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Abstract. In this article, we derive uniform admissibility and observability
properties for the finite element space semi-discretizations of ü + A0u = 0,
where A0 is an unbounded self-adjoint positive definite operator with compact
resolvent. To address this problem, we present a new spectral approach based
on several spectral criteria for admissibility and observability of such systems.
Our approach provides very general admissibility and observability results
for finite element approximation schemes of ü + A0u = 0, which stand in
any dimension and for any regular mesh (in the sense of finite elements).
Our results can be combined with previous works to derive admissibility and
observability properties for full discretizations of ü+A0u = 0. We also present
applications of our results to controllability and stabilization problems.

1. Introduction

Let X be a Hilbert space endowed with the norm ‖·‖X and let A0 : D(A0) ⊂ X →
X be a self-adjoint positive definite operator with compact resolvent.

Let us consider the following abstract system:

ü(t) +A0u(t) = 0, t ∈ R, u(0) = u0, u̇(0) = u1, (1.1)

where solutions are meant in the semigroup sense.
Here and henceforth, a dot (˙) denotes differentiation with respect to the time

t. In (1.1), the initial state (u0, u1) lies in X = D(A1/2
0 )×X.

Such systems are often used as models of vibrating systems (e.g., the wave
and beams equations).

Note that the energy

E(t) =
1
2

∥∥∥A1/2
0 u(t)

∥∥∥2

X
+

1
2
‖u̇(t)‖2X (1.2)
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of solutions of (1.1) is constant.
Assume that Y is another Hilbert space equipped with the norm ‖·‖Y . We de-

note by L(X,Y ) the space of bounded linear operators from X to Y , endowed with
the classical operator norm. Let B ∈ L(D(A1/2

0 ), Y ) be an observation operator
and define the output function

y(t) = Bu̇(t). (1.3)

We assume that the operator B ∈ L(D(A1/2
0 ), Y ) is admissible for system

(1.1) in the following sense (see e.g. [41]):

Definition 1.1. System (1.1)-(1.3) is admissible if for every T > 0 there exists
a constant KT > 0 such that any solution of (1.1) with initial data (u0, u1) ∈
D(A0)×D(A1/2

0 ) satisfies:∫ T

0

‖Bu̇(t)‖2Y dt ≤ KT

(∥∥∥A1/2
0 u0

∥∥∥2

X
+ ‖u1‖2X

)
. (1.4)

This condition guarantees that the output function in (1.3) is well-defined as
a function of L2(0, T ;Y ) for any solution of (1.1) in the energy space.

Note that if B is bounded on X, i.e. if it can be extended in such a way that
B ∈ L(X,Y ), then B is obviously an admissible observation operator, and KT can
be chosen as KT = T ‖B‖2L(X,Y ). However, in applications, this is often not the
case, and the admissibility condition is then a consequence of a suitable “hidden
regularity” property of the solutions of the evolution equation (1.1).

The exact observability property for system (1.1)-(1.3) can be formulated as
follows:

Definition 1.2. System (1.1)-(1.3) is exactly observable in time T if there exists
kT > 0 such that any solution of (1.1) with initial data (u0, u1) ∈ D(A0)×D(A1/2

0 )
satisfies:

kT

(∥∥∥A1/2
0 u0

∥∥∥2

X
+ ‖u1‖2X

)
≤
∫ T

0

‖Bu̇(t)‖2Y dt. (1.5)

Moreover, system (1.1)-(1.3) is said to be exactly observable if it is exactly observ-
able in some time T > 0.

Note that observability and admissibility issues arise naturally when dealing
with controllability and stabilization properties of linear systems (see for instance
the textbook [25]). These links will be clarified later in Sections 6 and 7.

There is an extensive literature providing observability results for wave and
plate equations, among other models, and by various methods including microlocal
analysis [2, 3], multipliers techniques [23, 33] and Carleman estimates [20, 43], etc.
Our goal in this paper is to develop a theory allowing to get observability results
for space semi-discrete systems as a direct consequence of those corresponding to
the continuous ones, thus avoiding technical developments in the discrete setting.

One of the interesting features of the approach we will develop here is that it
works in any dimension and in a very general setting. To our knowledge, this is the
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first work (namely with the companion paper [10]) which proves in a systematic
way observability properties for space semi-discrete systems from the ones of the
continuous setting.

Let us now introduce the finite element method for (1.1).
Let (Vh)h>0 be a sequence of vector spaces of finite dimension nh which are

embedded into X via a linear injective map πh : Vh → X. For each h ∈ (0, 1), the
inner product < ·, · >X in X induces a structure of Hilbert space for Vh endowed
by the scalar product < ·, · >h=< πh·, πh· >X .

We assume that for each h > 0, the vector space πh(Vh) is a subspace of
D(A1/2

0 ). We thus define the linear operator A0h : Vh → Vh by

< A0hφh, ψh >h=< A
1/2
0 πhφh, A

1/2
0 πhψh >X , ∀(φh, ψh) ∈ V 2

h . (1.6)

The operator A0h defined in (1.6) obviously is self-adjoint and positive definite. If
we introduce the adjoint π∗h of πh, definition (1.6) implies that

A0h = π∗hA0πh. (1.7)

This operator A0h corresponds to the finite element discretization of the
operator A0 (see [36]). We thus consider the following space semi-discretizations
for (1.1):

üh +A0huh = 0, t ≥ 0, uh(0) = u0h ∈ Vh, u̇h(0) = u1h ∈ Vh. (1.8)

In this context, for all h > 0, the observation operator naturally becomes

yh(t) = Bhu̇h(t) = Bπhu̇h(t). (1.9)

Note that, since B ∈ L(D(A1/2
0 ), Y ), this definition always makes sense since

πh(Vh) ⊂ D(A1/2
0 ).

We now make precise the assumptions we have, usually, on πh, and which
will be needed in our analysis. One easily checks that π∗hπh = IdVh . Besides,
the embedding πh describes the finite element approximation we have chosen. In
particular, the vector space πh(Vh) approximates, in the sense given hereafter, the
space D(A1/2

0 ): There exist θ > 0 and C0 > 0, such that for all h > 0,
∥∥∥A1/2

0 (πhπ∗h − I)φ
∥∥∥
X
≤ C0

∥∥∥A1/2
0 φ

∥∥∥
X
, ∀φ ∈ D(A1/2

0 ),∥∥∥A1/2
0 (πhπ∗h − I)φ

∥∥∥
X
≤ C0h

θ ‖A0φ‖X , ∀φ ∈ D(A0).
(1.10)

Note that in many applications, and in particular for A0 the Laplace operator on a
bounded domain with Dirichlet boundary conditions, estimates (1.10) are satisfied
for θ = 1 when discretizing on regular meshes (see [36] and Section 4).

We will not discuss convergence results for the numerical approximation
schemes presented here, which are classical under assumption (1.10), and which
can be found for instance in the textbook [36].

In the sequel, our goal is to obtain uniform admissibility and observability
properties for (1.8)-(1.9) similar to (1.4) and (1.5) respectively.
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Let us mention that similar questions have already been investigated in [21]
for the 1d wave equation observed from the boundary on a 1d mesh. In [21], it
has been proved that, for the space semi-discrete schemes derived from a finite el-
ement method for the 1d wave equation on uniform meshes (which is a particular
instance of (1.1)), observability properties do not hold uniformly with respect to
the discretization parameter, because of the presence of spurious high frequency
solutions which do not travel. However, if the initial data are filtered in a suit-
able way, then observability inequalities hold uniformly with respect to the space
discretization parameter. Actually, as pointed out by Otared Kavian in [45], it
may even happen that unique continuation properties do not hold anymore in the
discrete setting due to the existence of localized high-frequency solutions.

Therefore, it is natural to restrict ourselves to classes of suitable filtered
initial data. For all h > 0, since A0h is a self-adjoint positive definite matrix, the
spectrum of A0h is given by a sequence of positive eigenvalues

0 < λh1 ≤ λh2 ≤ · · · ≤ λhnh , (1.11)

and normalized (in Vh) eigenvectors (Φhj )1≤j≤nh . For any s > 0, we can now define,
for each h > 0, the filtered space

Ch(s) = span
{

Φhj such that the corresponding eigenvalue satisfies |λhj | ≤ s
}
.

We are now in position to state the main results of this article:

Theorem 1.3. Let A0 be a self-adjoint positive definite operator with compact resol-
vent and B ∈ L(D(Aκ0 ), Y ), with κ < 1/2. Assume that the maps (πh)h>0 satisfy
property (1.10). Set

σ = θmin{2(1− 2κ), 1}. (1.12)

Admissibility: Assume that system (1.1)-(1.3) is admissible.
Then, for any η > 0 and T > 0, there exists a positive constant KT,η such

that, for any h ∈ (0, 1), any solution of (1.8) with initial data

(u0h, u1h) ∈ Ch(η/hσ)2 (1.13)

satisfies ∫ T

0

‖Bhu̇h(t)‖2Y dt ≤ KT,η

(∥∥∥A1/2
0h u0h

∥∥∥2

h
+ ‖u1h‖2h

)
. (1.14)

Observability: Assume that system (1.1)-(1.3) is admissible and exactly observable.
Then there exist ε > 0, a time T ∗ and a positive constant k∗ > 0 such that,

for any h ∈ (0, 1), any solution of (1.8) with initial data

(u0h, u1h) ∈ Ch(ε/hσ)2 (1.15)

satisfies

k∗

(∥∥∥A1/2
0h u0h

∥∥∥2

h
+ ‖u1h‖2h

)
≤
∫ T∗

0

‖Bhu̇h(t)‖2Y dt. (1.16)
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These two results are based on new spectral characterizations of admissibility
and exact observability for (1.1)-(1.3).

To characterize the admissibility property, we use the results in [12, 10] to
obtain a characterization based on a resolvent estimate.

Our characterization of the exact observability property is deduced from the
resolvent estimates in [26, 34, 40] and the wave packet characterization obtained
in [34] and made more precise in [40]. However, our approach requires explicit
estimates, which, to our knowledge, cannot be found in the literature. We thus
propose a new proof of the wave packet spectral characterization in [34], which
yields quantitative estimates.

The main idea, then, consists in proving uniform (in h) resolvent estimates
for the operators A0h and Bh, in order to recover uniform (in h) admissibility and
observability estimates. This idea is completely natural since the operators A0h

and Bh correspond to discrete versions of A0 and B, respectively.

Theorem 1.3 has several important applications. As a straightforward corol-
lary of the results in [12], one can derive observability properties for general fully
discrete approximation schemes based on (1.8). Precise statements will be given
in Section 5.

Besides, it also has relevant applications in control theory. Indeed, it implies
that the Hilbert Uniqueness Method (see [25]) can be adapted in the discrete
setting to provide efficient algorithms to compute approximations of exact controls
for the continuous systems. This will be clarified in Section 6.

In Section 7, we will also present consequences of Theorem 1.3 to stabilization
issues for space semi-discrete damped models. These will be deduced from [15],
which addressed this problem in a very general setting which includes our models.

In Section 8, we finally investigate observability properties for space semi-
discretizations of the wave equation (1.1) observed through y(t) = Bu(t) instead
of (1.3), for which we can adapt the method we will develop to prove Theorem
1.3.

Let us briefly comment some related works. Similar problems have been ex-
tensively studied in the last decade for various space semi-discretizations of the 1d
wave equation, see for instance the review article [45] and the references therein.
The numerical schemes on uniform meshes provided by finite difference and finite
element methods do not have uniform observability properties, whatever the time
T is ([21]). This is due to high frequency waves which do not propagate, see [39, 27].
In other words, these numerical schemes create some spurious high-frequency wave
solutions which are localized.

In this context, filtering techniques have been extensively developed. It has
been proved in [21, 44] that filtering the initial data removes these spurious waves,
and makes possible uniform observability properties to hold. Other ways to filter
these spurious waves exist, for instance using a wavelet filtering approach [31] or
bi-grids techniques [16, 32]. However, to the best of our knowledge, these methods
have been analyzed only for uniform grids in small dimensions (namely in 1d or
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2d). Also note that these results prove uniform observability properties for larger
classes of initial data than the ones stated here, but in more particular cases. In
particular, Theorem 1.3 depends on neither the dimension nor the uniformity of
the meshes.

Let us also mention that observability properties are equivalent to stabiliza-
tion properties (see [19]), when the observation operator is bounded. Therefore,
observability properties can be deduced from the literature in stabilization the-
ory. In particular, we refer to the works [38, 37, 30, 14], which prove uniform
stabilization results for damped space semi-discrete wave equations in 1d and 2d,
discretized on uniform meshes using finite difference approximation schemes, in
which a numerical viscosity term has been added. Again, these results are better
than the ones derived here, but apply in the more restrictive context of 1d or
2d wave equations on uniform meshes. Similar results have also been proved in
[35], but using a non trivial spectral condition on A0, which reduces the scope of
applications mainly to 1d equations.

To the best of our knowledge, there are very few paper dealing with nonuni-
form meshes. A first step in this direction can be found in the context of the
stabilization of the 1d wave equation in [35]: Indeed, stabilization properties are
equivalent (see [19]) to observability properties for the corresponding undamped
systems. The results in [35] can therefore be applied to 1d wave equations on
nonuniform meshes to derive uniform observability results within the class Ch(ε/hθ)
for ε > 0 small enough. However, they strongly use a spectral gap condition on
the eigenvalues of the operator A0, which does not hold for the wave operator
in dimension higher than one. In the following, we will get rid of that additional
assumption and consider more general observation operator B.

Another result in this direction is presented in [9], in the context of the 1d
wave equation discretized using a mixed finite element method as in [1, 5]. In [9],
it is proved that observability properties for schemes derived from a mixed finite
element method hold uniformly within a large class of nonuniform meshes.

Also remark that observability and admissibility properties have been de-
rived recently in [10] for Schrödinger type equations discretized using finite ele-
ment methods. The results in [10] are strongly based on spectral characterizations
of admissibility and observability properties for abstract systems. Actually, the
present work follows the investigation in [10]. The main difference is that there
is no available spectral characterization of the exact observability property which
gives an explicit proof of the observability inequality, with in particular explicit
dependence of the constants. This point is needed when considering, as in our
setting, family of operators. This then requires to design new spectral characteri-
zations of the admissibility and exact observability properties adapted to deal with
systems (1.1)-(1.3).

We shall also mention recent works on spectral characterizations of exact
observability for abstract conservative linear systems. In that context, a conserva-
tive linear system simply corresponds to a system of the form ż = Az, A being a
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skew-adjoint operator. We refer to [4, 28] for a very general approach of observ-
ability properties for such conservative linear systems, which yields a necessary
and sufficient resolvent condition for exact observability to hold. Let us also men-
tion the articles [26, 34], which derived several spectral conditions for the exact
observability of wave type equations. In [34], a spectral characterization of the
exact observability property based on wave packets is also given. Our approach is
inspired in all these works.

We also mention the recent article [12], which proved admissibility and ob-
servability estimates for general time semi-discrete conservative linear systems. In
[12], a very general approach is given, which allows to deal with a large class of
time discrete approximation schemes. This approach is based, as here, on a spec-
tral characterization of exact observability for conservative linear systems (namely
the one in [4, 28]). Later on in [15] (see also [13]), the stabilization properties of
time discrete approximation schemes of damped systems were studied. In partic-
ular, [15] introduces time discrete schemes which are guaranteed to enjoy uniform
(in the time discretization parameter) stabilization properties.

This article is organized as follows:
In Section 2, we present several spectral conditions for admissibility and

exact observability properties of abstract systems (1.1)-(1.3). In Section 3, we
prove Theorem 1.3. In Section 4, we give some precise examples of applications.
In Section 5, we consider admissibility and exact observability properties for fully
discrete approximation schemes of (1.8). In Section 6, we present applications of
Theorem 1.3 to controllability issues. In Section 7, we also present applications to
stabilization theory. In Section 8, we present similar results for the wave equation
(1.1) observed through y(t) = Bu(t) instead of (1.3). We finally present some
further comments in Section 9.

2. Spectral methods

This section recalls and presents various spectral characterizations of the admissi-
bility and exact observability properties for abstract systems (1.1)-(1.3). Here, we
are not dealing with the discrete approximation schemes (1.8).

To state our results properly, we introduce some notations.
When dealing with the abstract system (1.1), it is convenient to introduce

the spectrum of the operator A0. Since A0 is self-adjoint, positive definite and with
compact resolvent, its spectrum is given by a sequence of positive eigenvalues

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → ∞, (2.1)

and normalized (in X) eigenvectors (Φj)j∈N∗ .
Since some of the results below extend to a larger class of systems than

(1.1)-(1.3), we also introduce the following abstract system{
ż = Az, t ≥ 0,
z(0) = z0 ∈ X,

y(t) = Cz(t), (2.2)
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where A : D(A) ⊂ X → X is an unbounded skew-adjoint operator with compact
resolvent and C ∈ L(D(A), Y ). In particular, the spectrum of A is given by a
sequence (iµj)j , where the constants µj are real and |µj | → ∞ when j →∞, and
the corresponding eigenvectors (Ψj) (normalized in X) constitute an orthonormal
basis of X. Note that systems of the form (1.1)-(1.3) indeed are particular instances
of (2.2).

This section is organized as follows.
First, we present spectral characterizations for the admissibility properties of

systems (2.2) and (1.1)-(1.3), based on the results in [10, 12], which we will recall.
Then we present spectral characterizations for the exact observability properties
of systems (2.2) and (1.1)-(1.3), based on the articles [34, 26].

2.1. Characterizations of admissibility

Note that for (2.2), the admissibility inequality consists in the existence, for all
T > 0, of a positive constant KT such that any solution z of (2.2) with initial data
z0 ∈ D(A) satisfies ∫ T

0

‖Cz(t)‖2Y dt ≤ KT ‖z0‖2X . (2.3)

2.1.1. Resolvent characterization. The following result was proved in [10, 12]:

Theorem 2.1. Let A be a skew-adjoint operator on X with compact resolvent and
C be in L(D(A), Y ). The following statements are equivalent:

1. System (2.2) is admissible.
2. There exist r > 0 and D > 0 such that

∀µ ∈ R, ∀z =
∑

l∈Jr(µ)

clΨl, ‖Cz‖Y ≤ D ‖z‖X , (2.4)

where

Jr(µ) = {l ∈ N, such that |µl − µ| ≤ r}. (2.5)

Besides, if (2.4) holds, then system (2.2) is admissible, and the constant KT in
(2.3) can be chosen as follows:

KT = Kπ/2r

⌈2rT
π

⌉
, with Kπ/2r =

3π4D

4r
. (2.6)

3. There exist positive constants m and M such that

‖Cz‖2Y ≤M
2 ‖(A− iωI)z‖2X +m2 ‖z‖2X , ∀z ∈ D(A),∀ω ∈ R. (2.7)

The proof of Theorem 2.1 in [10] is based on the previous work [12] which
proves a wave packet characterization for the admissibility of systems (2.2).
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2.1.2. Applications to Wave type equations. We now consider the abstract setting
(1.1)-(1.3), which is a particular instance of (2.2) with X = D(A1/2

0 )×X, and

A =
(

0 Id
−A0 0

)
, C = ( 0 , B). (2.8)

In particular, the domain of A simply is D(A0) × D(A1/2
0 ) and the conditions

C ∈ L(D(A), Y ) and B ∈ L(D(A1/2
0 ), Y ) are equivalent.

Theorem 2.2. Let A0 be a self-adjoint positive definite operator on X with compact
resolvent and B be in L(D(A1/2

0 ), Y ). The following statements are equivalent:
1. System (1.1)-(1.3) is admissible in the sense of (1.4).
2. There exist positive constants m and M such that:

ω ‖Bφ‖2Y ≤M
2 ‖(A0 − ωI)φ‖2X +m2ω ‖φ‖2X , ∀φ ∈ D(A0),∀ω ∈ R+, (2.9)

or, equivalently,

ω ‖Bφ‖2Y ≤M
2 ‖(A0 − ωI)φ‖2X +m2ω ‖φ‖2X , ∀φ ∈ D(A0),∀ω ∈ I(A0), (2.10)

where I(A0) denotes the convex hull of the spectrum of A0, denoted by Λ(A0).
Besides, if (2.10) (or (2.9)) holds, then system (1.1)-(1.3) is admissible, and

the constant KT in (1.4) can be chosen as follows:

KT = Kπ/2

⌈2T
π

⌉
, with Kπ/2 =

3π4

4
√

2

√
9M2 +m2. (2.11)

3. There exist positive constants α and β such that∥∥∥A1/2
0 φ

∥∥∥2

X
+ α2 ‖Bφ‖2Y ≤ ‖φ‖X ‖A0φ‖X + β2 ‖φ‖2Y , ∀φ ∈ D(A0). (2.12)

Besides, if (2.12) holds, then system (1.1)-(1.3) is admissible, and the constant
KT in (1.4) can be chosen as follows:

KT = Kπ/2

⌈2T
π

⌉
, with Kπ/2 =

3π4

8α

√
9 + 2β2. (2.13)

The remark that estimates (2.10) and (2.9) are equivalent is due to Luc Miller
[29].

Proof. Let us first prove that statements 1 and 2 are equivalent.
Assume that system (1.1)-(1.3) is admissible. Then, from Theorem 2.1, there

exist positive constants m̃ and M̃ such that (2.7) holds:

‖Bv‖2Y ≤ M̃
2
(∥∥∥A1/2

0

(
v − iω̃u

)∥∥∥2

X
+‖A0u+ iω̃v‖2X

)
+m̃2

(∥∥∥A1/2
0 u

∥∥∥2

X
+‖v‖2X

)
,

∀ω̃ ∈ R, ∀(u, v) ∈ D(A0)×D(A1/2
0 ).

Taking φ ∈ D(A0), setting u = φ and v = iω̃φ in this last expression, we obtain

ω̃2 ‖Bφ‖2Y ≤ M̃
2
∥∥(A0 − ω̃2I)φ

∥∥2

X
+ m̃2

(
ω̃2 ‖φ‖2X +

∥∥∥A1/2
0 φ

∥∥∥2

X

)
. (2.14)
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Now, we shall get rid of the last term, using interpolation properties:∥∥∥A1/2
0 φ

∥∥∥2

X
≤ ‖φ‖X ‖A0φ‖X ≤

1
4ω̃2
‖A0φ‖2X + ω̃2 ‖φ‖2X .

But

‖A0φ‖2X ≤
(∥∥(A0 − ω̃2I)φ

∥∥
X

+
∥∥ω̃2φ

∥∥
X

)2 ≤ 2
∥∥(A0 − ω̃2I)φ

∥∥2

X
+ 2ω̃4 ‖φ‖2X .

This yields ∥∥∥A1/2
0 φ

∥∥∥2

X
≤ 1

2ω̃2

∥∥(A0 − ω̃2I)φ
∥∥2

X
+

3
2
ω̃2 ‖φ‖2X .

Setting ω = ω̃2, we obtain (2.10) by setting

M2 = M̃2 +
m̃2

2λ1
, m2 =

5
2
m̃2.

We now show that the a priori weaker condition (2.10) actually is equivalent to
(2.9). Fix φ ∈ D(A0) and expand it as φ =

∑
ajΦj . We then study on R∗+ the

function

ω 7→ 1
ω
‖(A0 − ωI)φ‖2X =

1
ω

∑
j

|aj |2(λj − ω)2. (2.15)

It is easy to check that this function has only one critical point ωφ ∈ R∗+, which is
a minimum and satisfies:

ω2
φ

∑
j

|aj |2 =
∑
j

|aj |2λ2
j .

Since this obviously implies that for all φ ∈ D(A0), ωφ ∈ I(A0), then for all
φ ∈ D(A0) and ω ∈ R∗+,

1
ω
‖(A0 − ωI)φ‖2X ≥ inf

ω∈I(A0)

{
1
ω
‖(A0 − ωI)φ‖2X

}
.

Then, (2.10) implies (2.9) for all φ ∈ D(A0) and ω ∈ R∗+. Since (2.9) obviously
holds for ω = 0, the equivalence between (2.10) and (2.9) is proved.

To prove that (2.9) implies the admissibility of (1.1)-(1.3), we use the wave
packet criterion (2.4). Before going into the proof, let us recall that the spectrum
(iµj ,Ψj)j∈Z∗ of A can be deduced from the spectrum (λj ,Φj)j∈N∗ of A0 as follows:

µ±j = ±
√
λj , j ∈ N∗, Ψ±j =

1√
2

 ±1
i
√
λj

Φj

Φj

 , j ∈ N∗. (2.16)

Now, let µ be a real number, take r = 1 and consider a wave packet

z =
∑

l∈J1(µ)

clΨl =
(
z1
z2

)
. (2.17)
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For |µ| ≥ 1, applying (2.10) to z2 for ω = µ2, we get

‖Cz‖2Y = ‖Bz2‖2Y ≤
M2

µ2

∥∥(A0 − µ2I)z2
∥∥2

X
+m2 ‖z2‖2X .

But, using the explicit expansion of z2, one easily checks that∥∥(A0 − µ2I)z2
∥∥2

X
=

1
2

∑
|µj−µ|≤1

|µj + µ|2|µj − µ|2c2j

≤ 2(|µ|+ 1)2 ‖z2‖2X ≤ 8|µ|2 ‖z2‖2X .

Using ‖z‖2X = 2 ‖z2‖2X , we then obtain

‖Cz‖2Y ≤
(

4M2 +
m2

2

)
‖z‖2X . (2.18)

We now need to prove a similar estimate for z as in (2.17) with |µ| < 1. In
this case, we apply (2.10) for ω = 1, and as before, we obtain

‖Cz‖2Y ≤M
2 ‖(A0 − I)z2‖2X +m2 ‖z2‖2X ≤

(9M2 +m2

2

)
‖z‖2X , (2.19)

where we used that for z as in (2.17), ‖z‖2X = 2 ‖z2‖2X and, when |µ| < 1,

‖(A0 − I)z2‖2X ≤ 9 ‖z2‖2X .

Combining (2.18) and (2.19), we get (2.4) for any wave packet z with r = 1
and

D =

√
9M2 +m2

2
.

The estimate (2.11) then follows from (2.6).

We now prove that statements 2 and 3 are equivalent. As in [10], the idea
consists in noticing that (2.9) is equivalent to the non-negativity on R+ of the
quadratic form

ω2 ‖φ‖2X − 2ω
(∥∥∥A1/2

0 φ
∥∥∥2

X
+

1
2M2

‖Bφ‖2Y −
m2

2M2
‖φ‖2X

)
+ ‖A0φ‖2X ,

which is equivalent to (as one can easily check by studying the positivity of the
quadratic form x 7→ ax2 − 2bx+ c on R+ for a > 0 and c > 0):∥∥∥A1/2

0 φ
∥∥∥2

X
+

1
2M2

‖Bφ‖2Y −
m2

2M2
‖φ‖2X ≤ ‖φ‖X ‖A0φ‖X ,

or, equivalently, (2.12) with α = 1/(
√

2M) and β = m/(
√

2M). Conversely, if
(2.12) holds, then we can take M = 1/(

√
2α) and m = β/α in (2.9), and this

completes the proof of Theorem 2.2. �
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2.2. Characterizations of observability

We first recall the following criterion for the observability of (1.1)-(1.3):

Theorem 2.3 ([34], see also [26]). Let A0 be a self-adjoint positive definite operator
on X with compact resolvent and B ∈ L(D(A1/2

0 ), Y ). Assume that system (1.1)-
(1.3) is admissible in the sense of (1.4).

Then system (1.1)-(1.3) is exactly observable if and only if there exist positive
constants m and M such that

ω ‖u‖2X ≤M
2 ‖(A0 − ωI)u‖2X +m2ω ‖Bu‖2Y , ∀u ∈ D(A0), ∀ω ∈ R+. (2.20)

Note that Theorem 2.3 does not any provide precise estimates on the con-
stants in (1.5). This is due to the proof of this theorem, based on Theorem 2.4
below.

Before stating Theorem 2.4, note that for (2.2), the exact observability prop-
erty consists in the existence of a time T and a positive constant kT > 0 such that
any solution of (2.2) with initial data z0 ∈ D(A) satisfies

kT ‖z0‖2X ≤
∫ T

0

‖Cz(t)‖2Y dt. (2.21)

Theorem 2.4 ([34]). Let A be a skew-adjoint operator on X with compact resolvent,
and C ∈ L(D(A), Y ). Assume that system (2.2) is admissible in the sense of (2.3).

Then system (2.2) is exactly observable if and only if there exist ρ > 0 and
d > 0 such that

∀µ ∈ R, ∀z =
∑

l∈Jρ(µ)

clΨl, d ‖z‖X ≤ ‖Cz‖Y , (2.22)

where Jρ(µ) is as in (2.5).

Here again, no estimates on the constants entering in (2.21) are given. Though,
a non-explicit constant is given in [40], but which makes the use of Theorems 2.3
and 2.4 delicate for the applications we have in mind, which involve sequences of
operators.

Therefore, we present below a new proof of the fact that (2.22) implies the
exact observability of system (2.2), which yields explicit estimates in Theorem 2.3
as well. These estimates are crucial in our setting.

A refined version of Theorem 2.4.

Theorem 2.5. Let A be a skew-adjoint operator on X with compact resolvent, and
C ∈ L(D(A), Y ). Assume that system (2.2) is admissible in the sense of (2.3).

If (2.22) holds, then system (2.2) is exactly observable in any time T > T ∗,
for

T ∗ =
2e
ρ

(π
4

ln(L) +
3π
4

)1+1/ ln(L)

, (2.23)

where

L =
2π
3
K1/ρρ

d2
. (2.24)
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Besides, the constant kT in (2.21) can be chosen as

kT =
πd2

ρ

(
1−

(T ∗
T

)2n∗−1)
, where n∗ =

⌈1
2

(
ln(L) + 1

)⌉
. (2.25)

Remark 2.6. Note that the constant L is always greater than 2π/3, and then
ln(L) > 0. Indeed, one can consider the solution z(t) = exp(iµ1t)Ψ1 of (2.2), for
which we get ∫ 1/ρ

0

‖Cz(t)‖2Y dt ≤ K1/ρ,

as a consequence of the admissibility of system (2.2), and, from (2.22),∫ 1/ρ

0

‖Cz(t)‖2Y dt ≥
∫ 1/ρ

0

d2 ‖z(t)‖2X dt ≥ d2

ρ
.

Proof. Set z0 ∈ X, and denote by z(t) the solution of (2.2) with initial data z0.
Set

g(t) = χ(t)z(t), (2.26)

where χ : R→ R is a function whose Fourier transform is smooth and satisfies

Supp χ̂ ⊂ (−ρ, ρ). (2.27)

Note that these conditions imply that χ is in the Schwartz class S(R) and
therefore g and ĝ both are in L2(R,X).

We expand z0 and z(t) on the basis Ψj :

z0 =
∑
j

ajΨj , z(t) =
∑
j

aj exp(iµjt)Ψj . (2.28)

One then easily check that

ĝ(ω) =
∑
j

ajχ̂(ω − µj)Ψj . (2.29)

In particular, due to the property (2.27), for all ω, ĝ(ω) is a wave packet and
therefore (2.22) implies

d2 ‖ĝ(ω)‖2X ≤ ‖Cĝ(ω)‖2Y . (2.30)

Note that, due to the explicit expansion (2.29), we have the identity

‖ĝ(ω)‖2X =
∑
j

|aj |2|χ̂(ω − µj)|2.

Then, integrating (2.30) in ω, and using Parseval’s identity on the right hand-side
of (2.30), one easily obtains

d2
(∫

χ̂2(ω)dω
) (∑

j

|aj |2
)
≤
∫

R
‖Cg(t)‖2Y dt =

∫
R
χ2(t) ‖Cz(t)‖2Y dt, (2.31)

where the last equality comes from the definition (2.26) of g.
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Now, since χ ∈ S(R), we know that for each n ∈ N∗, there exists a constant
cn such that

|χ(t)| ≤ cn
1
|t|n

, ∀t 6= 0. (2.32)

Hence, for any time T > 0, using the admissibility in time T , we obtain that∫
R
χ2(t) ‖Cz(t)‖2Y dt ≤

∫ T

−T
χ2(t) ‖Cz(t)‖2Y dt+ 2

( ∞∑
k=1

1
(kT )2n

)
c2nKT ‖z0‖2X

≤
∫ T

−T
χ2(t) ‖Cz(t)‖2Y dt+

π2

3
c2n

1
T 2n

KT ‖z0‖2X . (2.33)

We therefore need to estimate cn in (2.32). Of course, one cannot expect it to
be uniform in the whole Schwartz class, and it will strongly depend on the choice
of χ. By a scaling argument, we assume without loss of generality that

χ(t) = ψ(tρ), χ̂(ω) =
1
ρ
ψ̂
( t
ρ

)
, (2.34)

where ψ belongs to the Schwartz class and satisfies Supp ψ̂ ⊂ (−1, 1).
Remark that integrations by parts then yield:

ψ(t) =
1√
2π

∫
ψ̂(ω) exp(iωt) dω =

1√
2π(it)n

∫
ψ̂(n) exp(iωt) dω.

Thus we obtain the following decay estimate on ψ:

|ψ(t)| ≤ 1√
π

1
|t|n
(∫ ∣∣∣ψ̂(n)

∣∣∣2 dω
)1/2

, t ∈ R∗.

Therefore χ satisfies

|χ(t)| ≤ 1√
π

( 1
ρ|t|

)n(∫ ∣∣∣ψ̂(n)
∣∣∣2 dω

)1/2

, t ∈ R∗. (2.35)

Also note that the L∞ norm of χ can be estimated by the L2 norm of ψ:

|χ(t)| = |ψ(tρ)| =
∣∣∣∣ 1√

2π

∫
ψ̂(ω) exp(iωtρ) dω

∣∣∣∣ ≤ 1√
π

(∫ ∣∣∣ψ̂∣∣∣2 dω

)1/2

.

Besides, since ∫
|χ̂|2 dω =

1
ρ

∫ ∣∣∣ψ̂∣∣∣2 dω,
we obtain from (2.31), (2.33) and (2.35) that(

1
ρ
d2

∫ ∣∣∣ψ̂∣∣∣2 dω −KT
π

3

( 1
ρT

)2n
∫ ∣∣∣ψ̂(n)

∣∣∣2 dω

)
‖z0‖2X

≤
∫ T

−T
χ2(t) ‖Cz(t)‖2Y dt ≤ 1

π

(∫ ∣∣∣ψ̂∣∣∣2 dω)∫ T

−T
‖Cz(t)‖2Y dt. (2.36)
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Let us now assume that Tρ is strictly greater than 1. In this case, we can
estimate KT by

KT ≤ K1/ρ(1 + Tρ) ≤ 2K1/ρTρ. (2.37)
Therefore, to guarantee that the left hand side of (2.36) is positive, we only need
Tρ > 1 and

Tρ > inf
n


(

2πK1/ρρ

3d2

)1/(2n−1)

inf
ψ̂∈D(−1,1)


∥∥∥ψ̂(n)

∥∥∥2

L2∥∥∥ψ̂∥∥∥2

L2


1/(2n−1)

 . (2.38)

We now derive an estimate on the following coefficient:

γn =

(
inf

φ∈D(−1,1)

∥∥φ(n)
∥∥2

L2

‖φ‖2L2

)1/2n

. (2.39)

Lemma 2.7. We have the following estimate:

γn ≤
nπ

2
, ∀n ∈ N∗. (2.40)

Proof of Lemma 2.7. Set n ∈ N∗. Let us consider

φn(x) = sin
(π

2
(x+ 1)

)n
,

which belongs to Hn
0 (−1, 1), and which, by density, is admissible as a test function

in the infimum (2.39).
Consider the Fourier development of φn, which takes the form

φn(x) =
n∑

k=−n

ak exp
( ikπx

2

)
.

Then we have∥∥∥φ(n)
n

∥∥∥2

L2
=

n∑
k=−n

|ak|2
(kπ

2

)2n

≤
(nπ

2

)2n n∑
k=−n

|ak|2 ≤
(nπ

2

)2n

‖φn‖2L2 .

Lemma 2.7 follows. �

Therefore, using the constant L introduced in (2.24), we need to minimize
on N

f(n) = L1/(2n−1)
(nπ

2

)2n/(2n−1)

.

In R, the infimum is attained in ñ such that

2ñ− 1 = ln(L) + ln
( ñπ

2

)
.

Therefore, when L is large, a good approximation of the minimizer of f on N is
given by n∗ as in (2.25), for which we have

f(n∗) ≤ e
(π

4
ln(L) +

3π
4

)1+1/ ln(L)

=
T ∗ρ

2
.
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Choosing n = n∗ in (2.36) and using (2.37), we obtain that∫ T

−T
‖Cz(t)‖2Y dt ≥ πd2

ρ

(
1− L

(Tρ)2n∗−1

(n∗π
2

)2n∗)
‖z0‖2X

≥ πd2

ρ

(
1−

(T ∗
2T

)2n∗−1)
‖z(−T )‖2X .

Since the semi-group generated by (2.2) is a bijective isometry on X, this gives,
for any z0 ∈ X, ∫ 2T

0

‖Cz(t)‖2Y dt ≥ πd2

ρ

(
1−

(T ∗
2T

)2n∗−1)
‖z0‖2X .

This completes the proof of Theorem 2.5 by replacing 2T by T . �

Remark 2.8. The time estimate we obtain with this strategy strongly depends
on the estimate (2.40) on γn defined in (2.39). To our knowledge, though this
problem might seem classical, there is no precise bounds on γn. In particular, note
that if we were able to prove that lim infn→∞ γn = ℵ < ∞, then condition (2.38)
would simply become Tρ > 2ℵ, which would be very similar to the assumptions of
Ingham’s Lemma [22] (see also [42] on the completeness of non harmonic Fourier
series in L2(0, T )).

Application to Theorem 2.3. We can now make precise the estimates in Theorem
2.3.

Theorem 2.9. Under the assumptions of Theorem 2.3, assume (2.20) or, equiva-
lently, that

ω ‖u‖2X ≤M
2 ‖(A0 − ωI)u‖2X +m2ω ‖Bu‖2Y , ∀u ∈ D(A0), ∀ω ∈ I(A0), (2.41)

where I(A0) is the convex hull of the spectrum Λ(A0) of A0. Also assume that the
first eigenvalue of A0 satisfies λ1 ≥ γ > 0.

Set

ρ = min
{ √2√

5M
,

√
γ

2

}
, d =

1
2m

. (2.42)

Then system (1.1)-(1.3) is exactly observable in any time T > T ∗, for T ∗

as in (2.23). Besides, the constant kT in (1.5) can be chosen as in (2.25) as an
explicit expression of T , m, M , γ, and the admissibilty constant K1/ρ.

Proof. The fact that the resolvent conditions (2.20) and (2.41) are equivalent can
be done as in the proof of Theorem 2.2 by studying the function (2.15).

The proof of Theorem 2.9 then combines the estimates given in Theorem 2.5
with the following proposition:

Proposition 2.10. Let A, A0, B and C be related as in (2.8). Under the assumptions
of Theorem 2.9, setting ρ and d as in (2.42), the wave packet estimate (2.22) holds.
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Proof. First, we remark that, since ρ ≤ √γ/2, when |µ| < √γ/2, the set Jρ(µ) is
empty. Besides, when µ ∈ [

√
γ/2,

√
λ1], Jρ(µ) ⊂ Jρ(

√
λ1). Therefore we only need

to prove (2.22) only for |µ| ≥
√
λ1. When Λ(A0) is bounded from above, the same

argument shows that we can restrict ourselves to µ such that µ2 ∈ I(A0).
Fix µ such that µ2 ∈ I(A0), let z be a wave packet

z =
∑

l∈Jρ(µ)

clΨl =
(
z1
z2

)
.

In particular, we have

z2 =
1√
2

∑
l∈Jρ(µ)

clΦl, and ‖z2‖2X =
1
2

∑
l∈Jρ(µ)

|cl|2 =
1
2
‖z‖2X .

Applying (2.41) to z2 and ω = µ2, we obtain

1
2
‖z‖2X = ‖z2‖2X ≤ m2 ‖Bz2‖2Y +

M2

µ2

∥∥(A0 − µ2)z2
∥∥2

X

= m2 ‖Cz‖2Y +
M2

µ2

∥∥(A0 − µ2)z2
∥∥2

X
.

But the last term satisfies∥∥(A0 − µ2)z2
∥∥2

X
=

1
2

∑
l∈Jρ(µ)

|cl|2
(
µ2
l − µ2

)2

≤ 2
∑

l∈Jρ(µ)

|cl|2
(µl + µ

2

)2

(µl − µ)2

≤ 2ρ2
∑

l∈Jρ(µ)

|cl|2
(
|µ|+ ρ

2

)2

≤ 25
8
ρ2µ2 ‖z‖2X ,

where we used that, for l ∈ Jρ(µ) and |µ| ≥ √γ ≥ 2ρ > 0, |µl| ≤ |µ|+ ρ ≤ 3|µ|/2.
With the choice of ρ given in (2.42), we thus obtain

‖z‖2X ≤ 4m2 ‖Cz‖2Y ,

and Proposition 2.10 follows. �

Theorem 2.9 then directly follows from Theorem 2.5. �

An interpolation criterion. We finally deduce another criterion for the observabil-
ity of wave type equations (1.1)-(1.3).

Theorem 2.11. Let A0 : D(A0) ⊂ X → X be a self adjoint positive definite operator
with compact resolvent, and let B ∈ L(D(A1/2

0 ), Y ) be an admissible observation
operator for (1.1)-(1.3). Assume that there exists a positive constant γ such that
the first eigenvalue of A0 is greater than γ.
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Then system (1.1)-(1.3) is exactly observable if and only if there exist positive
constants α and β such that∥∥∥A1/2

0 u
∥∥∥2

X
≤ ‖u‖X ‖A0u‖X + α2 ‖Bu‖2Y − β

2 ‖u‖2X , ∀u ∈ D(A0). (2.43)

Besides, if (2.43) holds, then time T and the constant kT in (1.5) can be
chosen explicitly as functions of α, β, γ and the admissibility constants.

Proof. The proof is based on Theorem 2.9. In view of Theorem 2.9, it is sufficient to
prove that conditions (2.43) and (2.20) are equivalent. This can be done similarly
as in the equivalence of the statements 2 and 3 in Theorem 2.2 by writing (2.20)
as the nonnegativity on R+ of a quadratic form in ω. �

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Below, we assume that the assumptions of
Theorem 1.3 are satisfied.

For convenience, since B is assumed to belong to L(D(Aκ0 ), Y ), we introduce
a constant KB such that

‖Bφ‖Y ≤ KB ‖Aκ0φ‖X , ∀φ ∈ D(Aκ0 ). (3.1)

3.1. Admissibility

Proof of Theorem 1.3: Admissibility. Assume that system (1.1)-(1.3) is admissi-
ble. Then, from Theorem 2.2, there exist positive constants m and M such that
(2.9) holds.

Again using Theorem 2.2, but for the operator A0h|Ch(η/hσ), our goal is to
prove the existence of positive constants m∗ and M∗ such that for any h > 0,

‖Bhuh‖2Y ≤
M2
∗
ω
‖(A0h − ωI)uh‖2h +m2

∗ ‖uh‖
2
h , ∀uh ∈ Ch(η/hσ),∀ω ∈ (0, η/hσ].

(3.2)
For h > 0, we fix ω ∈ (0, η/hσ] and uh ∈ Ch(η/hσ). Similarly as in [10], we
introduce Uh ∈ D(A0), defined by

A0Uh = πhπ
∗
hA0πhuh = πhA0huh. (3.3)

This defines an element Uh ∈ D(A0), which we expect to be close to uh.
Since Uh ∈ D(A0), inequality (2.10) applies:

‖BUh‖2Y ≤
M2

ω
‖(A0 − ωI)Uh‖2X +m2 ‖Uh‖2X . (3.4)

The computations below are the same as in [10]. For convenience, we recall
them.



Admissibility and observability for discrete Wave equations 19

We first estimate Uh − πhuh. Using (1.7) and (3.3), for all φ ∈ D(A0), we
have:

< Uh − πhuh, A0φ >X=< A0Uh −A0πhuhφ >X

=< (πhπ∗h − I)A0πhuh, φ >X=< A
1/2
0 πhuh, A

1/2
0 (πhπ∗h − I)φ >X . (3.5)

But, for any δ ∈ [0, 1], in view of (1.10), interpolation properties yield∥∥∥A1/2
0 (πhπ∗h − I)φ

∥∥∥
X
≤ C0h

θ(1−δ)
∥∥∥A1−δ/2

0 φ
∥∥∥
X
, ∀φ ∈ D(A1−δ/2

0 ),

and therefore, using (3.5),∥∥∥Aδ/20 (Uh − πhuh)
∥∥∥
X

= sup
φ∈D(A

1−δ/2
0 ),‚‚‚A1−δ/2

0 φ
‚‚‚
X

=1

{
< A

δ/2
0 (Uh − πhuh), A1−δ/2

0 φ >X

}

= sup
φ∈D(A

1−δ/2
0 ),‚‚‚A1−δ/2

0 φ
‚‚‚
X

=1

{
< (Uh − πhuh), A0φ >X

}

≤
∥∥∥A1/2

0 πhuh

∥∥∥
X

sup
φ∈D(A

1−δ/2
0 ),‚‚‚A1−δ/2

0 φ
‚‚‚
X

=1

∥∥∥A1/2
0 (πhπ∗h − I)φ

∥∥∥
X

≤ C0h
θ(1−δ)

∥∥∥A1/2
0 πhuh

∥∥∥
X
.

Besides, using the definition (1.6) of A0h, one easily gets∥∥∥A1/2
0h φh

∥∥∥
h

=
∥∥∥A1/2

0 πhφh

∥∥∥
X
, ∀φh ∈ Vh. (3.6)

It follows that 
‖Uh − πhuh‖X ≤ C0h

θ
∥∥∥A1/2

0h uh

∥∥∥
h
,

‖Aκ0 (Uh − πhuh)‖X ≤ C0h
θ(1−2κ)

∥∥∥A1/2
0h uh

∥∥∥
h
.

(3.7)

Remark that, from (3.3), (A0−ω)Uh = πh(A0h−ω)uh +ω(πhuh−Uh). It follows
that ∣∣∣ ‖(A0 − ω)Uh‖X − ‖(A0h − ω)uh‖h

∣∣∣ ≤ C0h
θω
∥∥∥A1/2

0h uh

∥∥∥
h
. (3.8)

Besides, using (3.1) and (3.7), we obtain∣∣∣ ‖BUh‖Y − ‖Bhuh‖Y ∣∣∣ ≤ KBC0h
θ(1−2κ)

∥∥∥A1/2
0h uh

∥∥∥
h
. (3.9)



20 Sylvain Ervedoza

Estimates (3.7)-(3.8)-(3.9) then yield
‖Uh‖2X ≤ 2 ‖uh‖2h + 2C2

0h
2θ
∥∥∥A1/2

0h uh

∥∥∥2

h
,

1
ω
‖(A0 − ω)Uh‖2X ≤

2
ω
‖(A0h − ω)uh‖2h + 2C2

0h
2θω

∥∥∥A1/2
0h uh

∥∥∥2

h
,

‖BUh‖2Y ≥
1
2
‖Bhuh‖2Y −K

2
BC

2
0h

2θ(1−2κ)
∥∥∥A1/2

0h uh

∥∥∥2

h
.

From (3.2), since ω ∈ (0, η/hσ] and uh ∈ Ch(η/hσ), we obtain

1
2
‖Bhuh‖2Y ≤

2M2

ω
‖(A0h − ω)uh‖2h

+ ‖uh‖2h
(

2m2(1 + C2
0h

2θ−ση) + 2M2C2
0h

2θ−2ση2 +K2
BC

2
0h

2θ(1−2κ)−ση
)
.

Then, with σ as in (1.12), (3.2) holds uniformly with respect to h ∈ (0, 1),
uh ∈ Ch(η/hσ) and ω ∈ (0, η/hσ], by setting

M2
∗ = 4M2, m2

∗ = 4m2(1 + C2
0η) + 4M2C2

0η
2 + 2K2

BC
2
0η.

Theorem 2.2 then applies, and yields the admissibility property stated in
Theorem 1.3 uniformly with respect to h ∈ (0, 1). Besides, one can obtain explicit
estimates on the constants in (1.14). �

3.2. Observability

Proof of Theorem 1.3: Observability. Assume that system (1.1)-(1.3) is admissible
and exactly observable. Then, from Theorem 2.9, there exist positive constants m
and M such that (2.20) holds.

Our proof is now based on the spectral criterion given in Theorem 2.9.
We shall first prove that there exist positive constants m∗ and M∗ such that

for any h > 0, the following inequality holds:

‖uh‖2h ≤
M2
∗
ω
‖(A0h − ωI)uh‖2h +m2

∗ ‖Bhuh‖
2
Y , ∀uh ∈ Ch(ε/hσ),∀ω ∈ (0, ε/hσ].

(3.10)
In the sequel, we fix h > 0, uh ∈ Ch(ε/hσ) and ω ∈ (0, ε/hσ], where ε is a positive
parameter independent of h > 0 which we will choose later on, and, similarly as
in (3.3), we introduce Uh ∈ D(A0) defined by (3.3).

Since Uh belongs to D(A0), (2.43) applies:

‖Uh‖2X ≤
M2

ω
‖(A0 − ωI)Uh‖2X +m2 ‖BUh‖2Y . (3.11)
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Similarly as in the admissibility case, using ω ∈ (0, ε/hσ] and uh ∈ Ch(ε/hσ), we
obtain from (3.7)-(3.8)-(3.9) that

‖Uh‖2X ≥
1
2
‖uh‖2h − 2C2

0h
2θ−σε ‖uh‖2h ,

1
ω
‖(A0 − ω)Uh‖2X ≤

2
ω
‖(A0h − ω)uh‖2h + 2C2

0h
2θ−2σε2 ‖uh‖2h ,

‖BUh‖2Y ≤ 2 ‖Bhuh‖2Y + 2K2
BC

2
0h

2θ(1−2κ)−σε ‖uh‖2h .

Now, plugging these estimates into (3.11), we get:

‖uh‖2h

(
1
2
− 2C0h

2θ−σε− 2M2C2
0h

2θ−2σε2 − 2K2
BC

2
0h

2θ(1−2κ)−σε

)
≤ 2M2

ω
‖(A0h − ωI)uh‖2h + 2m2 ‖Bhuh‖2Y . (3.12)

Therefore, with σ as in (1.12), setting ε such that

2C0ε+ 2M2C2
0ε

2 + 2K2
BC

2
0ε =

1
4
,

we obtain (3.10) uniformly with respect to h ∈ (0, 1), ω ∈ (0, ε/hσ] and uh ∈
Ch(ε/hσ) by setting M∗ = 2M and m∗ = 2m.

Now, we need to check that the first eigenvalues λh1 of the operators A0h are
uniformly bounded from below by a positive constant. This can be easily deduced
from the Rayleigh characterization of the first eigenvalues of A0h and A0:

λh1 = inf
φh∈Vh

∥∥∥A1/2
0h φh

∥∥∥2

h

‖φh‖2h
, λ1 = inf

φ∈D(A
1/2
0 )

∥∥∥A1/2
0 φ

∥∥∥2

X

‖φ‖2X
. (3.13)

Indeed, from (3.6), identities (3.13) imply

λh1 = inf
φh∈Vh

∥∥∥A1/2
0h φh

∥∥∥2

h

‖φh‖2h
= inf
φh∈Vh

∥∥∥A1/2
0 πhφh

∥∥∥2

X

‖πhφh‖2X
≥ λ1 > 0. (3.14)

The discrete systems (1.8)-(1.9) then satisfy uniformly the assumptions of
Theorem 2.9, and then the exact observability property stated in Theorem 1.3
follows. �

Remark 3.1. In a first version of this work, instead of using the resolvent es-
timates (2.10) and (2.41) to prove the admissibility and observability results in
Theorem 1.3, we used the interpolation inequalities (2.12) and (2.43). However,
this yielded the same result with a smaller filtering parameter σ, namely σ =
θmin{2(1 − 2κ), 2/3} instead of (1.12), the difficulty coming from the compar-
isons of

∥∥∥A1/2
0h uh

∥∥∥
h

and
∥∥∥A1/2

0 Uh

∥∥∥
X

. The remark that this earlier result could be

improved is due to Luc Miller [29].
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4. Examples

In this section, we present several applications of Theorem 1.3, and compare our
results with the existing ones.

4.1. The 1d wave equation

Let us consider the classical 1d wave equation: ü− ∂2
xxu = 0, (t, x) ∈ R× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ R,
u(0, x) = u0(x), ü(0, x) = u1(x), x ∈ (0, 1).

(4.1)

For (a, b) a subset of (0, 1), we observe system (4.1) through

y(t, x) = u̇(t, x)χ(a,b)(x), (4.2)

where χ(a,b) is the characteristic function of (a, b).
This model indeed enters in the abstract framework considered in this article,

by setting A0 = −∂2
xx on (0, 1) with Dirichlet boundary conditions, and B = χ(a,b).

Indeed, A0 is self-adjoint, positive definite with compact resolvent in L2(0, 1).
The operator B obviously is continuous on L2(0, 1) with values in L2(0, 1). The
admissibility of (4.1)-(4.2) is then straightforward.

The observability property for (4.1)-(4.2) is well-known to hold for any time
T > 2 min{a, 1− b}. It can be proved by using, for instance, multiplier techniques
[23].

To construct the space Vh, we use P1 finite elements. More precisely, for
nh ∈ N, set h = 1/(nh+1) > 0 and define the points xj = jh for j ∈ {0, · · · , nh+1}.
We define the basis functions

ej(x) =
[
1− |x− xj |

h

]+
, ∀j ∈ {1, · · · , nh}.

Now, Vh = Rnh , and the embedding πh simply is

πh : Vh = Rnh → L2(0, 1)

uh =

 u1

...
unh

 7→ πhuh(x) =
nh∑
j=1

ujej(x).

Usually, the resulting schemes are written as{
Mhüh(t) +Khuh(t) = 0, t ∈ R,
uh(0) = u0h, u̇h(0) = u1h,

yh(t) = Bπhu̇h(t), t ∈ R, (4.3)

where Mh and Kh are nh × nh matrices defined by (Mh)i,j =
∫ 1

0
ei(x)ej(x) dx

and (Kh)i,j =
∫ 1

0
∂xei(x)∂xej(x) dx. Note that, since Mh is a Gram matrix corre-

sponding to a linearly independent family, it is invertible, self-adjoint and positive
definite, and thus the following defines a scalar product:

< φh, ψh >h= φ∗hMhψh, (φh, ψh) ∈ V 2
h . (4.4)
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Besides, from the definition of Mh, one easily checks that

< φh, ψh >h=
∫ 1

0

πh(φh)(x)πh(ψh)(x) dx, ∀(φh, ψh) ∈ V 2
h ,

as presented in the introduction.
Similarly, one obtains that, for all (φh, ψh) ∈ V 2

h ,

φ∗hKhψh = φ∗hMhM
−1
h Khψh =< φh,M

−1
h Khψh >h= φ∗hKhM

−1
h Mhψh

=< M−1
h Khφh, ψh >h=

∫ 1

0

∂x(πhφh)(x)∂x(πhψh)(x) dx.

In other words, the operator M−1
h Kh coincides with the operator A0h in our frame-

work. Note that this operator indeed is self-adjoint, but with respect to the scalar
product (4.4) and not with the usual euclidean norm of Rnh .

It is by now a common feature of finite element techniques (see for instance
[36]) that estimates (1.10) hold for θ = 1. We can thus apply Theorem 1.3 (with
κ = 0) to systems (4.3):

Theorem 4.1. There exist ε > 0, a time T ∗ and a constant k∗ such that for any
h > 0, any solution uh of (4.3) with initial data (u0h, u1h) ∈ Ch(ε/h)2 satisfies
(1.16).

This result is to be compared with the better ones obtained in [21]: In [21], it
is proved that, for finite element approximation schemes of the 1d wave equation,
observability properties hold uniformly within the larger class Ch(α/h2) for α < 4.

Though, as we will see hereafter, we can tackle more general cases, even in
1d, for instance taking sequence of nonuniform meshes. In this case, we obtain the
same result as in [35], which was stated from the stabilization point of view, see
Section 7.

4.2. More general cases

Let Ω be a bounded smooth domain of RN , with N ≥ 1, and consider the following
wave equation: ü− div(M(x)Ou) = 0, (x, t) ∈ Ω× R,

u(x, t) = 0, (x, t) ∈ ∂Ω× R,
u(x, 0) = u0(x), u̇(x, 0) = u1(x), x ∈ Ω,

(4.5)

where M(x) is a C1 function on Ω̄ with values in the self-adjoint N ×N matrices.
We also assume that there exist positive constants α and β such that for all ξ ∈ RN ,

α|ξ|2 ≤ (M(x)ξ, ξ) ≤ β|ξ|2, ∀x ∈ Ω, (4.6)

where (·, ·) is the canonical scalar product of RN and | · | is the corresponding
norm.

Under these assumptions, it is well-known that system (4.5) is well-posed for
initial data (u0, u1) ∈ H1

0 (Ω)× L2(Ω).
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System (4.5) is a particular instance of (1.1) for A0 = −div(M(x)O·) on Ω
with Dirichlet boundary condition. This operator is indeed self-adjoint positive
definite with compact resolvent, and its domain is D(A0) = H2(Ω) ∩H1

0 (Ω).
Now, set ω ⊂ Ω, and consider the observation

y(x, t) = χω(x)u̇(x, t), (x, t) ∈ Ω× (0, T ). (4.7)

This defines a bounded operator B on L2(Ω). Therefore, the admissibility condition
for (4.5)-(4.7) is obvious.

The observability property for (4.5)-(4.7) is well-known to hold if and only
if the Geometric Control Condition is satisfied, see [2, 3]. This condition, roughly
speaking, asserts the existence of a time T ∗ such that all the rays of Geometric
Optics enters in the observation domain in a time smaller than T ∗. Note that,
in our case, the rays are not necessarily straight lines, but correspond to the
bicharacteristic rays of the pseudo-differential operator τ2 − (M(x)ξ, ξ). Remark
that one can also deduce observability results using multiplier techniques [23, 33].
From now on, we assume that ω satisfies the Geometric Control Condition.

We consider P1 finite elements on meshes Th. We furthermore assume that
the meshes Th of the domain Ω are regular in the sense of finite elements [36,
Section 5]. Roughly speaking, this assumption imposes that the polyhedra of (Th)
are not too flat.

Definition 4.2. Let T = ∪K∈TK be a mesh of a bounded domain Ω. For each
polyhedron K ∈ T , we define hK as the diameter of K and ρK as the maximum
diameter of the spheres S ⊂ K. We then define the regularity of T as

Reg(T ) = sup
K∈T

{hK
ρK

}
.

A sequence of mesh (Tn) is said to be uniformly regular if

sup
n

Reg(Tn) <∞.

In the following, we will denote sequences of meshes by (Th)h∈(0,1) with the
implicit assumption that h = h(Th) = supK∈Th hK . In this case, see [36], estimates
(1.10) again hold for θ = 1, and Theorem 1.3 implies (here again κ = 0):

Theorem 4.3. Assume that system (4.5)-(4.7) is observable. Given a sequence of
uniformly regular meshes (Th)h>0, there exist ε > 0, a time T ∗ and a constant k∗
such that for any h > 0, any solution uh of the P1 finite element approximation
scheme of (4.5)-(4.7) corresponding to the mesh Th with initial data (u0h, u1h) ∈
Ch(ε/h)2 satisfies (1.16).

To our knowledge, this is the first time that observability properties for space
semi-discretizations of (4.5)-(4.7) are derived in such generality for the wave equa-
tion. In particular, we emphasize that the only non-trivial assumption we used
is (1.10), which is needed anyway to guarantee the convergence of the numerical
schemes.
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5. Fully discrete approximation schemes

This section is based on the article [12], which studied admissibility and exact
observability properties of time discrete conservative linear systems. As said in
[12], this study can be combined with admissibility and observability results on
space semi-discrete systems to deduce admissibility and observability properties
for fully discrete systems. Below, we present an application of the results in [12].

Let β ≥ 1/4 and consider the following time discrete approximation scheme
- the so-called Newmark method, see for instance [36] - of (1.8):

uk+1
h + uk−1

h − 2ukh
(4t)2

+A0h

(
βuk−1

h + (1− 2β)ukh + βuk+1
h

)
= 0, k ∈ N∗,(u0

h + u1
h

2
,
u1
h − u0

h

4t

)
= (u0h, u1h) ∈ V 2

h ,

(5.1)
where ukh corresponds to an approximation of the solution uh of (1.8) at time
tk = k4t.

The energy of solutions uh of (5.1), defined by

E
k+1/2
h =

1
2

∥∥∥∥∥A1/2
0h

(ukh + uk+1
h

2

)∥∥∥∥∥
2

h

+
1
2

∥∥∥∥∥uk+1
h − ukh
4t

∥∥∥∥∥
2

h

+
(4t)2

8
(4β − 1)

∥∥∥∥∥A1/2
0h

(uk+1
h − ukh
4t

)∥∥∥∥∥
2

h

, k ∈ N, (5.2)

is constant.
Then we get the following admissibility and observability results (see [12]):

Theorem 5.1. Let A0 be a self-adjoint positive definite unbounded operator with
compact resolvent and B ∈ L(D(Aκ0 ), Y ), with κ < 1/2.

Assume that the maps (πh)h>0 satisfy property (1.10). Let β ≥ 1/4, and
consider the fully discrete approximation scheme (5.1). Set σ as in (1.12), and
δ > 0.
Admissibility: Assume that system (1.1)-(1.3) is admissible.

Then, for any η > 0 and T > 0, there exists a positive constant KT,η > 0
such that, for any h > 0 and 4t > 0, any solution of (5.1) with initial data

(u0h, u1h) ∈
(
Ch(η/hσ) ∩ Ch(δ2/(4t)2)

)2

(5.3)

satisfies

4t
∑

k4t∈[0,T ]

∥∥∥∥∥Bh(uk+1
h − ukh
4t

)∥∥∥∥∥
2

Y

≤ KT,ηE
1/2
h . (5.4)

Observability: Assume that system (1.1)-(1.3) is admissible and exactly observable.
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Then there exist ε > 0, a time T ∗ and a positive constant k∗ > 0 such that,
for any 4t > 0 small enough, for any h > 0, any solution of (5.1) with initial
data

(u0h, u1h) ∈
(
Ch(ε/hσ) ∩ Ch(δ2/(4t)2)

)2

(5.5)

satisfies

k∗E
1/2
h ≤ 4t

∑
k4t∈[0,T∗]

∥∥∥∥∥Bh(uk+1
h − ukh
4t

)∥∥∥∥∥
2

Y

. (5.6)

Obviously, inequalities (5.4)-(5.6) are time discrete counterparts of (1.14)-
(1.16). Remark that, as in Theorem 1.3, a filtering condition is needed, but which
now depends on both time and space discretization parameters.

Also remark that if (4t)2h−σ ≤ δ2/ε, the filtered space Ch(ε/hσ)∩Ch(δ2/(4t)2)
coincides with Ch(ε/hσ). Roughly speaking, this indicates that under the CFL type
condition (4t)2h−σ small enough, system (5.1) behaves, with respect to the admis-
sibility and observability properties, similarly as the space semi-discrete equations
(1.8).

Remark 5.2. We restrict our presentation to the Newmark method, but similar
results hold for a large range of time discrete approximation schemes of (1.8). We
refer to [12, Section 3] for the precise assumptions on the time-discrete approxi-
mation schemes under which we can guarantee uniform observability properties to
hold.

6. Controllability properties

This section aims at discussing applications of Theorem 1.3 to controllability prop-
erties for space semi-discretizations of wave type equations such as (1.1). The ap-
proach presented below is strongly inspired by previous works [17, 21, 44, 45, 10],
and closely follows [10].

In the whole section, we assume that the hypotheses of Theorem 1.3 are
satisfied.

6.1. The continuous setting

Consider the following control problem: Given T > 0, for any (w0, w1) ∈ D(A1/2
0 )×

X, find a control v ∈ L2(0, T ;Y ) such that the solution w of

ẅ +A0w = B∗v(t), t ∈ [0, T ], w(0) = w0, ẇ(0) = w1, (6.1)

satisfies
w(T ) = 0, ẇ(T ) = 0. (6.2)

The controllability issue in time T for (6.1) is equivalent to the observability
property in time T for (1.1)-(1.3) (see for instance [25]). Indeed, these two prop-
erties are dual, and this duality can be made precise using the Hilbert Uniqueness
Method (HUM in short), see [25].
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More precisely, the control of minimal L2(0, T ;Y ) norm for (6.1), that we
will denote by vHUM , is characterized through the minimizer of the functional J
defined on D(A1/2

0 )×X by:

J (u0T , u1T ) =
1
2

∫ T

0

‖Bu̇(t)‖2Y dt

+ < A
1/2
0 u(0), A1/2

0 w0 >X + < u̇(0), w1 >X , (6.3)

where u is the solution of

ü+A0u = 0, t ∈ [0, T ], u(T ) = u0T , u̇(T ) = u1T . (6.4)

Indeed, if (u∗0T , u
∗
1T ) is the minimizer of J , then vHUM(t) = Bu̇∗(t), where u∗ is

the solution of (6.4) with initial data (u∗0T , u
∗
1T ).

Besides, the only admissible control for (6.1) which can be written as Bu̇(t)
for a solution u of (6.4) is the HUM control vHUM . This characterization will be
used in the following.

Note that the observability property (1.5) for (1.1)-(1.3) implies the strict
convexity and coercivity of J and then guarantees the existence of a unique min-
imizer for J .

6.2. The semi-discrete setting

The natural idea which consists in computing the discrete HUM controls for dis-
crete versions of (6.1) may fail in providing good approximations of the HUM
control for (6.1). We refer for instance to the survey article [45] for a detailed pre-
sentation of this fact in the context of the 1d wave equation. We thus use filtering
techniques developed for instance in [17, 21, 44, 45, 10] to overcome the problems
created by the spurious high-frequency components created by the scheme.

Our presentation closely follows the one in [10]. The proofs of the result below
will be only sketched, and can be done similarly as in [10].

Since we assumed that the hypotheses of Theorem 1.3 hold, there exists a
time T ∗ such that (1.16) holds for any solution of (1.8) with initial data in the
filtered space Ch(ε/hσ)2.

We now fix T ≥ T ∗.
Following the strategy of HUM, we introduce the adjoint problem

üh +A0huh = 0, t ∈ [0, T ], (uh, u̇h)(T ) = (u0Th, u1Th). (6.5)

6.2.1. Method I. For any h > 0, we consider the following control problem: For
any (w0h, w1h) ∈ V 2

h , find vh ∈ L2(0, T ;Y ) of minimal L2(0, T ;Y ) such that the
solution wh of

ẅh +A0hwh = B∗hvh(t), t ∈ [0, T ], wh(0) = w0h, ẇh(0) = w1h, (6.6)

satisfies
Phwh(T ) = 0, Phẇh(T ) = 0, (6.7)

where Ph is the orthogonal projection in Vh on Ch(ε/hσ).
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To deal with this problem, we introduce the functional Jh defined for (u0Th, u1Th)
in Ch(ε/hσ)2 by

Jh(u0Th, u1Th) =
1
2

∫ T

0

‖Bhu̇h(t)‖2Y dt

+ < A
1/2
0h w0h, A

1/2
0h uh(0) >h + < w1h, u̇h(0) >h, (6.8)

where uh is the solution of (6.5).
For each h > 0, the functional Jh is strictly convex and coercive (see (1.16)),

and thus has a unique minimizer (u∗0Th, u
∗
1Th) ∈ Ch(ε/hσ)2.

Besides, we have:

Lemma 6.1. For all h > 0, let (u∗0Th, u
∗
1Th) ∈ Ch(ε/hσ)2 be the unique minimizer

of Jh (on Ch(ε/hσ)2), and denote by u∗h the corresponding solution of (6.5). Then
the solution of (6.6) with vh = Bhu̇

∗
h satisfies (6.7).

Sketch of the proof. We present briefly the proof, which is standard (see for in-
stance [25]).

On one hand, multiplying (6.6) by u̇h solution of (6.5) with initial data
(u0Th, u1Th), we get, for all (u0Th, u1Th) ∈ V 2

h ,∫ T

0

< vh(t), Bhu̇h(t) >Y dt+ < A
1/2
0h w0h, A

1/2
0h uh(0) >h + < w1h, u̇h(0) >h

− < A
1/2
0h wh(T ), A1/2

0h u0Th >h − < ẇh(T ), u1Th >h= 0. (6.9)

On the other hand, the Fréchet derivative of the functional Jh at (u∗0Th, u
∗
1Th)

yields:∫ T

0

< Bhu̇
∗
h(t), Bhu̇h(t) >Y dt+ < A

1/2
0h w0h, A

1/2
0h uh(0) >h

+ < w1h, u̇h(0) >h= 0, ∀(u0Th, u1Th) ∈ Ch(ε/hσ)2. (6.10)

Therefore, setting vh = Bhu̇
∗
h, subtracting (6.9) to (6.10), we obtain

< A
1/2
0h wh(T ), A1/2

0h u0Th >h + < ẇh(T ), u1Th >h= 0, ∀(u0Th, u1Th) ∈ Ch(ε/hσ)2

or, equivalently, (6.7). �

As in [10], we then investigate the convergence of the discrete controls vh
obtained in Lemma 6.1.

Theorem 6.2. Assume that the hypotheses of Theorem 1.3 are satisfied. Also as-
sume that

YX =
{
y ∈ Y, such that B∗y ∈ X

}
(6.11)

is dense in Y .
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Let (w0, w1) ∈ D(A1/2
0 )×X, and consider a sequence (w0h, w1h)h>0 such that

(w0h, w1h) belongs to V 2
h for any h > 0 and

(πhw0h, πhw1h)→ (w0, w1) in D(A1/2
0 )×X. (6.12)

Then the sequence (vh)h>0 of discrete controls given by Lemma 6.1 strongly con-
verges in L2(0, T ;Y ) to the HUM control vHUM of (6.1) associated to the initial
data (w0, w1).

Remark that, for w ∈ D(A0), in view of (1.10), the sequence (wh)h = (π∗hw)
converges to w in D(A1/2

0 ) in the sense that the sequence (πhwh) converges to w in
D(A1/2

0 ). For (w0, w1) ∈ D(A1/2
0 )×X, one can then find a sequence (w0h, w1h)h>0

satisfying (6.12) and (w0h, w1h) ∈ V 2
h for any h > 0 by using the density of D(A0)2

into D(A1/2
0 )×X.

The technical assumption ȲX = Y on B is usually satisfied, and thus does not
limit the range of applications of Theorem 6.2. In particular, when B is bounded
from X to Y , the space YX coincides with Y and then this condition is automati-
cally satisfied.

The proof of Theorem 6.2 uses precisely the same ingredients as the one in
[10], and is briefly sketched for the convenience of the reader.

Sketch of the proof. Step 1. The discrete controls vh are bounded in L2(0, T ;Y ).
This follows from the inequality

Jh(u∗0Th, u
∗
1Th) ≤ Jh(0, 0) = 0,

and the observability inequality (1.16). Hence the controls are bounded, and,
up to an extraction, the sequence (vh) weakly converges to some function v in
L2(0, T ;Y ). Besides, the sequence (u∗0Th, u

∗
1Th) is also bounded inD(A1/2

0 )×X, and
therefore weakly converges in D(A1/2

0 )×X to some couple of functions (ũ0T , ũ1T ).
Step 2. The weak limit v is an admissible control for (6.1) associated to the

data (w0, w1). This can be deduced, as in [10], from the convergence properties of
the approximation schemes (1.8) (or equivalently (6.5)), which can be found for
instance in [36, Chapter 8].

Step 3. The weak limit v is the HUM control for (6.1) associated to the data
(w0, w1). This is also based on a convergence result which can be found in [36,
Chapter 8], and which guarantees that v = B ˙̃u, where ũ is the solution of (6.4)
with initial data (ũ0T , ũ1T ). This also proves that (ũ0T , ũ1T ) coincides with the
minimizer (u∗0T , u

∗
1T ) of the continuous functional J in (6.3). Assumption (6.11)

is needed in this step to identify the limit of (Bu̇∗h) with B ˙̃u.
Step 4. Finally, the strong convergence of the controls is proved using the

convergence of the L2(0, T ;Y ) norms. Compute first the Fréchet derivative of J
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at (u∗0T , u
∗
1T ): for (u0T , u1T ) ∈ D(A1/2

0 )×X, we obtain∫ T

0

< Bu̇∗(t), Bu̇(t) >Y dt+ < A
1/2
0 u(0), A1/2

0 w0 >X + < u̇(0), w1 >X= 0.

(6.13)
Now, applying (6.10) to (u∗0Th, u

∗
1Th) and (6.13) to (u∗0T , u

∗
1T ), the assumptions on

the convergence of (w0h, w1h) imply the convergence of the L2(0, T ;Y ) norms of
vh to the L2(0, T ;Y ) norm of v. �

6.2.2. Method II. As in [10], one can prefer a method which does not involve a
filtering process in the discrete setting. We thus recall the works [17, 45, 10], which
propose an alternate process based on a Tychonoff regularization of Jh.

Theorem 6.3. Assume that the hypotheses of Theorem 1.3 are satisfied. Also as-
sume that B ∈ L(X,Y ), which, in particular, implies that σ = θ.
Let (w0, w1) ∈ D(A1/2

0 ) × X, and consider a sequence (w0h, w1h)h>0 such that
(w0h, w1h) belongs to V 2

h for any h > 0 and (6.12) holds.
For any h > 0, consider the functionals J ∗h , defined for (u0Th, u1Th) ∈ V 2

h by

J ∗h (u0Th, u1Th) =
1
2

∫ T

0

‖Bhu̇h(t)‖2Y dt+
hσ

2

(∥∥∥Ã1/2
0h A

1/2
0h u0Th

∥∥∥2

h

+
∥∥∥Ã1/2

0h u1Th

∥∥∥2

h

)
+ < A

1/2
0h w0h, A

1/2
0h uh(0) >h + < w1h, u̇h(0) >h, (6.14)

where
Ã0h = A0h(IdVh + hσA0h)−1, (6.15)

and uh is the solution of (6.5) with initial data (u0Th, u1Th).
Then, for any h > 0, the functional J ∗h admits a unique minimizer (U0Th, U1Th)

in V 2
h . Besides, setting vh(t) = BhU̇h(t), where Uh is the solution of (6.5) with

initial data (U0Th, U1Th), one gets the following convergence results:

vh −→ vHUM in L2(0, T ;Y ), (6.16)

where vHUM denotes the HUM control for (6.1).

Theorem 6.3 proposes a numerical process based on the minimization of the
functional J ∗h defined for any element of V 2

h . Though, the functional J ∗h involves
the regularizing term

hσ
∥∥∥Ã1/2

0h u1Th

∥∥∥2

h
+ hσ

∥∥∥Ã1/2
0h A

1/2
0h u0Th

∥∥∥2

h
.

This term is small for data in Ch(ε/hσ) and of unit order for frequencies higher
than 1/hσ. Also note that this term can be computed easily since

hσ
∥∥∥Ã1/2

0h φh

∥∥∥2

h
= hσ < Ã0hφh, φh >h= hσ < A0hφ̃h, φh >h,

where φ̃h is the solution of (
IdVh + hσA0h

)
φ̃h = φh. (6.17)
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In other words, the operator Ã0h simply introduces an elliptic regularization of the
data, and the regularizing terms can be computed explicitly by solving the elliptic
equation (6.17).

The keynote of the proof of Theorem 6.3 is to remark that the functionals J ∗h
are uniformly coercive. This can be done as in [10] by decomposing the solutions
of (6.5) into low- and high-frequency components.

The proof of Theorem 6.3 can then be done similarly as the one of Theorem
6.2 (see also [10] for technical details), and thus is left to the reader.

Remark 6.4. Similar results can be obtained for fully discrete approximation
schemes derived from Newmark time discretizations of (1.8) (or more general time
discrete approximation scheme, see Remark 5.2). The proof can then be done simi-
larly as in the time continuous setting, using the observability inequality (5.6) and
convergence properties for the fully discrete approximation schemes, which can be
found for instance in [36, Chapter 8].

7. Stabilization properties

This section is mainly based on the articles [15, 13], in which stabilization prop-
erties are derived for abstract linear damped systems.

Below, we assume that A0 is self-adjoint, positive definite and with compact
resolvent, and that B ∈ L(X,Y ).

7.1. The continuous setting

Consider the following damped wave type equations:

ü+A0u+B∗Bu̇ = 0, t ≥ 0, (u(0), u̇(0)) = (u0, u1) ∈ D(A1/2
0 )×X. (7.1)

The energy of solutions of (7.1), defined by (1.2), satisfies the dissipation law

dE

dt
(t) = −‖Bu̇(t)‖2Y , t ≥ 0. (7.2)

System (7.1) is said to be exponentially stable if there exists positive constants
µ and ν such that any solution of (7.1) with initial data (u0, u1) ∈ D(A1/2

0 ) ×X
satisfies

E(t) ≤ µE(0) exp(−νt). (7.3)

It is by now well-known (see [19]) that this property holds if and only if the
observability inequality (1.5) holds for solutions of (1.1).

7.2. The space semi-discrete setting

We now assume that system (1.1)-(1.3) is observable in the sense of (1.5), or,
equivalently (see [19]), that system (7.1) is exponentially stable.

Then, combining Theorem 1.3 and the results in [15], we get:
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Theorem 7.1. Let B be a bounded operator in L(X,Y ), and assume that system
(7.1) is exponentially stable in the sense of (7.3). Also assume that the hypotheses
of Theorem 1.3 are satisfied.

Then the space semi-discrete systems{
üh +A0huh +B∗hBhu̇h + hθA0hu̇h = 0, t ≥ 0,

(uh(0), u̇h(0)) = (u0h, u1h) ∈ V 2
h ,

(7.4)

are exponentially stable, uniformly with respect to the space discretization param-
eter h > 0: there exist two positive constants µ0 and ν0 independent of h > 0 such
that for any h > 0, any solution uh of (7.4) satisfies, for t ≥ 0,∥∥∥A1/2

0h uh(t)
∥∥∥2

h
+ ‖u̇h(t)‖2h ≤ µ0

(∥∥∥A1/2
0h uh(0)

∥∥∥2

h
+ ‖u̇h(0)‖2h

)
exp(−ν0t). (7.5)

Here, several other viscosity operators could have been chosen: We refer to
[15] for the precise assumptions required on the viscosity operator introduced in
(7.4) for which we can guarantee uniform stabilization results.

Note that systems (7.4) are similar to the numerical approximation schemes
of the 1d and 2d wave equations studied in [38, 37, 30, 14], which were dealt with
using multiplier techniques. In [38, 37, 30, 14], the viscosity term h2A0h, instead
of what would correspond to hA0h in our setting, has been proved to be sufficient
to guarantee the uniform exponential decay of the energy. However, the range of
applications of [38, 37, 30, 14] is limited to the case of uniform meshes and of wave
equations with constant velocity.

Thus, in many situations, our results are not sharp. However, they apply for a
wide range of applications: in particular, no condition is required on the dimension
or on the uniformity of the meshes.

Besides, our results generalize the ones in [35], where uniform stabilization
results are derived for general damped wave equations (7.1) using a non-trivial
spectral conditions on A0. Indeed, in [35], a non-trivial spectral gap condition on
the eigenvalues of A0 is needed, which restricts the range of direct applications to
the 1d case only.

Remark 7.2. One can use the results in [15] to design fully discrete approximation
schemes of (7.1) for which one can guarantee uniform (in both time and space
discretization parameters) stabilization properties.

8. A wave equation observed through y(t) = Bu(t)

In this section, rather than studying an observation operator which involves the
time derivative of solutions of (1.1) as in (1.3), we focus on the case of an obser-
vation of the form

y(t) = Bu(t). (8.1)
The operator B is now assumed to belong to L(D(A0), Y ), where Y is an Hilbert
space.
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Now, the admissibility property for (1.1)-(8.1) consists in the existence, for
every T > 0, of a constant KT such that any solution of (1.1) with initial data
(u0, u1) ∈ D(A0)×D(A1/2

0 ) satisfies∫ T

0

‖Bu(t)‖2Y dt ≤ KT

(∥∥∥A1/2
0 u0

∥∥∥2

X
+ ‖u1‖2X

)
. (8.2)

In particular, when B belongs to L(D(A1/2
0 ), Y ), system (1.1)-(8.1) is obviously

admissible because of the conservation of the energy (1.2).
The observability property for (1.1)-(8.1) now reads as follows: There exist a

time T and a positive constant kT > 0 such that

kT

(∥∥∥A1/2
0 u0

∥∥∥2

X
+ ‖u1‖2X

)
≤
∫ T

0

‖Bu(t)‖2Y dt. (8.3)

Similarly as before, assuming that system (1.1)-(8.1) is admissible and exactly
observable, one can ask if the discrete systems (1.8) observed through

yh(t) = Bπhuh(t), (8.4)

are uniformly admissible and exactly observable in a convenient filtered class.
Below, we provide a partial answer to that question. As before, we can only

consider operators B which belong to L(D(Aκ0 ), Y ) for κ < 1/2. This makes the
admissibility properties obvious since the observation operators Bh = Bπh are
then uniformly bounded as operators from Vh, endowed with the norm

∥∥∥A1/2
0h ·
∥∥∥
h

=∥∥∥A1/2
0 πh·

∥∥∥
X

(see (3.6)), to Y .

We therefore focus on the observability properties of (1.8)-(8.4), for which
we obtain the following:

Theorem 8.1. Let A0 be a self-adjoint positive definite operator with compact re-
solvent and B ∈ L(D(Aκ0 ), Y ) with κ < 1/2. Assume that the maps (πh) satisfy
property (1.10).

Assume that system (1.1)-(8.1) is exactly observable. Then there exist ε > 0,
a time T ∗ and a positive constant k∗ > 0 such that, for any h ∈ (0, 1), any solution
of (1.8) with initial data (u0h, u1h) ∈ Ch(ε/hθ)2 satisfies

k∗

(∥∥∥A1/2
0h u0h

∥∥∥2

h
+ ‖u1h‖2h

)
≤
∫ T∗

0

‖Bπhuh(t)‖2Y dt. (8.5)

The proof of Theorem 8.1 is based on the following spectral characterization:

Theorem 8.2. Let A0 be a self-adjoint positive definite operator on X with compact
resolvent and B ∈ L(D(A0), Y ). Assume that system (1.1)-(8.1) is admissible in
the sense of (8.2). Then system (1.1)-(8.1) is exactly observable if and only if there
exist positive constants m and M such that∥∥∥A1/2

0 u
∥∥∥2

X
≤M2 ‖(A0 − ωI)u‖2X +m2 ‖Bu‖2Y , ∀u ∈ D(A0), ∀ω ∈ I(A0), (8.6)

where I(A0) is the convex hull of the spectrum of A0.
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Besides, if (8.6) holds, then the time T and the constants kT in (8.3) can be
chosen explicitly as functions of the admissibility constants, the first eigenvalue λ1

of A0 and (m,M).

The proof of Theorem 8.2 is left to the reader. We only briefly indicate the
method one can use to show Theorem 8.2. The fact that the exact observability
of (1.1)-(8.1) implies (8.6) can be derived easily using the resolvent estimate in
[28]. The reverse implication, similarly as in Theorem 2.9, can be proved using
Theorem 2.5.

Once Theorem 8.2 is proved, one only needs to prove that there exists ε > 0
small enough and positive constants m∗ and M∗ such that for any h ∈ (0, 1),∥∥∥A1/2

0h uh

∥∥∥2

h
≤M2

∗ ‖(A0h − ωI)uh‖2h +m2
∗ ‖Bhuh‖

2
Y , ∀u ∈ Ch(ε/hθ),∀ω ∈ [0, ε/hθ].

(8.7)
The proof of (8.7) can be done similarly as in Subsection 3.2. The only new estimate
required is the following one: For uh ∈ Ch(ε/hσ),∣∣∣∣ ∥∥∥A1/2

0 Uh

∥∥∥2

X
−
∥∥∥A1/2

0h uh

∥∥∥2

h

∣∣∣∣ = |< A0huh, π
∗
h(Uh − πhuh) >h|

≤ C0h
θ
∥∥∥A1/2

0h uh

∥∥∥
h
‖A0huh‖h ≤ C0εh

θ−σ/2
∥∥∥A1/2

0h uh

∥∥∥2

h
.

The rest of the proof is left to the reader.

9. Further comments

1. A widely open question consists in finding the sharp filtering scale. We think
that the works [6, 7], which present a study of the observability properties of the 1d
wave equation in highly heterogeneous media, might give some insights to address
this issue.

2. In this article, we assumed that the continuous systems are exactly ob-
servable. However, there are several important models of vibrations where the
energy is only weakly observable. That is the case for instance for networks of
vibrating strings [8] or when the Geometric Control Condition is not fulfilled (see
[2, 24]). It would be interesting to address the observability issues for the space
semi-discretizations of such systems. To our knowledge, this issue is widely open.

3. When looking at Theorem 8.1, it is surprising that B has to be assumed
in L(D(Aκ0 ), Y ) with κ < 1/2. There are several cases of interests, as for instance
the wave equation observed from the normal derivative of the boundary, in which
B is not in this class. This question thus deserves further work.

4. Theorem 1.3 can also be applied to Schrödinger systems observed from an
open subset which satisfies the Geometric Control Condition. In this case, it is in-
deed well-known that exact observability properties for the continuous Schrödinger
system hold in arbitrary small time (see [28]). As a by-product of our analysis of
the discrete waves, one can obtain uniform admissibility and exact observability
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results for the discrete Schrödinger systems, still in the same classes of data filtered
at the scale 1/hσ with σ as in (1.12). This improves the results in [10] where the
same results were stated but at a scale 1/hς with ς = θmin{2(1− 2κ), 2/3}. How-
ever, to prove that, under the Geometric Control Condition, the time T of exact
observability for the discrete Schrödinger equations can be made arbitrary small
is not straightforward. A proof is presented in [11], adapting [18] in the discrete
cases.
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[8] R. Dáger and E. Zuazua. Wave propagation, observation and control in 1-d flexible
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