on ρR(−∆).
We then prove the following result:
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Lemma 2.2. Let ρ : R∗+ → R be a smooth C∞ compactly supported function.
For all p ∈ (max{2, d},∞], there exists a constant C such that for all R > 0 and χ ∈

W 2,p(Ω),

‖[ρR(−∆), χ]‖L(L2(Ω)) ≤ CR−1/2 ‖χ‖W2,p(Ω) , (2.3)

‖[ρR(−∆), χ]‖L(H1
0 (Ω)) ≤ CR−1/2 ‖χ‖W2,p(Ω) , (2.4)

‖[ρR(−∆), χ]‖L(H−1(Ω)) ≤ CR−1/2 ‖χ‖W2,p(Ω) , (2.5)

‖[ρR(−∆), χ]‖L(H1
0 (Ω),L2(Ω)) ≤ CR−1 ‖χ‖W2,p(Ω) , (2.6)

‖[ρR(−∆), χ]‖L(L2(Ω),H−1(Ω)) ≤ CR−1 ‖χ‖W2,p(Ω) , (2.7)
‖[ρR(−∆), χ]‖L(L2(Ω),H1

0 (Ω)) ≤ C ‖χ‖W2,p(Ω) , (2.8)

‖[ρR(−∆), χ]‖L(H−1(Ω),L2(Ω)) ≤ C ‖χ‖W2,p(Ω) . (2.9)

Before going into the proof of this result, let us mention that it is available in the work [9].
Our proof follows the same lines, but will make precise the assumptions needed on the function
χ and, more precisely, how the constants depend on χ.

Proof. The first remark is the following one:

(z + ∆)−1

(∑
j

ajej

)
=
∑
j

aj
z − λ2

j

ej . (2.10)

Therefore, if z lies in a bounded subset of C \ R+, then there exists a constant C1 such that∥∥(zR+ ∆)−1f
∥∥
L2(Ω)

≤ 1

R|=(z)| ‖f‖L2(Ω) , (2.11)∥∥(zR+ ∆)−1f
∥∥
H1

0 (Ω)
≤ 1

R|=(z)| ‖f‖H1
0 (Ω) , (2.12)∥∥(zR+ ∆)−1f

∥∥
H1

0 (Ω)
≤ C1

1√
R|=(z)|

‖f‖L2(Ω) . (2.13)

since for all z in a given bounded subset of C \ R+, there exists C1 > 0 such that

sup
ω∈R

{
1

|zR− ω2|

}
≤ 1

R|=(z)| ,

sup
ω∈R

{
|ω|

|zR− ω2|

}
≤ 1√

R|=(z)|
sup
ω∈R

{
|ω=(z)|
|z − ω2|

}
≤ C1√

R|=(z)|
.

Hence we introduce an almost analytic extension ρ̃ ∈ C∞0 (C) of ρ, which satisfies ρ̃(x) = ρ(x)
for all x ∈ R and ∂̄ρ̃(z) = O(|=(z)|∞) close to the real axis. Such extensions have been
introduced in a lecture seminar by Hörmander in 1968. For instance, one can take

ρ̃(x+ iy) =
∑
k≥0

ρ(k)(x)

k!
(iy)kγ(αky),

where γ is a smooth compactly supported function and the coefficients αk are chosen going to
infinity fast enough to guarantee the convergence of the formula.

Then the Helffer-Sjöstrand formula yields

ρR(−∆) = − 1

π

∫
C

∂̄ρ̃(z)

z + ∆
R

dz = −R
π

∫
C

∂̄ρ̃(z)

zR+ ∆
dz.
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In particular,

[χ, ρR(−∆)] = −R
π

∫
C
∂̄ρ̃(z)[χ, (zR+ ∆)−1] dz. (2.14)

But

[χ, (zR+ ∆)−1] = χ(zR+ ∆)−1 − (zR+ ∆)−1χ

= (zR+ ∆)−1 ((zR+ ∆)χ− χ(zR+ ∆)) (zR+ ∆)−1

= (zR+ ∆)−1[∆, χ](zR+ ∆)−1.

Thus, formula (2.14) writes:

[χ, ρR(−∆)] = −R
π

∫
C
∂̄ρ̃(z)(zR+ ∆)−1[∆, χ](zR+ ∆)−1 dz. (2.15)

Of course, [∆, χ] can be computed explicitly:

[∆, χ]f = ∆(χf)− χ∆f = 2∇χ · ∇f + (∆χ)f. (2.16)

Hence, for χ ∈W 2,p(Ω) with p > max{d, 2},

‖[∆, χ]‖L(H1
0 ,L

2) ≤ C ‖χ‖W2,p .

Therefore, using (2.11)–(2.13),∥∥(zR+ ∆)−1[∆, χ](zR+ ∆)−1
∥∥
L(L2)

≤
∥∥(zR+ ∆)−1

∥∥
L(L2)

‖[∆, χ]‖L(H1
0 ,L

2)

∥∥(zR+ ∆)−1
∥∥
L(L2,H1

0 )

≤ 1

R|=(z)|C ‖χ‖W2,p

1√
R|=(z)|

.

Using that ∂̄ρ̃(z) = O(|=(z)|∞) and that the integral is on a compact set of C, we thus obtain
(2.3).

Similarly, estimate (2.4) is deduced from∥∥(zR+ ∆)−1[∆, χ](zR+ ∆)−1
∥∥
L(H1

0 )

≤
∥∥(zR+ ∆)−1

∥∥
L(L2,H1

0 )
‖[∆, χ]‖L(H1

0 ,L
2)

∥∥(zR+ ∆)−1
∥∥
L(H1

0 )

and (2.11)–(2.13), whereas (2.5) follows from (2.4) by duality.
Estimate (2.6) is a consequence of the estimate∥∥(zR+ ∆)−1[∆, χ](zR+ ∆)−1

∥∥
L(H1

0 ,L
2)

≤
∥∥(zR+ ∆)−1

∥∥
L(L2)

‖[∆, χ]‖L(H1
0 ,L

2)

∥∥(zR+ ∆)−1
∥∥
L(H1

0 )

and (2.11)–(2.13). Again, estimate (2.7) follows from (2.6) by duality.
Finally, estimate (2.8) is a consequence of∥∥(zR+ ∆)−1[∆, χ](zR+ ∆)−1

∥∥
L(L2,H1

0 )

≤
∥∥(zR+ ∆)−1

∥∥
L(L2;H1

0 )
‖[∆, χ]‖L(H1

0 ,L
2)

∥∥(zR+ ∆)−1
∥∥
L(L2,H1

0 )

and (2.11)–(2.13), and (2.9) follows by duality.
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Remark 2.3. In this remark, we would like to point out that estimates (2.3), (2.8) and (2.9)
also hold true by replacing ‖χ‖W2,p by ‖χ‖W1,∞ . Indeed, rewriting the formula (2.16) as

[∆, χ]f = ∆(χf)− χ∆f = div(f∇χ) +∇χ · ∇f := (div ◦A1 +A2)f,

with A1f = f∇χ, and A2f = ∇χ · ∇f,

for which we have
‖A1‖L(L2,L2) + ‖A2‖L(H1

0 ,L
2) ≤ C ‖χ‖W1,∞ .

Then, if X and Y denote Hilbert spaces, we may write

‖[χ, ρR(−∆)]‖L(X,Y )

≤ CR

∫
C
|∂̄ρ̃(z)|

∥∥(zR+ ∆)−1div
∥∥
L(L2,Y )

‖A1‖L(L2,L2)

∥∥(zR+ ∆)−1
∥∥
L(X,L2)

dz

+CR

∫
C
|∂̄ρ̃(z)|

∥∥(zR+ ∆)−1
∥∥
L(L2,Y )

‖A2‖L(H1
0 ,L

2)

∥∥(zR+ ∆)−1
∥∥
L(X,H1

0 )
dz.

Thus, using that ∥∥(zR+ ∆)−1div
∥∥
L(L2,Y )

=
∥∥(zR+ ∆)−1

∥∥
L(Y ′,H1

0 )
,

the resolvent estimates (2.11)–(2.13) and the additional estimate∥∥(zR+ ∆)−1f
∥∥
H1

0
≤ C

|=(z)| ‖f‖H−1(Ω) , (2.17)

which can be proved similarly, one can improve estimates (2.3), (2.8) and (2.9) into

‖[ρR(−∆), χ]‖L(L2(Ω)) ≤ CR−1/2 ‖χ‖W1,∞(Ω) , (2.18)
‖[ρR(−∆), χ]‖L(L2(Ω),H1

0 (Ω)) ≤ C ‖χ‖W1,∞(Ω) , (2.19)

‖[ρR(−∆), χ]‖L(H−1(Ω),L2(Ω)) ≤ C ‖χ‖W1,∞(Ω) . (2.20)

Note however that this trick does not improve the other estimates in Lemma 2.2, and in par-
ticular not (2.6)–(2.7), which are the critical ones for the proof of Proposition 2.1 and for the
rest of the article.
We would like to kindly acknowledge the anonymous referee for this remark.

2.2 Proof of Proposition 2.1 for W 2,p potentials
In this paragraph, we prove the following result:

Lemma 2.4. For all p ∈ (max{d, 2},∞], there exists a constant C > 0 such that for all
potentials q ∈W 2,p(Ω) and k ∈ N∗,

‖[ηk(−∆), q]‖L(L2(Ω)) ≤ C2−k/2 ‖q‖W2,p(Ω) , (2.21)

‖[ηk(−∆), q]‖L(H1
0 (Ω),L2(Ω)) ≤ C2−k ‖q‖W2,p(Ω) , (2.22)

‖[ηk(−∆), q]‖L(L2(Ω),H−1(Ω)) ≤ C2−k ‖q‖W2,p(Ω) . (2.23)

Estimates (2.22)–(2.23) correspond to the estimates (2.1)–(2.2) in Proposition 2.1 for s = 2,
and thus Lemma 2.4 should be seen as a first step toward Proposition 2.1.
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Proof. Taking R = 2k and ρ = ψ, we get ψk = ρR, thus yielding the following estimates as an
immediate consequence of Lemma 2.2: For all p ∈ (max{2, d},∞], there exists a constant C
such that for all k ∈ N∗ and q ∈W 2,p(Ω),

‖[ψk(−∆), q]‖L(L2(Ω)) ≤ C2−k/2 ‖q‖W2,p(Ω) , (2.24)

‖[ψk(−∆), q]‖L(H1
0 (Ω),L2(Ω)) ≤ C2−k ‖q‖W2,p(Ω) , (2.25)

‖[ψk(−∆), q]‖L(L2(Ω),H−1(Ω)) ≤ C2−k ‖q‖W2,p(Ω) . (2.26)

Consequently, for q ∈ W 2,p(Ω), estimate (2.21) can then be deduced simply by summing
estimates (2.24) for ψ` for ` ≥ k. Similarly, the proof of estimates (2.22)–(2.23) can be deduced
from the corresponding estimates in (2.25)–(2.26) by a summation argument.

Remark 2.5. Following Remark 2.3, estimate (2.21) can be improved into

‖[ηk(−∆), q]‖L(L2(Ω)) ≤ C2−k/2 ‖q‖W1,∞(Ω) .

2.3 The case of less regular potentials
We now focus on the proof of Proposition 2.1, which, as we will see, follows from Lemma 2.4
and suitable interpolation arguments.

Proof of Proposition 2.1. Note that we obviously have for some constant C independent of k,
(C = 2 ‖ψ‖∞),

‖ηk(−∆)‖L(H1
0 (Ω)) ≤ C, ‖ηk(−∆)‖L(L2(Ω)) ≤ C.

Hence one easily has, for all q ∈ Lp(Ω) with p > max{d, 2} and z ∈ H1
0 (Ω),

‖ηk(−∆)(qz)‖L2(Ω) ≤ C ‖qz‖L2(Ω) ≤ C ‖q‖Lp(Ω) ‖z‖H1
0 (Ω) ,

and
‖qηk(−∆)(z)‖L2(Ω) ≤ C ‖q‖Lp(Ω) ‖ηk(−∆)z‖H1

0 (Ω) ≤ C ‖q‖Lp(Ω) ‖z‖H1
0 (Ω) .

Thus, for q ∈ Lp(Ω) with p > max{d, 2},

‖[ηk(−∆), q]‖L(H1
0 (Ω),L2(Ω)) ≤ C ‖q‖Lp(Ω) . (2.27)

Since the map
Ck : q 7→ [ηk(−∆), q]

is a linear map such that
• Ck is continuous on Lp for p ∈ (max{d, 2},∞] with values in L(H1

0 (Ω), L2(Ω)) and of
norm ≤ C, see (2.27);

• Ck is continuous on W 2,p for p ∈ (max{d, 2},∞] with values in L(H1
0 (Ω), L2(Ω)) and of

norm ≤ C2−k, see (2.22),
by interpolation, for all s ∈ [0, 2], Ck is continuous on W s,p(Ω) for p > max{d, 2} with values
in L(H1

0 (Ω), L2(Ω)) and of norm ≤ C2−ks/2.
We thus conclude (2.1) for all p ∈ (max{d, 2},∞], s ∈ [0, 2], and potentials q ∈ W s,p(Ω),

and, by duality, (2.2).

Remark 2.6. In a similar way, using Remark 2.5 and spaces of potentials for which the
multiplication operator acts on L2(Ω), namely L∞(Ω), one can get: for all s ∈ [0, 1] and
q ∈W s,∞(Ω),

‖[ηk(−∆), q]‖L(L2(Ω)) ≤ C2−ks/2 ‖q‖Ws,∞(Ω) . (2.28)

Indeed, this result follows by interpolating W 1,∞(Ω) with L∞(Ω).
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2.4 A regularizing estimate
For later use, we also prove the following lemma:
Lemma 2.7. Let α < 0, and χ be a smooth function. Then there exists a constant C > 0 such
that

∀f ∈ L2(Ω),
∥∥∥[(−∆)α/2, χ]f

∥∥∥
H1

0 (Ω)
≤ C ‖f‖L2(Ω) . (2.29)

Proof. Writing (−∆)α/2 on its spectral basis and using (1.8), we have, for all sequence (aj)j∈N∗

with a finite number of non-vanishing components,

(−∆)α/2
(∑

ajej
)

=
∑
j

λαj ajej

=
∑
j

λαj

(
θ(λ2

j ) +

∞∑
k=1

ψ(λ2
j2
−k)

)
ajej

=
∑
j

λαj θ(λ
2
j )ajej +

∞∑
k=1

2αk/2
∑
j

(
λ2
j2
−k
)α/2

ψ(λ2
j2
−k)ajej .

Hence, setting

Aα,0

(∑
j

ajej

)
=

∑
j

λαj θ(λ
2
j )ajej ,

Aα,k

(∑
j

ajej

)
=

∑
j

(
λ2
j2
−k
)α/2

ψ(λ2
j2
−k)ajej , k ≥ 1,

we have, for all sequence (aj)j∈N∗ with a finite number of non-vanishing components,

(−∆)α/2
(∑

j

ajej

)
=

∞∑
k=0

2αk/2Aα,k

(∑
j

ajej

)
.

But, using that θ is compactly supported in (0, 1), for all (aj) ∈ `2(N∗),∥∥∥∥∥[Aα,0, χ]

(∑
j

ajej

)∥∥∥∥∥
H1

0 (Ω)

≤

∥∥∥∥∥
(∑

j

ajej

)∥∥∥∥∥
L2(Ω)

.

For k ≥ 1, one can use Lemma 2.2 with ρ(ξ) = ψ(ξ)ξα/2, R = 2−k and χ = χ, and in particular
estimate (2.8): there exists a constant C > 0 such that for all (aj) ∈ `2(N∗) and all k ≥ 1,∥∥∥∥∥[Aα,k, χ]

(∑
j

ajej

)∥∥∥∥∥
H1

0 (Ω)

≤ C

∥∥∥∥∥
(∑

j

ajej

)∥∥∥∥∥
L2(Ω)

. (2.30)

Combining the above estimates, for all sequence (aj)j∈N∗ with a finite number of non-vanishing
components,∥∥∥∥∥[(−∆)α/2, χ]

(∑
j

ajej

)∥∥∥∥∥
H1

0 (Ω)

≤
∞∑
k=0

2αk/2

∥∥∥∥∥[Aα,k, χ]

(∑
j

ajej

)∥∥∥∥∥
H1

0 (Ω)

≤ C

(∑
k=0

2αk/2
)∥∥∥∥∥∑

j

ajej

∥∥∥∥∥
L2(Ω)

. (2.31)
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We now conclude Lemma 2.7 by using the density in `2(N∗) of sequences with a finite number
of non-vanishing components.

Remark 2.8. Note that, due to Remark 2.3, the above proof holds for χ ∈W 1,∞(Ω).

Remark 2.9. Actually, we could have proved a slightly better estimate than the one in (2.29).
Indeed, for all β ∈ [0, 1− α), there exists a constant C > 0 such that

∀f ∈ L2(Ω),
∥∥∥[(−∆)α/2, χ]f

∥∥∥
H
β
(0)

(Ω)
≤ C ‖f‖L2(Ω) , (2.32)

where Hβ
(0)(Ω) = D((−∆)β/2).

Indeed, similarly as in (2.17), one easily checks that∥∥(zR+ ∆)−1f
∥∥
H2

(0)

≤ C

|=(z)| ‖f‖L2(Ω) ,

which yields, within the setting of Lemma 2.2,

‖[ρR(−∆), χ]‖L(H2
(0)

(Ω),L2(Ω)) ≤ CR
1/2 ‖χ‖W2,p(Ω) .

Hence one can interpolate between this estimate and (2.3) to obtain

‖[ρR(−∆), χ]‖
L(H

β
(0)

(Ω),L2(Ω))
≤ CR(β−1)/2 ‖χ‖W2,p(Ω) .

Thus, we can replace estimate (2.30) by∥∥∥∥∥[Aα,k, χ]

(∑
j

ajej

)∥∥∥∥∥
H
β
(0)

(Ω)

≤ C2(β−1)k/2

∥∥∥∥∥
(∑

j

ajej

)∥∥∥∥∥
L2(Ω)

.

Summing up these estimates for k ≥ 1 and k = 0 (the case k = 0 being once again completely
straightforward), we obtain, for all sequence (aj)j∈N∗ with a finite number of non-vanishing
components,∥∥∥∥∥[(−∆)α/2, χ]

(∑
j

ajej

)∥∥∥∥∥
H
β
(0)

(Ω)

≤ C

(
∞∑
k=0

2(α+β−1)k/2

)∥∥∥∥∥∑
j

ajej

∥∥∥∥∥
L2(Ω)

,

instead of (2.31), thus yielding (2.32) by density under the condition α+ β − 1 < 0.

3 On the observability inequality with a potential
The goal of this section is to prove that the observability constant in (1.3) may be chosen
uniformly for potentials in bounded sets of Lp(Ω) when p ∈ (max{d, 2},∞]. Here, we only
assume the control set ω to satisfy the geometric control condition (GCC, recall Definition 1.1)
of C. Bardos, G. Lebeau and J. Rauch [3, 4]. The proof we present below is based on microlocal
defect measures and their propagation and localization properties.
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3.1 GCC and classical propagation properties
Let us recall that the geometric control condition implies the following propagation results:

• Propagation of microlocal defect measures, see [20]:

ϕn ⇀
n→∞

0 weakly in L2((0, T )× Ω)

�ϕn −→
n→∞

0 in H−1((0, T )× Ω)

ϕn −→
n→∞

0 in L2((0, T )× ω)

⇒ ϕn −→
n→∞

0 in L2((0, T )× Ω). (3.1)

• Propagation of regularity, see [15, Chap. XXIV] and [24, 25]:

ϕ ∈ L2((0, T )× Ω)
�ϕ ∈ L2((0, T )× Ω)
ϕ ∈ H1

loc((0, T )× ω)

⇒ ϕ ∈ L2((0, T );H1
0 (Ω)) ∩H1((0, T );L2(Ω)). (3.2)

Let us be slightly more precise about the second condition in (3.1) and (3.2). In (3.1), we
use the notation �ϕn −→

n→∞
0 in H−1((0, T )× Ω) to say that each ϕn solves{

�ϕn = fn in (0, T )× Ω,
ϕn = 0 on (0, T )× ∂Ω,

where fn is a sequence of functions of H−1((0, T ) × Ω) which strongly converges to 0 in
H−1((0, T ) × Ω). Similarly, the second condition in (3.2) has to be understood as follows:
ϕ is a weak solution of {

�ϕ = f in (0, T )× Ω,
ϕ = 0 on (0, T )× ∂Ω,

(3.3)

with f ∈ L2((0, T )× Ω).
Finally, let us notice that (3.2) states the propagation of the H1 regularity from the observ-

ability set (0, T )×ω to the whole space-time cylinder (0, T )×Ω. This result is a byproduct of
the proof of the propagation of the wave front set in [24, 25], (or [15, Chap. XXIV]).

3.2 Propagation of regularity with potentials
We prove the following result, which slightly generalizes the propagation of regularity (3.2) to
the case of more integrable source term.

Theorem 3.1. Assume the geometric control condition GCC and d ≥ 3.
Let r ∈

[
2d
d+2

, 2
]
and assume that ϕ ∈ L2((0, T ) × Ω) is a weak solution of (3.3) with

f ∈ L2((0, T );Lr(Ω)) such that ϕ ∈ H1((0, T )× ω). Then ϕ ∈ L2((0, T );Ls(Ω)) with

1

s
=

1

r
− 1

d
.

Proof. By Sobolev’s embedding, Lr(Ω) embeds into H−k(Ω) with k = d/r − d/2 ∈ [0, 1]. We
thus have 

ϕ ∈ L2((0, T )× Ω),

�ϕ ∈ L2((0, T );H−k(Ω)),
ϕ ∈ H1((0, T )× ω).

In order to apply (3.2), we set v = (−∆)−k/2ϕ, for which we easily have

v ∈ L2((0, T )× Ω), and �v ∈ L2((0, T )× Ω).
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We now prove that v ∈ H1
loc((0, T )×ω). Indeed, if a = a(x) is a smooth function supported in

ω, we can write
av = (−∆)−k/2(aϕ) + [a, (−∆)−k/2]ϕ,

so that Lemma 2.7 implies av ∈ L2((0, T );H1(ω)). Since this is true for all smooth function
a = a(x) supported in ω, v ∈ L2((0, T );H1

loc(ω)).
Then, for any smooth function ã = ã(x) supported in ω, we have

�(ãv) = [−∆, ã]v + ã�v ∈ L2((0, T )× Ω),

and thus multiplying by η2ãv with η = η(t) a smooth cut-off function of time supported in
(0, T ), we immediately obtain η∂t(ãv) ∈ L2((0, T )×Ω). Since this is true for all smooth function
ã = ã(x) supported in ω and η = η(t) supported in (0, T ), we proved v ∈ H1

loc((0, T )× ω).
Hence, the propagation of regularity (3.2) implies that v ∈ H1((0, T ) × Ω) and thus ϕ

belongs to L2((0, T );H1−k(Ω)). Using Sobolev’s embedding, ϕ belongs to L2((0, T );Ls(Ω))
with

1

s
=

1

2
− 1− k

d
=

1

2
− 1

d
+
k

d
=

1

r
− 1

d
as announced.

An important corollary of Theorem 3.1 is the following propagation result:
Corollary 3.2. Assume the geometric control condition GCC and d ≥ 3. Let p ∈ (d,∞] and
q ∈ Lp(Ω). Then every function ϕ ∈ L2((0, T )× Ω) solution of system

�ϕ+ qϕ ∈ L2((0, T )× Ω)
ϕ = 0 on (0, T )× ∂Ω,
ϕ ∈ H1

loc((0, T )× ω),
(3.4)

satisfies
ϕ ∈ L2((0, T );H1

0 (Ω)) ∩H1((0, T );L2(Ω)). (3.5)

Proof. We use the following bootstrap argument:

�ϕ+ qϕ ∈ L2((0, T )× Ω)

ϕ ∈ L2((0, T );Ls0(Ω))

with s0 ≥ 2

and such that
1

p
+

1

s0
>

1

2

 ⇒ ϕ ∈ L2((0, T );Ls1(Ω)) with
1

s1
=

1

s0
+

1

p
− 1

d
. (3.6)

Indeed, if ϕ ∈ L2((0, T );Ls0(Ω)), �ϕ = (�ϕ + qϕ) − qϕ belongs to L2((0, T );Lr(Ω)) with
1/r = 1/p+1/s0 ∈ [1/2, 1/2+1/d]. Thus Theorem 3.1 applies and yields ϕ ∈ L2((0, T );Ls1(Ω))
with 1/s1 = 1/s0 + 1/p− 1/d.

Bootstrapping the property (3.6) implies that all ϕ satisfying (3.5) actually belong to
L2((0, T );Ls(Ω)) for some s ≥ 2 such that 1/p + 1/s ≤ 1/2, and thus �ϕ = (�ϕ + qϕ) − qϕ
belongs to L2((0, T )× Ω).

Using the propagation of regularity (3.2), all ϕ satisfying (3.4) belong to L2((0, T );H1
0 (Ω))∩

H1((0, T );L2(Ω)).

Remark 3.3. In the case d = 2, Theorem 3.1 holds for r ∈ (1, 2) and the proof follows the
same lines: We only have to check that Sobolev’s embeddings hold and thus we should avoid the
cases k = 0 and k = 1 corresponding to r = 1 and r = 2. Consequently, Corollary 3.2 also
applies in dimension d = 2 for q ∈ Lp(Ω) with p > 2.

In the case d = 1, one can follow the proof of Theorem 3.1 to get, for ϕ ∈ L2((0, T ) × Ω)
satisfying ϕ ∈ H1((0, T )× ω):

15



• If �ϕ ∈ L2((0, T );L1(Ω)), ϕ ∈ L2((0, T );Ls(Ω)) for all s <∞.

• If �ϕ ∈ L2((0, T );Lr(Ω)) for some r ∈ (1, 2), ϕ ∈ L2((0, T );L∞(Ω)).

Following, Corollary 3.2 also applies for d = 1 and q ∈ L2(Ω).

3.3 Proof of Proposition 1.2
Proof of Proposition 1.2. The proof is divided in several parts. To simplify the presentation,
we only deal with the case d ≥ 3. We omit the proof corresponding to the cases d = 1 or 2
which can be done similarly using Remark 3.3 and are left to the reader.

Step 1: A weak observability inequality. The first step of the proof consists of showing
an “almost observability” inequality. More precisely, we are going to show that there exists a
constant Cm depending only on m > 0 such that for all q ∈ Lp(Ω) with Lp(Ω)-norm bounded
by m, any solution ϕ[q] of (1.2) satisfies:

‖(ϕ0, ϕ1)‖2L2×H−1 ≤ Cm
∫ T

0

∫
ω

|ϕ[q]|2 dxdt+ Cm ‖ϕ[q]‖2L2(H−1) . (3.7)

We prove this result by contradiction. Assume (3.7) is false. Then there exist a sequence qn
of Lp(Ω)-potentials bounded by m and a sequence of initial data (ϕ0n, ϕ1n) ∈ L2(Ω)×H−1(Ω)
such that:

‖(ϕ0n, ϕ1n)‖L2×H−1 = 1, ‖qn‖Lp ≤ m, (3.8)

lim
n→∞

∫ T

0

∫
ω

|ϕn[qn]|2 dxdt = 0, (3.9)

lim
n→∞

‖ϕn[qn]‖L2(H−1) = 0, (3.10)

where ϕn[qn] is the solution of the wave equation (1.2) with initial data (ϕ0n, ϕ1n) and potential
qn.

Of course, the uniform bounds (3.8) imply that the solutions ϕn[qn] are uniformly bounded
in C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)), therefore, up to a subsequence still denoted the same,
they weakly converge to some Φ in L2((0, T );L2(Ω)) ∩ H1((0, T );H−1(Ω)). Using (3.10), we
necessarily have Φ ≡ 0.

We then have to identify the limit of qnϕn[qn]. First, the sequence qnϕn[qn] is bounded in
L2((0, T );Lr(Ω)) with 1/r = 1/2 + 1/p, hence it weakly converges in L2((0, T );Lr(Ω)) (again,
up to a subsequence). Let us then show that it actually converges to 0 in D′((0, T )×Ω). In order
to do that, we remark that ϕn[qn] ⇀ 0 weakly in L2((0, T )× Ω), hence �ϕn[qn] = −qnϕn[qn]
converges to 0 in D′((0, T ) × Ω). But, by Aubin-Lions’ theorem, H1

0 ((0, T ) × Ω) compactly
embeds into L2((0, T );Lr

′
(Ω)) since

1

r′
= 1− 1

r
=

1

2
− 1

p
>

1

2
− 1

d
,

and thus, by duality, L2((0, T );Lr(Ω)) compactly embeds into H−1((0, T )× Ω). We therefore
obtain that qnϕn[qn] strongly converges to 0 in H−1((0, T )× Ω).

We can then use (3.1) and (3.9), which guarantee that ϕn[qn] strongly converges to 0
in L2((0, T ) × Ω), from which we immediately deduce the convergence of ∂tϕn[qn] to 0 in
L2((0, T );H−1(Ω)) (for instance multiplying the equation of ϕn[qn] by (−∆)−1ϕn[qn]η, where
η = η(t) is a smooth cut-off function in time). Using the energy estimates in L2(Ω)×H−1(Ω),
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we readily obtain the strong convergence of (ϕ0n, ϕ1n) to (0, 0) in L2(Ω)×H−1(Ω). This is in
contradiction with (3.8).

Step 2: A unique continuation result. Based on (3.7), we will prove the following fact:
for all q in Lp(Ω), the set X[q] defined by

X[q] = {ϕ[q] ∈ L2((0, T ) × Ω) solution of (1.2) such that ϕ[q] = 0 on (0, T ) × ω} (3.11)

is reduced to the singleton {0}.
Step 2.a. ∂t acts on X[q]. As a consequence of Corollary 3.2, if ϕ[q] ∈ X[q], it automatically

belongs to H1((0, T )× Ω) and thus ∂tϕ[q] also belongs to X[q].
Step 2.b: X[q] is trivial. If we endow X[q] with the L2((0, T ) × Ω)-topology, the balls of

X[q] are compact. Indeed, take ϕn[q] ∈ X[q] of bounded L2((0, T )×Ω)-norms. Then applying
(3.7) to ∂tϕn[q] -which belongs to L2((0, T ) × Ω) from Step 2.a- one obtains that ϕn[q] is
bounded in the space H1((0, T );L2(Ω))∩H2((0, T );H−1(Ω)), hence in L2((0, T );H1

0 (Ω)) from
the equation (1.2). But the space L2((0, T );H1

0 (Ω))∩H1((0, T );L2(Ω)) compactly embeds into
L2((0, T )×Ω). Hence the balls of X[q] are compact and thus X[q] is a finite-dimensional space.

It follows that, if X[q] were nontrivial, there would exist an eigenvector of ∂t on X[q], i.e. a
non-trivial solution ϕ = ϕ[q] ∈ L2((0, T )×Ω)∩H1((0, T );H−1(Ω)) of (1.2) such that ∂tϕ = λϕ
and ϕ = 0 on (0, T )× ω. The unique continuation property of the Laplace operator (see [18])
implies that such non-trivial ϕ cannot exist.

Hence, necessarily,
X[q] = {0}. (3.12)

Step 3: A compactness argument. We now argue by contradiction to show (1.5). Let
qn be a sequence of potentials in Lp(Ω) and (ϕ0n, ϕ1n) ∈ L2(Ω)×H−1(Ω) such that

‖qn‖Lp ≤ m, ‖(ϕ0n, ϕ1n)‖L2×H−1 = 1, and lim
n→∞

‖ϕn[qn]‖L2((0,T )×ω) = 0. (3.13)

where ϕn[qn] is the solution of (1.2) with initial data (ϕ0n, ϕ1n) and potential qn.
From the above estimates, we have the existence of (Φ0,Φ1) ∈ L2(Ω) × H−1(Ω), of Q ∈

Lp(Ω) and of f ∈ L2((0, T );L2p/(p+2)(Ω)) such that, extracting subsequences if necessary,

(ϕ0n, ϕ1n) ⇀
n→∞

(Φ0,Φ1) weakly in L2(Ω)×H−1(Ω), (3.14)

qn ⇀
n→∞

Q weakly in L2(Ω), Q ∈ Lp(Ω) and ‖Q‖Lp ≤ m, (3.15)

qnϕn[qn] ⇀
n→∞

f weakly in L2((0, T );L2p/(p+2)(Ω)). (3.16)

qnϕn[qn] →
n→∞

f strongly in H−1((0, T )× Ω), (3.17)

where the strong convergence in (3.17) is deduced by duality from the compactness of the
embedding ofH1

0 ((0, T )×Ω) into L2((0, T );L2p/(p−2)(Ω)) (Aubin-Lions’ compactness theorem).
It is then an easy matter to show that, introducing Φ the solution of

�Φ = −f in (0, T )× Ω,
Φ = 0 on (0, T )× ∂Ω,
(Φ(0, ·), ∂tΦ(0, ·)) = (Φ0,Φ1),

(3.18)

we have

ϕn[qn] ⇀
n→∞

Φ weakly in L2((0, T )× Ω) ∩H1((0, T )×H−1(Ω)) (3.19)

Φ = 0 on (0, T )× ω. (3.20)
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The main difficulty now is to check that Φ actually vanishes everywhere. In order to prove
it, we prove f = QΦ, which, by (3.19)–(3.20), would imply Φ ∈ X[Q], hence Φ ≡ 0 from (3.12).

We thus want to identify f . This cannot be done directly since the convergences of qn and
ϕn[qn] are only weak convergences in L2((0, T )× Ω). But we can argue as in [14, Lemma 3.1]
and use the fact that the micro-local defect measures corresponding to ϕn[qn]−Φ and qn −Q
are supported on disjoint subsets. We prove it below for completeness.

We are going to identify f in the sense of D′((0, T ) × Ω). Let ψ and ψ̃ be two smooth
compactly supported functions in (0, T )× Ω.

Using (3.17) and (3.18), �(ϕn[qn]−Φ) strongly converges to 0 inH−1((0, T )×Ω). Combined
with the weak convergence (3.19), the L2((0, T )×Ω)-micro-local defect measure corresponding
to ψ(ϕn[qn] − Φ) is supported on the bicharacteristic set C� = {(t, x, τ, ξ) ∈ (0, T ) × Ω × R ×
Rd such that |τ | = |ξ| = 1/

√
2}.

Let us also remark that ∂t(ψ̃qn) = (∂tψ̃)qn strongly converges to (∂tψ̃)Q in H−1((0, T )×Ω).
According to (3.15), this implies that the L2((0, T )×Ω) micro-local defect measure correspond-
ing to ψ̃(qn −Q) is supported on the set C∂t = {(t, x, τ, ξ) ∈ (0, T )×Ω×R×Rd such that τ =
0 and |ξ| = 1}.

Regarding these two facts, it is natural to introduce a self-adjoint operator P of order 0
which localizes around the characteristic set C� and vanishes identically on a neighborhood of
C∂t . In order to do that, we define a smooth function χ = χ(τ, ξ) on R× Rd as follows:

χ : R× Rd → [0, 1],
χ(τ, ξ) = 0 if τ2 + |ξ|2 ≥ 1 and |τ | ≤ |ξ|/4,
χ(τ, ξ) = 1 if τ2 + |ξ|2 ≥ 1 and |τ | ≥ 3|ξ|/4,
χ(τ, ξ) = 0 if τ2 + |ξ|2 ≤ 1/2,
χ(ατ, αξ) = χ(τ, ξ) for all (τ, ξ) with τ2 + |ξ|2 ≥ 1 and α ≥ 1.

(3.21)

We then define the pseudo-differential operator P on smooth functions z ∈ S ′(R× Rd) by

Pz = F−1 (χ(Fz)) , where F denotes the Fourier transform in space-time. (3.22)

Due to the localization properties of the micro-local defect measures of ψ(ϕn[qn]− Φ) and
ψ̃(qn − Q), the localization of the principal symbol of P implies the following convergence
results: {

(I − P )(ψϕn[qn]) →
n→∞

(I − P )(ψΦ) strongly in L2((0, T )× Ω),

P (ψ̃qn) →
n→∞

P (ψ̃Q) strongly in L2((0, T )× Ω).
(3.23)

In particular,∫∫
ψϕn[qn]ψ̃qn =

∫∫
P (ψϕn[qn])ψ̃qn +

∫∫
(I − P )(ψϕn[qn])ψ̃qn

=

∫∫
ψϕn[qn]P (ψ̃qn) +

∫∫
(I − P )(ψϕn[qn])ψ̃qn,

and the convergences (3.23) and (3.15) and (3.19) imply

lim
n→∞

∫∫
(0,T )×Ω

ψϕn[qn]ψ̃qn =

∫∫
(0,T )×Ω

ψΦψ̃Q.

Of course, since ψ and ψ̃ were arbitrary, we have proved that the weak limit f of qnϕn[qn]
coincides with QΦ.
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If follows that Φ actually belongs to X[Q], hence it vanishes identically from (3.12). But,
by Aubin-Lions’ lemma, the convergence in (3.19) implies the strong convergence of ϕn[qn] to 0
in L2((0, T );H−1(Ω)). Combined with the strong convergence of ϕn[qn] to 0 in L2((0, T )× ω)
and ‖(ϕ0n, ϕ1n)‖L2×H−1 = 1 in (3.13), we get a contradiction with (3.7). This finishes the
proof of Proposition 1.2.

4 Data assimilation with unknown potential
In this section, we focus on the proof of Theorem 1.3 presented in the introduction.

Proof of Theorem 1.3. We fix Q and q in W s,p
≤m(Ω) for some s ∈ [0, 1], p ∈ (max{d, 2},∞] and

m > 0. The proof will be done in several steps.

Preliminaries. Let Φ[Q] be the trajectory (1.11) on which aωΦ[Q] is assumed to be known.
Note that, according to Proposition 1.2, one immediately has the following a priori bounds:

‖(Φ0,Φ1)‖L2×H−1 + ‖Φ[Q]‖C(L2)∩C1(H−1) ≤ C ‖aωΦ[Q]‖L2(L2) . (4.1)

To avoid possible confusion, in the following we denote (Φ0,Φ1) by (Φ0[Q],Φ1[Q]).
Let Φ[q] be the solution of (1.2) corresponding to the initial data (Φ0[q],Φ1[q]) which mini-

mizes the functional J [q]. The first remark that can be done is that J [q](Φ0[q],Φ1[q]) ≤ J(0, 0),
which yields that

‖aωΦ[q]‖L2(L2) ≤ C ‖aωΦ[Q]‖L2(L2) .

Of course, using Proposition 1.2, similarly to (4.1), this yields the following bounds on Φ[q]:

‖(Φ0[q],Φ1[q])‖L2×H−1 + ‖Φ[q]‖C(L2)∩C1(H−1) ≤ C ‖aωΦ[Q]‖L2(L2) . (4.2)

Moreover, the Euler-Lagrange equation satisfied by (Φ0[q],Φ1[q]) implies that for all initial
data (ϕ0, ϕ1) ∈ L2(Ω)×H−1(Ω), the solution ϕ[q] of (1.2) satisfies∫ T

0

∫
Ω

a2
ωϕ[q](Φ[q]− Φ[Q]) dx dt = 0. (4.3)

This implies in particular that the solution y of
�y + qy = a2

ω(Φ[q]− Φ[Q]), in (0, T )× Ω,
y = 0 on (0, T )× ∂Ω,
(y(0), ∂ty(0)) = (0, 0),

(4.4)

satisfies
(y(T ), ∂ty(T )) = (0, 0). (4.5)

Indeed, when multiplying the solution y of (4.4) by ϕ[q] solution of (1.2), by (4.3) we obtain,
for any ϕ[q] solution of (1.2),

〈(ϕ(T ), ∂tϕ(T )), (y(T ), ∂ty(T )〉L2×H−1,H1
0×L2 =

∫ T

0

∫
Ω

a2
ω(Φ[q]− Φ[Q])ϕ[q] = 0,

which is equivalent to (4.5).

A priori estimates. The function Ψ = Φ[q]− Φ[Q] solves{
�Ψ + qΨ = (Q− q)Φ[Q], in (0, T )× Ω,
Ψ = 0 on (0, T )× ∂Ω.

(4.6)
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In particular, it can be decoupled as Ψ = z + w, where z solves
�z + qz = 0, in (0, T )× Ω,
z = 0 on (0, T )× ∂Ω,
(z(0), ∂tz(0)) = (Ψ(0), ∂tΨ(0)),

(4.7)

and w solves 
�w + qw = (Q− q)Φ[Q], in (0, T )× Ω,
w = 0 on (0, T )× ∂Ω,
(w(0), ∂tw(0)) = (0, 0).

(4.8)

Moreover y solves the control problem
�y + qy = a2

ωw + a2
ωz, in (0, T )× Ω,

y = 0 on (0, T )× ∂Ω,
(y(0), ∂ty(0)) = (0, 0),
(y(T ), ∂ty(T )) = (0, 0),

(4.9)

Multiplying by z, we easily obtain∫ T

0

∫
Ω

a2
ω|z|2 = −

∫ T

0

∫
Ω

a2
ωzw,

so that
‖aωz‖L2(L2) ≤ ‖aωw‖L2(L2) . (4.10)

Since z solves the wave equation (4.7), thanks to the observability estimate (1.5), we have

‖z‖C(L2)∩C1(H−1) ≤ C ‖aωw‖L2(L2) . (4.11)

Now, we estimate the solution w of (4.8): energy estimates yield

‖w‖C(L2)∩C1(H−1) ≤ C ‖(q −Q)Φ[Q]‖L1(H−1)

≤ C ‖q −Q‖Lp ‖Φ[Q]‖L1(L2) ≤ C ‖q −Q‖Lp ‖aωΦ[Q]‖L2(L2) , (4.12)

where the last estimate is a consequence of (4.1). We thus obtain

‖z‖C(L2)∩C1(H−1) + ‖Ψ‖C(L2)∩C1(H−1) ≤ C ‖q −Q‖Lp ‖aωΦ[Q]‖L2(L2) , (4.13)

and, using energy estimates for y solution of (4.9),

‖y‖C(H1
0 )∩C1(L2) ≤ C ‖q −Q‖Lp ‖aωΦ[Q]‖L2(L2) . (4.14)

Strategy. We consider yk = ηk(−∆)y. Since y solves the control problem (4.9), yk solves the
control problem 

�yk + qyk = f̃k + a2
ωηk(−∆)z, in (0, T )× Ω,

yk = 0 on (0, T )× ∂Ω,
(yk(0), ∂tyk(0)) = (0, 0),
(yk(T ), ∂tyk(T )) = (0, 0),

(4.15)

where f̃k is given by

f̃k = [q, ηk(−∆)]y + ηk(−∆)(a2
ωw) + [ηk(−∆), a2

ω]z. (4.16)
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But, as z solves (4.7), the function ηk(−∆)z writes

ηk(−∆)z = zk + wk,

where zk solves
�zk + qzk = 0 in (0, T )× Ω,
zk = 0 on (0, T )× ∂Ω,
(zk(0), ∂tzk(0)) = (ηk(−∆)z(0), ∂t(ηk(−∆)z)(0)),

(4.17)

and wk solves 
�wk + qwk = [q, ηk(−∆)]z in (0, T )× Ω,
wk = 0 on (0, T )× ∂Ω,
(wk(0), ∂twk(0)) = (0, 0).

(4.18)

Hence we can rewrite (4.15) as
�yk + qyk = fk + a2

ωzk, in (0, T )× Ω,
yk = 0 on (0, T )× ∂Ω,
(yk(0), ∂tyk(0)) = (0, 0),
(yk(T ), ∂tyk(T )) = (0, 0),

(4.19)

where fk is defined by

fk = [q, ηk(−∆)]y + ηk(−∆)(a2
ωw) + [ηk(−∆), a2

ω]z + a2
ωwk. (4.20)

Multiplying then the equation of yk in (4.19) by zk solution of (4.17), we easily get

0 =

∫ T

0

∫
Ω

fkzk +

∫ T

0

∫
Ω

a2
ω|zk|2.

Hence, using the observability inequality (1.5) for zk, which is a solution of (4.17), we get

‖zk‖C(L2)∩C1(H−1) ≤ C ‖fk‖L2(L2) . (4.21)

The rest of the proof then focuses on estimating fk defined by (4.20).

Estimating fk. We do it term by term.
Estimating [q, ηk(−∆)]y: From (2.1) and (4.14),

‖[q, ηk(−∆)]y‖L2(L2) ≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) .

Estimating ηk(−∆)(a2
ωw): We first improve the estimates (4.12) on w solution of (4.8) by

remarking that (q−Q)Φ[q] belongs to L1((0, T );Hs−1(Ω)). Indeed, the multiplication operator

M : (q̃, ϕ̃) 7→ q̃ϕ̃

maps W 1,p(Ω)× L2(Ω) to L2(Ω) and Lp(Ω)× L2(Ω) to H−1(Ω). Therefore, by interpolation,
for all s ∈ [0, 1], M maps W s,p(Ω)× L2(Ω) to Hs−1(Ω).

Thus, energy estimates for the solution w of (4.8)give

‖w‖C(Hs0 )∩C1(Hs−1) ≤ C ‖(q −Q)Φ[Q]‖L1(Hs−1) ≤ C ‖q −Q‖Ws,p ‖Φ[Q]‖L2(L2)

≤ C ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) , (4.22)
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where the last estimate is a consequence of (4.1). Using then that ‖ηk(−∆)‖L(Hs0 ,L
2) ≤

C2−ks/2, and the fact that the multiplication by a2
ω continuously acts on Hs

0(Ω), we get∥∥ηk(−∆)(a2
ωw)

∥∥
L2(L2)

≤ C2−ks/2
∥∥a2

ωw
∥∥
L2(Hs0 )

≤ C2−ks/2 ‖w‖L2(Hs0 )

≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) . (4.23)

Note that we have also proved the following estimate:

‖ηk(−∆)w‖C(L2)∩C1(H−1) ≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) . (4.24)

Estimating [ηk(−∆), a2
ω]z: Using the bound (4.13) and the bound (2.21), we obtain∥∥[ηk(−∆), a2

ω]z
∥∥
L2(L2)

≤ C2−k/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) . (4.25)

Estimating a2
ωwk: As wk solves (4.18), by energy estimates we obtain

‖wk‖L2(L2) ≤ C ‖wk‖C(L2)∩C1(H−1) ≤ C ‖[q, ηk(−∆)]z‖L2(H−1)

≤ C2−ks/2 ‖z‖L2(L2) ≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) , (4.26)

where we used (2.2) and (4.13). Hence we have∥∥a2
ωwk

∥∥
L2(L2)

≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) .

Combining all these estimates, we derived

‖fk‖L2(L2) ≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) . (4.27)

Conclusion. According to (4.21), estimate (4.27) yields

‖zk‖C(L2)∩C1(H−1) ≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) . (4.28)

Combined with (4.26), we derive

‖ηk(−∆)z‖C(L2)∩C1(H−1) ≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) . (4.29)

As Φ[q]− Φ[Q] = z + w, estimate (4.24) yields

‖ηk(−∆)(Φ[q]− Φ[Q])‖C(L2)∩C1(H−1) ≤ C2−ks/2 ‖q −Q‖Ws,p ‖aωΦ[Q]‖L2(L2) .

This concludes the proof of Theorem 1.3.

Remark 4.1. It might be surprising that, though the commutator estimates in (2.1) are valid
for s ∈ [0, 2], we do not have any better estimate when s > 1. This is due to the the estimate
in (4.25), since the regularity of Φ[Q] is limited to C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)).

Remark 4.2. The precise smoothness assumptions required on aω to get estimate (1.14) is
aω ∈W s,∞(Ω). Indeed, this regularity is required to estimate ‖[aω, ηk(−∆)]‖L(L2) in (4.25) by
C2−ks/2, see (2.28). (Note that this regularity is also needed to derive (4.23).)
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5 Controllability with unknown potential
In this section, we prove Theorem 1.4. As we will see, its proof is very similar to the one of
Theorem 1.3.

Proof of Theorem 1.4. As in the proof of Theorem 1.3, we divide the proof in several para-
graphs.

Below, we fix the initial data (y0, y1) ∈ H1
0 (Ω)× L2(Ω) and the constants m > 0, s ∈ [0, 1]

and p ∈ (max{d, 2},∞]. We shall also denote by q = q(x) a generic potential q(x) ∈W s,p
≤m(Ω).

Preliminaries. Similarly to the proof of Theorem 1.3, we begin with some classic bounds on
the optimizers (Φ0[q],Φ1[q]) of K[q] in (1.17). Indeed, using the coercivity of the functional
K[q] on L2(Ω)×H−1(Ω), which is uniform with respect to potentials q ∈W s,p

≤m(Ω) according to
Proposition 1.2, and the fact that K[q](Φ0[q],Φ1[q]) ≤ K[q](0, 0) = 0, we immediately obtain
that, uniformly with respect to q ∈W s,p

≤m(Ω),

‖(Φ0[q],Φ1[q])‖L2×H−1 + ‖Φ[q]‖C(L2)∩C1(H−1) ≤ C ‖(y0, y1)‖H1
0×L2 , (5.1)

where Φ[q] is the solution of (1.2) with initial data (Φ0[q],Φ1[q]).
Let us then denote by Y [qa], respectively Y [qb] the controlled trajectories solutions of

(1.15) with controls u[qa] = aωΦ[qa], respectively u[qb] = aωΦ[qb]. Note that, due to (5.1), the
controlled trajectories Y [qa] and Y [qb] satisfy:

‖Y [qa]‖C0(H1
0 )∩C1(L2) +

∥∥∥Y [qb]
∥∥∥
C0(H1

0 )∩C1(L2)
≤ C ‖(y0, y1)‖H1

0×L2 . (5.2)

A priori estimates. Let us set

Y ab = Y a − Y b, Φab = Φ[qa]− Φ[qb].

By construction, Φab solves
�Φab + qaΦab = (qb − qa)Φ[qb], in (0, T )× Ω,

Φab = 0 on (0, T )× ∂Ω,

(Φab(0), ∂tΦ
ab(0)) = (Φ0[qa]− Φ0[qb],Φ1[qa]− Φ1[qb]).

(5.3)

It is then natural to write Φab = z + w, where z solves
�z + qaz = 0, in (0, T )× Ω,
z = 0 on (0, T )× ∂Ω,

(z(0), ∂tz(0)) = (Φ0[qa]− Φ0[qb],Φ1[qa]− Φ1[qb]).
(5.4)

and w solves  �w + qaw = (qb − qa)Φ[qb], in (0, T )× Ω,
w = 0 on (0, T )× ∂Ω,
(w(0), ∂tw(0)) = (0, 0).

(5.5)

One can then check that Y ab solves the control problem
�Y ab + qaY ab = f + a2

ωz, in (0, T )× Ω,

Y ab = 0 on (0, T )× ∂Ω,

(Y ab(0), ∂tY
ab(0)) = (0, 0),

(Y ab(T ), ∂tY
ab(T )) = (0, 0).

(5.6)
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where f is given by
f = (qb − qa)Y [qb] + a2

ωw. (5.7)

Multiplying the equation (5.6) by z solution of (5.4), we obtain

0 =

∫ T

0

∫
Ω

fz +

∫ T

0

∫
Ω

a2
ω|z|2. (5.8)

Thus, using the observability inequality (1.5) and the fact that for solutions ϕ of (1.2), the
quantities ‖(ϕ0, ϕ1)‖L2×H−1 and ‖ϕ‖C(L2)∩C1(H−1) are equivalent, we obtain

‖z‖C(L2)∩C1(H−1) ≤ C ‖f‖L2(L2) . (5.9)

We are thus reduced to estimate the source term f in (5.7): But on one hand,∥∥∥(qb − qa)Y [qb]
∥∥∥
L2(L2)

≤
∥∥∥qb − qa∥∥∥

Lp

∥∥∥Y [qb]
∥∥∥
L2(H1

0 )
≤ C

∥∥∥qb − qa∥∥∥
Lp
‖(y0, y1)‖H1

0×L2 , (5.10)

and on the other hand, using classical energy estimates,

‖w‖C(L2)∩C1(H−1) ≤ C
∥∥∥(qb − qa)Φ[qb]

∥∥∥
L1(H−1)

≤ C
∥∥∥qb − qa∥∥∥

Lp

∥∥∥Φ[qb]
∥∥∥
L1(L2)

≤ C
∥∥∥qb − qa∥∥∥

Lp
‖(y0, y1)‖H1

0×L2 . (5.11)

All together, these estimates yield

‖z‖C(L2)∩C1(H−1) ≤ C
∥∥∥qb − qa∥∥∥

Lp
‖(y0, y1)‖H1

0×L2 . (5.12)

With (5.11), we thus have∥∥∥Φab
∥∥∥
C(L2)∩C1(H−1)

=
∥∥∥Φ[qa]− Φ[qb]

∥∥∥
C(L2)∩C1(H−1)

≤ C
∥∥∥qb − qa∥∥∥

Lp
‖(y0, y1)‖H1

0×L2 , (5.13)

and, thanks to a straightforward energy estimate on (5.6),∥∥∥Y ab∥∥∥
C(H1

0 )∩C1(L2)
=
∥∥∥Y [qa]− Y [qb]

∥∥∥
C(H1

0 )∩C1(L2)
≤ C

∥∥∥qb − qa∥∥∥
Lp
‖(y0, y1)‖H1

0×L2 . (5.14)

Strategy. We first remark that yk = ηk(−∆)Y ab solves the control problem
�yk + qayk = f̃k + a2

ωηk(−∆)z, in (0, T )× Ω,
yk = 0 on (0, T )× ∂Ω,
(yk(0), ∂tyk(0)) = (0, 0),
(yk(T ), ∂tyk(T )) = (0, 0),

(5.15)

where f̃k is defined by

f̃k = [qa, ηk(−∆)]Y ab + ηk(−∆)((qb − qa)Y [qb]) + ηk(−∆)(a2
ωw) + [ηk(−∆), a2

ω]z. (5.16)

It is then natural to decompose ηk(−∆)z as ηk(−∆)z = zk + wk, where zk solves
�zk + qazk = 0, in (0, T )× Ω,
zk = 0, on (0, T )× ∂Ω,

(zk(0), ∂tzk(0)) = (ηk(−∆)(Φ0[qa]− Φ0[qb]), ηk(−∆)(Φ1[qa]− Φ1[qb])),
(5.17)
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and wk solves 
�wk + qawk = [qa, ηk(−∆)]z, in (0, T )× Ω,
wk = 0 on (0, T )× ∂Ω,
(wk(0), ∂twk(0)) = (0, 0).

(5.18)

This allows in particular to rewrite the first line of (5.15) as follows:

�yk + qayk = fk + a2
ωzk, in (0, T )× Ω, (5.19)

where

fk = [qa, ηk(−∆)]Y ab+ηk(−∆)((qb−qa)Y [qb])+ηk(−∆)(a2
ωw)+[ηk(−∆), a2

ω]z+a2
ωwk. (5.20)

We can then multiply equation (5.19) by zk: using that yk solves the control problem (5.15),
we obtain, similarly as in (5.8), that

0 =

∫ T

0

∫
Ω

fkzk +

∫ T

0

∫
Ω

a2
ω|zk|2.

Since zk solves the wave equation (5.17) without source term, we can then use the observability
inequality (1.5) to derive from this identity that

‖zk‖C(L2)∩C1(H−1) ≤ C ‖fk‖L2(L2) . (5.21)

The rest of the proof then consists in estimating fk in (5.20).

Estimating fk.
Estimating [qa, ηk(−∆)]Y ab: We have∥∥∥[qa, ηk(−∆)]Y ab

∥∥∥
L2(L2)

≤ ‖[qa, ηk(−∆)]‖L(H1
0 ,L

2)

∥∥∥Y ab∥∥∥
L2(H1

0 )

≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Lp
‖(y0, y1)‖H1

0×L2 ,

where we used (2.1) and (5.14).
Estimating ηk(−∆)((qb− qa)Y [qb]): The bilinear multiplication operator maps Lp(Ω)×H1

0 (Ω)
to L2(Ω) and W 1,p(Ω) × H1

0 (Ω) to H1
0 (Ω). Thus by interpolation, for s ∈ (0, 1), it maps

W s,p(Ω)×H1
0 (Ω) to Hs

0(Ω). Hence we get

∥∥∥ηk(−∆)(qb − qa)Y [qb]
∥∥∥
L2(L2)

≤ C2−ks/2
∥∥∥(qb − qa)Y [qb]

∥∥∥
L2(Hs0 )

≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p

∥∥∥Y [qb]
∥∥∥
L2(H1

0 )

≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 ,

where we used ‖ηk(−∆)‖L(Hs0 ,L
2) ≤ C2−ks/2 and the bound (5.2).

Estimating ηk(−∆)(a2
ωw): Improving estimate (5.11), we obtain

‖w‖C(Hs0 )∩C1(Hs−1) ≤ C
∥∥∥(qb − qa)Φ[qb]

∥∥∥
L1(Hs−1)

≤ C
∥∥∥qb − qa∥∥∥

Ws,p

∥∥∥Φ[qb]
∥∥∥
L1(L2)

≤ C
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 .
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Hence, using that ‖ηk(−∆)‖L(Hs0 ,L
2) ≤ C2−ks/2 and that the multiplication by a2

ω continuously
acts on Hs

0(Ω), we obtain∥∥ηk(−∆)(a2
ωw)

∥∥
L2(L2)

≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 .

Note that we also proved

‖ηk(−∆)w‖C(L2)∩C1(H−1) ≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 . (5.22)

Estimating [ηk(−∆), a2
ω]z: Here, we use estimates (5.12):∥∥[ηk(−∆), a2

ω]z
∥∥
L2(L2)

≤ C2−k/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 .

Estimating a2
ωwk: Using energy estimates for the solution wk of (5.18) and (2.2) we obtain

‖wk‖C(L2)∩C1(H−1) ≤ C ‖[q
a, ηk(−∆)]z‖L1(H−1)

≤ C2−ks/2 ‖z‖L1(L2) ≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 , (5.23)

where the last estimate follows from (5.12). Hence we get∥∥a2
ωwk

∥∥
L2(L2)

≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 .

Collecting all the above estimates, we obtain

‖fk‖L2(L2) ≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 . (5.24)

Conclusion. From (5.21), we get

‖zk‖C(L2)∩C1(H−1) ≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 .

As ηk(−∆)(Φ[qa]−Φ[qb]) = ηk(−∆)(z +w) = zk +wk + ηk(−∆)w, from estimates (5.22) and
(5.23), we derive∥∥∥ηk(−∆)(Φ[qa]− Φ[qb])

∥∥∥
C(L2)∩C1(H−1)

≤ C2−ks/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 . (5.25)

Of course, this yields (1.20).
To get (1.19), we write

ηk(−∆)(aωΦ[qa]− aωΦ[qb]) = aωηk(−∆)(Φ[qa]− Φ[qb]) + [ηk(−∆), aω](Φ[qa]− Φ[qb]).

We then obtain (1.19) from (5.25) and∥∥∥[ηk(−∆), aω](Φ[qa]− Φ[qb])
∥∥∥
L2(L2)

≤ C2−k/2
∥∥∥Φ[qa]− Φ[qb]

∥∥∥
L2(L2)

≤ C2−k/2
∥∥∥qb − qa∥∥∥

Ws,p
‖(y0, y1)‖H1

0×L2 ,

where the last estimate comes from (5.13). This concludes the proof of Theorem 1.4.

Remark 5.1. Since the proof of Theorem 1.4 closely follows the one of Theorem 1.3, Re-
marks 4.1 and 4.2 also apply in that case:

• Our proof does not allow to improve the rate of decay as k → ∞ in the estimates of
Theorem 1.4 by taking potentials lying in bounded sets of W s,p(Ω) for s > 1.

• Theorem 1.4 also holds for aω ∈W s,∞(Ω).
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6 Further comments
Several remarks are in order.

Integrability conditions on the potentials. In Theorems 1.3 and 1.4, one can replace, for
d ≥ 3 and s ∈ (0, 1], the spaces W s,p(Ω) with p ∈ (d,∞] by the interpolated spaces

W̃ s,d(Ω) = [Ld(Ω),W 2,d(Ω) ∩W 1,∞(Ω)]s/2, (6.1)

since Section 2 can easily be adapted to that case. Note that these spaces are a priori slightly
smaller than the classical SobolevW s,d(Ω). Also note that when s = 0, i.e. when the potentials
simply belong to Ld(Ω), the observability inequality is not known under the geometric control
condition, see Proposition 1.2.

Optimality of the rate of decay as k →∞ in the estimates of Theorems 1.3 and 1.4.
Theorems 1.3 and 1.4 state that the high-frequency components weakly depend on the errors
on the potential function. But the optimality of the rate of decay as k → ∞ in the estimates
(1.14) and (1.19)–(1.20) is completely open.

Potentials depending on time. As said in the introduction, when the potentials depend
on time, one basically needs the strength of Carleman estimates [11] to prove observability
properties, uniformly with respect to the L∞((0, T );Ld(Ω))-norm of the potentials, thus re-
quiring stronger geometric assumptions, namely the Gamma-conditions (1.21) recalled in the
introduction.

Except for that part, one easily checks that if we are working on potentials in balls of
L∞((0, T );W s,p(Ω)) for s ∈ [0, 1] and p ∈ (max{d, 2},∞] (or in balls of L∞((0, T ); W̃ s,d(Ω)),
see (6.1)), one can prove similar results as in Theorems 1.3 and 1.4 by replacing in their state-
ments the norms ‖q −Q‖Ws,p , respectively

∥∥qa − qb∥∥
Ws,p , by ‖q −Q‖L∞(Ws,p), respectively∥∥qa − qb∥∥

L∞(Ws,p)
.

The case of boundary observation. Our method does not apply in the context of boundary
observation/control. Indeed, in the above proofs, we have to estimate the commutator of
ηk(−∆) with the control operator, which in our case simply is the multiplication by a smooth
function aω. Whether this simply is a technical issue or not is an open problem.
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