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Abstract

We briefly present the difficulties arising when dealing with the control-
lability of the discrete wave equation, which are, roughly speaking, created
by high-frequency spurious waves which do not travel. It is by now well-
understood that such spurious waves can be dealt with by applying some
convenient filtering technique. However, the scale of frequency in which
we can guarantee that none of these non-traveling waves appears is still
unknown in general. Though, using Hautus tests, which read the con-
trollability of a given system in terms of resolvent estimates, we are able
to prove that these spurious waves do not appear before some frequency
scale. This document is based on the articles [12, 13, 14].

1 Introduction
LetX be a Hilbert space endowed with the norm ‖·‖X and let A : D(A)→ X

be a skew-adjoint operator with compact resolvent. Let us consider the following
abstract system:

ż(t) = Az(t), z(0) = z0. (1.1)

Here and henceforth, a dot (˙) denotes differentiation with respect to the time
t. The element z0 ∈ X is called the initial state, and z = z(t) is the state of
the system. Such systems are often used as models of vibrating systems (e.g.,
the wave equation), electromagnetic phenomena (Maxwell’s equations) or in
quantum mechanics (Schrödinger’s equation).

Assume that Y is another Hilbert space equipped with the norm ‖·‖Y . We
denote by L(X,Y ) the space of bounded linear operators from X to Y , en-
dowed with the classical operator norm. Let B ∈ L(D(A), Y ) be an observation
operator and define the output function

y(t) = Bz(t). (1.2)
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In order to give a sense to (1.2), we make the assumption that B is an admissible
observation operator in the following sense (see, e.g., [47]):

Definition 1.1. The operator B is an admissible observation operator for sys-
tem (1.1)–(1.2) if for every T > 0 there exists a constant KT > 0 such that∫ T

0

‖y(t)‖2Y dt ≤ KT ‖z0‖2X , ∀ z0 ∈ D(A). (1.3)

This implies in particular that for any z0 ∈ X, the observation y(t) = Bz(t)
lies in L2(0, T ;Y ).

Note that if B is bounded in X, i.e. if it can be extended such that B ∈
L(X,Y ), then B is obviously an admissible observation operator. However, in
applications, this is often not the case, and the admissibility condition is then
a consequence of a suitable “hidden regularity” property of the solutions of the
evolution equation (1.1), see e.g. [31].

In the following, we will always assume that the continuous model (1.1)–(1.2)
is admissible, so that the observation y(t) in (1.2) always belongs to L2(0, T ;Y ).

Our main interest here is to study the exact observability property for system
(1.1)–(1.2), which can be formulated as follows:

Definition 1.2. System (1.1)–(1.2) is exactly observable in time T if there
exists kT > 0 such that

kT ‖z0‖2X ≤
∫ T

0

‖y(t)‖2Y dt, ∀ z0 ∈ X. (1.4)

Moreover, system (1.1)–(1.2) is said to be exactly observable if it is exactly
observable in some time T > 0.

Note that these observability issues arise naturally when dealing with con-
trollability and stabilization properties of linear systems (see for instance the
textbook [31]). Indeed, controllability and observability are dual notions, and
therefore each statement concerning observability has its counterpart in control-
lability. In the sequel, we focus on the observability properties of (1.1)–(1.2).

There is an extensive literature providing observability results for wave, plate
and Schrödinger equations, among other models, and by various methods in-
cluding microlocal analysis [3, 4], multipliers techniques [29, 40], Carleman esti-
mates [25, 48], Ingham type inequalities [27, 20], etc. Our goal in this paper is
to develop a theory allowing to get observability results for space semidiscrete
systems as a direct consequence of those corresponding to the continuous ones,
thus avoiding technical developments in the discrete setting.

One of the interesting features of the approach we shall present here (devel-
oped in the articles [14, 13, 12]) is that it works in any dimension and in a very
general setting. To our knowledge, these were the first works which prove in a
systematic way observability properties for time and space semidiscrete systems
from the ones of the continuous setting.
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Let us briefly comment some related works. Similar problems have been
extensively studied in the last decade for various space semi-discretizations of
the 1d wave equation, see for instance the review article [51] and the references
therein. The numerical schemes on uniform meshes given by the finite difference
and finite element methods do not have uniform observability properties, what-
ever the time T is ([26]), thus yielding blow-up behaviors of the discrete controls.
This is due to high frequency waves which do not propagate, see [46, 33]. In
other words, these numerical schemes create some spurious high-frequency wave
solutions which are localized and cannot be controlled.

Actually, as observed in [31], the norm of the control map (which maps
initial data to be controlled to the corresponding control of minimal L2-norm)
coincides with the constant of observability 1/

√
kT in (1.4). This is why we shall

consider only uniform observability properties for the discrete schemes, where
uniform has to be understood as uniformly with respect to the discretization
parameters in both the time and spaces variables.

In this context, filtering techniques have been extensively developed. It has
been proved in [26, 50] that filtering the initial data removes these spurious
waves, and makes possible uniform observability properties to hold. Other ways
to filter these spurious waves exist, for instance using a wavelet filtering approach
[38] or bi-grids techniques [18, 39]. However, to the best of our knowledge,
these methods have been analyzed only for uniform grids in small dimensions
(namely in 1d or 2d). Also note that these results prove uniform observability
properties for larger classes of initial data than the ones we shall state here, but
in more particular cases. In particular, our results below depend on neither the
dimension nor the uniformity of the meshes.

Let us also mention that observability properties are equivalent to stabiliza-
tion properties (see [21]), when the observation operator is bounded. Therefore,
observability properties can be deduced from the literature in stabilization the-
ory. In particular, we refer to the works [45, 44, 37, 15], which prove uniform
stabilization results for damped space semidiscrete wave equations in 1d and 2d,
discretized on uniform meshes using finite difference approximation schemes, in
which a numerical viscosity term has been added. Again, these results are bet-
ter than the ones derived here, but apply in the more restrictive context of 1d
or 2d wave equations on uniform meshes. Similar results have also been proved
in [42], but using a non trivial spectral condition on A, which reduces the scope
of applications mainly to 1d equations.

To the best of our knowledge, there are very few paper dealing with nonuni-
form meshes. A first step in this direction can be found in the context of the
stabilization of the 1d wave equation in [42]: Indeed, stabilization properties are
equivalent (see [21]) to observability properties for the corresponding undamped
systems. The results in [42] can therefore be applied to 1d wave equations on
nonuniform meshes to derive uniform observability results at a scale 1/h (in the
sense given below). However, they strongly use a spectral gap condition on the
eigenvalues of the operator A, which does not hold for the wave operator in
dimension higher than one. In the following, we will explain how to get rid of
that additional assumption and consider more general observation operator B.
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Another result in this direction is presented in [10], in the context of the 1d
wave equation discretized using a mixed finite element method as in [2, 6]. In
[10], it is proved that observability properties for schemes derived from a mixed
finite element method hold uniformly within a large class of nonuniform meshes.

For time semidiscrete equations, very few results are available. In [36], the 1d
wave equation is considered in a fully discrete setting on uniform meshes, using
Ingham type inequalities and the explicit knowledge of the discrete eigenvalues,
which is therefore hard to generalize in a more general setting. In [49], a time-
discrete multiplier technique is developed and proved that time semidiscrete N -
dimensional equations are not uniformly observable if some filtering condition
is not added. However, the proof strongly uses the well-known space structure
of the continuous wave equation and then cannot be generalized easily to the
fully discrete case.

We shall also mention recent works on spectral characterizations of exact
observability for abstract conservative linear systems, which will be the basis of
our approach. We refer to [5, 34] for a very general approach of observability
properties for such conservative linear systems, which yields a necessary and
sufficient resolvent condition for exact observability to hold. Let us also mention
the articles [32, 41], which derived several spectral conditions for the exact
observability of wave type equations. In [41], a spectral characterization of the
exact observability property based on wave packets is also given. Our approach
is inspired in all these works.

The outline of this article is the following.
We shall first present how our approach applies to time discretization schemes

of (1.1)–(1.2). We will then explain how these spectral approaches apply in the
context of space semidiscrete schemes. Finally, we give some further comments.

2 Time semidiscrete schemes

2.1 The midpoint scheme
Let us first present a natural discretization of the continuous system (1.1).

For any ∆t > 0, we denote by zk and yk respectively the approximations of the
solution z and the output function y of system (1.1)–(1.2) at time tk = k∆t for
k ∈ Z. Consider the following implicit midpoint time discretization of system
(1.1): 

zk+1 − zk

∆t
= A

(
zk+1 + zk

2

)
, in X, k ∈ Z,

z0 given.
(2.1)

The output function of (2.1) is now given by

yk = Bzk, k ∈ Z. (2.2)

Note that (2.1)–(2.2) is a discrete version of (1.1)–(1.2).
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Taking into account that the spectrum of A is skew-adjoint, it is easy to
show that the energy

∥∥zk∥∥
X

is conserved in the discrete time variable k ∈ Z,
i.e.

∥∥zk∥∥
X

=
∥∥z0
∥∥
X
, similarly as for solutions of (1.1). Consequently the

scheme under consideration is stable and its convergence (in the classical sense
of numerical analysis) is guaranteed in an appropriate functional setting.

The uniform exact observability problem for system (2.1)–(2.2) is formulated
as follows:
To find a positive constant k̃T , independent of ∆t > 0, such that the solutions
zk of system (2.1) satisfy:

k̃T
∥∥z0
∥∥2

X
≤ ∆t

∑
k∆t∈(0,T )

∥∥Bzk∥∥2

Y
, (2.3)

for all initial data z0 in an appropriate class.
Clearly, (2.3) is a discrete version of (1.4).
In the sequel, we are interested in understanding under which assumptions

inequality (2.3) holds uniformly on ∆t > 0. One expects to do it so that, when
letting ∆t→ 0, one recovers the observability property of the continuous model.

It can be done by means of a spectral filtering mechanism. More precisely,
since A is skew-adjoint with compact resolvent, its spectrum is discrete and
σ(A) = {iµj : j ∈ Z}, where (µj)j∈Z is an increasing sequence of real num-
bers. Set (Ψj)j∈Z an orthonormal basis of eigenvectors of A associated to the
eigenvalues (iµj)j∈Z:

AΨj = iµjΨj . (2.4)

Moreover, we define the filtered class

C[A](s) = Span{Ψj : the corresponding iµj satisfies |µj | ≤ s}. (2.5)

We will prove that inequality (2.3) holds uniformly (with respect to ∆t > 0)
in the class C[A](δ/∆t) for any δ > 0 and for Tδ large enough, depending on the
filtering parameter δ.

Theorem 2.1 ([14]). Assume that the continuous system (1.1)–(1.2) is admis-
sible and exactly observable.

Then, for any δ > 0, there exist Tδ such that for any T > Tδ, there exists
two positive constants kT,δ,KT,δ > 0, independent of ∆t, such that for ∆t > 0
small enough, the solutions zk of (2.1) with initial data z0 ∈ C[A](δ/∆t) satisfy

kT,δ
∥∥z0
∥∥2

X
≤ ∆t

∑
k∆t∈(0,T )

∥∥Bzk∥∥2

Y
≤ KT,δ

∥∥z0
∥∥2

X
. (2.6)

Theorem 2.1 states uniform observability and admissibility properties within
the class C[A](δ/∆t). As one can check by using the counterexample in [49], one
cannot go in general beyond the scale 1/∆t: the observability estimate (2.6) is
false in any class C[A](1/f(∆t)) with f(∆t)/∆t→ 0 as ∆t→ 0.
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Sketch of the proof. We only focus on the proof of the observability estimate in
(2.6). The admissibility property can be proved similarly by using Theorem 2.2
in [13].

The proof of Theorem 2.1 is based on the following result derived in [5, 34]:

Theorem 2.2 ([5, 34]). Assume that system (1.1)–(1.2) is admissible.
Then system (1.1)–(1.2) is exactly observable if and only if there exist positive

constants m,M > 0 such that

M2 ‖(iωI −A)z‖2X +m2 ‖Bz‖2Y ≥ ‖z‖
2
X , ∀ω ∈ R, ∀z ∈ D(A). (2.7)

Besides, the proof is entirely constructive. In particular, the constants in
the observability estimate (1.4) can be made explicit: The observability estimate
(1.4) holds for any time T > T ∗, with

T ∗ = πM, kT =
2m2T

T 2 − π2M2
. (2.8)

Proof of Theorem 2.2. The complete proof can be found in [34]. Here, we are
only interested in proving that if the resolvent estimate (2.7) is satisfied, then
the observability property (1.4) holds. The proof presented below is the one in
[34].

Set z0 ∈ D(A), and let z(t) be the corresponding solution of (1.1). Set
w(t) = χ(t)z(t), where χ(t) is a cut-off function of time lying in H1(R) and
compactly supported. Then w solves w′ = Aw + χ′z, and its time Fourier
transform satisfies

(iω −A)ŵ(ω) = χ̂′z(ω).

In particular, plugging ŵ(ω) in (2.7) and integrating in the frequency variable
ω ∈ R, we obtain

M2

∫
R

∥∥∥χ̂′z(ω)
∥∥∥2

X
dω +m2

∫
R
‖Bŵ(ω)‖2Y dω ≥

∫
R
‖ŵ(ω)‖2X dω.

Using Parseval’s identity and the fact that ‖z(t)‖2X = ‖z0‖2X for solutions of
(1.1), this yields

‖z0‖2X
∫

R

(
|χ(t)|2 −M2|χ′(t)|2

)
dt ≤ m2

∫
R

|χ(t)|2 ‖Bz(t)‖2Y dt.

We then choose

χ(t) =

 sin
(
tπ

T

)
, for t ∈ (0, T ),

0, for t /∈ (0, T ).

Explicit computations then yields the observability estimate (1.2) with explicit
constants as in (2.8).
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Let us now explain how the proof of Theorem 2.1 works.
Assume that the continuous system (1.1)–(1.2) is admissible and exactly

observable. Then, according to Theorem 2.2, the operators (A,B) should satisfy
the resolvent estimate (2.7).

We then mimic the above proof (of Theorem 2.2) with time-discrete Fourier
transform instead of time-continuous ones. This makes appear some extra term
that can be handled thanks to the filtering condition. Indeed, in the filtered
space C[A](δ/∆t), we have the following property: for κ ∈ [0, 1],

‖Aκz‖X ≤
(
δ

∆t

)κ
‖z‖X , ∀z ∈ C[A]

(
δ

∆t

)
.

In particular, our proof is explicit and we can even prove an estimate on the
time of observability: If B ∈ L(D(Aκ), Y ) for some κ ∈ [0, 1), then the discrete
observability estimates (2.6) hold uniformly with respect to ∆t > 0 in any time
T > Tδ, with

Tδ = πM

(
1 +

δ2

4

)
. (2.9)

Note that this estimate is not the one obtained in [14], which is given for a
general observation operator B ∈ L(D(A), Y ). Estimate (2.9) has been derived
afterwards in [11]. �

2.2 General time-discretization schemes
In this section, we deal with more general time-discretization schemes of the

form
zk+1 = T∆tz

k, yk = Bzk (2.10)

We will show that, under some appropriate assumptions on the operator T∆t,
inequality (2.6) holds uniformly on ∆t for solutions of (2.10) when the initial
data are taken in the class C[A](δ/∆t).

More precisely, we assume that the discrete system (2.10) is conservative in
the sense that there exist real numbers µj,∆t such that

T∆tΨj = exp(iµj,∆t∆t)Ψj . (2.11)

Moreover, we assume that there is an explicit relation between µj,∆t and µj of
the following form:

µj,∆t =
1

∆t
h(µj∆t), (2.12)

where h : (−R,R) → [−π, π] is a smooth strictly increasing function, with
R ∈ (0,∞], i.e.

∀η ∈ (−R,R), |h(η)| ≤ π, and ∀δ < R, inf{h′(η), |η| ≤ δ} > 0. (2.13)

The parameter R corresponds to a frequency limit R/∆t imposed by the dis-
cretization scheme. Roughly speaking, the first part of (2.13) reflects the fact
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that one cannot measure frequencies higher than π/∆t in a mesh of size ∆t. The
second part is a non-degeneracy condition on the group velocity (see [46]) of so-
lutions of (2.10) which is necessary to guarantee the propagation of solutions
that is required for observability to hold.

We also assume
lim
η→0

h(η)
η

= 1. (2.14)

This guarantees the consistency of the time-discrete scheme with the continuous
model (1.1).

Before going further, let us remark that the midpoint scheme (2.1) is a
particular instance of such time-discretization and the corresponding function
h simply is

h(η) = 2 arctan
(η

2

)
. (2.15)

We also point out that several time-discretization schemes fit this abstract set-
ting, as for instance the fourth-order Gauss method (a Runge-Kutta discretiza-
tion which preserves the energy), see e.g. [19].

We have the following theorem:

Theorem 2.3 ([14]). Assume that the continuous system (1.1)–(1.2) is admis-
sible and exactly observable.

Under assumptions (2.11), (2.12), (2.13) and (2.14), for any δ ∈ (0, R),
there exists a time Tδ such that for all T > Tδ, there exist two positive constants
kT,δ,KT,δ > 0 such that for all ∆t > 0 small enough, any solution of (2.10)
with initial value z0 ∈ C[A](δ/∆t) satisfies

kT,δ
∥∥z0
∥∥2

X
≤ ∆t

∑
k∆t∈(0,T )

∥∥∥∥B(zk + zk+1

2

)∥∥∥∥2

Y

≤ KT,δ

∥∥z0
∥∥2

X
. (2.16)

Besides, if B ∈ L(D(Aκ), Y ) for some κ ∈ [0, 1), we have the following estimate
on Tδ:

Tδ ≤ πM
(

1 + tan2

(
h(δ)

2

))
sup
|η|≤δ

{cos2(h(η)/2)
h′(η)

}
. (2.17)

The proof of Theorem 2.3 follows the same lines of the one of Theorem
2.1, except that the estimates are slightly more technical. This illustrates the
robustness of these resolvent estimates based techniques.

Also note that

h′(η)
cos2(h(η)/2)

=
d

dη

(
2 tan

(
h(η)

2

))
,

thus explaining why this term does not appear in the case of the midpoint
scheme, see (2.15).
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2.3 Application to family of operators
Since all the above proofs are constructive, one easily checks that family of

systems of the form (1.1) that are uniformly observable can be discretized in
time so that the corresponding time-discrete systems are uniformly observable.

More precisely, for h > 0, let Xh be a Hilbert space endowed with the
norm ‖·‖h and let Ah : D(Ah) → Xh be a skew-adjoint operator with compact
resolvent. Consider then the systems

żh = Ahzh, zh(0) = z0h, (2.18)

observed by
yh(t) = Bhzh(t), (2.19)

for some operator Bh ∈ L(D(Ah), Yh).
Assume then that the systems (2.18)–(2.19) are admissible and observable

uniformly with respect to h > 0, and such that

sup
h

{
‖Bh‖L(D(Ah),Yh)

}
<∞.

Then they satisfy uniformly the resolvent estimate (2.7), that is: There exists
m,M > 0 such that for all h > 0,

M2 ‖(iωI −Ah)zh‖2h +m2 ‖Bhzh‖2Yh
≥ ‖zh‖2h , ∀ω ∈ R, ∀zh ∈ D(Ah). (2.20)

One can then follow the constructive proof of Theorem 2.1 to prove that, for
any δ > 0, the systems

zk+1
h − zkh

∆t
= Ah

(
zk+1
h + zkh

2

)
, in Xh, k ∈ Z,

z0 ∈ Xh given,
ykh = Bhz

k
h, (2.21)

are admissible and exactly observable uniformly with respect to h > 0 and
∆t > 0 within the class of filtered data C[Ah](δ/∆t).

Of course, in our mind, systems (2.18)–(2.19) refer to space semidiscrete
approximation schemes of conservative systems, but it can be any family of
systems depending on a parameter, as for instance in homogenization theory.

Also note that, when Xh is a finite dimensional vector space, Ah is bounded,
and under the CFL type condition sup(h,∆t)→(0,0){‖Ah‖L(Xh) ∆t} < ∞, the
filtered space C[Ah](δ/∆t) coincide with the whole space Xh by choosing δ > 0
large enough.

This argument allows then to reduce the study of the fully discrete approx-
imations of (1.1)–(1.2) to the study of its space semi-discretizations. We will
present in the next section some partial answers to that question.
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3 Space semidiscrete finite element approxima-
tions

In the following, we focus on two particular instances of (1.1)–(1.2), namely
Schrödinger type equations, which write{

iż = A0z, t ≥ 0,
z(0) = z0,

y(t) = B0z(t), t ≥ 0, (3.1)

and wave type equations{
ü+A0u = 0, t ≥ 0,
u(0) = u0, u̇(0) = u1.

y(t) = B0u̇(t), t ≥ 0, (3.2)

where, in both cases, A0 stands for a self adjoint positive definite operator on
an Hilbert space H. The operator B0 in (3.1) or in (3.2) is assumed to be in
L(D(A1/2

0 ), Y ).
These two cases indeed fit the abstract setting of (1.1)–(1.2), and the ob-

servability inequalities corresponding to (1.4) are, respectively,

kT ‖z0‖2X ≤
∫ T

0

‖B0z(t)‖2Y dt, (3.3)

kT

(∥∥∥A1/2
0 u0

∥∥∥2

X
+ ‖u1‖2X

)
≤
∫ T

0

‖B0u̇(t)‖2Y dt. (3.4)

Let us now describe the finite element method we use to discretize (3.1)–
(3.2).

Consider (Vh)h>0 a sequence of vector spaces of finite dimension nh that
embed into H using a linear morphism ρh : Vh → H. For each h > 0, the inner
product < ·, · >H in H induces a structure of Hilbert space for Vh endowed by
the scalar product < ·, · >h=< ρh·, ρh· >H .

We assume that for each h > 0, the vector space ρh(Vh) is a subspace of
D(A1/2

0 ). We thus define the linear operator A0h : Vh → Vh by

< A0hφh, ψh >h=< A
1/2
0 πhφh, A

1/2
0 πhψh >H , ∀φh, ψh ∈ Vh. (3.5)

The operator A0h defined in (3.5) obviously is self-adjoint and positive definite.
If we introduce the adjoint ρ∗h of ρh, definition (3.5) implies that

A0h = (A1/2
0 ρh)∗A1/2

0 ρh = ρ∗hA0ρh. (3.6)

This operator A0h corresponds to the finite element discretization of A0.
Systems (3.1) and (3.2) are then discretized into

iżh = A0hzh, zh(0) = z0h ∈ Vh, (3.7)

and
üh +A0huh = 0, uh(0) = u0h ∈ Vh, u̇h(0) = u1h ∈ Vh, (3.8)
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respectively.
In this context, for all h > 0, the observation operator naturally becomes

B0h = B0ρh, which obviously belongs to L(D(A1/2
0h ), Y ).

We now make precise the assumptions we have, usually, on ρh, and which
will be needed in our analysis. One easily checks that ρ∗hρh = IdVh

. Besides, the
embedding ρh describes the finite element approximation we have chosen. In
particular, the vector space ρh(Vh) approximates, in the sense given hereafter,
the space D(A1/2

0 ): There exist θ > 0 and C0 > 0, such that for all h > 0,
∥∥∥A1/2

0 (ρhρ∗h − I)φ
∥∥∥
H
≤ C0

∥∥∥A1/2
0 φ

∥∥∥
H
, ∀φ ∈ D(A1/2

0 ),∥∥∥A1/2
0 (ρhρ∗h − I)φ

∥∥∥
H
≤ C0h

θ ‖A0φ‖H , ∀φ ∈ D(A0).
(3.9)

Note that in many applications, and in particular for A0 the Laplace operator
on a bounded domain with Dirichlet boundary conditions, estimates (3.9) are
satisfied for θ = 1 when discretizing on regular meshes (see [43]).

We will not discuss convergence results for the numerical approximation
schemes presented here, which are classical under assumption (3.9), and which
can be found for instance in the textbook [43].

Let us mention that this question has already been investigated in [26] for
the 1d wave equation observed from the boundary on a 1d mesh. In [26], it
has been proved that, using a space semidiscrete approximation scheme for the
1d wave equation on uniform meshes, discrete versions of (3.4) do not hold
uniformly with respect to the discretization parameter h > 0, because of the
presence of spurious high frequency solutions that do not travel. However, if
the initial data are filtered in a suitable way, then observability inequalities hold
uniformly with respect to the space discretization parameter.

Therefore, it is natural to restrict ourselves to filtered initial data. For all
h > 0, since A0h is a self adjoint positive definite matrix, the spectrum of A0h

is given by a sequence of positive eigenvalues

0 < λh1 ≤ λh2 ≤ · · · ≤ λhnh
(3.10)

and normalized (in Vh) eigenvectors (Φhj )1≤j≤nh
. For any s, we can now define,

for each h > 0, the filtered space

Ch(s) = Span
{

Φhj such that the corresponding eigenvalue satisfies |λhj | ≤ s
}
.

We are now in position to state the following results:

Theorem 3.1 ([13, 12]). Let A0 be a self-adjoint positive definite operator with
compact resolvent, and B0 ∈ L(D(Aκ0 ), Y ), with κ < 1/2. Assume that the maps
(ρh)h>0 satisfy property (3.9).

Schrödinger type equations: Set

σ = θmin
{

2(1− 2κ),
2
3

}
. (3.11)

11



Assume that system (3.1) is admissible and exactly observable.
Then there exist ε > 0, a time T ∗ and two positive constants k∗,K∗ > 0

such that, for any h ∈ (0, 1), any solution of (3.7) with initial data

z0h ∈ Ch(ε/hσ) (3.12)

satisfies

k∗ ‖z0h‖2h ≤
∫ T∗

0

‖B0hzh(t)‖2Y dt ≤ K∗ ‖z0h‖2h . (3.13)

Wave type equations: Set

ς = θmin{2(1− 2κ), 1}. (3.14)

Assume that system (3.2) is admissible and exactly observable.
Then there exist ε > 0, a time T ∗ and two positive constants k∗,K∗ > 0 such

that, for any h ∈ (0, 1), any solution of (3.8) with initial data

(u0h, u1h) ∈ Ch(ε/hς)2 (3.15)

satisfies

k∗

(∥∥∥A1/2
0h u0h

∥∥∥2

h
+ ‖u1h‖2h

)
≤
∫ T∗

0

‖B0hu̇h(t)‖2Y dt

≤ K∗
(∥∥∥A1/2

0h u0h

∥∥∥2

h
+ ‖u1h‖2h

)
. (3.16)

Note in particular that this yields the same results as the one obtained in
[42] in a 1d framework and generalizes it to any dimension.

One of the interesting features of these results is that they hold in any
dimension and in a very general setting. To our knowledge, [13, 12] are the first
works which proved in such a systematic way admissibility and observability
properties for space semidiscrete approximation schemes as a consequence of
the ones of the continuous setting.

The next sections will explain how the proofs of these statements can be
derived using resolvent estimates. As before, we will only explain how the
uniform observability properties can be proved, since the admissibility ones
can be derived similarly (and are straightforward anyway when the observation
operator B0 is bounded on H).

3.1 The Schrödinger equation
Sketch of the proof (Schrödinger). Here, we focus on the case of Schrödinger
equations.

First, one easily checks that the Schrödinger equation (3.1) can be written
similarly as (1.1)–(1.2) by setting X = H, A = −iA0, B = B0. Therefore the

12



admissibility and exact observability property of the continuous system can be
read as a resolvent estimate: there exist positive constants m and M such that

‖z‖2H ≤M
2 ‖(A0 − ωI)z‖2H +m2 ‖B0z‖2Y , ∀z ∈ D(A0), ∀ω ∈ R. (3.17)

One wants to prove a uniform observability result for the semidiscrete schemes
(3.7) within the class of filtered data Ch(ε/hσ). According to Theorem 2.2, this
is equivalent to prove the existence of m∗,M∗ > 0 such that for all h > 0,

‖zh‖2h ≤M
2
∗ ‖(A0h − ωI)zh‖2h +m2

∗ ‖B0hzh‖2Y , ∀ω ∈ R, ∀zh ∈ Ch(ε/hσ).
(3.18)

Studying rapidly the dependence of this estimate of ωh, one easily checks that
the minimum of the right hand-side is achieved for ω ∈ [0, εh−σ], and thus we
only need to check (3.18) for ω ∈ [0, εh−σ].

We shall then explain how to prove (3.18) when (3.17) holds. This can be
done in the following way.

Fix zh ∈ Ch(ε/hσ) and ω ∈ [0, εh−σ].
Then take Zh ∈ D(A0) such that

A0Zh = ρhA0hzh. (3.19)

Such a Zh exists and is unique since A0 is self-adjoint positive definite. We shall
now plug Zh into (3.17) and measure the errors terms Zh− ρhzh in terms of zh.
Note that this is precisely the idea of the a posteriori error estimates developed,
among others, by Babuska, see [1].

Using duality arguments together with the properties (3.9), one can obtain
the following estimate: for any α ∈ [0, 1/2),

‖Aα0 (Zh − ρhzh)‖X ≤ C0h
θ(1−2α)

∥∥∥A1/2
0h zh

∥∥∥
h
. (3.20)

The rest of the proof follows from careful estimates on the error term and
the fact that ∥∥∥A1/2

0h zh

∥∥∥
h
≤
√
εh−σ/2 ‖zh‖h , ∀zh ∈ Ch(ε/hσ).

The complete proof can be found in [13]. �

3.2 The wave equation
Sketch of the proof (Wave). The idea used to deal with the Schrödinger equation
was to use resolvent characterizations of the observability to prove uniform
observability results for the discrete Schrödinger equations. To sum up, the
above proof has the following pattern:

Exact observability property Uniform observability
for the continuous system for discretizations

⇓ ⇑
Resolvent estimate =⇒ Resolvent estimates

for the continuous system for the discrete systems
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We should again follow the same pattern. This time, however, since the
correspondence between the wave equation (3.2) and its first order description
as in (1.1) is more intricate, it is convenient to use a characterization of the
observability property specially designed for second order systems:

Theorem 3.2 ([32, 41, 12]). Let A0 be a self-adjoint positive definite operator on
H with compact resolvent and B0 ∈ L(D(A1/2

0 ), Y ). Assume that system (3.2)
is admissible.

Then system (3.2) is exactly observable if and only if there exist positive
constants m and M such that

ω ‖u‖2H ≤M
2 ‖(A0 − ωI)u‖2H +m2ω ‖Bu‖2Y , ∀u ∈ D(A0), ∀ω ∈ R+. (3.21)

Besides, the proof is constructive. In particular, if the resolvent estimate
(3.21) holds, then the observability estimate (3.4) holds with constants depending
explicitly on m,M and the first eigenvalue of A0.

Note that, although Theorem 3.2 looks very similar to Theorem 2.2, its proof
is completely different and requires some more technical estimates, see [12] for
the complete proof.

Once Theorem 3.2 has been stated, the proof of the uniform observability
property for (3.8) can be done similarly as for the discrete Schrödinger equations
(3.7).

The complete proof can be found in [12]. �

3.3 From Schrödinger to the waves
When the Geometric Control Condition is satisfied, that is when the wave

equation is exactly observable (see [3, 4]), it is well-known that the corresponding
Schrödinger equation has better controllability properties, see e.g. [34]. In
particular, it can be controlled in any arbitrary small time T > 0.

Similarly, in the space semidiscrete setting, this is also the case:

Theorem 3.3 ([11]). Let A0 be a positive definite unbounded operator with
compact resolvent and B ∈ L(D(Aκ0 ), Y ), with κ < 1/2. Assume that the ap-
proximations (ρh)h>0 satisfy property (3.9). Set

ς = θmin{2(1− 2κ), 1}. (3.22)

Then there exists ε > 0 such that for all T ∗ > 0, there exist positive constants
k∗,K∗ > 0 such that, for any h > 0, any solution of (3.7) with initial data z0h

z0h ∈ Ch

( ε
hς

)
(3.23)

satisfies (3.13).

Note that Theorem 3.3 improves Theorem 3.1 (Schrödinger) in two ways:
the filtering scale is larger and the uniform observability property holds in any
arbitrary small time T > 0.

14



Sketch of the proof. The proof again mimics the one in [34] in the continuous case
to prove that the high-frequency solutions of the discrete Schrödinger equations,
or to be more precise, the solutions whose initial data are in Ch(εh−ς)∩Ch(K)⊥

for K large enough independent of h > 0, can be observable in any time T > 0.
However, the finite-dimensional argument in [34] used to derive that any

solution can be observable in any time T > 0 cannot be used, since this is not
constructive.

We shall rather use the argument developed in [20] to solve this problem. But
this argument strongly uses the fact that, since there are only a finite number
of eigenvalues in [0,K], there exists a positive constant γh such that

inf
λh

j ∈[0,K]
{λhj+1 − λhj } ≥ γh.

But there is no reason for γh to be bounded from below uniformly in h > 0 by
a strictly positive constant.

We therefore need to combine the explicit construction in [20] with the con-
vergence of the spectrum in the range [0,K]. The idea is the following: The
continuous eigenvalues λ0

j are well-separated by some γ > 0. Therefore, fix
α ∈ (0, γ/3), then, for h > 0 small enough, the spectrum of the operators A0h

satisfies:
{λhj } ∩ [0,K] ⊂ ∪λ0

j≤K [λ0
j − α, λ0

j + α].

Now, for any j such that λ0
j ≤ K, set

Xh
j = Span{Φhk such that λhk ∈ [λ0

j − α, λ0
j + α]}.

Because of the resolvent estimate, it is easy to check that, taking α > 0 small
enough, there exists a constant c > 0 such that

∀j such that λ0
j ≤ K, ∀zh ∈ Xh

j , c ‖zh‖h ≤ ‖Bzh‖Y .

The constructive argument in [20] (see also [28]) can then be adapted. The
complete proof can be found in [11]. �

Remark 3.4. According to Section 2.3, all these results can be combined with
Theorems 2.1 and 2.3 to obtain uniform observability properties for fully-discrete
approximation schemes of (3.1) and (3.2).

For instance, assuming that the continuous wave model (3.2) is admissible
and exactly observable, the fully discrete wave equation

uk+1
h + uk−1

h − 2ukh
(∆t)2

+A0h

(uk−1
h + 2ukh + uk+1

h

4

)
= 0, k ∈ Z,(u0

h + u1
h

2
,
u1
h − u0

h

∆t

)
= (u0h, u1h) ∈ V 2

h ,

(3.24)

observed through

ykh = B0h

(
uk+1
h − ukh

∆t

)
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is exactly observable, uniformly with respect to both discretization parameters
h > 0 and ∆t > 0 within the class(

Ch

( ε

hσ

)
∩ Ch

(
δ2

(∆t)2

))2

=
(

Ch

(
min

{
ε

hσ
,

δ2

(∆t)2

}))2

.

4 Further comments
1. In this article, we have explained how the resolvent characterizations of

the exact observability property yield new results for time semidiscrete, space
semidiscrete, and according to Section 2.3, fully discrete approximation schemes
of conservative systems. These methods are robust and apply to a wide range
of problems, including admissibility properties (that can be derived similarly,
see [14, 13, 12]), controllability properties ([13, 12]) and stabilization properties
([16, 17]).

2. A widely open question consists in finding the sharp filtering scale for
uniform observability property to hold for space semidiscrete approximation
schemes on nonuniform meshes. We think that the works [7, 8], which present
a study of the observability properties of the 1d wave equation in highly hetero-
geneous media, might give some insights to address this issue.

3. In this article, we assumed that the continuous systems are exactly ob-
servable. However, there are several important models of vibrations where the
energy is only weakly observable. That is the case for instance for networks of
vibrating strings [9] or when the Geometric Control Condition is not fulfilled
(see [3, 30]). It would be interesting to address the observability issues for
the space semi-discretizations of such systems. To our knowledge, this issue is
widely open.

4. The resolvent estimates are also a well-known tool for dealing with
Strichartz estimates, see [35]. Again, we think that this approach can yield
new results and uniform dispersive estimates for discrete Schrödinger and wave
equations, similarly as what has been done in [23, 22, 24].
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