LONG-TIME BEHAVIOR FOR THE TWO-DIMENSIONAL MOTION OF A DISK

IN A VISCOUS FLUID

S. ERVEDOZA, M. HILLAIRET & C. LACAVE

ABSTRACT. In this article, we study the long-time behavior of solutions of the two-dimensional fluid-
rigid disk problem. The motion of the fluid is modeled by the two-dimensional Navier-Stokes equations,
and the disk moves under the influence of the forces exerted by the viscous fluid. We first derive LP-L4
decay estimates for the linearized equations and compute the first term in the asymptotic expansion
of the solutions of the linearized equations. We then apply these computations to derive time-decay
estimates for the solutions to the full Navier-Stokes fluid-rigid disk system.
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We consider the system formed by a rigid disk and a viscous fluid filling the whole plane R%. We
assume that the body initially occupies the disk By and rigidly moves so that at time ¢ it occupies a
domain denoted by B(t) that is isometric to Bg. We denote F(t) := R?\ B(t) the domain occupied

by the fluid at time ¢ starting from the initial domain F := R?\ By.
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When the fluid has constant viscosity v > 0, the equations modeling the dynamics of the system
fluid-rigid disk read

%+(U'V)U*VAU+VPZO for t € (0,00), x € F(1), (1.1)
divu=0  forte (0,00), x € F(t), (1.2)
u(t,z) = K (t) + w(t)(z — h(t))T  fort € (0,00), x € IB(1), (1.3)
lim |u(t,z)|=0  fort e (0,00), (1.4)
|z|—o00
mh"(t) = — /6B(t) Ynds  fort € (0,00), (1.5)
Ju'(t) = —/ (x —h(t)t-Snds  fort e (0,00), (1.6)
aB(1)
uli=0 = up for z € Fy, (1.7)
h(0) = hg, K (0) = £y, w(0) = wp. (1.8)

Here, u = (u1,u2) denotes the velocity-field, p the pressure and ¥ is the Cauchy stress tensor of the
fluid:

Y = —pld + 2vD(u), (1.9)

where Id is the 2 x 2 identity matrix and:
1(3“’“ n 8W) 1<k t<2.

(e =3\ Ba, ¥ By

The constants m and 7 denote respectively the mass and the inertia of the body while the fluid is
supposed to be homogeneous, of density 1 to simplify notations. In this work, we assume that the
solid is homogeneous of density m/7, implying in particular 7 = m/2 (we discuss in Section [5[ about
a generalization). When x = (21, 22) € R?, the vector z* stands for 2 = (—z2,21), n denotes the
unit normal vector to dB(t) pointing outside the fluid domain, A/(t) is the velocity of the center of
mass h(t) of the body and w(t) denotes the angular velocity of the rigid body. Indeed, since B(t) is

isometric to By there exists a rotation matrix

g cos@(t) —sinf(t)
00 "~ Isin@(t) cosB(t) |’

such that the lagrangian coordinates 7(¢, ) associated to the body read:
n(t,z) == h(t) + S (z — ho)-
Furthermore, the angle 6 satisfies ¢'(t) = w(t), and is chosen such that #(0) = 0. Without loss of
generality, we assume that By is the unit disk centered at the origin: h(0) = 0.
Given (ug, fo,wo) € H'(Fp) x R? x R, satisfying the compatibility condition:
divug = 0 in Fo, uo = lo + woz™ on 9By,

T. Takahashi and M. Tucsnak prove in [22] that there exists a unique global strong solution (u, p, h,w)
of (1.1)-(L.8)). The construction is based on the change of variable:

o(t,x) = ult,z — b)),  pt.z) =plt,a—h(t), L) =R(t). (1.10)
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The new unknowns (v, §) are then defined in the fixed domain [0, 00) x (R?\ Bp) and system ((T.1))-(T.8)
reads, in terms of (v, p, ¢, w):

?;t) + (( —{)- V)v —vAv+Vp=0  for (t,x) € (0,00) x Fp, (1.11)
divve=0  for (¢,x) € (0,00) x Fp, (1.12)
v(t,z) = 0(t) +w(t)zt  for (t,z) € (0,00) x IBy, (1.13)
R hm lv(t,z)| =0, fort e (0,00), (1.14)
Tr|—00

ml'(t) = —/ Ynds, fort e (0,00), (1.15)

0By
Ju'(t) = —/ zt - ¥nds, forte (0,00), (1.16)

0Bg

V=0 = v for z € Fy, (1.17)
£(0) = £y, w(0) = wo, (1.18)

with
Y =—pld+2vD(v).

These solutions verify the following energy decay estimate:

L [/ lu(t, z)|* dz + (m|e(t)]* + T|w(t) } +21// / (1,2)|* drda
2 Ur Fo

1
S2[/ [vo(2)[? dz + (mlo* + Tlwol?) |, ¥t >0. (1.19)
Fo

Relying on this estimate, T. Takahashi and M. Tucsnak prove the existence and uniqueness of a global
weak solution to (T.11))—(T.18)) for initial data (vg,fo,wo) such that vy € L?*(Fy) and

divvg = 0, in Fy, vo-n = (b + woxJ‘) -m, on 0By. (1.20)

In this article, we aim at studying the long-time behavior of these weak solutions.

The long-time behavior of solutions to fluid-structure interaction systems has already been tackled
in different ways. In a series of papers, several authors study the asymptotics of systems without
pressure, i.e. where the Navier Stokes equations are replaced by a heat equation [I8], [19] 24] 25]. In
this simplified case, the force applied by the fluid on a solid is modeled by the circulation of the normal
derivative of the velocity-field u on the solid boundaries. In the one-dimensional case in [24, 25], and
then in several dimensions in [19, [I§], the authors show that the multiplier method introduced in [7]
to study the asymptotic behavior of solutions to convection-diffusion equations (also applied to the
porous medium equation in [23]) enables to compute sharp decay estimates and asymptotic expansions
of solutions up to the second order. Even if the divergence-free condition significantly modifies
the equations, we will strongly use the results in [19, [I§].

The long-time behavior of solutions for the full Navier Stokes equations in the whole space is also a
long-standing question that has motivated numerous studies. Applying a Fourier decomposition, M. E.
Schonbek and M. Wiegner show in [21], 27] that the L? norm of the Navier-Stokes solution decreases to
zero, which was a question raised by J. Leray [16]. In [3], A. Carpio obtains a sharp description of the
pressure, which is given by p = A71(div (u - Vu)). Representing then the velocity-field by a Duhamel
formula and using a scaling argument, she computes the development of the solution for long times
up to the second order.

Another approach consists in removing the pressure by taking the curl of the momentum equation:

Orcurlu + u - Veurlu — vAcurlu = 0, (1.21)

where curlu is the vorticity of the fluid. Without boundaries, such an equation yields the decay of
the LP norms of the vorticity curlu. For curlug € L'(R?), such that [ curlug # 0, T. Gallay and C.E.
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Wayne prove in [I1] that the vorticity behaves as t — oo like the heat kernel

2
_ =]

e 4t
</cur1u0> i
s

Note that if curlug is compactly supported and integrable, then thanks to the Biot-Savart law, we
have, for large =,

[ curlug z+ 1
Of course, this implies that uo does not belong to L*(R?) U L?(R?) if [ curlug # 0. Consequently, this

theory corresponds to solutions with infinite energy. For instance, in [11], T. Gallay and C.E. Wayne
deduce that the velocity behaves asymptotically as ¢ — oo like the Lamb-Oseen vector field:

[ eurlug z+

2t |z|? ( — ¢ )
which has infinite energy.

In a domain with boundaries, system has to be completed with boundary conditions. When
Dirichlet boundary conditions are imposed for the velocity-field, one might compute Robin boundary
conditions for the vorticity but with non-dissipative coefficients. Therefore, working on the vorticity
seems difficult. In the case of one obstacle surrounded by a viscous fluid (i.e., when By is fixed and the
system reduces to the Navier-Stokes equations in the exterior domain Fy completed with homogeneous
Dirichlet boundary condition on 0F), the recent works [10] [I2] prove that the first term in the long-
time behavior of the velocity-field is given by the Lamb-Oseen vector field. Their proofs consist in
a perturbative argument showing that the decay estimates for the solutions of the Stokes problem,
which were established in [5], [0, [I7], implies that the nonlinear terms tend faster to zero than the
Stokes solution. To our knowledge, such decay estimates on the Stokes semigroup are only known for
fixed domains with homogeneous Dirichlet boundary conditions for the velocity-field.

The only result considering the long-time behavior of a moving particle inside a Navier Stokes fluid
is due to E. Feireisl and S. Necasova [§]. However, they assume the whole system to be confined in a
bounded container and they take into account the influence of gravity. Hence, they obtain completely
different results with completely different methods. Broadly speaking, they prove that, if the container
has no vertical wall and contains only one particle, the particle reaches the bottom of the container
asymptotically in time.

One of the main steps in [10} 12] is to establish LP — L? decay estimates for solutions to the linear
Stokes equations underlying the Navier Stokes system. Such results are known for fixed domains
with homogeneous Dirichlet boundary condition (see [5, [I7]), but in our case, the linearized Stokes
fluid-solid system reads:

g: —vAv+Vp=0  for (t,x) € (0,00) x Fo, (1.22)

divve=0  for (¢,2) € (0,00) x Fp, (1.23)

v="L(t)+wt)zt  for (t,x) € (0,00) x IBy, (1.24)

lim |v(t,x)]=0  fort e (0,00), (1.25)

|z|—00

ml'(t) = —/ Ynds  fort e (0,00), (1.26)
0By

Ju'(t) = / zt-Ynds  forte (0,00), (1.27)

0B
V=0 = v for x € Fy, (1.28)
£(0) = £y, w(0) = wo. (1.29)

To our knowledge, LP— L4 (p, q # 2) estimates are not available in the literature for solutions of (|1.22))—
(1.29). To be more precise, in [22] , T. Takahashi and M. Tucsnak construct solutions of ([1.22)—(|1.29))
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via a semigroup approach. They show that the semigroup is analytic on £2? (to be defined in
below) in dimension 2. In [28], the semigroup is also proved to be analytic in the counterpart of the
spaces £/° N £P in 3D. However, in both papers the subsequent decay estimates are not sufficient for
our purpose. In the first case, the L? framework only is considered. In the second case, the authors
do not obtain sharp decay estimates.

To state our results precisely we introduce shortly some notations. From a triplet (vg, fo,wp) ver-
ifying (1.20]), we define a divergence-free vector field denoted Vy on R? obtained by extending vy by
lo + wozT in By. Adapted to such Vp, we introduce the functional spaces £P defined as follows:

LP ={V € [P(R?), divV =0in R?, D(V)=01in By}, (p € [1,00]). (1.30)

When p € [1,0), we endow these spaces with the norms

m
VIR, = / vp s / VP
Fo s Bo

It is easy to check that, if V € £P, then V = ¢y + wyz® on By, where

2

by = / V(z)dz, wy = / V(z) -zt da, (1.31)
Bo Bo

s T

and the normal component of V' is continuous across 0By (as in (1.20])). In particular, we remark
that, setting v = V| z,, there holds:

IVIZe ~ ol0 7 + [P+ v .

Such a space is obviously a Banach space as a closed subspace of LP(R?). A straightforward extension
of [0, Theorem I11.2.3] yields that £ N C°(R?) is dense in LP for arbitrary p € (1,00). For p = 2, the
space LP is a Hilbert space as the norm is associated with the scalar product:

(1/,W>£2_/f V-W+% v (1.32)
0 0

For p € (1,00) \ {2}, the same bilinear form enables to identify the dual of £P with £ where p/ is the
conjugate exponent of p.
Naturally, we endow £ with the norm:

[VI[zee = IVl oo (m2) -
For any V € £, we still have V(z) = ¢y + wya® in By with £, and wy defined by (1.31]). Hence,

there holds again:
[V]l.goe ~ max {|[v]| oo (), [V ], lwv [} -

Our first results concern the Cauchy problem for (1.22)-(1.29) in £P and the decay rates of the
constructed solutions. As in [22] 28], we use a semigroup approach:

Theorem 1.1. For each q € (1,00), the Stokes operator of the linear problem (1.22))-(1.29)) generates
a semigroup S(t) on L1 which satisfies the following decay estimates:
e For p € [q,00], there exists K1 = K1(p,q) > 0 such that for every Vy € LI:
1

1
ISEVoller < Kq(vt)r ™ || Vo 2a forall t>0. (1.33)
o Ifq <2, for p € [q,2], there exists Ko = Ks(p,q) > 0 such that for every Vy € L,

IVSE Voo < Ko(wt) 2" 570 [Vollea  for all >0, (1.34)
e For p € [max{2,q},0), there exists K3 = K3(p,q) > 0 such that for every Vp € L1,

IVS@)VollLr(ry) <

(1.35)

141 )
Ka(vt) 27 r q|[Vol za forall 0<t<Z,
1
Ks(vt) a|[Vollza forall t>1.
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Our approach is based on the decomposition of the velocity in spherical harmonics. We show
that the 0-spherical harmonic verifies a heat equation (without pressure) with dynamical boundary
conditions. This enables us to compute decay estimates using the multiplier method of Escobedo-
Zuazua [7] in the same way as in [I8] [19]. The 1-spherical harmonic is the hardest part. A priori,
it verifies an equation with pressure and non-standard boundary conditions. However, we show that
there exists an underlying algebra which enables to reduce this equation to a heat equation (without
pressure) with dynamical boundary conditions. So, we can again reproduce the method of [7] in the
spirit of [I8, 19]. We do not expand the remainder (i.e., the k-spherical harmonic for k£ > 2) in this
part, as we show it satisfies the Stokes equations with Dirichlet boundary condition on By which has
been studied formerly in several papers [5l [17].

Going further in the spherical-harmonic decomposition, we are also able to compute an asymptotic
expansion of the solution to the Stokes system — for well-localized initial data:

Theorem 1.2. For all p € [2,00], and for any Vo € L' N L?(R?, exp(|x|?/4)dx), setting Lo = by, and

'/\;i = (m - 7T)€07
we have
1-1
lim ¢ S@OVo — Uy ()| oy = 0 (1.36)
M
liglot gs() Vo 871’Vt = 0, (1.37)
lim sup ¢ ‘ws Vo’ < 400, (1.38)
t—00
where
1-— e_lflf
UM(t,l‘) =vt|— M-zt

Before going further, let us emphasize the following important remark, which can be easily deduced
from explicit computations: provided M # 0, for all p > 1,

0<11mmft1 1/pHU —hmsupt1 1/pHU HU < 0.

HLP Fo) HLP (Fo) — 7')HLP(R2)

The quantity M represents the total momentum of the system. Indeed, since any Vo € L'(R?)
satisfying the divergence free condition has 0 mean value,

/ Vodx—i-m&):—/ \/E)da:+m€0:(m—7r)€0:/\7l.
Fo By

Therefore, if M # 0, shows that U ; is the first term in the asymptotic expansion of S(t)Vp.

We deduce also from ([1.37] - 1.38) that, prov1ded M = 0, the solid, whose center of mass corresponds
to h S()Ve = fo Cs(s)vo ds goes logarithmically to infinity and stops turning.

If M = 0, then a careful reading of the proof of Theorem |1 . 2| yields

) t5/4
hmsup <W |€S VO‘) < 400 (139)

t—o0
which implies that the disk converges to a fixed state when considering the linearized equations ([1.22)—
(1.29)). Note that the condition M = 0 is satisfied in the following two cases:

e m = T, that is the case of a solid having exactly the same density as the fluid.
e /y = 0, that is the case of a solid whose center of mass has zero initial velocity.

Thus, when M = 0, we expect a different behavior as t — oo of the solutions of the Stokes system

) @)
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With the decay estimates of Theorem at hand, we study the long-time behavior of solutions to

the Navier Stokes system ((1.11))—(1.18]). We prove that, for small initial data, such solutions satisfy
decay estimates similar to the one of the solutions to the Stokes equations:

Theorem 1.3. Let q € (1,2]. Then there exists \o(q) > 0 such that, for all initial data Vo € L9 N L>
satisfying the smallness assumption
1Vollz2 < Ao(g), (1.40)

the unique weak solution V' of (L.11))—(1.18)) with initial data Vi satisfies the following decay estimates:
e for all p € [2,00), there exists H(p,q, Vo) such that

11
sup{ts > ||V (D)ller} < H(p, a,Vp)- (1.41)
>
e there exists Hy(q,Vp) such that
1
stug{tq |0y ()|} < Hy(q, Vo). (1.42)
>

Besides, the function q — Xo(q) can be chosen as an increasing function of q € (1,2] which goes to
zero as q — 1.

The proof of Theorem [I.3| consists of two steps. First, we consider the case ¢ = 2. Following the idea
developed by Kato in [14], we construct successive approximations Y;, which verify the decay estimates
uniformly in n for p = 2, p = 8 and . Next, we pass to the limit to get a solution to the
Navier-Stokes equations with such a time-decay. To reach p € [2,00) we use a bootstrap argument
based on the Duhamel formula as in [3]. We then develop the case ¢ € (1,2) by showing that estimates
are satisfied uniformly by the sequence Y,.

Using then a bootstrap argument allows us to quantify the proximity of the solution of the non-linear

system ([L.11))—(1.18) and of the linear system (|1.22)—(1.29):
Theorem 1.4. Let q € (1,2]. Taking A\o(q) > 0 as in Theorem for any Vo € L£1N L? verifying

(11.40), the unique global solution V' of (L.11))-(1.18|) with initial data Vi verifies: for all p € [2,00)
there exist constants C(p,q, Vo) > 0 for which:

_1 .
iug{tl 2 [|V(t) = SE)Voller} < Clp,a, Vo), if g € (1,4/3), (1.43)
>
v
— p < ifqg =4 1.44
sup {1 IV = SOVl | < Cloa Vo), ifa=1/3 (1.44)
2_1_1 _
iulg{” 2|V = SOVollert < Clpya, Vo) ifq € (4/3,2]. (1.45)
>
Similarly, there exist constants Cy(q, V) > 0 such that
sup;so{tllv (t) — Ly} < Cela Vo), if q € (1,4/3), (1.46)
t
—ly(t) — ¢ < if g =4 1.4
igg{log(t)| V( ) S(t)V0|} = Cf(q’vb)v qu /35 ( 7)
2_1 .
oup(t3 e ()~ tsoal) < Cula Vo). ifa € (4/3,2) (149
>

Let us comment the fact that if the initial data Vg belongs to £9 N £2 for some ¢ € (1,2) and
satisfies the smallness condition ([1.40]), the £P-norm of the difference between the solution of the

complete non-linear system (1.11)—(1.18)) and the linear one, given by S(t)Vy, decays faster than the

a priori decay estimates predicted by Theorem Indeed, we check easily that 1 — % > % — 1 for any

P
2 _1_1.1_1
q>1andthata 5 >E 5foranyq<2.

Combining Theorem and Theorem and taking Ao = Ao(5/4), we can guarantee that, for all
q € (1,2] and all Vy € £9N L2 satisfying ||Vo| 2 < Ao, we have

11
sup{te ||V (t)||cr } < o0.
>2
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Indeed, for ¢ > 5/4, it relies on Theorem and the fact that ¢ — Ao(q) is increasing. For ¢q €
(1,5/4], it is a simple combination of Theorem (for ||[Vollz2 < Ao(5/4) because Vy € L£5/*) with
the decay estimates of Theorem (because Vp € L9). If Vj satisfies the further assumption Vj €
L1 N L2(R?, exp(|z|?/4) dx) with ||[Vp||z2 < Ao(5/4), we can also combine Theorem with Theorem
yielding that, for all p > 2:

1
supt' # ||V (t)] r < o0
t>2

In all these cases, we obtain that the solution to the Navier Stokes system thus decays with time (at
least) as fast as the solution to the Stokes system.

The paper is organized as follows. In next section, we collect some preliminary results. We explain
the decomposition of the velocity-field in spherical harmonics. We then compute the different equations
satisfied by the different modes of the velocity-field and we end up the section by several elliptic lemmas
that will be used further. Section [3|is devoted to the proof of Theorem and Theorem Section
[] contains the proof of Theorem and Theorem The article ends by some comments and open
problems, in particular the lack of the first asymptotic term of the Navier-Stokes solution.

Notations. In the whole article, we use classical notations for function spaces. The symbol
LP(Q,du) stands for the Lebesgue space with respect to measure du defined on an open set Q0 C R™.
If dp is the Lebesgue measure, we drop du. Sobolev spaces are denoted by H™(2), m € Z. Further
notations for function spaces are introduced along the paper. We shall use extensively symbol L
in different fonts (such as £P, £P). This will correspond to variants of Lebesgue spaces. The only
exception concerns .Z.(X) (resp. Z.(X — Y')), which represent the Banach space of continuous linear
operators from a Banach space X to itself (resp. a Banach space X to another Banach space Y).

In what follows, we will use capital letters to denote functions defined on R?, as we did for the
velocity V' above, and denote by the corresponding small characters the restriction on Jy. To be more
precise, for V, W, Z (---) defined on R2, functions v, w, z denote the corresponding restrictions of
V, W, Z on Fog and ly, by ,€z the mean value of V, W, Z on By. In the sequel, when considering
functions W, Z (---) which are constant on By, we will identify them with the couple (w, fw ), (z,0z)
(--+) and write W = (w,lw ), Z = (z,£z). In the case of the velocity V in LP, the restriction of V is
ly + wyx and thus we also identify V' with the triplet (v, fy,wy) and note V = (v, fy, wy).

2. PRELIMINARY RESULTS

We first recall how the Cauchy problem for (|1.22))—(1.29) has been tackled in [22]. Formal energy
estimates imply that, for a sufficiently smooth and localized initial data, V(t) € £2 for all ¢. In
this framework, system (1.22)—(1.29) reduces to the abstract ODE: 9,V + AV = 0, where A is the
unbounded operator with domain:

D(A) ={V € H'(R?), V|5, € H*(Fp), divV =0in R*, D(V) =0in By} (2.1)
such that for V€ D(A4), AV := Py AV with
—vAV in Fo,
AV = 2v

2
D(V)nds + VxJ‘/ yt-D(V)nds(y) in By,
m JoB, J Jos

and where Py is the orthogonal projector from L?(R?) onto £2.

For arbitrary p € [1,00), LP is a closed subspace of LP(R?). Hence we can define P, the projector
operators from LP(R?) onto £P which coincide with Py on LP(R?) N L?(R?) (see e.g. [28]). These
projectors are obviously continuous and satisfy P,V = P,V for all V€ LP N L9. In what follows, we
omit the index p. We emphasize that the pressure does not appear in the abstract ODE. But, once
a solution V is constructed, one shows the existence of a pressure such that f holds true
(see the proof of Corollary 4.3 in [22]). According to this, for sake of simplicity we omit to mention

the pressure when considering solutions of ([1.22))—(1.29)).
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Proposition 4.2 in [22] shows that A is a self-adjoint maximal monotone operator. Therefore,
applying Hille-Yosida theorem (see e.g. [2, Theorem 7.7]) yields global solutions to (1.22))—(1.29) for
arbitrary initial data Vj € £2. Furthermore, there holds:

V()2 < Vollgz,  VEeRT,
and there exists a constant C' such that
C

10V ()l 2 = 1AV ()l 22 < — Vol

Using the identity
VIIDV) 225 = (AV, V)2

for Ve D(A), see [22], p.61], Lemma 4.1 in [22] implies
1%
Vit

Hence, previous results in [22] imply Theorem when ¢ =p = 2.
To generalize this result to arbitrary values for p and ¢, we provide here an original decomposition
of V(¢).

IVV)ll L2z < — [Voll 2 -

2.1. Spherical-harmonic decomposition of £? spaces. To motivate the spherical-harmonic de-
composition of £P, assume for instance that V' € L is smooth and denote (fy/,wy) € R? x R the only
pair such that V(z) = ¢y + wya® in By. As V is divergence-free, there exists U e C*°(R?) such that
V = VU Fixing ¥(0) = 0 yields:

. 1 .
U(z) = §wv|x|2 + 0y -zt, inBy.

Consequently, introducing radial coordinates (r,#) and expanding U in Fourier series:

U(r,0) =Y Wi(r)cos(kO) + Y By(r)sin(kf), V(r,0) € (0,00) x (=),
k=0 k=1

we observe that, setting fy,1 = {y - e1, fy2 = ly - ea: where e; and ey is the canonical orthonormal
basis of R?:

Wo(r) = ‘%’7«2’ Uy(r) = lygr, ®i(r)=—Llyyr, Vre(0,1),

Up(r) =0, @k(r)=0, Vk>2, Vre(0,1).

Then, informations on wy and £y are contained in the zero and first modes of W respectively, so that
these modes are handled separately from the others. In particular, we focus on 0,¥g, &1, ¥y, that we
denote by W, ®, ¥ respectively and regroup the other terms into a remainder. In what follows, we
still denote (r,#) radial coordinates and introduce (e,, ey) the associated local basis. Accordingly, we
denote by V,. and Vjy the radial and tangential components of a vector V. To state our result precisely,
we also introduce, for p € [1, 00|, the set

LP(Fo) ={V € LP, V =0 on By}.

Though this space contains functions defined on R?, we will often identify the elements of L5 (Fy) with
their restrictions on Fj.

Proposition 2.1. Let p € [1,00] and V' € LP, then there exists a unique 4-uplet (W, ¥, D Vg) such
that:

(i) V(r,0) = W(r)min(r, 1)eq(0) + V[¥(r) cos(0)] + V[@(r) sin(8)] + Vgr(r, 0),
(i) W =W(r) € LP((0,00),rdr), and W is constant on (0,1): W(r) = by = wy forr € (0,1).
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(iii) (¥, ®) = (¥(r), ®(r)) € WP (0,00) with

< Mw(r)? d
[ [[Ep + |2
0 r T
and the functions ¥/r, ®/r,0,V,0,® are constant on (0,1): ¥(r)/r = 0,V(r) =y = Ly and
O(r)/r = 0,P(r) = 41 = =Ly, forr e (0,1).
(iv) Vg = Vg(z) € LE(Fo) and the following identities hold true:
2m

2w 2
/ Vr(r,8)-e, cos(0) df = / Vr(r,0)-e,sin(0) df = Vr(r,0)-egdd =0, Vre(l,oo). (2.2)
0 0 0

Furthermore, there exists a constant C(p) depending only on p such that

P
+ |87~\If(7‘)|2 + |8T<I>(r)|p} rdr < oo,

IWlzeo00)rary +  IVRILr(®2)
+ Haf\IIHLP((O,oo),TdT) + ”\IJ/THLP((O,OO),rdr)
+ ||6T(I)||LP((O,OO),7"dT) + ||<I>/T||LP((0,OO),rd7‘) < C(p)HVHEP . (23)

There exists also a constant C(p) depending only on p so that conversely:
HVHEP < C(p)(HWHLp((O,OO)7TdT) + HVRHLP(RQ) + Ha"‘\II”LP((O,oo),rdr) + H\IJ/THLP((O,OO),TCIT)

10l 250,001 rar) + 12/71| 150001007 ) (2.4)
and
IVV o7y < C(p)(HaTWHLP((l,oo),rdr) + W/l o (1,00) rdry + IV VRI Lo (7y)
10 W | Lo ((1,00)rdr) + 100 /7] Lo((1,00) ) + 19 /72 Lo ((1,00)rdr)
[0 @[ Lr((1,00),rdr) T 10-@/7 || Lr((1,00),rdr) + ||(I)/T2HLP((1,<X>),Tdr)) - (2.5)

Proof. Let p € [1,00]. We first note that, given Vg € L5 (Fp), it is possible to define by duality the
functions:
27 2w 2
T / Vr(r,0) - e, cos(9)dl, r+— Vr(r,0) - e,.sin(0)dd, r+— / Vr(r,0) - epdb,
0 0 0
on (0,00). This yields Llloc(l, o0) functions which might satisfy (2.2). Also, once ®, ¥ and W, Vg are

constructed with the regularity of (ii)—(iv), then (i) yields:

Vi(r,0) = \117(47’) sin(f) — <I>£:r) cos(0) + Vr(r,0) - ey, (2.6)
Vo(r,0) = W(r)min(1l,r)+ 0,V(r)cos(f) + 0,®(r)sin(0) + Vr(r,0) - ey . (2.7)

This implies (2.4) and (2.5]).
To prove existence and uniqueness of W, ®, ¥, we assume V € LP. With this further assumption,
identities (2.6 and (2.7)) together with (2.2]) imply that the only possible candidates W, ®, ¥ are the

following functions:

1 2w
T 2.
W(r) 27Tmm(17r)/0 Vo(r,0)do, (2.8)
2
o) = —_ [ Vi(r,0)cos(d)do, (2.9)
™ Jo
2m
U(r) = = | Vi(r,0)sin(0)ds. (2.10)
T Jo
Differentiating the formulas (2.9)—(2.10) and recalling that V' is divergence-free then yields:

27 27
0, 0(r) = - /0 Vo(r,0)sin(6) o, 9,0(r) = - /0 Vi(r, 0) cos(0) d6

s m
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(where these identities have to be understood in the sense of D’(0,c0)) and we have then

Vg =V — (Wmin(1,7)eg + V[ cos(0)] + V@ sin(0)]). (2.11)

In the ball, we deduce from these definitions and from V = ¢y + wyz* that for all € (0,1):
W(r)=wy, Y(r)/r=0Y(r)="Llyy, &(r)/r=0.2(r)=—Llyv1, Vr=0.
From the definition (2.8 of W, Jensen inequality implies that:

1 21
(W (r)P < 277/ ValP(r,0)d0  Yr>1.
0

Combining with the remark that W (r) = wy for r < 1, we obtain there exists a constant C' for which
IWlze((0,00) rar) < C(P)[|V ]| 2p. Similarly, we prove that

”8T\IJ||LP((O,OO),rdr) =+ ||\II/T”LP((O,OO),T‘dT) < C(p)HVHﬁp )
”8T(I)HLP((O,OO),rdT) + H(I)/T”Lp(((),oo),rdr) < C(p)HVHﬁp .

Finally, straightforward computations yield that Vy is divergence-free, vanishes in By and satisfies
(2.2). As, combining previous estimates and (2.11)) also yields that Vp € LP, we conclude that
Vr € L5 (Fp) and that (2.3)) holds true. This ends the proof of Proposition O

Of course, Proposition and Theorem hold true if we replace the norms || - [|zr by || - || Lr(w2)-
We have chosen to keep the notations of Takahashi and Tucsnak [22], where they prove that A is a
self-adjoint maximal monotone operator for the scalar product .

Let us also emphasize that in Proposition all the functions (W, 0, ¥, ¥ /r, 0,®,®/r,vgr) defined
on R? are constant on By, so that we can identify these extensions with the pairs given by their
restriction to Fp, denoted will small caps, and their mean value on the ball By, denoted ¢. For
instance, we will write W = (w, fy). Moreover, in all the text, we will identify £y (t) = lyy ().

2.2. Decomposition in spherical harmonics of the Stokes semigroup. In the rest of this section
and in Section we only consider smooth initial data, namely Vy € £2NCS°(R?). Indeed, it is sufficient
to show Theorem for smooth initial data, because £2 N C°(R?) is dense in £4, for the £ norm
with ¢ € (1,00). So the estimates — could be extended, thanks to the linearity of the Stokes
System.

In this paragraph, we prove that the spherical-harmonic decomposition of £ is well-adapted to

compute solutions of ([1.22)—(1.29). We prove:

Proposition 2.2. Given Vo € L2NCX(R?), the spherical-harmonic decomposition provided by Propo-
sition of the unique solution V € C([0,00); L?) of (1.22)—(1.29) satisfies:
o W = (w,ly), where w € C([0,00), L2((1,00),rdr)) N C>®((0,00) x [1,00)) verifies:

Ow + v (—i&(rarw) + 7}210) =0 for (t,r) € (0,00) x (1, 00); (2.12)
w(t,1) = by (t) fort € (0,00); (2.13)
() = Q;T(Orw(t, D—w(t,1)  fort e (0,00); (2.14)

hd ar\IJ = (ar¢7€2) and \IJ/T‘ = (711/7’,[2)} where 5r7/1,¢’/7" € C([O,OO);LQ((l,OO>,’I"d’I")), ?l) €
C®((0,00) x [1,00)) and there exists a pressure g1 € C*((0,00) x [1,00)) satisfying Orq1 €
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C((0,00); L?((1,00),7dr)) such that:

oy + v (—i&(r@rw) + 7,121/1) = —rorqq for (t,r) € (0,00) x (1,00);  (2.15)

00,0+ v0r (~10,000) + 50) ==L for () € (0,00 x (1) (219
¢(t7 1) = 8ﬂl)(t, 1) = £2(t) fort e (07 OO); (217)
") = ~au(t.1) ~ v (—iamam T Hb) (t1)  forte (0,00 (2.18)

© 0, ® = (Orp,—L1) and ®/r = (p/r,—L1), where (Drp, /1) € C([0,00); L*((1,00),rdr)), ¢ €
C*((0,00) x [1,00)) and there exists a pressure py € C>((0,00) x [1,00)) satisfying Orp1 €
C((0,00); L?((1,00),7dr)) such that:

1 1
81590 +v <Tar(rar30) + rg@) = Tarpl for (ta T) € (07 OO) X (15 OO); (2'19>

0o+ 0, (~10.0r0) + o) =2 for () € (000) X (Loc)s (220
o(t, 1) = 0rep(t,1) = —£y1(t) fort € (0,00); (2.21)
géﬁ(t) =—pi(t,1) +v (—i@r(rﬁrtp) + ;ga) (¢,1) fort € (0,00); (2.22)

o Vi = (08, 0), where vp € C([0, 50), L?(F3))NC((0, 00) x F) and there exists pr € C((0, 50) x
Fo) such that:

Owr —vAvg +Vpr =0 for (t,z) € (0,00) X Fo; (2.23)
divop =0 for (t,x) € (0,00) X Fo; (2.24)
vr(t,z) =0 for (t,x) € (0,00) x 0By. (2.25)

We postpone the proof of Proposition to Appendix [A] This mainly consists of tedious compu-
tations.

The main interest of Proposition is that it reduces the study of the Stokes semigroup to the
study of scalar equations for the modes involving non-trivial boundary conditions and one Stokes
equation with homogeneous boundary conditions on the obstacle. Indeed:

e System ([2.12)—(2.14)) is a scalar heat equation with dynamic boundary condition.
e System ([2.23))—(2.25)) is a Stokes equation with a fixed obstacle and Dirichlet boundary condi-
tion.

e Systems (2.15)-(2.18) and (2.19)-(2.22) are similar one to each other. Actually, (¢,p1,¢1)
solves (2.19)—(2.22) if and only if (—p,p1,¢1) solves ([2.15)—(2.18). System ([2.15)—(2.18]) in-

volves two scalar heat equations (2.15)—(2.16)) which contain the term ¢; reminiscent from the
pressure. It also involves intricate boundary conditions (2.17)—(2.18)) which couples Dirichlet
(1(t,1)), Neumann (0,1 (t, 1)) and dynamic (see (2.18))) boundary conditions.
Whereas systems (2.12))-(2.14) and (2.23)-(2.25|) are classical and widely studied in the literature,
@-19)

systems (|2.15))-([2.18) and -(2.22) do not seem known and are the main challenge of our study.

Actually, we show that systems (2.15))-(2.18]) and (2.19)-(2.22)) reduce to a heat equation with dynamic
boundary conditions. Concerning 1 for instance, our strategy consists of removing the pressure term

and reduce ([2.15)-(2.18]) to a scalar equation for the new unknown:
W(r)
r

20r) == 0,0(r) + V) _ %ar[r\y(r)] . Ve (0,00), (2.26)

which, in particular, is a constant function on the ball By, denoted by ¢z, and for which we have

Z(T‘) =¥{y; Vre (0, 1), by = 205. (2.27)
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Note that, using the definition ([2.26|) of Z and the fact the ¥(r)/r = {2 on the unit ball, identity (2.27)
immediately implies 0, ¥ = ¢35 on the unit ball, thus being completely compatible with the boundary

conditions ([2.17]).

Indeed, using this new unknown, we get:

Proposition 2.3. Given Vy € L2NCX(R?), let (W, ¥, ®, VR) be the spherical-harmonic decomposition
given by Proposition of the solution V € C([0,00); £2) of (1.22)-(1.29). Then, setting Z = (2,£z)
s in (220), (or 7 = —0n(r®)/r),

e 2 € C([0,00); L?((1,00),7dr)) N C>((0,00) x [1,00))

e (z,0z) is a solution to:

Oz — I/<87~T + %ar)z =0 for (t,r) € (0,00) x (1, 00); (2.28)
z(t,1) = Lz(t) fort € (0, 00); (2.29)
0 (t) = aprdrz(t,1) fort € (0, 00); (2.30)
with
ap = ﬂfm. (2.31)

Proof. Up to a change of sign, we focus on Z = 9,(rW¥)/r. Thanks to the regularity proved in Propo-
sition we have (9,1, /r) € C([0,00); L?((1,00),rdr)). Consequently z = d,v + 1/r enjoys the
same regularity. The smoothness of z is straightforward.

Differentiating (2.15)) with respect to r and subtracting (2.16)), the pressure ¢;(¢) satisfies, for each
time ¢ > O:

1 1
—;c%(r@rql) t o= 0, forre(1,00).

Hence ¢i(t,7) = aq(t)r + 'gl,r(t). Of course, the condition 8,q1 € L?((1,00),r dr) implies that:
Ai(t)

a(tr)=—"-, (2.32)
and therefore, for all ¢ > 0 and r > 1,
a1
—Orq1 = —.
”

With this identity, the pressure can be removed simply by adding (2.16)) to 1/r times (2.15):

o [(a,n + Id) zp} +v (ar + Id) <—1ar(rarw) + 12¢) =0.
T T T T

Using (2.26),
1 1
87~z = — <_T8r(rar¢) + 7"2 ¢> 3 (233)

and the new variable z in (2.26)) solves (2.28]).
Concerning the boundary conditions, (2.17)) reads as

2(t,1) = 265(t) = £z(2)
and, using (2.33)) and (2.32)), (2.18]) yields
(1) = ~Pr(0) +vr(1,1).

Moreover, still using (2.33)) and (2.32)), (2.15) for » =1 and (2.17)) gives
0 (t) —vdz(t,1) = Bi(t).
Combining the previous equations, (z,fz) solves (12.28])-(2.30). O
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Remark 2.4. In what follows, given V = (v,4,w) a solution to ([1.22)—(1.29) on (0, c0), we keep the
convention:
v(t,r)

r

Zy(t,r) =0, U(t,r) +

, Zo(t,r) = — (37@(15,7") 4 ‘I’(iT)

> , V(t,r) € [0,00) x (0,00) .
We emphasize that, for ¢ > 0, V(¢,-) has continuous normal and tangential traces through 0By, and
thus then Zg(t,-) and Zy(t,-) have continuous traces through the interface r = 1.

Remark 2.5. As we recalled in the introduction, the classical approach would rather consist in the
elimination of the pressure in the Navier Stokes system by taking the curl of the Navier Stokes equation,
yielding that way an equation for the vorticity of the velocity-field. But this is not the method we
choose here. Indeed, in an exterior domain, one should complete the vorticity equation, and this would
yield non-dissipative boundary conditions of Robin type.

2.3. Some elliptic problems. To conclude this section, we prove some technical lemmas that will
be useful later on. Indeed, in order to compute the decay of the Stokes semigroup, we study the decay
of solutions to the heat equation —. This gives the decay of the new unknown z whether
it is computed with respect to ¢ or ¥. However, to our purpose, we need then to invert the definition
of z in order to get also the decay of ¢ and ¢ in suitable spaces. This is the content of the following
proposition:

Proposition 2.6. Given p € (1,00] and (z,0) € LP((1,00),rdr) x R, there exists a unique 1) €
Wb P(1,00) solution to the following boundary value problem:

loc
or(r) + 1[13“) = z(r), forr e (1,00), (2.34)
(1) = ¢, (2.35)

and there ezists a constant C(p) depending only on p for which:

< C) (12l Lr((1,00) rary + 1€1) - (2.36)
Lp((1,00),rdr)

”81”1/]||Lp((1,oo),rdr) +

Proof. Let p € (1,00] and (z,¢) satisfy the assumptions of Proposition It is straightforward that
the unique solution to (2.34)-(2.35)) reads:

%Z)(T):g—l-l/rsz(s)ds, Vr>1.
1

r r

If p = oo, we establish easily (2.36)) from this formula. If p € (1, 00), up to a regularizing argument
we skip for conciseness, we multiply (2.34) by ||P~2/rP~1 on [1, R], for arbitrary R > 1:

¢ [ (r) [P R0, |yfp By
/ 2[wp[P~ 2 rdr = [ e L (p—1) (/1 o alr—/1 " rdr)
L[g(r)P]" 1\ (5 g
- Sl () [ e
P 1\ [F|yp
Srr(i=0) [

Y

Hence, for all p € (1, 00),

p ¥ p—1
4 SOy e
LP((1,R),rdr) LP' ((1,R),rdr)
Wy
< OO el prirmoyran | © P,
Lp((1,R),rdr)




LONG-TIME BEHAVIOR OF FLUID-SOLID INTERACTION 15

This yields

Y
; < C(p> (HZHLP((l,oo),rdr) + ’e‘) :
Lr((1,R),rdr)
Letting then R — oo we obtain ([2.36]). ]

Let us now state another elliptic estimate that will be useful in the following:

Proposition 2.7. Letp € (1,00)\{2} and assume that z € LP((1,00),rdr) and 0,z € LP((1,00),rdr).
There exists a constant C(p) depending only on p such that:

z

< C(p) (110r 21l Lo ((1,00),rr) + Epl2(1)]) (2.37)

Lr((1,00),rdr)

wherespzlifp>2and5p:01fp<2.

Proof. As z belongs to T/Vllo’f(l, oo), we infer that it is continuous and we integrate by parts on [1, R):

Z||P 1 1 rlz2P1B  p /R |2[P220,2
- = —— Oy dr = — d
Hr’ L?((1,R),rdr) p—2 ]z\ ( P 2) " p—2 [7’1’—2]1+p—2 1 T
1 |2(R)[” p z|[p~1
o9 DP - Or 00),rdr ’
< WJOAH 7 ) g 100 an) |y

Then, the following depends on the sign of p — 2:

e if p > 2, we directly have that
p—1
LP((1,R),rdr)’

P <
Lr((LR),rdr)” p — 2

which gives (2.37) with ¢, = 1.
o if p < 2, we get

P 1 [z(R)]P
< 2—p Rp—2 + 2 ||a zHLP( (1,00),rdr)

z

P 2
|2(1)[P + ZfQHaTZHLP((Loo),rdr) -

p—1
r ILP((1,R), rdr)

r I Lp((1,R),rdr)

; ‘

. ‘

To establish (2.37) with ¢, = 0, it is sufficient to find a sequence R, — oo such that
(|2(R,)|PR,,) tends to zero. This can obviously be done since r — r|z(r)|P is assumed to
belong to L'(1, c0).

0

We finally provide elliptic estimates that will be useful when getting estimates on the 0-mode:

Proposition 2.8. Let p € (1,00) and assume that w € LP((1,00),rdr) satisfies

Brrw(r)nLer(;) = f(r), forr e (1,00);

Orw(l) —w(l) = a, w(l) = b,

for some f € LP((1,00),rdr), a, b in R. Then, there exists a constant C(p) depending only on p for
which:

w(r)
2

10l 22,000 a0y + || = < C@) (11l r(1.00).rar) + lal) - (2.38)

r Lp((1,00),rdr)
Furthermore, if p # 2,

%

< (p) (HfHLp((l,oo),rdr) + ’a‘ + Ep’b’) ’ (239>

LP((1,00),rdr) H r2 LP((1,00),rdr)

withep, =1 1fp>2ande, =0 if p < 2.
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Proof. We define w = w(r)/r for r > 1. Then, @ satisfies

rOppw(r) + 30,w(r) = f(r), for r € (1,00); (2.40)
ow(l) = a, (2.41)

Following the method of the proof of Proposition we multiply (2.40) by |0,@|P~20,40 on [1,R].
After integration by parts, this yields:

R 1 R 2 R
flopoP2o,ardr = = [P19,0P]) + (3= |0, B[P rdr
1 p 1 p 1

P 2 R
—ﬂ + (3 - > / |0y |P rdr .
b p 1

”aT’UN)HLP((l,oo),Tdr) < C(p) (HfHLp((l,oo),rdr) + ’CL‘) : (242)

Expanding 0,w, we remark that 0,,w = f — 0,w so that (2.42) implies (2.38)).
If p # 2, we then apply Proposition [2.7] to d,w. This yields

\Y]

We conclude that:

w
= b|) . 2.4
il 200 b1
Since 0, = dyw/r —w / r*, estimates and (2.43) immediately yield (2.39). O

3. STUDY OF SOLUTIONS TO (|1.22))—(|1.29])

The ultimate goal of this section is to prove Theorem and Theorem In all this sec-
tion, we assume that v = 1 for simplicity. This can be done without loss of generality by setting
(Vu(t,z), P,(t,x)) := (V(t/v,z), P(t/v,z)/v). Because of the computations we presented in the pre-
vious section, we first analyze separately the decay of solutions to the Stokes equation with a fixed
obstacle and then, we compute the long-time behavior of solutions to both heat equations with dy-
namic boundary conditions. We conclude by combining all these computations.

3.1. Decay of solutions to ([2.23))—(2.25]). System (2.23)—(2.25) has already been studied in the
frame of LB (Fy) spaces [5, Theorem 1.2], [6]:

Theorem 3.1. For each q € (1,00), the Stokes operator of the linear problem ([2.23))-(2.25)) generates
a semigroup Sgr(t) on LE(Fo). Moreover, this semigroup satisfies the following decay estimates for

vg(t,-) = Sr(t)vr(0,-):
e For p € [q,00], there exists K1.g = K1 r(p,q) > 0 such that for every vg(0,-) € LL(Fy),

lvr(t, )|l e ) < K Rtp f1||vR( )||Lq (Fo) * for all t>0. (3.1)

o Ifq <2, forp € [q,2], there exists Ko p = Ko r(p,q) > 0 such that for every vg(0,-) € LI (F),

z 1vR(0, ) La (7)) - for all t>0. (3.2)

e For p € [max{2, q}, ), there exists K3 p = K3 r(p,q) > 0 such that for every vgr(0,-) € L&(Fp),

1
IVur(t, e (F) < Kort 3ty

Kspt 25 a||ug(0, e (7o) forall 0<t<1,

(3.3)
Kspt QHvR( Meax) forall t>1.

IVor(t, )l e S{

For localized initial data it is possible to obtain a much sharper description of the long-time behavior
of vy by following the spirit of our spherical-harmonic decomposition. To this end, we need a general
result on the decay of solutions to heat equations with dynamic boundary conditions. This result is
detailed in the following subsection. So, we postpone the more precise computation of the long-time

behavior of vg to the end of this section (see Theorem [3.13)).
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3.2. Semigroup estimates. We proceed with the computation of the long-time behavior of solutions
to (2.12)—(2.14)) and (2.28)—(2.30). We note that both equations are examples of the family of systems:

2
@y+(—iavag»+ﬂy>:o, for (t.7) € (0,00) x (1,7); (3.4)
y(t,1) = by (t), for (t,7) € (0,00) x (1,7); (3.5)
by (t) = a(yy(t,1) — ky(t,1)),  forte (0,00); (3.6)

with parameters @ > 0 and & € N U {0}. Indeed (z,£¢z) solution of (2.28)—(2.30)) is a solution to
(3-4)—(3.6]) in the case

4
k=0 a=—0
T™+m
whereas (w, fyy) solution of (2.12)—(2.14)) is a solution to (3.4)—(3.6]) in the case
27
k=1 a=—.
J

To compute the decay of solutions to (3.4)—(3.6]), we use classical methods for parabolic equations
(see [7, 23], 24), 19]). In our context, due to the presence of the solid, we shall refer extensively to the
works [19] 18] of A. Munnier and E. Zuazua which study thoroughly the equation

Ov — Agnv =0, for (¢t,z) € (0,00) x R"™\B(0,1),
v(t,x) = 4y(t), for (t,x) € (0,00) x S*71, (3.7)

U (t) = « Orv(t,x)do, fort e (0,00),
Sn—1
where a > 0 is a fixed real number. Formally, for arbitrary k € N, (y, fy’) is a solution to (3.4])—(3.6)
if and only if the pair (v, ¢,) defined by

Gt = by (), v(trw) = y%“, Wr>1, Vwes™! (3.9)

is a solution of equation (3.7)) for

o«
s
In this subsection, we fix k£ € NU {0} and & > 0 and study the long-time behavior of the solution

of system (3.4)—(3.6). By (3.9)), this fixes also values for n and «.

In order to study system (3.7), A. Munnier and E. Zuazua introduce the functional spaces
SP(RY) = {Y € IP(R"), VY =0in BO,1)},  (p € [1,0)),

n=2k+2, « (3.9)

endowed with the norm:
1
||YH1;;p(Rn) = ”?/H}Z,p([@n\B(oJ)) + E‘EY‘p7 when p < oo,
Y| oo (ry = max(||yl| oo (rm\ B(0,1))> ¥ 1), corresponding to p = oo,

where /vy is the mean value of Y in the ball:

1
by = / Y (x)dx.
Y B(0,1)] B(0,1) (=)

As before, in what follows, we identify (v, f,) € LP(R™\ B(0,1)) x R with the extension V € £P(R")
given by V = 1p(01)lv + 1gn\B(0,1)V, and we shall write V = (v, {y) to denote this extension.
We also introduce a radial variant of £P(R?)-spaces:

£P .= {Y = (y,ly) radial function, such that Y € £°(R?)}.
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This space is endowed with the norm:
27
¥l = 9l Zo iz + = 16017 when p < oo,
1Y llew = max((lylzory). 1), corresponding t0 p = oo.

In the case p = 2, this space is a Hilbert space associated with the scalar product:
~ . 27
(Y, Y) = / Yy + Tgyff/.
Fo «
For p # 2, extending this scalar product by a density argument enables to identify the dual of £P with

7" where p/ is the conjugate exponent of p.

With these notations, A. Munnier and E. Zuazua prove in [19] [18]:

Theorem 3.2 (Decay estimates for (3.7), [19, 18]). Given (vo,fy,) € £2(R™), there exists a unique

solution (v, £y) € C([0,00); L2(R™)) of (3.7) such that (v(0,-),£,(0)) = (vo, £y, ). This solution satisfies:

(v (), b (@)l g2y < [1(Vos bw )l e2mny, V2 0. (3.10)

Moreover, if (vo,ly,) € L1R"), for some q € [1,00], for all p € [q, 0], there exists a constant C(p,q)
such that

FBOAYD (1, ) (8 ) < (0, b lgnqany . ¥ 1. (3.11)

Theorem 3.3 (First term in the asymptotic expansion of solutions of (3.7)), [19,[18]). Given (vo,ly,) €
£2(R™) such that vo € L*(R™\ B(0,1);exp(|z|?/4)dx), setting
1
M = vo(z) do + —4y, ,
R™\B(0,1) a

we get
o for allt >0 and p € [1,00], (v(t,-), 4 (1)) € LP(R™)
o for all p € [1,00], there exists a constant C), such that for allt > 0,

20V [v(t, ) = MG o o1y < CoRip(t),

n M
t2 |0y(t) — = < CRy(t),
(4mt)2
where ]
1 T
G(t,z) = —exp| —— |,
o) = oy e (<)

and, denoting by o, the Kronecker symbol:

(On.2| log(t)] + 1)t~1/2 ifpe 1,2, . n (p—1)(p—n)

Ry p(t) 1/246 . with Oy p = — ,
(On,2|log ()] + 1)t wrifp > 2, 2p(2p+n(p—1))

Ry(t) = (Snz2llog(t)]"/? + 1)e 1/ ("F2),

We do not give a comprehensive proof of Theorems (3.2 and let the reader refer to [18, [19] for
further details. Let us only recall that the proof of Theorem is based on the remark that (|3.7])
reduces to the abstract ODE: 9,V + A,,,V = 0, where A,,, is the unbounded operator with domain

D(Ap:) ={V = (v,4,) € H*(R"™\B(0,1)) x R with vjj;—1 = £}, (3.12)
such that:
—A- 0 —Av
Aps (v, 0y) = V) = . 3.13
(v, &) —a/ Op -do 0 <€v> —a/ Opvdo ( )
Sn—l Sn—l

A. Munnier and E. Zuazua show that this operator is maximal monotone which implies the existence
of a contraction semigroup on £2(R") representing the unique solution to (3.7). Further classical
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smoothing properties of this semigroup also yield that, for (vo,4y,) € D(Apm:), the unique solution to
satisfies:

V e ([0, 0); £2(R™)) N C([0,00); D(Armyz)) - (3.14)
We remark that is rotational invariant. Hence, considering radial data and noting that transfor-

mation (3.8) is a bi-continuous one-to-one and onto mapping from £2 to radial functions in £2(R")
(with n = 2k + 2), Theorem implies:

Theorem 3.4. Given Yy € £2 there exists a unique solution Y € C([0,00); £2) of (3.4)(3.6) such
that Y (0,-) = Yy. This solution satisfies:

1Y (#)lle2 < [[Yollgz, VE=0.

This theorem implies again that the solution to f is given by a contraction semigroup on
£2 denoted by Sy in what follows. The results in [19] 18] are not sufficient for our purposes. Indeed,
we also have to compute decay rates in £P — £7 spaces, similar to the ones in . But, when n # 2
(equivalently k # 0) and p # 2, the transformation is not an isometry between £P(R") and £P,
so that the “change of dimension” argument does not yield the expected result. Besides, we will also
derive estimates on the 9.y, y/r, Oy, Opy/r, and y/r? in LP(Fy), for which no precise estimates were
given in [19, [I8], except in the case p = 2.

In the following subsection, we adapt the arguments of [19, 18] to system f to estimate
the decay of Sy in £P. We then explain how to derive estimates on the derivatives of solutions of
ED G in .

3.2.1. £P — £7 estimates on y. Inspired in [19] [I8] , we prove the following £° — £9 decay estimates

for solutions of ({3.4])—(3.6):
Theorem 3.5. For all q € [1,00), system (3.4)—(3.6) is well-posed in £1: given Yy € £9 there is one
unique solution Y of (3.4) (3.6 in C(]0,00); £7). This solution satisfies:

1Y ()l ga < 1Yol ga - (3.15)

We furthermore have the following £P estimates: for all p € [q,o0], Y belongs to C((0,00); £P) and
there exists a constant C' such that

VPV (1) gp < CllYollga, >0, (3.16)
Furthermore, if Yy also belongs to £, we also have ||Y (t)]|g00 < ||Y0]| goo -

Before going into the proof of Theorem let us emphasize that estimates (3.15)—(3.16) are
different from the ones in (3.11)) when &k = 1, i.e. n = 4, that corresponds to (w, fyy) solutions of

(2.12))—(2.14]). To be more precise, in that case, using the transformation (3.8) for » > 1, (3.11f) would

then read: for all ¢ € [1,00], p € [g, 0], there exists a constant C' such that for all Wy = (wo, fw,)
satisfying wo/r € L4(R*\ B(0,1)), the solution W = (w, fy) of (2.12))-(2.14)) satisfies, for all ¢ > 0,
wo
<] (50 g gy
Lr@n\so1) = I\ e

Hence, the solution W of (2.12)—(2.14) will simultaneously satisfy the decay estimates (3.16]) and
(3.17)). Actually, as we explain below, both results can be proved following the same strategy based
on suitable multipliers, the only difference being Sobolev’s embeddings.

Proof. Let Yy € £2 and Y = (y,ly) € C([0,00); £%) be the unique solution to (3.4)-(3.6) given by
Theorem Up to assume that Yy is sufficiently smooth and vanish sufficiently rapidly at infinity
we can apply the regularizing effect of the semigroup in R™ (see ) so that, going back in R? we
have Y € C([0,00); H'(R?)) and y € C([0,00); H?(Fy)) . Then, the idea is to multiply equation
by j'(y) for smooth non-decreasing convex functional j = j(y) with at most linear growth at infinity.
After integration by parts, this yields

o ( /f )+ 251(@)) + /f )T + 2 ety + 12 /f 0 j]gjf'gy —o. (3.18)

12(1/a-1/p) H@’
.

(3.17)
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After a classical regularization argument, one can show that such estimate can be extended to the
convex functionals j(y) = |y|?, for ¢ € [1,00), and this yields:

d
2 (V&) <o. (3.19)
Similarly, using functionals of the form j(y) = (y — K), after a suitable regularization argument, one
derives

d

7
Based on the contraction property , the semigroup Sy(t) can be uniquely extended by density
to initial data in £9 as an operator from £7 to itself. We thus have the well-posedness of f
in any £9, ¢ € [1,00) (£2N H?(R?\ B(0,1)) is not densely embedded in £>°, thus our argument does

not apply in that case). This yields also the decay estimates (3.15) for all ¢ € [1,00] and yo € £9.
Note that the decay estimates (3.15]) also coincide with the decay estimates (3.16)) for any p = ¢ < co.

g) < 0.

Actually, one can go even further. Taking j(y) = |y|P for p > 2, estimate (3.18) implies (forgetting
the two last terms which are non-negative):

% (Y1) + 222 [ ey <o (3:20)

Using then suitable Sobolev embeddings and interpolation estimate (actually, this is the only step
where the dimension plays a role), one gets Lemma 2.2 in [19] (the proof is done in [I§]), and in
particular [T9, (2.17)]: there exists a constant C such that for all functions Y = (y,fy) € £! with
RS Hl(fo)t

IV I% < CIYIZ 9912 .

Applying it to |Y'|9, we get the existence of a constant C' such that for all ¢ > 1,

(IVI28)" < € (Y 18) 1981 g

Plugging this estimate in (3.20)) for p = 2¢ and using the fact that the £9-norm of y decays according

o 19)
i (PO + ot (MO <

Of course, this implies that there exists a constant C' independent of ¢ € [1,00) such that

< (i) + g (MO <

This yields the following decay property: there exists a constant C' > 0 independent of ¢ > 0 such
that for all ¢ € [1,00),

2
Y (¢ )ngq < C(|[Yollg)” - (3:21)
Then, the iteration argument of [26] based on 1)) applies and yields

/Y (1)) goe <

Other estimates in (3.16]) are deduced for arbitrary p € [¢,00) by interpolating the cases p = ¢ and
P = 00. ]

e, t>0.

As we mentioned in the above proof, the semigroup S, associated with system f extends
to a semigroup on £¢ for all ¢ € [1,00) that we still denote the same for simplicity. Consequently,
Corollary [20, Corollary 2.5, p.5] implies that it is associated to a closed linear operator. In this case
the operator reads A, where

D(A,) = {V = (y,ly) € £ with A,Y € £9}.



LONG-TIME BEHAVIOR OF FLUID-SOLID INTERACTION 21

and
2 2
YN y _Ay+ Y
AgY = Aqly, by) = a - <€ > - g
- Op-do ak Y —/ Orydo + kaly
27 21 Js1

3.2.2. £P — £9 estimates on 0,Y . In the case p = 2, as Ay is self-adjoint (see [18, App. A]), Theorem
7.7 in [2] states that, if Yy € £2, the solution Y of (3.4)(3.6) belongs to C*°((0, 00); NgenD(A5)) and

C
10:Y (t) | g2 = [[A2Y (D)l g2 < - [[Yollg2 -
Extending this result to the £7 case, for ¢ € (1, 00) turns out to be slightly more intricate.
Theorem 3.6. For all ¢ € (1,00), there exists a constant C = C(q) such that for all Yy € £9, the
solution y of (3.4)—(3.6|) satisfies, for allt > 0,
C
10:Y ()l g0 = 5 [Yollga (3.22)

Proof. The proof of such result is rather classical, but we did not find precise reference in our precise
setting. We follow the proof of Theorem 3.6 in [20, Chapter 7]. First, we recall that £¢ is a Banach
space whose dual is identified with £¢ for ¢ = q/(q — 1), when taking the duality pairing

2r
<Y17Y'2>2q’£q’ :/ yl%"— Eeyle}/zv

Fo
for Y1 = (y1,%y,), Y2 = (y2,¢y,). Note that, in this proof only, we extend £ to functions having
complex values. We focus on the case ¢ > 2.

For Y € D(4,), Y* = |Y|972Y belongs to £¢ and satisfies
* * -1
(V.Y g g0 = Y [[50 and [[Y7[lgy = [[V]|G "

Besides, easy computations yield
* q - q —4 Yy
(AgY,Y™) gq oo = 2/ Y| 2 Vy + (5 - 1)/ [y|? 4(Wy)2+k2/ Ll
Fo Fo Fo

In particular, both first terms can be expressed easily in terms of |y|%72§Vy. So, we introduce the
vectors @ = @(z), and b = b(z) of R? defined by |y|? ~2yVy = @+ ib. We get

y(zyu/ yz§|2+(q—2)i/ 6-5+k2/ vl ‘ + 2rk]g|e.
Fo Fo Fo Fo

(AY, Y*>2‘Z,£q’ = (g~ 1)/
In particular,
R ((AqY, Y*)Izq,gq/) > (q = D@72z + 101727
whereas
9 (42 Y") gy g ) 1 < I — 2012 Bl 2
This implies
’% ((AqY7 Y*>£q,£q/> | 1 | |
R((4Y, Y guor) ST

From Theorem , —A, generates a Cj semigroup of contractions on £7 hence Theorem 3.1 in [20]
Chapter 1] implies that for all A > 0, A is in the resolvent set of —A,.

For ¢ > 2, from ({3.23)), the numerical range S(—A4,) is contained in the sector g, = {\ € C\ {0} :
larg \| > m — 0y} where

(3.23)

_ 1lg—2]
0y = arctan (2 m) €[0,7/2).
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In particular, choosing 61 € (6p,7/2), denoting by X9, = {A € C\ {0} : JargA] > 7® — 61} the
corresponding sector of C, and using the fact that R* is in the resolvent set, Theorem 3.9 in [20)
Chapter 1] implies the existence of a Cy = Cy(q) such that

I+ 4) e < T, VAEC\ Sy, (3.24)

Now, the regularizing properties of the semigroup generated by —A, are a consequence of Theorem
5.2 in [20, Chapter 2] and the above resolvent estimate. However, here again, we need to be careful
since Theorem 5.2 in [20, Chapter 2] requires that 0 belongs to the resolvent set of A,, which is not
the case here. Set 0y € (7/2,m — 61). For each ¢ > 0, we introduce the curve I'., defined for € > 0 by
the path composed as follows:

—pexp(—iba), p € (—o0, —¢),
. =< cexp(if), 0 € (—b2,02),
pexp(ibs), p € (g,00),

oriented in the increasing directions of the parameters. Then, for ¢ > 0, we use the formula

1
S,(t) = 2m/r M+ Ay)7HdA,

This integral converges due to the resolvent estimates (3.24]) and can be differentiated with respect to
time since

1

E < e
2T I.

e RONNAT + 40) 7 4, o) t

+ Ct&",

where the constant Cp, does not depend on ¢ and € > 0 and the constant C; depends on ¢ but not on
€ > 0. Of course, letting then € — 0, this yields

1 _ C
o [ 90rsaptan]  —fous, 0l < .
T J1, (27 t
This completes the proof of (3.22) for ¢ > 2. The case g € (1,2) can be deduced by a simple duality
argument. O

Remark 3.7. Actually, following the proof of Theorem 5.2 in [20), Chapter 2], one can prove that —A,
generates an analytic semigroup on £7 for all ¢ € (1, 00).

In the two next subsections, we apply the semigroup estimates we have proved to systems ([2.28|)-
(2.30) and (2.12)-(2.14)) .

3.3. Decay of solutions to (2.28)—(2.30). We first consider the solution Z = (z,{z) of (2.28)—
(2.30). As we noticed previously, this corresponds to the computations of the previous subsection in

the case

47
T4+m’
We obtain in this way the following decay estimates on solutions:

k=0, a=

Theorem 3.8. Given g € (1,00) and radial Zy € £9, there exists a unique solution Z € C([0,00); £9)
to (2.28)-(2.30) such that Z(0,-) = Zy. This solution satisfies the further decay estimates:
o for all p € [q, 00| we have Z € C((0,00); £P) and there exists a constant K11 = K1.1(p,q) such
that: L
12(t, Y ler < Ko ts 5 Zolles, VE>0, (3.25)
o if ¢ < 2 for all p € [q,2), we have (Orz,2/1) € C((0,00); LP(Fp)) and there exists Ko =
K> 1(p,q) such that:
Z(t7 )

_l41 1
< Koqt 27p a||Zpllga, VE>0, (3.26)
,

LP(Fo)

10-2(t, )| e (7o) +
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o if g€ (1,00), for all p € [max{2, ¢}, 00) with p > 2 we have (0yz,z/r) € C((0,00); LP(Fp)) and
there exists K31 = K31(p,q) such that:

z(t,-)

10,50 M + |2 <

LP(Fo)

1,1 1
{K&lt 207 Zollea, VE<T, (3.27)

1
Ksit || Zo||ga, Vi1,

These decay estimates are also satisfied for ¢ =1 and p € (1,00) \ {2}.

Proof. Existence of solutions and £P — £9 decay estimates are straightforward applications of Theorem
in the case k = 0 and & = 47 /(7 +m) > 0. We focus on estimates (3.26)—(3.27). Actually, we only
need to prove the case p = ¢, as other cases are then obtained by combining the estimates (3.26))—
for p = q # 2 between t/2 and t with between 0 and t/2. Indeed it will follow from the

semigroup property:

z(t, ")

. < Koa(p,p) (/2) 21 2(t/2, )|l

LP(Fo)

10r2(t, )|l e (7o) +

1

1,11
< Ko1(p,p)K1,1(p,q) (£/2)" 7274 Zg|| ga.

For radial Zy € £9, estimate (3.22) implies

Orz(t C
lowsto+ 220 ploste )l < S izale
r La(Fo) t
We are now in position to apply Proposition to Orz which yields that (see (2.36))
Orz(t C
fores Ol + | 722 < Szl (3.25)
r Lq(]'-o) t

From the Gagliardo Niremberg inequality in exterior domains, see [4], we have then: for ¢ € [1, o],
for all z such that 0,2, Ozyz and Jyyz belong to L(Fy),

IV2l oy < C (1022l 1oz H1Oay 2l acry + 102l Lacr) 2 1211 st 7, (3.29)

Since we are focusing on the case of radial solutions, estimates f and the fact that for
radial functions

Oz

Lq(fO)) ’

r

”&cxz”m(fo)+HawyzHLfJ(fo) + HayyzHLq(fo) <C (HarrZHLQ(fo) + ‘

imply
C
10-2(O) | Laro) < 7l Zolles-

Vi

To conclude the proof of Theorem we prove the boundedness of the mapping 0,z +— z/r. As
z € L%(Fp), this is already contained in Proposition provided we get a suitable estimate on

z(t,1) = £z(t). But, using ({3.25) for p = oo, we get
_1
[z ()] = [2(t, 1)] < Cgt 4[| Zol|ga

Thus, (2.37) implies:
z(t)

_1
. <Cy (3 4t 1) | Zolles

La(Fo)

where ¢, = 1if ¢ > 2 and ¢, = 0 if ¢ < 2. We obtain (3.26) and (3.27) comparing the size of the
different terms on the right-hand side depending on ¢ <2 org¢>2andt>1ort < 1. O
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3.4. Decay of solutions to (2.12)—(2.14). The equation (2.12))—(2.14)) of w is linked to the com-

putations in Section in the case k =1 and @ = J/27. Thus, we compute the following time-decay
of solutions:

Theorem 3.9. Given q € (1,00) and radial Wy € £1, there exists a unique solution W € C([0, 00); £7)
to (2.12))-(2.14) such that W(0,-) = Wy. This solution satisfies the further decay estimates:

e for allp € [q,00] we have W € C((0,00); £P) and there exists a constant K19 = K1 ,(p,q) such
that:

Wt e < Krotr #[Wollea, ¥t>0, (3.30)
e if ¢ < 2 for all p € [q,2), we have (O,w,w/r) € C((0,00); LP(Fy)) and there exists Koo =
K o(p,q) such that:
U)(t, )
r

< KQ’Ot ; ‘1 ||W0||,Qq , Vt>0, (331)
LP(Fo)
o ifg e (1,00), forallp € [max{2, q}, o) satisfying p > 2 we have (O,w,w/r) € C((0,00); LP(Fy))
and there exists K3 = K30(p,q) such that:

H@thm%rw

w(t,-)

(3.32)

{ Ksot 2+77”W0H£q, Vi<l1,
(Fo)

Mw<»uf-ﬂ\
"7 Kot~ |[Wolles Vi1

Proof. Again, existence of solutions and £F — £7 decay estimates are straightforward applications of
Theorem in the case k = 1 and & = J /27 > 0. We focus now on gradient estimates in the case
p = q # 2, the estimates f with p > ¢, p # 2 being a simple consequence of the semigroup
property.

Let ¢ € (1,00). We note that w € C*((0,00); L4(Fp)) with ||, W (t)]|ea < C/t||Wo||ea yields

tt) + 2 0 ¢ (0, 00); 9(70)
vty + 2 ON e, 1) — wit, 1)) < Wl
r % | La(z)

Recalling estimates ([2.38)) and (]2 39), for all t > 0,

107w ()| La(r) < *||W0||2f1,
<

‘ Orw(t) ’ w(t)
‘ L9((1,00),rdr)

r r2
with e, =1if ¢ > 2 and ¢, = 0 if ¢ < 2. But, for ¢ > 2, estimate (3.17) with p = oo yields
ow (®)] = (e, )] < 2/ (22, )

where the last estimate is a consequence of ¢ > 2. Hence
‘ &nw(t)‘

,
We can then bound ||9zzw||pa( 7)) Haxy'(,UHLq O) and || 9yyw| ra(7,) in the same way as in the previous
proof. Applying mterpolatlon 1nequahty to W we then obtain that d,w € C((0,00); L1(Fy))
with:

¢
t

t, 1
La((1,00),rdr) ‘ |Wollga + C(q)eq|w(t, 1)],

< Ot 24
2q (R4) = Ct ||W0H£q7

< C (17" 4+ e77) [ Wollao.

La((1,00),rdr) HT‘ L4((1,00),rdr)

0r0(®) | agry) < C (712 + gt 777 Wl o

To get the decay of w/r, we then simply use that

<

W ()] ga-

L9((1,00),rdr) — HT’T‘ La((1,00),rdr)
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3.5. Decay estimates of solutions to the Stokes system. It remains now to combine together
the results obtained in Subsections [3.1] [3.3] and [3.4] to prove our main results regarding the long-time
behavior of Stokes solutions.

3.5.1. Proof of Theorem [11]

Proof. Given q € (1,00), as C2°(R?) N £? is dense in £¢ we remark that it is sufficient to prove decay
estimate for initial data Vo € £2 N CP(R?). We emphasize Vy € L? for all ¢ € [1,00] under these
assumptions. We denote (W, ®g, ¥o, VR ) the spherical harmonic decomposition of this initial data.
We already know that there exists a unique solution to (1.22)~(L.29) in C([0, 00); £2) for such an initial
data.

First, we decompose the solution S(t)Vp of (1 - - ) into the spherical-harmonic decomposition
(W, ®, ¥, VR) of Proposition n Accordlng to Proposition n 2.2] this decomposition satisfies:

e W € C(]0,00); £2) and is a solution to (2.12))—(2.14);
e Vz €C([0,00); L2(Fp)) and is a solution to (2.23)—(2.25)).

According to Theorem and Theorem these are the respective unique solutions to ([2.12])—(2.14))
and (| - in these spaces, with respective initial data Wy and vgo. We can then apply the
decay estlmates of Theorem [3.9] and Theorem [3.1] to these solutions.

Referring moreover to Proposition 2.3] and Remark [2.4] we have:

e Zy € C([0,00); £2) and is a solution to ([2.28)—(2.30);
e Zy € C([0,00); £2) and is a solution to (2.28)—(2.30).

Consequently, applying Theorem 3 . these are the unique solutions to (2.28))—(2.30) in these spaces,
with respective initial data Zg o = —(0,®o + ®o/7) and Zy o = 0,V + Yo/ and the decay estimates
of Theorem [3.§ are also satisfied by Zg and Zy.

We proceed with LP — L4 estimates. Applying ([2.3) we have:
’ 2(Fo) < CQHVOHLQ .
Then, combining decay estimates of the different components in the spherical-harmonic decomposition
obtained in (3.1f), (3.25)), and (3.30]), we have for ¢t > 0:
W(t)ller + [ Za(t)lle ®)ller + IVR® 12 (70) < C atr 1| Vollgo -
On the left hand side, we have for instance Zy(t) = 0,V (t) + ¥(t)/r with U(t,1) = Zg(t,1)/2 so that:
(W (t,1)] < Cl|Zw(t)]|cv
Hence, applying Proposition we obtain:

LG
100 o ((0,00)rdr) + || = <Ol Zyller -
LP((0,00)5rdr)
Applying similar argument to bound ®, we finally obtain that:
v(t)

IWOllee + VRO 27 + ”arql(t)HLT’((O,oo);rdr)+‘
LP((0,00);rdr)

O(t 1.1
n rrar<1><t>||m<om);rdr>+H“ < CythH [Volles

r LP((0,00);rdr)

Noting that [|[W (t)||es is equivalent to [[W ()| Lr((0,00),rdr)> We apply (2.4) and conclude immediately
11
V)ller < Cpgtr 7 |[Voliza -

We now proceed with the gradient estimates. Let us recall that the case p = 2 is a straightforward
consequence of [22] and the previous inequality:

So we focus on the case ¢ € (1, oo) and p € [g,00) with p 7& 2.
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Similarly to the previous computations, the method is then an application of Proposition and
the decay estimates obtained in Theorems -8 and [3.9] The only difference we detail now is the
computation of

ot

r

Y

+1

LP((1,00)5rdr) L2 ((1,00)5rdr)

from the estimates for |0,z | rr(7)) and ||zy /7| 1r(7) as given in (3.26) and (3.27). We focus on 1,
the problem being completely similar for ¢. Differentiating the definition of z,, we remark that v
satisfies:

||aTT’w||L1"((1,oo),rdr) + ’

(1) — (1) = 0.
Consequently, we apply Proposition which yields:
oYy Y

r r2

< Clorzyl o) -

Harr"/}HLP((l,oo),rdr) + '
LP((1,00),rdr)

On the other hand, we have, by definition of 2,
o v

r 72

<l

Lr((1,00),rdr) LP(Fo) .

So that, we finally get:

87’71) ¢ Zap
Cpeme—— i < (1orzlrem + .
((Loo)rar) T N Le((1,00);rdr) r? Lp((1,00);rdr) (o) H r ‘Lp(fo)
This ends the proof of Theorem O

3.5.2. Duality decay estimates. For later use, based on Theorem [I.I| we derive here additional esti-
mates on the behavior of the semigroup corresponding to (|1.22))-(1.29):

Corollary 3.10. Assume that 1 < q < p < oo and let F € LI(R?; May2(R)) satisfying F =0 on By.
The following decay estimates hold true:

o if2<q<p< oo, there exists Ky = K4(p,q) > 0 such that:
IS Pdiv Flleo < Ka(wt) 245 0| Fllpage)  for all t>0. (3.33)
o if 1l <q<pandq<2, there exrists K5 = K5(p,q) > 0 such that:

L1411 1
Ks(ut) 25 0| Fll gy forall 0<t<-—,
|S(t)Pdiv F|zr < . ) v (3.34)
Ks(wt) " | Fllpagey  forall t>=.
v

In this corollary the divergence div is computed along rows of the matrix F'.
Before going into the proof, let us emphasize that, in our case VS(¢) is not the dual operator of
S(t)Pdiv . Indeed if F is smooth with compact support, there holds, for all ® € £2 N C°(R?):

VS, F) = | vsS®)@:F+ [ VS@#)d:F
T JBo Fo
- (1 - T) SH)® - Fndo + (S(t)®, div F)
T/ JoBg
_ (1 _ ﬁ) S(t)® - Fndo + (@, 5(t)Pdiv F) .
T/ JaBy

Hence Corollary only concerns the restriction of the dual of V.S(¢) to functions F' which vanish
at the boundary.
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Proof. The following proof contains a construction of the operator S(¢)Pdiv on the closed subset of
L(R?; Max2(R)) of functions vanishing on By. We prove our result in the case 2 < ¢ < p < 0o only.
The other cases can be done similarly.

Let F' € LY(R?; Mayxo(R?)) such that F = 0 on By. Up to a regularizing argument, we assume that
F € C°(Fo; Maxa(R)). Then, V(t) := S(t)Pdiv F' € C((0,00); LP) for all p € (1,00) by a straightfor-

ward application of Theorem For all t > 0 and V € £2NC>®(R?), we have, as S is self-adjoint
with respect to the scalar product (-,-) we introduced on £2 (see (1.32)):

VO, V) oo pw = (BdivE,S(H)V),

= / divF-St)V, (as F' vanishes on By),
Fo

= —/ F:VS@t)V (as F'n vanishes on 0B) .
Fo

Finally, we obtain:

‘ <V(t)7 V>£p7,cp’
where we apply decay estimates we obtained in Theorem as p' < ¢ < 2 we have from (|1.35))

< HFHLq(R2)HVS(t)‘N/”Lq/(]_.O) ,

1 1

~ 1~ 1,1 1 ~
||VS(t)VHLq/(}-O)§Ct 2Ty p/HVH}:p/ < Ct 2ty qHVHEP/.

So that, we obtain:

’<V(t)7 V>[;p,£p’
As £ N CR(R?) is dense in £F', this inequality implies by duality that V(t) € £ with norm lower

1 1 1
than Ct 2724 || F|| pa(re) - O
In the previous corollary we restrict p to finite values. In the case p = oo, we do not obtain a control
of the whole solution. Nevertheless, we can obtain a result that would correspond to the case p = oo
in for the translation speed fy/(;). This result is a new application of the added mass effect and
relies on the fact that Kirchoff potentials are easily computed in our case.

Corollary 3.11. Let ¢ € [2,00) and F € LI(R?; May2(R)) satisfying F = 0 on By, The following
decay estimate holds true for V(t) := S(t)Pdiv F':

(141
vl < Ko@) t)” )P sy, 1> 0 (3.35)
where Ky(q) depends only on q.

Proof. Let the assumptions of the corollary be satisfied. At first, we recall that we have V (t) € £
for all ¢t € (0,00) as has been shown in the previous corollary. We show how to prove that the first
component fy,; of fy(t) satisfies (3.35)). Similar estimate for the other component ¢y5 is obtained
applying comparable arguments.

Let ) € C*°(Fp) be given in polar coordinates by:

D(r,0) = COST(G) . Y(r0) € (1,00) x (—m, 7).

Given t > 0 we note that V := V(¢) = (v(t), ly(t)) is divergence free on any subdomain B(0, R) \ By
of Fy. This yields:

/ v-n1/1da—|—/ v-nwda:/ v-Vy
dB(0,R) 9B B(0,R)\ By

Letting R — oo, we obtain (the exterior boundary term vanishes as v € £9):

2m
—/ vr(1,8) cos(6) do :/ v V. (3.36)
0 Fo
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We observe then that, on the one hand, we have Vi) = V@ where

3(r,0) = Sinr(e) V() € (1,00) x (=),

on the other hand:
2
/ vr(t,1,0) cos(8) df = mly 1 (1) .
0
Setting finally:
== 1}‘0V1/_J —1p,e1
we have that = € LP for arbitrary p > 1 and that (3.36] reads:
—(m+m)ly1(t) = mlby(t) - L= +/ v(t)- &= (V(t),E), Vt>0.
Fo

Given this identity, we reproduce the computations done in the proof of the previous corollary. We
obtain:

—(m+m)lya(t) = /f F:VS(t)E, (3.37)
0
which implies
1)) < s IV 0] 1 -

The proof now reduces to find a bound on ||VS(t)E||Lq/(}-O). To this end, we remark that the

spherical-harmonic decomposition of = reduces to the first mode ¢(r, ) = min{r,1/r}sin(f). Going
back to the computation of Section 2, we note that S(¢)Z is given by its first-mode, corresponding to
Zy = —0,P — ®/r where ®(r) = min{r, 1/r}. This mode satisfies (2.28))-(2.30|) with initial condition:

Zq>70 = -2 130 .
Consequently, for ¢ > 2, Zg o € L' and we apply Theorem with “p”= ¢ and “¢”= 1, which yields

(see (3.26))

ze(t, -
100zt Y oy + || 22

T

L1 -

-1, _1_ 1
<K(wt) 2'd " =K(wt) 27a, Vt>0.

L4’ (Fo)

We go back to = as in the proof of Theorem [1.1| so that:

1

VSO oy < K () 277, V>0,

Plugging this estimate in (3.37) we obtain the expected result for ¢ > 2.
The case ¢ = 2, corresponding to ¢’ = 2, does not immediately follows from Theorem but rather
from the fact that

t . t _
9 (@ (5 ) sin(®) ) s < C1Za (5] s < COO ) Zuals

and from the £2 decay estimates on the gradient obtained in Theorem [1.1

195(0/2) (v (@ (Gor) sn®)) ) oy < Con 219 (@ (5o ) sind) ) s

3.6. Asymptotic expansion of solutions to the Stokes system. This section aims at proving
Theorem We first show that the solutions W and Vg corresponding to the modes k& # 1 decay
faster than the modes corresponding to £ = 1. In a second step, we derive precisely the first-order in
the long-time behavior of this first mode.

g
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3.6.1. Faster decay on W.

Theorem 3.12. Given a radial Wy € £'NL?(R?, exp(|z|?/4)dz), the unique solution to (2.12)-(2.14)
satisfies W (t) € £ for allt > 0 and p € [1,00]. Furthermore, for all p € [2, 0], there emsts a constant
Cp > 0 such that

13
W (t)ller < Cptr 2 [Wor|er,
and there exists a constant C' such that
b ] < CE2[Wor| e
Proof. Let us first remark that Wy € £ N L?(R?, exp(|z|?/4)dx) obviously implies that Wor € £1.

We first focus on the decay estimate, as W (t) € £P for ¢ > 0 is obvious. Given ¢ > 0 and p > 2 we
apply (3.30) with ¢ = 2 between t/2 and ¢ and then, we apply (3.17) between 0 and ¢/2:

%‘
r
Concerning the second estimate, it suffices to use (1.31]) and (3.17):

YO, 20|
:

W (1) ]|er < O Z||W (t/2)|| g2 < Ctr 2

1 3
< Ctr 2||W, .
o |Worlle

= Ot 2| Wor| e

£o0 R4 - o1 (R4)

This ends the proof. O
As a consequence, we can already note that wgyv, = by (see Proposition verifies ([1.38)).

3.6.2. Fuaster decay on Vg.

Theorem 3.13. Given Vg € L2(Fy) N L*(R? exp(|x|*/4)dx), for all p € [2,00], there exists a
constant C' = C(p,vgr,) such that:

| log(?)]
VRt )z 7) < Ct3/2—1/p ’

Proof. In order to prove Theorem we expand Vg solution of (2.23)—(2.25)) on its Fourier basis:

Vi>1.

Vr(t,r,0) = V* Z (¢r(t,r) cos(kf) + i (t,r)sin(kf)) | ,

k>2

where ¥ (t,1) = 0p i (t, 1) = pr(t, 1) = Orpi(t,1) = 0 thanks to the homogeneous Dirichlet boundary
conditions satisfied by the restriction vy of Vg on Fy. Note that vr does not contain any 0 or 1 mode
due to the orthogonality condition .

As in the case k = 0,1, we can show that for all k& > 2 the new unknown z, = zy(t,r) =

1/7“’“&[7"’“7,/%(75,7“)] or z = zpk(t,7) = —l/rkar[rkgok(t, )] satisfies:

1 (k—1)2
Oz + —;&(r@rzk) +—5"2 ) =0 for (¢,7) € (0,00) x (1,00);

r2
2k(t,1) =0 for t € (0, 00).
One can then use the asymptotic formula given by Theorem for
ORr(t,r,0) = Z (2y,k(t,7) cos((k —1)8) + 2ok (t,7)sin((k — 1)0))
k>2

which is a solution of (3.7) for n = 2, arbitrary a > 0 and vanishing initial mass M = 0. This
immediately yields that, provided

r(0) € L*(Fo, exp(|z[*/4) dx),

which holds true since Vg is assumed to belong to L?*(R?, exp(|z|?/4)dx), we have
T PNTR(E ) | Loz < CR1p(E).
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In particular, for p = 2, this implies that

tZ/ (|2g 1 (t,)|? + |2kt )2 dr < CRyo(t)>.

k>2
But recall that, for & > 2,
Sy = Ot S,
and 1 (t,1) = 0. Hence for all R > 1,

f 2 f 2 o [T [vl? 2
/ Y rdr_/ |Op | “rdr + k / rdr —i—k/ O (|Yw]?) dr
1 1

As 9, (1) = 0, passing to the limit R — oo, we get

00 2 o]
/ |8T@Z)k|2rdr + k:2/ |¢k| rdr < / |z¢7k\2 rdr,
1 1 1

and thus,
t2 or()ll 2z < CRia(t).
Using then the semigroup estimates (3.1]), we get, for p > 2,
P or()l| oy < CR12(E).

This concludes the proof of Theorem as Vg simply vanishes in B(0,1). O

3.6.3. Proof of Theorem[1.2

Proof. Let Vo € £ N L?*(R?, exp(|z|?/4)dz) and V(¢) the unique associated solution to ([1.22))—(1.29).
Note that Vj € L4 for all ¢ € (1,00) so that we already know that V(t) € L for all p € [2,00) for all
t > 0 from Theorem Let now p € [2,00) and (W, ®, ¥, VR) the spherical-harmonic decomposition
of V.

The components @, ¥ and W are computed as means of V' in 6 so that they inherit the asymptotic
decay in r of the data Vj. Combining this remark with Proposition [2.1] this yields that:

W(0,-) € &' n L*(R?, exp(|x|>/4) dz) , Vr(0,-) € L2(Fo) N L*(R?, exp(|z|*/4)dx)
(Z2(0,-), Zuw (0, )) e &8N L* (R, exp(|z[*/4) dz).

Consequently, Theorems [3.13] and [3.12] imply respectively:

Wit Mz = O (e )+ W)l = OB/,
We focus now on Zg and Zy. Using Theorem [3.3| with a = 2/(7m + m), we immediately get:
(P 0t ) ~ MaG()lomy < CpRuplt),  1]Ez, ()~ 22| <ORy(1), (339
A gt ) — MyGW) oy < CoRipl). ez ()~ | <CRt),  (3:39)
with G and (R p, R2) as given in Theorem in the case n = 2 and
Mgy = 27 /100 Zg(0,r)rdr + (7 +m) /01 Zg(0,7)rdr,

00 1
My = 27r/ Z\I,(O,r)rdr+(7r+’m)/ Zy(0,7)rdr.
1 0
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Recalling that

Zg(t,") = 7n(rq)( 1)) for (t,r) € [0,00) x (0, 00);
Zg(t,r) = €Zq)(t) —2®(t,r)/r =201(t) for (t,r) € (0,00) x (0,1),
®(0,1) = —£1(0), (by the continuity of ®)
and using ®(0,-)/r,0,®(0,-) € L' N L?((0,00), exp(|r|?/4)rdr), which implies the existence of a se-
quence R,, — oo such that R, ®(0, R,,) goes to 0 as n — oo,
Mg = (m —m)®(0,1) = (m — 7)¢1(0).
Similarly,
My = (m —7m)¥(0,1) = (m — m)£2(0).

By Proposition, we recall for r € (0,1) that £gy,,1 = —P(t,7) /1 = Lz,(t)/2. From (3.38)-(3.39)
and the previous formulas, we have obtained ([1.37)) and (1.39).

Solving ® and V¥ in terms of Zg(t, ) = (2a(t, ), lz,(t)) and Zy(t, ) = (2w(t,-), Lz, (t)), we are then
led to define W(t,r) on t >0, r € (0,00) as the extension of ¢ solution of

;&(mﬁ(t,r)):(}(t,r) for (£,7) € (0, 00) x (1,00), @@,1):& for £ € (0, ).

s
by
B(t,r) = é for (,7) € (0,00) x (0,1).

Note that this function can be computed explicitly:

. 2;1” <exp (-L) ~exp (-Zj) + 41,:) for (£, € (0, 00) x (1,00),
for (t,7) € (0,00) x (0, 1),

8t
Using Proposition we get for all p > 1,
. U(t, ) — Mg U(t,- _ _
10,0(0.) — Mudyb(t.ncry + |20 — ( )’m(m < Cy(Rup®t 7+ Roftyt ),
. —p(t,-) — MapU(t,- _ _
H—(9M0(t,~)—M@aﬂﬂ(t,-)HLp(]:o)—i-H elt: ) " hdl )’Lp(fo) < Cp<R1,p(t)t1/p Y+ Ry(t)t 1).

With the expression of Ry, and Ry, we can check that —3 + 02, + 5 1> —i — 1 for all p € [2,00].
Hence for ¢t > 1, we have:

VAt (W, ) cos(0) — Myj(t, -) cos(ﬁ)) e (7o)
VPV ((t, ) sin(8) + Madd(t, ) sin(0) ) oy < 2C,Raplh)

Remark then that, denoting

D(tr) = 2i (1 exp <_7'2>> for (t,7) € (0, 00) x (1, 00),

IN

2C, R (1),

A

mr 4t
we have for all p € (1, 00],
I94(0(0) = bt cos oy < C 1= exp () -
We then obtain
2ot = V- [(m = w0, ) (62(0) cos(0) — £1(0) sin(0)| 12 (z) < CoRap(t):
This yields the expected result. U

1%
it| =
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4. LONG-TIME BEHAVIOR OF SOLUTIONS TO THE NAVIER-STOKES PROBLEM

In this section, we prove Theorem and Theorem We first apply Kato’s method [14] of
successive approximations yielding decay estimates for initial data Vy € £2. In a second subsection,
we then extend these estimates to the case of initial data Vp € £? with ¢ € (1,2] in order to get
Theorem We finally explain how a bootstrap argument yields Theorem [1.4

To simplify notations, we replace the constants Ki(p,q), K4(p,q) and Ky(q) defined respectively in

(T33), (3:33) and (3:35) by Ki(p, q)v /P~ 19, Ky(p,q)v=1/2*1/P=1/4 and K,(q)v=/>71/4, so that the

viscosity parameter will not appear in our computations.

4.1. £P decay estimates for £? initial data. We recall that we transferred our system in the body

frame applying the change of variable (1.10]). So, the equations (|1.1])-(1.8]) became (1.11))-(1.18]). Our

first proposition reads:

Proposition 4.1. Let V € £2. There exists Ao > 0 such that, if
[Vollz2 < Ao, (4.1)
then, the unique global weak solution V' of (1.11)-(1.18) satisfies the following: for all p € [2,00), there
exists constants H(p, \o) and Hy(N\o) such that
supt2 F|V(O)ller < Hpodo), and  supt3|6y ()] < He(ho),
>0 >0
Proof. We split the proof of Proposition [4.]] into six steps.
Step 1: integral formulation. Following [22], we rewrite the Navier-Stokes equations ([1.11)-

(1.18]) in the following abstract form:
oV + AV =PF

where ( )
_ by —V)-VV  on Fy
F(V) - { 0 on Bo,

[P denotes the continuous projector from LP to LP, and ¢y is defined for V' € LP by (1.31]). Then,
Duhamel formula gives the following integral formulation of the above equations:

V() = S(t)Ve + /0 " S(t — PF(V(s)) ds. (4.2)

T. Kato suggests to construct a solution by successive approximations: let the sequence (y,)en be
defined by

{32 - ggg“ﬁg+ v wnen, vhere KY(D)= /0 S(t— s)PF(Y)(s)ds.  (4.3)

Our aim is to prove that this sequence satisfies uniformly estimates of Proposition [4.1] and converges
for small initial data. To simplify notations, in the following we set fy;, = ¢,,.

Concerning the nonlinear term, we note that, PF(Y") is well-defined as soon as Y € LP for p > 2
satisfies VY € L?(Fp). Indeed, we can then split F(Y)|r = —Y - VY + {y - VY, the first term being
in L9(Fy) (where ¢ = 2p/(2 + p)) and the second one in L?(Fy). We have then :

PF(Y) = P [17Y - VY] + Py[l£, by - VY]
Furthermore, we remark that, if Y € £P0 (with py € [1,00)) satisfies y € H'(F) then:

(ly =Y)®Y on Fy,

F(Y) = div F(Y) where F(Y) = { 0 on By.

This property is satisfied since F'(Y)n vanishes on dBy as By is a disk. The operator K can then be
defined indifferently as:

/ S(t— $)[PF(Y)(s)]ds or / [S(t — 5)Pdiv]E(Y)(s) ds,
0 0
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where S(t — s)Pdiv is defined by duality. In order to get uniform estimates on the functions Y;, and
their limit, we work with the second form (Step 2 to 5). In Step 6, we apply the first form to prove
that our construction coincides with the unique global weak solution constructed in [22].

Step 2: estimates of t8 Yallzs, 1Yallz2, t2 |€n,(t)]. The goal of this step is to show the following
Lemma:

Lemma 4.2. There exists a constant \g > 0 such that for all Vo € L2 satisfying (4.1)) there exists
o > 0 such that:

3 1
sup{ts [|Yn (?)ll s} < po,  sup{[[Ya(®)llc2} < po,  supt2[€n(t)] < po.
t>0 t>0 >0
Besides, pg can be chosen arbitrary small, independent of Vi, up to restrict the size of Ag.

Proof. We are going to find by induction a sequence G,, such that for all n,

11 3
sup{t2"5[[Yn(8)l gs} = supts[|Ya(t)|es < G, (4.4)
>0 >0
11
sup{t>"2[[Yn(t)llc2} = sup [[Ya() 2 < G, (4.5)
>0 >0
1
sup{tz|l,(t)|]} < Gi. (4.6)
>0

It is clear from (1.33)) that (4.4)-(4.6) is verified for Yy, where
Go = maX{Kl(& 2)7 K1(27 2)7 Kl(OO, 2)}H%HE2 (47)

In the sequel, we denote by Cj the following positive constants:
1
Co = max(K4(8,4),K4(2,2),Kg(4))/ (1—7)" 57 idr,
0

where K is the constant in (3.33]) and Ky in (3.35]).

Next, we assume that the properties are true for the rank n, and we show it for rank n + 1: using
(3.33) with p =8, ¢ =4, we get

t

t -
85 (| Vog 1 (8) | o5 < Go+15 K4(8,4) / (t—5) 7% || Yo (s) |2 ds+ 5 K4(8,4) / (t—5) "5 u(5)][[ Vi (5) 21 ds.
0 0

By interpolation, we have:

1/3 2/3
DAPEI A FSI A S (4.8)
So, we use that:
3 _1 _1
V()2 < (s75G0)%  |[Ya(s)les <5 3Gn,  |lals)] <5 2Gn,

to get
t t
3 3 5 3, 3 5 3, o
BlYoa (Ol < G0+t8K4(8,4)/(t—s) R {len ds+t8K4(8,4)/(t—s) 531G 2 ds
0 0
1
< G0+2|Gn|2K4(8,4)/ (1—7)frddr
0

< Go—+ 2(]0|Gn|2 .
Writing the same computation and using (3.33)) with p = ¢ = 2 gives

[Yoir (Dl 22 < Go + Ka(2,2) /0 (t— )73 |V |2 ds + Ko (2,2) /0 (t— 83 |n(s) [ ¥a(5)]] 2 s
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Thus, we obtain
t
Yori Oz < %+m&@m/@—$%fﬂafw
0

< Go+20|Gp|%

Finally, we apply Corollary with ¢ = 4, which yields:

t t
twmmlsGwﬁm@/@—Wﬂm®%m+ﬁmw/@ﬂermm@M®
0 0

< Go+ 200G

Hence, we can take
Gpi1 = Go + 2C)|Gy|?,
in (4.4)—(4.6) with G given by (4.7). Choosing Ao such that Gy < 1/(8C)), we easily get by induction
that for all n € N
1
1—(1-8CyGy)2
G, < =: lp. 4.9
< 1Co 1o (4.9)
Therefore, (G,,) is bounded by o which implies that (4.4)-(4.6|) are uniform estimates. This ends the
proof of Lemma According to (4.7)—(4.9), uo can be chosen arbitrarily small by taking Ag > 0
small enough. O

Step 3: convergence of Y,,. The goal of this step is to show that the sequence Y,, constructed in

the previous step strongly converges in L>(0, co; £2) N L§2 (0, 00; £8), endowed with the norm:

1
| Nl oo (0,002 + I8 Il Lo 000028y + I1E2 .|| oo (0,00) »

and that the limit V' solves the integral formulation (4.2)) of the Navier-Stokes equations ((1.11))—(|L.18]).
The main idea here comes from [I5]: let us define

Wit (8) 1= Yo (8) = Ya()
- /Ot St — s)Pdiv 17, ((en —Y)(8) @ (Vi — Yo 1)(8) + (o — bnet + Yooy — Yi)(8) ® Yn_l(s)> ds.
Again, we construct a sequence a,, such that for all n,
oo 2 e {sup £ 19, 0 e sup 9,0 e sup 16, (01
>0 >0 >0

Indeed, we have:

t%mm@msszwaw%é@—a%Wﬂﬂm+mammwwmmmw
+/@—@%wammn@mrw@@—mA@wnq@mnm)
0
< 4K4(8,4)/0(t—s)_gs_iuoands
< 4Coppan.

Here and in what follows, we always estimate L*-norms by interpolating the L?-norm and L3-norm
(see (4.8)). In the same manner, we have

Wi (®)llz2 < K4(272)/0(t—S)_é(HYn(S)Hﬁ+HYn—l(S)Hc4)HWn(S)Hwds (4.10)

+K4(2,2)/0 (t =) 2 (n()[Wa(s)l| 2 + [€n(s) = n1(3)[[Yn1(5)]| c2) ds,
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which implies:

W1 ()] 22

IN

¢
4K4(2,2)/ (t — 3)*%s*%uoands
0
< 4Cou0an. (411)

Finally, we have:

/(t_s)Z(HYn(S)”LS Yo () lles) [Wals)lles ds - (4.12)

Bl (t) — ta(t)] < Ko@)t ( 0

+ / (t = ) (n ()W ()|t + En(5) — bar ()] Yot ()] 1) s
0

4Kg(4)t% (t— s)*%s*%uoan ds

IN

S~

< 4Copuoan.

Therefore, we can take a, = (4Copo)" 'a; where a; can be easily estimated thanks to Lemma
According to Lemma again, one can choose Ao > 0 such that pug < 1/(4Cp). With this choice,
2 [Wall Lo (0,00522) + ||t1/8Wn|’Lm(07m;£8) + |t 20w, (1) | £o<(0,00)) converges uniformly and there exists
a function V € L>(0, 0o; £2) N L2.(0, 00; £8) such that

loc
Y,, — V strongly in L>(0, 00; £2) N L52.(0,00; £3), £, — £y in L72,(0,00).

By construction V satisfies the decay estimates of Lemma [4.2}
3 1
sup{ts [V (t)llcs} < po,  sup{||V(t)ll g2} < po,  sup{t2[ly ()]} < po. (4.13)
>0 t>0 >0

The last point to check is that V' indeed is a solution of the integral equation (4.2)), i.e. we have to
check that KY,, — V. This computation is exactly the previous one:

KV (t) — KY,(t) = /t S(t — s)Pdiv 17, ((fv -V)o(V-Y,)+W—-0,+Y,-V)® Yn) (s)ds.
0

Doing as in (4.10]) and using that sup, t5 V=Y, (t)| zs, supsso ||V (t) = Y5 (t)|| z2 and Supt>0{t% |0y (t)—
£, ()]} tend to zero as n — oo, one easily shows that KV — KY,, converges to 0 in L>(0, co; £2). This
shows that the limit V' of the sequence Y, solves the integral formulation (4.2)) of the Navier-Stokes

equations (L1T)-(L.I8).

Step 4: The limit V is the unique weak solution of (T.11)—(1.18) when V5 € H!(R?). In the
previous steps, we have constructed a solution to the integral formulation (4.2)) of the Navier-Stokes

equations (1.11)—(1.18) verifying the LP — L9 decay estimates (4.13)). The last point that we have to
check is that this solution V' is the unique solution from the well-posedness theory of [22]. In [22],

uniqueness is obtained in the framework V' € L>(0,T; £?) N L?(0,T; H*(R?)).

Of course, our solution satisfies by construction V € L*(0,7; £?), and thus we only have to check
that V € L2(0,T; H'(R?)).

We focus on the case of initial data Vo € H'(R?) (i.e., Vo € D(AY?), see ) In that case, we
prove that the solution V' constructed above is the unique solution in L>(0,T; £?) N L?(0, T; H'(R?)).
The main issue is to show that the sequence ||Vyn| 10 1;r2(5)) 18 uniformly bounded in n for any
arbitrary T' > 0 fixed. For T fixed, it is proved in [22, Cor. 4.3] that S(¢)Vj belongs to C([0, T]; H'(R?))
when Vy € H'(R?), which implies that there exists Jo > 0 such that

HVZ/OHLOO(O,T;L?(]:O)) < Jo.

Next, we construct by induction a sequence J, such that for all n € N

Hvl/n”Loo(o,T;L2(fo)) < Jn.
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Using (1.34)) with p =2, ¢=8/5 and p=¢q =2, for all t € [0, T

1

t 1415
IVYnt1 ()l 2 (7)< J0+CS/5K2(2a8/5)/0(t_8) 225y ()| Vyn ()1 /5 () ds

t 1
1K (2,2) /0 (t = 5)" 31 (5)| [V (3)l| 25 s

t
_5
< o+ Copsa(28/5) [ (6= 8 IVl T ()2 s
t
_1
1K (2,2) /0 (t = 5)" 1 (5)| IV (3)l| 2 1y s

t

< JO+CS/5K2(2,8/5)/ (t—s)"$578 o ds
0

t
-I—K2(2,2)/ (t—s)_%s_%uo,]nds
0
< Jo+ Coprodn = Jnt1,

where Cy/s = [|Ps/s| g, p3/smz)ces) and Co = (CyysKa(2,8/5) + K»(2,2)) [y (1 — r)"3r 2 dr.
Taking \g > 0 small enough so that éouo < 1/2, there holds:

n ~ k 1
Jn = Jo (CO,UO> < Jo——=— <2Jp.
kZ:O 1 —Copo
Hence we have, for all n € N,

IVYnll Lo 0,1522 (7)) < 20,

which implies that Vo verifies the same estimate. Inside B(0,1), we have
VYol = oy, | = )/ Y, - ot de|< Ol 2
B(0,1)

which is uniformly bounded in time and n.

Note that this is not enough to conclude that Y,, € L*([0,T]; H'(R?)) for all n and one should be
careful that the boundary conditions are compatible on dBjy. In order to do that, for all n € N, we
introduce, for all e € (0,1) and ¢ > 0,

t(1—e)
Y () = SV + /0 S(t — 8)PF(Yp(s)) ds.

Of course, arguing as above, Y7, | satisfy exactly the same estimate as Y1, uniformly with respect
toe>0and n e N:

s
= S llwve, lleeon) + IVYnialloeo,r:02(80)) < C- (4.14)

n

VY1l Lo 0,12 (R2))

But, since the semigroup S(t) is analytic on £2, for t > 0, S(t)Vo € D(A) (see (2.1)) and

t(1—e) t(1—¢)
/ S(t— s)PF(Ya(s))ds = S(te) / S(t(1 — &) — 8)PF(Ya(s)) ds
0 0

= S(te) Y (t(1 =€) — S(t(1 - €))Vo)
= S(te)Ynra(t(1 —€)) = S()W.

Since for all t > 0, Y,,11(t) € £2, this implies that for all ¢ > 0, Y,5,;(¢) belongs to D(A) for all ¢ > 0.
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Besides, as ¢ — 0, Y,°,; converges to Y41 in L2 ([0,00); £?) since
1Yoi1(8) = Yaga ()l 2

t

= /t(l )(K1(2,4/3)(t—8)_1/4Hyn(8)H,c4HVyn(S)Hm(fo)+K1(2,2)|fn(8)!Vyn(8)HL2(fo))ds
—€

1

IN

1
(1 _ 7,)71/47'71/4 dT + K1(27 2)IU’OJO/
1—¢

t1/2 (K1(27 4/3)poJo /
1

Hence Y41 is the strong limit in L°°((0,T'); £) of the sequence of functions Y;°, | satisfying and

the fact that for all ¢ > 0 and ¢t > 0, Y;7,,(t) € D(A). Therefore, Y11 belongs to L%([0,T]; H!(R?)).
Besides, since the bound in is uniform in € > 0 and n € N, V also belongs to L?((0, T'); H(R?)).

According to [22], when the initial data Vj belongs to H!(R?), the solution V' constructed in the above

steps is the unique weak solution of (1.11[)—(1.18]).

Step 5: Sensitivity of V to the initial data. So far, given V; € £2 satisfying the smallness
condition , we have constructed a solution V' of the integral equation . In this step, we show
that the map Vj +— V is continuous from the ball of £2 with radius Ag to L>((0,00); £2).

Let us consider V§ and V{ two elements of £? satisfying the smallness condition (£.1I)), and Y,* and
Y? the corresponding sequences in . We set Z, = Y, — Y2, which satisfies by construction

Zni1(t) = SE)(V5' = V) + KY;1(t) = KY,(t) = Zo(t) + KY;2 (1) — KV (1)

172 dT) .

—€

Similarly as in Step 3, we are going to construct a sequence b, such that for all n,
1
by 2 max {sup (/1 Zu(0)] e} supl1Zo(0l2)  suplIebez, (01}
t>0 t>0 t>0
Of course, by Theorem one can take by proportional to ||V — V| z2. Since
t
KY2(t) — KV () = / S(t = )Pdiv 15, (£ = ¥2)(5) @ V;i(s) = (£, = Y)(s) @ V1 (s) ) ds
0
t
= [ 80— s)pdiv 17, (7 = V2)(5) @ Y25) + Y2 (9) @ (V2(6) - Y(5)
0

(5= 6)(9) © V() + £s) @ (V2 = Y)(s)) ds,

arguing as in Step 3,

FIRYEE) - KN 0le < Kas, 06 ([ -9 Ao + 1) 2o
+/ (t = 5) 7S (15()]1| Zn(5) | oo + 1€5(5) —52(8)\\\Y5(8)Ha4)d8>
0
< 4K4(8,4)t2/(t—s)gsiuobnds
0

S 4COH0bTL 9
where g is the constant in Lemma And similarly as in (4.10]),

1KY, (8) = KY (#)ll ez < K4(2,2)/0(t—8)é(HYﬁ(S)IIﬁJrHYf(S)IIﬁ)IIZn(S)Hwds

+K4(2,2)/0 (t =) 2 (01 Za(3)] 2 + 15 (5) = L)V ()] 2) ds,

IN

t

4K4(2,2)/ (t — s)*%s*%,uobn ds
0

4C’OMObn-

A
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Finally, we prove as in (4.12)) that:

2l — &) < K4t

[SIE

(f =9 Ve + 12 es) 1209 s
b [ = HAGNZG e +160) ~ ANV o) ds)
0

¢
< 4K@(4)té/(t—S)_iS_i/L()bndS
0

< 4Copuoby,.
We can then chose b,11 = by + 4Coupby, and thus (recall that 4Chpg < 1 for our choice of Ay since
Step 3)

- OM0

In particular, passing to the limit n — oo, we obtain
b b
Sup [VEE) = V2@l 2 < ClIVE = Vo'l 2-

Thus, our above construction yields a map Vp — V continuous on the ball of £2 of radius Ao
to L>((0,00); £2), which coincides with the map Vy ~ Vi, for initial data in H'(R?), where V,,
denotes the weak solution of f. Since both maps are continuous (see “The existence part”
in the proof of Proposition 2.5 in [22, Section 6] for the continuity of the map Vy + Vi, from £?
to L>((0,00); £L?)), they coincide on the ball of £? of radius Ag. This implies that the solution V'
constructed in Step 3, as the limit of the sequence Y,,, actually is the unique weak global solution of

1) (@9).

Step 6: Estimates on the £P norm of V for 2 < p < co. The goal of this step is to show the
following Lemma:

Lemma 4.3. Let \y the constant of Lemma . For all p € [2,00), there exists a constant H(p, Ao)
such that for all Vo € L? satisfying [@.1]), the solution V of (L.11)~(1.18)) satisfies:

11
iug{ﬂ P[V(O)ller} < H(p, Xo)- (4.15)
>

Proof. For p < 8 we obtain (4.15) by interpolation of the estimates of Lemma Assume now
p € [8,00):

3

11 11 t 3,1
t2 ||V (#)| K1(p, 2)[[Vol| g2 + 2 ”K4(pv4)/(t_8) 5|V (s)| e ds
0

IA

3

1 1 t 1
K (p,A) / (t— 5)" T 0y ()] V(5) | 1 ds
0
11 t 341 3, o
< Ki(p.2)|Vollg: + ¢ pK4<p,4>/<t—s> Phsd (42 4 42) ds
0

3

1
< Kl(p72)/\0+2K4(p,4)M(2)/ (1_7_)—1-%%7__% dr,
0

which gives the desired estimates (4.15) and concludes the proof of Lemma g
The proof of Proposition [4.1]is then completed. g

Remark 4.4 (Remark on the smallness condition). The smallness condition on ||Vp|| 2 is not surprising,
and such an assumption appears in a lot of articles when global well-posedness is required (see e.g.
[14]). In dimension 2, several works ([21, 27, [13] in the full plane and [I] in fixed exterior domains)
show that the L?-norm tends to zero when ¢t — 0 for initial data in L2. Of course, this allows in such
situations to get a global result for any initial data in L? by proving only a local result for initial data
having small L?-norm. Unfortunately, concerning the case of a moving disk in a 2D viscous fluid,
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despite the energy estimate satisfied by the solutions of ([1.1))—(1.8) which immediately guarantees the
global decay of the L?-norm of the solution, it is still not clear that the L?-norm of all solutions with
initial data in L? go to zero as t — oo. This appears to be a challenging question.

4.2. The case of an initial data £? for ¢ € (1,2). The goal of this section is to prove Theorem

Proof of Theorem [1.3 The proof is based on the construction done in Proposition [4.1
Step 1. Decay estimates for p = 2 and p = 4. Let us consider again the sequence Y, constructed
in (4.3), for which we already know the decay estimates of Lemma and, by interpolation,

sup{t"/*|Y,(t) |4} < po. (4.16)
>0
We then prove the following lemma:

Lemma 4.5. There exists \o(q) small enough such that for any Vo € LIN L? satisfying the smallness
condition (4.1)) with g < Ao(q), there exist constants H(2,q,Vy), H(4,q, Vo) for which the sequence
Y, constructed in (4.3|) satisfies

sup{t" 1TV 2|V () 2} < H(2.0,V0),  sup{t TV Yo() 2} < H(4,q, Vo). (4.17)
t>0 t>0

Consequently, we have

sup{t 1T V2 |V (1) 2} < H(2,0,V0),  sup{t/ VAV (#)|| 2} < H (4,4, Vo). (4.18)
t>0 t>0

Proof. We are looking for a sequence H,, such that for all n,

sup{t' 1712V, (0|2} < Hoo sup{tV VYo (8)]| 21} < Ha
t>0 t>0

Of course, Theorem [1.1] implies that Hy can be taken as Hy = (K1(2,q) + K1(4,9))[|Vol| ca-
For n € N, using Theorem and Corollary

t
/Y (8) ]2 < K1(2,Q)|I%|!cq+t1/ql/2/o K4(2,2)(t=5)"" (II¥a($) 124 + [a(s)lIYa(s) ] c2) ds.

Using the decay estimates of Lemma and ([4.16)),
V()26 < (uos ) (sY*VIH,) = poH,s™ 9,
n ()Y ()2 < (mos 2 (s*VIH,) = poHns ™9,

we immediately deduce that

1
sup{t/ 2|V 1 ()|l 22} < K1(2, )| Vollzo + 2K4(2,2) (/ (1—7)~ Y27 1/a dT) poHp.
>0 0

Similar computations yield
1
sup {1, (Oes) < K (ol + 28a42) ([ 1= 737 Var) o,

One can thus take
H, 11 := Ho + Co(q)poHn,

with
1 1
Colq) =2 <K4(2, 2)/ (1— 1)V~ Vadr + Ky(4, 2)/ (1—7)=3/4r=1a dT>
0 0
Choosing Ag(g) > 0 such that the corresponding 1o given by Lemma [4.2] satisfies

Colq)mo < 1/2, (4.19)
we thus immediately obtain that for all n, H,, 11 < Hy+ H,, /2, yielding H, < 2Hj for alln e N. [



40 S. ERVEDOZA, M. HILLAIRET & C. LACAVE

Step 2. The solution V satisfies the decay estimates (1.41])). The proof of this result follows

the proof of Lemma For p € [2,4], (1.41)) can be deduced by interpolation with (4.18). For
p € [4,00), we write

11 11 t 4l 5
to r||[V(t)er < Ki(p,@)IVollga +ta ”K4(p,2)/(75—5) ||V (s)][zads
0
11 t 4l
M E,2) [ (9 GV ()] e ds
0
11 t gl 1
< Kl(p7Q)||‘/0||Eq+tq PK4(p,2)/(t—S) 1+p8 qu(H(4aQ7%)+H(27Q>%))MO
0

1 _ 1 _1
< Ki(p,q)IVollza + Ka(p,2) (H(4,q,%)+H(2,q,%))uo/ Q-7 Feradr
0

Step 3. The decay estimate on /fy (¢). The proof of (1.42) is very similar to the above one and
is based on Corollary for p > 2 such that 1/p—1/¢ > —1/2,

t
ey ()] < Ki(o0,q)lIVollcs +t1/q/0 Ke(p)(t — )" 272 (IV (31220 + v (s)[[1V ()] cv) ds
< K1(00,9)[[Vol za

1
+K(p)(H(2p, ¢, Vo)H(2p, 2, Vo) + H(p, q, Vo),uo)/ (1 — 1)~ Y2 Yppl/p=1/21/a qr.
0

Step 4. On the map ¢ — M\g(q). We remark that, by construction ¢ — Ag(g) is an increasing
function. Indeed, condition indicates that our proof of Theoremrequires the result of Lemma
with ug = po(q) > 0, where po(q) is an increasing function of ¢ € (1,2]. Since the explicit formula
(4.7) and indicates that Ag — po is a continuous increasing function, the map ¢ — Ap(g) is an

increasing function of ¢ € (1,2]. We also note here that A\o(q) — 0 when ¢ — 1, since Cy(q) — 0.
This concludes the proof of Theorem O

4.3. Proximity with the linearized semi-group. In this last subsection, we compare the asymp-
totic structure of solutions to the Navier Stokes and Stokes equations and prove Theorem

Proof of Theorem [1.4) Let Vj satisfy the assumptions of our proposition.
As G — Xo(q) is an increasing function, we note that ||[Vp||z2 < Ao(q) for all § € [g,2] so that V (¢)
satisfies the decay estimates of ([1.41)-(1.42]) for arbitrary ¢ € [g, 2] and p € [2, 00).

According to estimate (3.33)) with p € [2,00) and g = 2, for all ¢ > 0,
t
V() = S®Voller < / 1S(t — s)Pdiv ((V(s) — Ly (s)) @ V(s))|lcr ds
0

< Kulp, 2)/0 (t =) TPV ()20 + v IV (8)llg2) ds. (4.20)

But, using (1.41)) with p =4 and G € [g, 2] and with p = 2 and ¢, we get:

828{81/5_1/4”‘/(8)”54} < H(4,4, Vo), Sglg{sl/q_l/QHV(S)HcQ} < H(2,q, Vo).

and using (|1.42]), we obtain:

sug{s”%(s)!} < Hy(g, Vo).
5>

Hence, for all s > 0 and ¢ € [qg, 2], we have:

IV ()20 + [0 ()[||V(8)]| 2 < H (4, G, Vo)?s™272/T + H(2,, Vo) Hy(q, Vo)sH/2~2/4. (4.21)
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The case ¢q € (4/3,2]: proof of - In that case, combining (4.20)) and ( - taking ¢ = q,
we immediately obtain:

1
supt~ VPRV (1) — S()Voller < Clpya, Vo)/ (L — 7)1 H/prt/2=2la qr,
t>0 0

where we used the fact that 1/2 —2/q > —1 for ¢ > 4/3.
The case ¢ € (1,4/3): proof of (1.43). Here, we write

/0 (t =) TP (V)20 + v ()NV(8) | L2(7)) ds

t/2
:/0 (t =) VP (IV($)IZa + [ev ()IIV(5)]2) d8+/t/2(t — &) PV ()20 + v ()V(5)c2) ds

I(t) I (¢)

Using (4.21)) with ¢ = 2 for s € (0,1) and § = ¢ for s € (1,t/2) (recall ¢ > 2), and using t — s > t/2
for s <t/2,

1 t/2
N(t) < Clp, g, Vot~ 7 (/ s [ st ds) < Clp,q. Vo) 77,
0 1

where we used that 1/2 —2/q < —1 so that [;° s1/272/1ds < .
Using (4.21)) with ¢ =4/3 for s € (¢/2,t), we obtain

t 1
IL(t) < C(p,q, Vo) // (t—s) TP ds = C(p, q, Vo)t~ T/P // (1—7) /P =qr,
t/2 1/2

The case ¢ = 4/3: proof of (1.44]). This case follows similarly as the previous one, except that
estimating I yields

1 t/2
L(t) < C(p,q, Vo)t 1 1/P </ s71/2ds +/ s‘lds> < C(p, g, Vo)t " /P(1 + log(t)).
0 1

We now concentrate on the estimate (1.46)(1.48)) on £y (t) — £g()1;,- In order to do that, again, we
split the integral in two parts:

t/2
v () = Lsy| < Kl2) / (t =) (IVS)IE + v () IV (s) g2 ) ds

+K(p) /W(t =) D (V)20 + v )V ()l r ) ds = i () + Ta(0)

where Ky is the constant of Corollary and p € (2,00). The estimate of J; can be done as previously
by using :
C(p, q, Vo)t+/*=%/1 if ¢ € (4/3,2],
Nt) < Clp,a, Vo)™ (L+log(t)) i g =4/3,
(p7q,Vo) if g € (1,4/3)
For Jo, remark that similarly as in we can obtain for all § € [¢,2], s > 0,

IV )2 + 10 )V ()l < (H<2p, 0.Vo))2s" 7/ 4 H(p, 4, Vo) Hy(d, Vo)s'7 1) |

so that: i
Ta(t) < Clp, 4, Vo)t'/*2/1.,
This ends the proof by choosing ¢ = ¢ for q € (4/3,2] and ¢ = 4/3 if ¢ € (1,4/3]. d



42 S. ERVEDOZA, M. HILLAIRET & C. LACAVE

5. FURTHER COMMENTS

We list below several comments.

Concerning optimality of Theorem [I.1. When considering the decay estimates of Theorem it is
natural to ask if the results are sharp, in particular regarding the decay of the gradient estimates when
p > 2andt > 1, since all other decay estimates correspond to the classical ones for the heat semigroup
on R?. However, in our proof, the decay estimate differs from the one corresponding to the heat
semigroup on R? for all the modes. Each time, this slower decay rate for t > 1 and p > 2 arises due
the presence of the boundary. Let us point out that P. Maremonti and V. A. Solonnikov prove in [17]
that, when considering the Stokes equations in an exterior domain of R3 with homogeneous Dirichlet
boundary conditions, estimate , which is the counterpart of , is sharp. It is then likely that
estimates of Theorem are sharp as well.

Straightforward extensions of theorems[1-4) and [1.1]

e Using the density of L1N L2 in £9N0 L% and the decay estimates of Theorem one easily get,
for all g € (1,2], for all Vj € L9N £? satisfying IVoll 22 < Ao(5/4), the unique associated solution V()
to (1.11)—(1.18]) satisfies:

Jlim Y972V ()| 2» = 0. (5.1)

Indeed, for Vy € £9N L2 satisfying ||Vol| 22 < Mo(5/4), by Theorern tH/a=1/P||V () — S(t) Vo) c» goes
to zero as t — oo (recalling that Ao(q) > Ao(5/4) if ¢ > 5/4, see the end of Introduction). We then
take ¢ > 0 and Vj € £ N L2 satisfying ||Vo — Vo||ze < e. According to Theorem., 1.1} tY/a=1/P|| S (t)Vp —

S(t)Voller < Ki(p,q)v'/P~1/%e. But Theorem [1.1] also implies limyo t1/771/7(|S(¢)Vp|| = 0 since Vg
belongs to £ for some ¢ € (1,q). Hence

lim sup tV/77VP||V (2)|| < Ce.
t—o0

Since € was arbitrary, this implies ([5.1)).

e The proofs of Theorems are only based on the LP — L? estimates for the Stokes problem
given in Theorem As such estimates are already known in the case of a fixed exterior domain (see
[5 6, [17]), we claim that Theorem holds true also in this case. Hence, the computations herein
extend the results in [10, [12] to the case of finite energy initial data.

e In order to obtain the decay estimates of Theorem our approach is strongly based on the
fact that the rigid body is an homogenous disk. Indeed, in polar coordinates we decompose in Fourier
series. A case which can be easily treated by our analysis is when the disk is non-homogenous, and
the center of mass corresponds to the center of the dzsk (e.g. for a density p with radial symmetry).

In this case, the equations (1.11] - and - are the same, where:

m= [ p)de; J= [ px)z|*dz.
Bo Bo
To our knowledge, the case of a more general shape or more general density is completely open. A
similar problem, also open, would be to derive decay estimates in the case of two rigid disks.

Open problems.

e Despite Theorem[I.4] a complete description of the first term in the asymptotic behavior as t — oo
of the solutions V of (L.11])-(1.18) is still missing. Indeed, Theorems and cannot be combined
since Theorem requires the initial data to be £! and in that case, Theorem only yields that the
LP-norm of the difference between the solution of the complete non-linear system — and
the linear one, given by S(¢)Vj, decays as CtY/P=1, which is precisely the order of magnitude of the
LP-norm of the solution of the linear Stokes equation when Vi € £'. At this level, let us emphasize
that one of the main conceptual difficulties of this problem is that the invariant seems to be the £!-
norm of the solution of - - ), despite the fact that the linear semigroup does not seem to be
well-posed in £'. To justify this statement, we emphasize that the asymptotic given by Theorem [1.2) -
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does not belong to £'. Showing that the non-linear term decreases faster than t~*+/P is the major
issue which prevents us from extracting the asymptotic first order.

If we look carefully at the proof of Theorem [I.4] we note that the difficulty comes from the fact
that we do not manage to prove that |S(¢)Pdiv F'||z» decays faster for F' € L7 with ¢ < 2 (see (3.34))).
In particular, in the case of the Navier-Stokes equations in R?, using heat kernel estimates, which are
better than estimates when ¢ < 2 and ¢t > 1, A. Carpio in [3] shows that the non-linear term is
smaller than the Stokes solution for large time. But as we have noted above, the restriction in
seems to be unavoidable.

Nevertheless, other methods relying on the use of suitable scaling invariance and similarity variables
have been used for providing leading order terms in [3], 19, [I1]. To keep the unity of this paper we
postpone these approaches to a future work.

e Another open problem is to remove the smallness condition in Theorem as it is done for
Navier-Stokes in the full plane [21], 27] and in fixed exterior domains [1]. Indeed, such result would be
expected in view of the energy dissipation law which indicates the decay of the £?-norm of the

solutions of (1.1))—(1.8).
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APPENDIX A. PROOF OF PROPOSITION

Assume Vp € L2 N CP(R?) Hille-Yosida’s theorem implies there exists a unique solution V &
C([0,00); £2) to (1.22)—(1.29). Furthermore, the unknowns (fy/,wy) and the pressure p that are con-
structed starting from V have, with V, the following regularity (see [22, Corollary 4.3]):

v € C([0, 00); [H' (F0)I*) N L*((0,00); [H*(F0)I*), Vi € L*((0,00); L*(Fo)) ,
by € H'(0,00), wy € HY(0,00).
We note also that further smoothing properties of the semigroup (see [2, Theorem 7.7]) imply
(v,p) € [€((0,00) x Fo)l*,  Vp € C((0,00); L*(F)) -

Consequently, we introduce the decomposition (W, ®, ¥, Vg) of V in spherical harmonics and a
corresponding decomposition of the pressure p:

1 2w

pi(t,r) = / p(t,r,0)cosfdb, (A1)
T Jo
1 2w

q(t,r) = / p(t,r,0)sinfdo, (A.2)
T Jo

pR(t,T’) = p(t,r, 0) - pl(tvr) cosf — q1 (t,T’) sinf. (A3)

Note that, like vg, the remainder term pp satisfies:

2w 2m
/ pr(t,r,0)cos(0)dd = / pr(t,r,0)sin(d) dd = 0. (A.4)
0 0
Applying the continuity of the spherical-harmonic decomposition together with the continuity of V'
yields:
W € C([0,00); L*((0, 00), rdr)) (0,9, /r) € C([0,00); L*((0, 00), 7dr))
Vg € C([0, 00); L2(Fo)) (0,®,®/r) € C([0,00); L*((0, 00), rdr)),
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together with
Orp1 € C((O,oo);LQ((l,oo),rdr)), orq1 € C((O,oo);LQ((l, 00), rdr)).

Referring to the formulas (2.8)-(2.10) and (A.1)-(A.2) we also obtain at once the smoothness of
(W, Vg, ®, V), of (p1,q1) and of (Vr,pr). It now remains to compute the systems satisfied by these

unknowns.

We recall that the spherical-harmonic decomposition of V' reads V = V,.e, + Vyey
v P
V,=—sinf — —cos@+Vg-e,, Vy=Wmin(l,7)+ 0,¥cosh+ 9, Psinf + Vg - ey (A.5)
r r
and the velocity-field on the disk is given as follows in radial coordinates:

(by + wyat), = by cos(0) + byasin(@), (by +wyat)y = wr — fyqsin(8) + Ly cos().

Identifying V' and the velocity-field of the disk on 0By ( i.e. for r = 1), we obtain the following
boundary conditions:

w(t, 1) = w(t), Vit >0,

P(t,1) = Llya(t), Op(t,1) = Llya(t), Vt>0,
e1(t,1) = —Llya(t), Orp1(t,1) = —Llya(t), Vt>0.
vr(t,z) = 0, Ve edBy, Vt=>0.

In the fluid domain, we remark that, introducing x such that 9,y = w and x(0) = 0, the spherical-
harmonic decomposition reads:

v =Vt (x +1pcos(8) + psin(8)) + vg
so that:
v — vAv = V[0 — vA] (x + ¥ cos(8) + psin(0)) + g — vAvg,
where, in polar coordinates:

Dpgtp(t,r,0)

Aw(t,r,e):%&[r&@b](t,r,@)—i— wnd,

We also recall that, the gradient operator reads:
0
Vq = 0qe, + %qeg .

Finally, we remark that orthogonality conditions such as (2.2) or (A.4) transmit to time and space
derivative. Hence, replacing 1 and p by their values in the two last formulas, identifying then the
different frequencies: constant, cos#, sin #, and remainders, we get:

dyw — v <8rrw+ a’"T“’ - “’) =0, for (t,r) € (0,00) x (1,00);

r2

oy —v <8m~¢ + *Y _ :é) = —rorq1, for (¢,r) € (0,00) x (1,00);

r

010 — VO, (8”4/1 + 8,:# — ;é) = —%, for (t,7) € (0,00) x (1, 00);
Opp — v (Ebrnp + &Tw - :;) =rop1, for (t,7) € (0,00) x (1, 00); (A.6)
0o — v0; (aw + 8’;}” - ;2) = % . for (t,7) € (0,00) x (1, 00); (A.7)

Owr — VAvg + Vpr =0, t>0, ze Fp. (A8)
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To end up the proof of Proposition we write now ([1.26])-(|1.27)). First we recall that, on By there
holds n = —e, (the normal n is here computed outward the fluid domain) and r = 1, so that:

—2D(v)n = 0w+ Vv, —[Ve,] v,
= (20,vy)er + (Orvg + Ogv, — vg)ey ,
=¥n = (—p+ 2vdv,)e, + v(0rvg + Ogu, — vg)ey.

Hence, computing for instance £{,, = ¢}, - e2 we have:

2 27
mﬁ/z = / (2v0,v, — p)sinfdb + V/ (Orvg + Ogvy — vp) cos0dO
0 0

2 2
= / (2v0,v, + vv, — p)sinf d + 1// (Orvg + Ogvy) cos O dh .
0 0

In these last integrals, we then compute 0,v, and J,vg with respect to w, ¥ and ¢, and vg thanks to
(A.5). Recalling the orthogonality conditions (2.2]) and (A.4]), we get:

mglv,g = T |:1/ <28r |:1f:| + arr¢ + '¢ - 8rw> - Ch] s

™ |:V <arr¢ + O - w) - (I1] .

r 72

The computations of Jwi{, and mfj,, are similar.

1]
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