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Abstract

The goal of this article is to analyze observability results in
arbitrary small time for discrete approximations of conservative
systems. In previous works, under the assumption that the con-
tinuous conservative system is admissible and exactly observable,
observability results for the corresponding discrete approximation
schemes have been proved within the class of conveniently filtered
solutions using resolvent estimates. However, in several situations
and in particular for Schrödinger equations when the Geometric
Control Condition is satisfied, the exact observability property
holds in any arbitrary small time. We prove that in several cases,
namely under a stronger resolvent condition, the time-discrete ap-
proximations of conservative systems also enjoy uniform observ-
ability properties in arbitrary small time, still within the class
of conveniently filtered solutions. In particular, our methodology
applies to space semi-discrete and fully discrete approximation
schemes of Schrödinger equations for which the Geometric Con-
trol Condition is satisfied. Our approach is based on the resolvent
characterization of the exact observability property and a con-
structive argument by Haraux in [14].
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1 Introduction

Let X be a Hilbert space endowed with the norm ‖·‖X and let A :
D(A) → X be a skew-adjoint operator with compact resolvent. Let us
consider the following abstract system:

ż(t) = Az(t), z(0) = z0. (1.1)

Here and henceforth, a dot (˙) denotes differentiation with respect to the
time t. The element z0 ∈ X is called the initial state, and z = z(t) is the
state of the system. Note that since A is skew-adjoint, solutions of (1.1)
have constant energy: ∀t ∈ R, ‖z(t)‖X = ‖z0‖X . In particular, (1.1)
can be solved for all time t ∈ R.

Such systems are often used as models of vibrating systems (e.g., the
wave equation), electromagnetic phenomena (Maxwell equations) or in
quantum mechanics (Schrödinger equation).

Assume that Y is another Hilbert space equipped with the norm
‖·‖Y . We denote by L(X,Y ) the space of bounded linear operators from
X to Y , endowed with the classical operator norm. Let B ∈ L(D(A), Y )
be an observation operator and define the output function

y(t) = Bz(t). (1.2)

In order to give a sense to (1.2), we make the assumption that B is an
admissible observation operator in the following sense (see [20]):

Definition 1.1. The operator B is an admissible observation operator
for system (1.1)-(1.2) if for every T > 0 there exists a constant KT > 0
such that ∫ T

0

‖Bz(t)‖2Y dt ≤ KT ‖z0‖2X , ∀z0 ∈ D(A). (1.3)

Note that if B is bounded on X, i.e. if it can be extended such that
B ∈ L(X,Y ), then B is obviously an admissible observation operator.
However, in applications, this is often not the case, and the admissi-
bility condition is then a consequence of a suitable “hidden regularity”
property of the solutions of the evolution equation (1.1).

The exact observability property of system (1.1)-(1.2) can be formu-
lated as follows:

Definition 1.2. System (1.1)-(1.2) is exactly observable in time T if
there exists kT > 0 such that

kT ‖z0‖2X ≤
∫ T

0

‖Bz(t)‖2Y dt, ∀z0 ∈ D(A). (1.4)
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Moreover, (1.1)-(1.2) is said to be exactly observable if it is exactly
observable in some time T > 0.

Note that observability issues arise naturally when dealing with con-
trollability and stabilization properties of linear systems (see for instance
the textbook [20]). Indeed, controllability and observability are dual
notions, and therefore each statement concerning observability has its
counterpart in controllability. In the sequel, we focus on the observabil-
ity properties of (1.1)-(1.2).

It was proved in [21] that system (1.1)-(1.2) is exactly observable if
and only if the following assertion holds:
Condition 1. There exist positive constants M,m > 0 such that

M2 ‖(A− iωI)z‖2X +m2 ‖Bz‖2Y ≥ ‖z‖
2
X , ∀ω ∈ R, ∀ z ∈ D(A). (1.5)

This spectral condition can be viewed as a Hautus-type test, and
generalizes the classical Kalman rank condition, see for instance [26]. To
be more precise, if Condition 1 holds, then system (1.1)-(1.2) is exactly
observable in any time T > T0 = πM (see [21]).

The following stronger resolvent condition is more interesting for our
purpose:
Condition 2. There exist a positive constant m > 0 and a function
M = M(ω) of ω ∈ R, bounded on R and satisfying

lim
|ω|→∞

M(ω) = 0, (1.6)

such that for all ω ∈ R,

M(ω)2 ‖(A− iωI)z‖2X +m2 ‖Bz‖2Y ≥ ‖z‖
2
X , ∀ z ∈ D(A). (1.7)

This condition appears naturally when considering Schrödinger equa-
tions for which the Geometric Control Condition is satisfied (see [21] and
Section 4 below).

Theorem 1.3 ([5, 21]). When Condition 2 is fulfilled, system (1.1)-(1.2)
is observable in any time T ∗ > 0.

The proof of Theorem 1.3 in [21] is based on a decoupling argument
of high- and low-frequency components. Given T ∗ > 0, take M > 0 such
that πM < T ∗, and choose a frequency cut Ω = Ω0 + 1/M where Ω0

satisfies sup|ω|≥Ω0
{M(ω)} ≤M . Then the frequencies higher than Ω are

exactly observable in any time T̃ ∈ (πM, T ∗). The low-frequency com-
ponents then correspond to a finite dimensional observability problem
and can be handled in any time T > 0. Finally these two partial observ-
ability properties are combined together using a compactness argument
(or simultaneous exact controllability results as in [26]).
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But these methods are not constructive and are then not sufficient
to obtain observability results for family of operators satisfying (1.7)
uniformly. It is then of particular interest to design a constructive proof
of Theorem 1.3 when dealing for instance with discrete approximation
schemes of (1.1)-(1.2).

In the sequel, we will then propose a constructive proof of Theorem
1.3, based on an explicit method proposed by Haraux in [14]. This allows
us to deal with families of operators satisfying Condition 2 uniformly.
We then explain how our method applies to time semi-discretizations of
(1.1)-(1.2).

In particular, our method implies that when the Geometric Control
Condition is satisfied, time continuous and time semi-discrete Schrödinger
equations are exactly observable in arbitrary small time, as we will see
in Section 4. In this case, based on the abstract approach developed in
[8, 9], we can also deal with space semi-discrete and fully discrete ap-
proximation schemes. In particular, we will prove uniform (with respect
ti the discretization parameters) observability results in arbitrary small
time for discrete approximations of Schrödinger equations satisfying the
Geometric Control Condition, within the class of conveniently filtered
solutions.

Let us now briefly comment the literature. This article follows the
works [10, 8, 9] on observability properties for discrete approximation
schemes of abstract conservative systems which, in the continuous set-
ting, are exactly observable. The main underlying idea there is to use
spectral criteria such as (1.5) which yield explicit dependence on the pa-
rameters for the constants entering in the exact observability property
(1.4). Indeed, one can then use the following diagram to prove uniform
observability results for discrete approximations of (1.1)-(1.2):

Exact observability property Uniform observability
for the continuous system for discretizations of (1.1)-(1.2)

⇓ ⇑
Spectral criterion =⇒ Spectral criterion

for the continuous system for the discrete systems

The spectral criteria used in [10, 8, 9] for the exact observability property
are due in particular to [5, 21, 24, 26]. As already noticed in [26], if the
operators A and B satisfy estimate (1.7) for a function M(ω) satisfying
lim|ω|→∞M(ω) = M (M may be different from 0), then system (1.1)-
(1.2) is exactly observable in any time T > πM .

Let us mention that one has to look for uniform observability prop-
erties for the discrete approximation schemes of (1.1)-(1.2) to guarantee
the convergence of the controls computed in the discrete setting to one
of the continuous system (1.1)-(1.2). However, as already noticed in
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[11, 12, 13] in the nineties, observability properties for discrete versions
of (1.1)-(1.2) do not hold uniformly with respect to the discretization
parameters due to spurious high-frequencies. We thus need to restrict
ourselves to prove uniform observability properties within the class of
conveniently filtered solutions.

There are of course several other techniques to study observability
properties for discrete versions of (1.1)-(1.2), such as Ingham’s Lemma
[16], which use is essentially limited to the 1d cases (see [15, 6, 7]), and
discrete multiplier methods as in [22, 23]. For extensive references and
the state of the art for the observability properties of discrete approxi-
mations of the wave equation, we refer to [27].

The paper is organized as follows.
In Section 2, we give a constructive proof of Theorem 1.3. In Section

3, we explain how this can yield uniform observability results in arbitrary
small time for time semi-discrete versions of (1.1)-(1.2). in Section 4,
we present an application of these techniques to discrete Schrödinger
equations -including the fully discrete case- when the Geometric Control
Condition is satisfied. We finally end up with some further comments.

Acknowledgments. The author acknowledges Vilmos Komornik
for having pointed out the constructive argument of Haraux.

2 A constructive proof of Theorem 1.3

Before going into the proof, we introduce some notations.
For a function f ∈ L2(R;X) depending on time t ∈ R, we define its

time Fourier transform f̂ ∈ L2(R, X) by

f̂(ω) =
1√
2π

∫
R
f(t)e−iωt dt. (2.1)

The Parseval identity then reads:∫
R
‖f(t)‖2X dt =

∫
R

∥∥∥f̂(ω)
∥∥∥2

X
dω, ∀f ∈ L2(R;X). (2.2)

It is convenient to introduce the spectrum of the operator A. Since
A is skew-adjoint with compact resolvent, its spectrum is discrete and
σ(A) = {iµj : j ∈ Z}, where (µj)j∈Z is an increasing sequence of
real numbers. Set (Φj)j∈N an orthonormal basis of eigenvectors of A
associated to the eigenvalues (iµj)j∈Z:

AΦj = iµjΦj . (2.3)

Moreover, we define the filtered class

C(s) = span{Φj : the corresponding iµj satisfies |µj | < s}, (2.4)
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and its orthogonal C(s)⊥ in X, which coincides with

span{Φj : the corresponding iµj satisfies |µj | ≥ s}.

We can now focus on the proof of Theorem 1.3, which is decomposed
in two main steps, which will be explained in the next subsections:

1. We prove an observability inequality in arbitrary small time for
the high-frequency solutions of (1.1).

2. We use the constructive argument in [14] to obtain an observability
inequality for any solutions of (1.1).

2.1 High frequency components

We first prove a high-frequency resolvent estimate:

Lemma 2.1. For all M > 0 there exists a constant Ω such that

M2 ‖(A− iωI)z‖2X +m2 ‖Bz‖2Y ≥ ‖z‖
2
X ,

∀ω ∈ R, ∀ z ∈ D(A) ∩ C(Ω)⊥.
(2.5)

Proof of Lemma 2.1. Fix M > 0. Then there exists Ω0 such that

∀ω ≥ Ω0, |M(ω)| ≤M.

This implies the following version of (2.5):

M2 ‖(A− iωI)z‖2X +m2 ‖Bz‖2Y ≥ ‖z‖
2
X ,

∀ω such that |ω| ≥ Ω0, ∀ z ∈ D(A).

In particular, this implies (2.5) for all ω such that |ω| ≥ Ω0. We thus
only need to prove (2.5) for ω such that |ω| ≤ Ω0. This can be done
using the following remark: If Ω ≥ Ω0,

∀ω such that |ω| ≤ Ω0, ∀z ∈ D(A) ∩ C(Ω)⊥,
‖(A− iω)z‖2X ≥ (Ω− Ω0)2 ‖z‖2X .

Then, with the choice Ω = Ω0 + 1/M , (2.5) holds. ♦

We now prove the following lemma:

Lemma 2.2. If (2.5) holds for given M and Ω, the observability in-
equality (1.4) holds in any time T > πM for solutions of (1.1) with
initial data lying in C(Ω)⊥. Besides the corresponding constant kT > 0
of observability in (1.4) can be chosen as

kT =
1

2m2T 2
(T 2 − π2M2).
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This lemma can actually be found in [5, 21]. We provide the proof
for completeness.

Proof of Lemma 2.2. Given z0 ∈ C(Ω)⊥ ∩ D(A), let z(t) be the corre-
sponding solution of (1.1) and define, for χ ∈ C∞0 (R),

g(t) = χ(t)z(t), f(t) = g′(t)−Ag(t) = χ′(t)z(t).

Then f̂(ω) = (iω −A)ĝ(ω). Besides, ĝ belongs to L2(R;D(A) ∩ C(Ω)⊥).
We can thus apply the resolvent estimate (2.5) to ĝ(ω):

∀ω ∈ R, ‖ĝ(ω)‖2X ≤ m
2
∥∥∥B̂g(ω)

∥∥∥2

Y
+M2

∥∥∥f̂(ω)
∥∥∥2

X
.

Integrating in ω and using the Parseval identity, we obtain(∫
R
χ(t)2 dt−M2

∫
R
χ′(t)2 dt

)
‖z0‖2X ≤ m

2

∫
R
χ(t)2 ‖Bz(t)‖2Y dt,

where we used that the energy of solutions of (1.1), given by ‖z(t)‖2X , is
constant.

We then look for a function χ which makes the left hand side positive.
This can be achieved by taking χ(t) = sin(πt/T ) in (0, T ) and vanishing
anywhere else. This is not in C∞0 (R) but inH1(R) with compact support,
which is sufficient for the proof developed above.

This gives the desired estimate for any initial data z0 ∈ D(A)∩C(Ω)⊥

and we conclude by density. ♦

2.2 Haraux’s constructive argument

To present the construction precisely, remark that since A has compact
resolvent, there is only a finite number of eigenvalues for which |µj | < Ω.
For convenience, we introduce the finite sequence (mj)1≤j≤N of strictly
increasing real numbers such that {mj} = {µj such that |µj | < Ω}. For
j ∈ {1, · · · , N}, we then denote by Xj the finite-dimensional vector
space spanned by the eigenvectors corresponding to eigenvalues iµj with
µj = mj . Note that these notations are not needed when the eigenvalues
are simple.

Lemma 2.3 ([14]). Let B be an admissible operator for (1.1)-(1.2).
Assume that there exist positive constants k̃ > 0 and T̃ such that any
solution of (1.1) with initial data z0 ∈ C(Ω)⊥ satisfies

k̃ ‖z0‖2X ≤
∫ T̃

0

‖Bz(t)‖2Y dt. (2.6)
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Also assume that there exists a strictly positive number β such that

∀j ∈ {1, · · · , N}, ∀z ∈ Xj , ‖Bz‖Y ≥ β ‖z‖X . (2.7)

Then the observability inequality (1.4) holds in any time T > T̃ , with a
strictly positive observability constant kT > 0 depending explicitly on the
parameters β, T − T̃ , k̃, the number N of low frequencies and the low
frequency gap

γ = inf
j∈{0,··· ,N}

{mj+1 −mj}, where m0 = −Ω and mN+1 = +Ω. (2.8)

Note that γ in (2.8) is strictly positive as an infimum of a finite
number of strictly positive quantities.

We give the proof of this lemma below, since it will later be general-
ized to more complex situations. Note that this proof can also be found
in [18].

Proof of Lemma 2.3. The argument is inductive. We then just need to
describe the first step, the others being similar. We then focus on the
observability inequality (1.4) for initial data in XN + C(Ω)⊥.

Set z0 ∈ XN + C(Ω)⊥, and expand it as z0,N + z0,hf with z0,N ∈ XN

and z0,hf ∈ C(Ω)⊥.
Let z(t) be the solution of (1.1) corresponding to the initial data z0,

and define, for δ > 0,

v(t) = z(t)− 1
2δ

∫ δ

−δ
eimNsz(t− s) ds. (2.9)

Writing z0 =
∑
ajΦj , the solution z(t) of (1.1) can be explicitly

written as
∑
ajΦj exp(iµjt). In particular,

v(t) =
∑
j

ajΦj exp(iµjt)
(

1− sinc(δ(mN − µj))
)

=
∑

j with |µj |≥Ω

ajΦj exp(iµjt)
(

1− sinc(δ(mN − µj))
)

(2.10)

Note in particular that (2.10) implies that the norms of v0 = v(0)
and z0 satisfy

‖z0,hf‖2X ≤
1

(1− sinc(δγ))2
‖v0‖2X . (2.11)

Besides, (2.10) also implies that v is a solution of (1.1) with initial
data in C(Ω)⊥. Hence, it shall also satisfy the observability inequality
(2.6):

‖v0‖2X ≤
1
k̃

∫ T̃

0

‖Bv(t)‖2Y dt. (2.12)
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We then have to estimate the right hand side of (2.12). From (2.9), we
get:∫ T̃

0

‖Bv(t)‖2Y dt ≤ 2
∫ T̃

0

‖Bz(t)‖2Y dt

+2
∫ T̃

0

∥∥∥∥∥B( 1
2δ

∫ δ

−δ
eimNsz(t− s) ds

)∥∥∥∥∥
2

Y

dt

≤ 2
∫ T̃

0

‖Bz(t)‖2Y dt+ 2
∫ T̃+δ

−δ
‖Bz(t)‖2Y dt

≤ 4
∫ T̃+δ

−δ
‖Bz(t)‖2Y dt. (2.13)

Combined with (2.11) and (2.12), this yields

‖z0,hf‖2X ≤
4

k̃(1− sinc(γδ))2

∫ T̃+δ

−δ
‖Bz(t)‖2Y dt. (2.14)

We then focus on the component of the solution in XN . Obviously,
denoting by zN , zhf the solutions of (1.1) with initial data z0,N , z0,hf

respectively, applying (2.7) we obtain

‖z0,N‖2X ≤
1
T̃ β2

∫ T̃

0

‖BzN (t)‖2Y dt

≤ 1
T̃ β2

(
2
∫ T̃

0

‖Bz(t)‖2Y dt+ 2
∫ T̃

0

‖Bzhf (t)‖2Y dt
)
.

Using the admissibility of B for system (1.1)-(1.2), we obtain

‖z0,N‖2X ≤
2
T̃ β2

∫ T̃

0

‖Bz(t)‖2Y dt+
2KT̃

T̃ β2
‖z0,hf‖2X . (2.15)

Using (2.14) and the orthogonality of XN and C(Ω)⊥, we conclude

‖z0‖2X ≤
[ 2
T̃ β2

+
(2KT̃

T̃ β2
+ 1
) 4
k̃(1− sinc(γδ))2

] ∫ T̃+δ

−δ
‖Bz(t)‖2Y dt,

(2.16)
or, using the conservation of the energy for solutions of (1.1) and the
semi-group property,

‖z0‖2X ≤
[ 2
T̃ β2

+
(2KT̃

T̃ β2
+ 1
) 4
k̃(1− sinc(γδ))2

] ∫ T̃+2δ

0

‖Bz(t)‖2Y dt.

(2.17)
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Since δ > 0 is arbitrary small, we have proved the observability inequality
(2.17) in any time TN > T̃ for any solution of (1.1) with initial data in
XN + C(Ω)⊥.

The induction argument is then left to the reader. ♦

2.3 End of the proof of Theorem 1.3

Set T ∗ > 0. Choose M > 0 such that πM = T ∗/4. From Lemma 2.1,
one can choose Ω such that (2.5) holds for z ∈ D(A) ∩ C(Ω)⊥. From
Lemma 2.2, this implies that any solution of (1.1) with initial data in
C(Ω)⊥ satisfies (2.6) in time T̃ = T ∗/2.

Since A has compact resolvent, there is only a finite number of eigen-
values µj such that |µj | < Ω and then the low frequency gap γ defined
in (2.8) is strictly positive.

We only have to check that estimate (2.7) indeed holds. This is
actually obvious, since for j ∈ {1, · · · , N} and z ∈ Xj , taking ω = mj

in (1.7), we obtain:
m2 ‖Bz‖2Y ≥ ‖z‖

2
X .

The proof is then complete by applying Lemma 2.3. �

3 Applications to time-discrete approxima-
tions of (1.1)-(1.2)

This section aims at describing how the previous result can be adapted to
time-discrete approximations of systems (1.1)-(1.2) satisfying Condition
2. In particular, we shall prove that in that case, time semi-discrete
approximations of (1.1)-(1.2) indeed are exactly observable in arbitrary
small time within the class of conveniently filtered solutions, uniformly
with respect to the time discretization parameter.

3.1 Time discrete approximations of (1.1)-(1.2)

To simplify the presentation, we will focus on the following natural ap-
proximation of (1.1)-(1.2), the so-called midpoint scheme. For ∆t > 0,
consider 

zk+1 − zk

∆t
= A

(zk + zk+1

2

)
, in X, k ∈ Z,

z0 = z0 given.
(3.1)

Here, zk denotes the approximation of the solution z of (1.1) at time
tk = k∆t. Note that the discrete system (3.1) is conservative, in the
sense that k 7→

∥∥zk∥∥2

X
is constant.
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The output function is now given by the discrete sample

yk = Bzk. (3.2)

The admissibility and observability properties for (3.1)-(3.2) have been
studied in [10] using spectral criteria such as Condition 1 for the observ-
ability properties. In particular, [10] states the following result:

Theorem 3.1 ([10]). Assume that the continuous system (1.1)-(1.2) is
admissible and exactly observable in some time T > 0. Then for all
δ > 0:

• For all T > 0, there exists a constant Kδ,T such that, for all ∆t >
0, any solution zk of (3.1) with initial data z0 ∈ C(δ/∆t) satisfies

∆t
∑

k∆t∈(0,T )

∥∥Bzk∥∥2

Y
≤ Kδ,T ‖z0‖2X . (3.3)

• There exist a time Tδ and a positive constant kδ > 0 such that, for
all ∆t > 0 small enough, any solution zk of (3.1) with initial data
z0 ∈ C(δ/∆t) satisfies

kδ ‖z0‖2X ≤ ∆t
∑

k∆t∈(0,Tδ)

∥∥Bzk∥∥2

Y
. (3.4)

Note that the observability property (3.4) requires the time to be
large enough. Actually, a precise estimate is given in [10] in terms of
the resolvent parameters in (1.5) and the scaling parameter δ, but this
is not completely satisfactory since, to our knowledge, even in the con-
tinuous setting, we are not able in general to recover the optimal time
of controllability from (1.5).

But, as explained in the introduction, Condition 2 is sufficient to
prove observability of the continuous system (1.1)-(1.2) in any positive
time. We thus ask whether or not it is also possible to prove discrete
observability properties for (3.1)-(3.2) in arbitrary small time when Con-
dition 2 is satisfied.

Theorem 3.2. Assume that Condition 2 is satisfied.
• If B ∈ L(D(Aκ), Y ) with κ < 1. Then for any δ > 0, for any time
T ∗ > 0, there exists a positive constant kδ,T∗ > 0 such that, for all ∆t >
0 small enough, any solution zk of (3.1) with initial data z0 ∈ C(δ/∆t)
satisfies

kδ,T∗ ‖z0‖2X ≤ ∆t
∑

k∆t∈(0,T∗)

∥∥Bzk∥∥2

Y
. (3.5)

• If B simply belongs to L(D(A), Y ). Then for any time T ∗ > 0, there
exist two positive constants δ > 0 and kδ,T∗ > 0 such that, for all ∆t > 0
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small enough, any solution zk of (3.1) with initial data z0 ∈ C(δ/∆t)
satisfies (3.5).

Theorem 3.2 is the exact counterpart in the discrete setting of Theo-
rem 1.3, and we will only indicate the modifications needed in its proof
to derive Theorem 3.2.

Proof of Theorem 3.2. As we said, the proof of Theorem 3.2 closely fol-
lows the one of Theorem 1.3, and we thus only sketch it briefly.

We first deal with the high-frequency components. Lemma 2.1 still
holds, since it is by nature independent of time, whether this time is
continuous or not. However, Lemma 2.2 has to be modified and replaced
by the following

Lemma 3.3. Assume that (2.5) holds for given m, M and Ω. For any
δ > 0, set

TM,δ =


πM

(
1 +

δ2

4

)
, if B ∈ L(D(Aκ), Y ) with κ < 1,

π

[
M2
(

1 +
δ2

4

)2

+m2 ‖B‖2L(D(A),Y )

δ4

16

]1/2

if B ∈ L(D(A), Y ).

(3.6)

Then the observability inequality (3.4) holds in any time T > TM for
some positive constant kT > 0 for any solution of (3.1) with initial data
lying in C(Ω)⊥ ∩ C(δ/∆t). Besides, kT can be chosen explicitly as a
function of T, m, M and the norm of B in L(D(A), Y ).

Proof of Lemma 3.3. In the case B ∈ L(D(A), Y ), this lemma corre-
sponds exactly to Theorem 1.3 in [10], and might be seen as an extension
of Lemma 2.2 to the time discrete case, involving in particular discrete
Fourier transforms instead of continuous ones.

In the case B ∈ L(D(Aκ), Y ) with κ < 1, the proof of Lemma 3.3
can be adapted immediately from the one of Theorem 1.3 in [10] by
modifying estimate (2.19) in [10] using∥∥∥∥B(zk+1 − zk

∆t

)∥∥∥∥
Y

≤ ‖B‖L(D(Aκ),Y )

∥∥∥∥A1+κ
(zk + zk+1

2

)∥∥∥∥
X

≤
(
δ

∆t

)1+κ

‖B‖L(D(Aκ),Y )

∥∥∥∥z0 + z1

2

∥∥∥∥
X

,

and the following ones accordingly. In particular, with the notations of
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[10], a2 in Lemma 2.4 shall be replaced by

a2 = M2

(
1 +

δ2

4

)
+
δ2(∆t)2

16
(β − 1)

+m2 ‖B‖2L(D(Aκ),Y )

δ2+2κ(∆t)2−2κ

16

(
1 +

1
α

)
.

Details are then left to the reader. ♦

We then deal with the low-frequency components. This is done as in
the continuous case:

Lemma 3.4. Let B be an admissible operator for (1.1). Assume that
there exist positive constants δ > 0, k̃ > 0 and T̃ such that, for all
∆t > 0 small enough, any solution of (3.1) with initial data z0 ∈ C(Ω)⊥∩
C(δ/∆t) satisfies

k̃ ‖z0‖2X ≤ ∆t
∑

k∆t∈(0,T̃ )

∥∥Bzk∥∥2

Y
. (3.7)

Also assume that there exists a strictly positive number β such that (2.7)
holds. Then, for any ∆t > 0 small enough, for any solutions of (3.1)
with initial data z0 ∈ C(δ/∆t), the observability inequality (3.4) holds in
any time T > T̃ , with a strictly positive observability constant kT > 0
depending explicitly on the parameters β, T − T̃ , k̃, the number N of low
frequencies and the low frequency gap (2.8).

Proof of Lemma 3.4. The proof of Lemma 3.4 closely follows the one of
Lemma 2.3.

Fix ∆t > 0. First remark that solutions of (3.1) write as

zk =
∑
j

ajΦj exp(λj,∆tk∆t), with λj,∆t =
1

2∆t
tan

(µj∆t
2

)
.

Then define, similarly as in (2.8),

mj,∆t =
1

2∆t
tan

(mj∆t
2

)
and γ∆t = inf

j∈{0,··· ,N}
{mj+1,∆t −mj,∆t}.

For simplicity, choose δ∆t such that δ/∆t is an integer. Introduce,
similarly as in (2.9),

vk = zk − ∆t
2δ

∑
`∆t∈(−δ,δ)

exp(imN,∆t`∆t) zk−l.

The proof of Lemma 3.4 then follows line to line the one of Lemma 2.3,
replacing all the continuous integrals in time by discrete summations
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and using the admissibility result (3.3) in the class C(δ/∆t). This yields,
similarly as in (2.17), that any solution of (3.1) with initial data z0 ∈
XN + C(Ω)⊥ ∩ C(δ/∆t) satisfies

‖z0‖2X ≤
[ 2
T̃ β2

+
(2KT̃

T̃ β2
+1
) 4
k̃(1− sinc(γ∆tδ∆t))2

]
∆t

∑
k∆t∈(0,T̃+2δ∆t)

∥∥Bzk∥∥2

Y
.

In particular, when ∆t goes to zero, one can choose (δ∆t) converging
to δ. Besides, when ∆t → 0, (γ∆t) obviously converges to γ. We thus
obtain, for ∆t > 0 small enough, that any solution of (3.1) with initial
data z0 ∈ XN + C(Ω)⊥ ∩ C(δ/∆t) satisfies

‖z0‖2X ≤
[ 2
T̃ β2

+
(2KT̃

T̃ β2
+ 1
) 4
k̃(1− sinc(γδ))2

]
∆t

∑
k∆t∈(0,T̃+2δ∆t)

∥∥Bzk∥∥2

Y
.

The inductive argument then again works and allows to conclude Lemma
3.4. ♦

We now finish the proof of Theorem 3.2. Set T ∗ > 0.
• If B ∈ L(D(Aκ), Y ) with κ < 1. Set δ > 0. Choose M such that
πM(1 + δ2/4) = T ∗/4.
• If B ∈ L(D(A), Y ). Set δ < δ0, where δ0 is such that

πm ‖B‖L(D(A),Y )

δ2
0

2
= T ∗/8.

Choose M > 0 such that

π

[
M2
(

1 +
δ2

4

)2

+m2 ‖B‖2L(D(A),Y )

δ4

16

]1/2

= T ∗/4.

Applying successively Lemmas 2.2 and 3.3, we prove uniform ob-
servability properties (3.7) for any solution of (3.1) with initial data
z0 ∈ C(Ω)⊥ ∩ C(δ/∆t) in time T ∗/2. We then conclude as in the contin-
uous case by Lemma 3.4 and estimate (2.7). �

Remark 3.5. Note that the approach developed in this section can also
be applied for more general time discrete approximation schemes. We
refer to [10] for the precise assumptions needed on the time discrete
numerical schemes. Roughly speaking, any time discrete scheme which
preserves the eigenvectors and for which the energy is constant enters in
our setting. This includes, for instance, the fourth order Gauss method,
or the Newmark method for the wave equation.
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4 Schrödinger equations

In this section, we present an application to the above results to Schrö-
dinger equations. Condition 2 is indeed typically satisfied by Schrödinger
equations, and can be guaranteed when the corresponding wave equation
is observable.

4.1 The continuous case

Let Ω be a smooth bounded domain of RN , and ω a subdomain of Ω.
Let us consider the following Schrödinger equation: iż + ∆z = 0, in Ω× (0,∞),

z = 0, on ∂Ω× (0,∞),
z(0) = z0 ∈ L2(Ω),

(4.1)

observed through y(t) = χω z(t), where χω = χω(x) denotes the charac-
teristic function of the set ω.

We thus consider the following observability property: for T ∗ > 0,
find a strictly positive constant k∗ such that any solution of (4.1) satisfies

k∗ ‖z0‖2L2(Ω) ≤
∫ T∗

0

‖z(t)‖2L2(ω) dt. (4.2)

Note that this fits the abstract setting presented above: X = L2(Ω),
A = i∆ with Dirichlet boundary conditions, the domain of the operator
A is D(A) = H2∩H1

0 (Ω) and B simply is the multiplication operator by
χω, which is continuous from L2(Ω) to L2(ω) (and therefore admissible).

For Schrödinger equations, due to the infinite velocity of propagation
of rays, there are many cases in which the observability inequality (4.2)
holds in any time T ∗ > 0, for instance, when the Geometric Control
Condition (GCC) is satisfied in some time T .

The GCC in time T can be, roughly speaking, formulated as follows
(see [2] for the precise setting): The subdomain ω of Ω is said to satisfy
the GCC in time T if all rays of Geometric Optics that propagate inside
the domain Ω at velocity one reach the set ω in time less than T .

Note that this is not a necessary condition. For instance, in [17],
it has been proved that when the domain Ω is a square, for any non-
empty bounded open subset ω, the observability inequality (4.2) holds
for system (4.1). Other geometries have also been dealt with: we refer
to the articles [18, 19, 3, 1].

Similarly, Condition 2 is not guaranteed in general: it is indeed
not clear that the observability property in arbitrary small time for
Schrödinger equation (4.1) implies Condition 2.



16 Sylvain Ervedoza

But there are several cases in which Condition 2 is satisfied: when it
has been proven directly to prove observability in arbitrary small time
(see for instance [5]), but this approach has not been fully developed in
the literature, or when the Geometric Control Condition is satisfied.

Theorem 4.1 ([21]). Assume that the Geometric Control Condition
holds. Then Condition 2 is satisfied for system (4.1) observed through
y(t) = χω z(t).

Before going into the proof, we recall that the Geometric Control
Condition in time T > 0 is equivalent [4] to the exact observability
property in time T of the corresponding wave equation ü−∆u = 0, in Ω× (0,∞),

u = 0, on ∂Ω× (0,∞),
(u, u̇)(0) = (u0, u1) ∈ H1

0 (Ω)× L2(Ω),
(4.3)

observed by y(t) = χωu̇(t). In this case, the observability inequality
reads as the existence of a strictly positive constant cT > 0 such that
solutions of (4.3) satisfy

cT ‖(u0, u1)‖2H1
0 (Ω)×L2(Ω) ≤

∫ T

0

‖u̇(t)‖2L2(ω) dt. (4.4)

It is then convenient to introduce an abstract setting, which gener-
alizes Theorem 4.1.

Theorem 4.2 ([21]). Let A0 be a positive definite operator on X, and
let B be a continuous operator from D(A1/2

0 ) to Y . Assume that the
wave like equation

ü+A0u = 0, t ≥ 0, (u(0), u̇(0)) = (u0, u1) ∈ D(A1/2
0 )×X (4.5)

observed through
y(t) = Bu̇(t), (4.6)

is admissible and exactly observable, meaning that there exist a time T
and positive constants cT ,KT > 0 such that solutions of (4.5) satisfy

cT ‖(u0, u1)‖2D(A
1/2
0 )×X ≤

∫ T

0

‖Bu̇(t)‖2Y dt ≤ KT ‖(u0, u1)‖2D(A
1/2
0 )×X .

(4.7)
Then the operators A = −iA0 and B satisfy Condition 2.

In particular, the Schrödinger like equation

iż = A0z, t ≥ 0, z(0) = z0 ∈ X, (4.8)
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observed by
y(t) = Bz(t) (4.9)

satisfies Condition 2 and is therefore observable in arbitrary small time:
for all T ∗ > 0, there exists a positive constant k∗ > 0 such that any
solution of (4.8) satisfies

k∗ ‖z0‖2X ≤
∫ T∗

0

‖Bz(t)‖2Y dt (4.10)

Proof. Assume that (4.5)-(4.6) is exactly observable. Remark that, set-
ting X = D(A1/2

0 )×X, and

A =
(

0 Id
−A0 0

)
, B = ( 0 , B), (4.11)

equation (4.5) fits the abstract setting given above. In particular, the
domain of A simply is D(A0) × D(A1/2

0 ) and then the conditions B ∈
L(D(A1/2

0 ), Y ) and B ∈ L(D(A), Y ) are equivalent.
The admissibility and observability properties (4.7) then imply (see

[21]) Condition 1: There exist positive constants M,m > 0 such that

M2

∥∥∥∥(A− iωI)
(
u
v

)∥∥∥∥2

X

+m2

∥∥∥∥B(uv
)∥∥∥∥2

Y

≥
∥∥∥∥(uv

)∥∥∥∥2

X

,

∀ω ∈ R, ∀
(
u
v

)
∈ D(A). (4.12)

In particular, for all ω ∈ R and u ∈ D(A0), taking v = iωu yields

M2
∥∥(A0 − ω2I)u

∥∥2

X
+m2ω2 ‖Bu‖2Y ≥

∥∥∥A1/2
0 u

∥∥∥2

X
+ ω2 ‖u‖2X

≥ ω2 ‖u‖2X .

Hence

M2

ω2

∥∥(A0 − ω2I)u
∥∥2

X
+m2 ‖Bu‖2Y ≥ ‖u‖

2
X , ∀ω ∈ R,∀u ∈ D(A0),

or, equivalently,

M2

ω
‖(A0 − ωI)u‖2X +m2 ‖Bu‖2Y ≥ ‖u‖

2
X , ∀ω ∈ R+,∀u ∈ D(A0).

(4.13)
Of course, this estimate does not hold for ω < 0 and is not interesting
for small values of ω. But this actually corresponds to the easy case.
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Indeed, if ω < λ1(A0), where λ1(A0) is the first eigenvalue of A0 (which
is strictly positive since A0 is positive definite),

‖(A0 − ωI)u‖2X ≥ (λ1(A0)− ω)2 ‖u‖2X , ∀u ∈ D(A).

Combined with (4.13), by taking

M(ω) =


M√
ω

for ω > λ1(A0)
2 ,

1
λ1(A0)− ω

for ω ≤ λ1(A0)
2 ,

we then obtain

M(ω)2 ‖(A0 − ωI)u‖2X +m2 ‖Bu‖2Y ≥ ‖u‖
2
X , ∀ω ∈ R,∀u ∈ D(A0).

(4.14)
This completes the proof of Theorem 4.2 and, as a particular instance
of it, of Theorem 4.1. �

The interest of this approach is that it also applies to space semi-
discrete, as well as fully discrete approximation schemes of (4.8) (and in
particular to (4.1)).

4.2 Space semi-discrete approximation schemes

Let us now introduce the finite element method for (4.8).
Let (Vh)h>0 be a sequence of vector spaces of finite dimension nh

which embed into X via a linear injective map πh : Vh → X. For each
h > 0, the inner product < ·, · >X in X induces a structure of Hilbert
space for Vh endowed with the scalar product < ·, · >h=< πh·, πh· >X .

We assume that, for each h > 0, the vector space πh(Vh) is a subspace
of D(A1/2

0 ). We thus define the linear operator A0h : Vh → Vh by

< A0hφh, ψh >h=< A
1/2
0 πhφh, A

1/2
0 πhψh >X , ∀(φh, ψh) ∈ V 2

h . (4.15)

The operator A0h defined in (4.15) obviously is self-adjoint and positive
definite. If we introduce the adjoint π∗h of πh, definition (4.15) reads as:

A0h = π∗hA0πh. (4.16)

This operator A0h corresponds to the finite element discretization of
the operatorA0. We thus consider the following space semi-discretization
of (4.8):

iżh = A0hzh, t ∈ R, zh(0) = z0h ∈ Vh. (4.17)

In this context, for all h > 0, the observation then naturally becomes

yh(t) = Bπhzh = Bhzh. (4.18)
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Note that we shall impose B ∈ L(D(A1/2
0 ), Y ) for this definition to make

sense.
We now make precise the assumptions we have, usually, on πh, and

which will be needed in our analysis. One easily checks that π∗hπh = Idh.
The injection πh describes the finite element approximation we have
chosen. In particular, the vector space πh(Vh) approximates, in the
sense given hereafter, the space D(A1/2

0 ): There exist θ > 0 and C0 > 0,
such that for all h > 0,

∥∥∥A1/2
0 (πhπ∗h − I)φ

∥∥∥
X
≤ C0

∥∥∥A1/2
0 φ

∥∥∥
X
, ∀φ ∈ D(A1/2

0 ),∥∥∥A1/2
0 (πhπ∗h − I)φ

∥∥∥
X
≤ C0h

θ ‖A0φ‖X , ∀φ ∈ D(A0).
(4.19)

When considering finite element discretizations of the Schrödinger equa-
tion (4.1), which, as we said, corresponds to take A0 as the Laplace
operator with Dirichlet boundary conditions, estimates (4.19) are satis-
fied [25] for θ = 1 when using P1 finite elements on a regular mesh (in
the sense of finite elements).

We will not discuss convergence results for the numerical approxi-
mation schemes presented here, which are classical under assumption
(4.19), and which can be found for instance in the textbook [25].

In [8, 9], we proved uniform observability properties for (4.17)-(4.18)
in classes of conveniently filtered initial data. In the sequel, our goal is
to obtain uniform observability properties for (4.17) similar to (4.10),
but in arbitrary small time, still for conveniently filtered initial data.

Therefore, we shall introduce the filtered classes of data. For all
h > 0, since A0h is a self-adjoint positive definite operator, the spectrum
of A0h is given by a sequence of positive eigenvalues

0 < λh1 ≤ λh2 ≤ · · · ≤ λhnh , (4.20)

and normalized (in Vh) eigenvectors (Φhj )1≤j≤nh . For any s > 0, we can
now define, for any h > 0, the filtered space

Ch(s) = span
{

Φhj with the corresponding eigenvalue satisfies |λhj | ≤ s
}
.

We have then proved in Theorem 1.3 in [8]:

Theorem 4.3. Let A0 be a self-adjoint positive definite operator with
compact resolvent, and B ∈ L(D(Aκ0 ), Y ), with κ < 1/2. Assume that
the maps (πh)h>0 satisfy property (4.19). Set

σ = θmin
{

2(1− 2κ),
2
3

}
. (4.21)
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Assume that system (4.8)-(4.9) is admissible and exactly observable.
Then there exist ε > 0, a time T ∗ and positive constants k∗,K∗ > 0
such that, for any h > 0, any solution of (4.17) with initial data

z0h ∈ Ch(ε/hσ) (4.22)

satisfies

k∗ ‖z0h‖2h ≤
∫ T∗

0

‖Bhzh(t)‖2Y dt ≤ K∗ ‖z0h‖2h (4.23)

In this result, based on spectral criteria for the admissibility and ad-
missibility of Schrödinger operators, the time of observability T ∗ cannot
be made as small as desired.

When the Geometric Control Condition is satisfied, the following
can be proved as a by product on our analysis of the abstract wave like
equation (4.5) in [9] and the methods in [21].

Theorem 4.4. Let A0 be a positive definite unbounded operator with
compact resolvent and B ∈ L(D(Aκ0 ), Y ), with κ < 1/2. Assume that the
approximations (πh)h>0 satisfy property (4.19). Set

ς = θmin{2(1− 2κ), 1}. (4.24)

Assume that system (4.5)-(4.6) is admissible and exactly observable.
Then there exist ε > 0, a time T ∗ and positive constants k∗,K∗ > 0 such
that, for any h > 0, any solution of (4.17) with initial data in

z0h ∈ Ch(ε/hς) (4.25)

satisfies (4.23).

Theorem 4.4 indeed improves Theorem 4.3 since ς ≥ σ. This is
expected since the assumptions of admissibility and observability for the
abstract wave system (4.5)-(4.6) are stronger than the admissibility and
observability of Schrödinger equations (4.8)-(4.9).

However, Theorem 4.4 requires the time of observability to be large
enough. We shall prove below that the time T can actually be chosen
arbitrary small.

Theorem 4.5. Under the assumptions of Theorem 4.4, assume that
system (4.5)-(4.6) is admissible and exactly observable. Then there exists
ε > 0 such that for all T ∗ > 0, there exist positive constants k∗,K∗ > 0
such that, for any h > 0, any solution of (4.17) with initial data in
(4.25) satisfies (4.23).
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Proof. The admissibility result in (4.23) follows from the one in Theorem
4.4 since, when the admissibility inequality holds for some time T > 0,
it holds for any time. We shall thus not deal further with that question.

Assume that system (4.5)-(4.6) is admissible and exactly observable.
Then we can use Theorem 1.1 in [9], which states that, under the as-
sumptions of Theorem 4.4, the space semi-discrete wave systems

üh +A0huh = 0, t ≥ 0, yh(t) = Bhu̇h,

are

• uniformly (with respect to h > 0) admissible for any initial data
(u0h, u1h) ∈ Ch(η h−ς)2, whatever η > 0 is.

• uniformly (with respect to h > 0) observable in some time T > 0
for initial data (u0h, u1h) ∈ Ch(ε h−ς)2, providing ε is small enough.

These uniform admissibility and observability properties imply, as
proved in [21], that the resolvent condition (4.12) for the operators A0h

and Bh hold uniformly with respect to h for data zh ∈ Ch(ε/hς). The
proof of Theorem 4.2 then gives that, uniformly with respect to h > 0,
we can find positive constants M, m > 0 such that

M2

ω
‖(A0h − ωIh)uh‖2h +m2 ‖Bhuh‖2Y ≥ ‖uh‖

2
h ,

∀ω ∈ R+,∀uh ∈ Ch(ε/hς).

To conclude that Condition 2 is uniformly satisfied, following the proof
of Theorem 4.2, we only need to check that the first eigenvalue λh1 cor-
responding to the operator A0h stays away from 0. But, writing the
Rayleigh coefficient which characterizes λh1 and λ1(A0), one instanta-
neously checks that λh1 ≥ λ1(A0) > 0 for all h > 0.

In other words, we have proved that there exists a bounded posi-
tive function M = M(ω) satisfying lim|ω|→∞M(ω) = 0 and a positive
constant m > 0 such that for all h > 0

M(ω)2 ‖(A0h − ωIh)uh‖2h +m2 ‖Bhuh‖2Y ≥ ‖uh‖
2
h ,

∀ω ∈ R,∀uh ∈ Ch(ε/hς). (4.26)

Now, we use our constructive proof of Theorem 1.3 to deduce uni-
form observability properties in any time T ∗. However, though this
might seem at first a direct consequence of Theorem 1.3, one needs to
be cautious.

Following the proof of Theorem 1.3, we see that the high-frequency
components can be dealt with uniformly without modification. In par-
ticular, for all T̃ > 0, there exists Ω such that, for all h > 0, any solution
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of (4.17) with initial data z0h ∈ Ch(Ω)⊥ ∩ Ch(ε/hς) satisfies

k̃ ‖z0h‖2h ≤
∫ T̃

0

‖Bhzh(t)‖2Y dt, (4.27)

for some positive constant k̃ > 0 independent of h > 0.
Besides the systems (4.17)-(4.18) are uniformly admissible because

of Theorem 4.4.
But the low-frequency components require an estimate on the low-

frequency gap for each h > 0. The constant Ω being independent of
h > 0 and setting (mh

j )j∈{1,··· ,Nh} for the increasing sequence of the
values taking by the eigenvalues of A0h which are smaller than Ω, we
shall estimate

γh = inf
j∈{0,··· ,Nh}

{mh
j+1 −mh

j } where mh
0 = −Ω and mh

Nh+1 = Ω. (4.28)

Note in particular that Nh might depend on h. However, since all these
correspond to the discrete spectrum of A0h it shall converge to the spec-
trum of A0.

Case 1: Each eigenvalue of the spectrum of A0 is simple. Then the
convergence of the discrete spectrum of A0h in the band of eigenvalues
smaller than the constant Ω is guaranteed [25]. In particular, Nh is
constant for h > 0 small enough and the sequence (γh) then simply
converges to γ.

Case 2: The general case. When the spectrum of A0 is not simple,
this is harder since a multiple eigenvalue of the continuous operator may
yield to different but close eigenvalues, making γh dangerously small for
our argument. The idea then is to refine Haraux’ argument, and to think
directly at this convergence property of the spectrum.

For each positive α > 0 smaller than γ/4 (γ being the continuous
low frequency gap defined in (2.8)), there exists hα > 0 such that for
h ∈ (0, hα), the spectrum of the operator A0h satisfies

{λh` such that λh` < Ω} ⊂
⋃

j∈{1,··· ,N}

[mj − α,mj + α]. (4.29)

Define then the sets Xh,α
j = span{Φh` such that |λh` −mj | ≤ α}. Since

the discrete operators satisfy (4.26), further assuming that α is smaller
than 1/(2 supM(ω)), choosing for instance β = 1/(2m), we obtain

∀j ∈ {1, · · · , N}, ∀z ∈ Xh,α
j , ‖Bhzh‖Y ≥ β ‖z‖h . (4.30)

Once we have seen (4.29)-(4.30), the inductive argument developed in
Lemma 2.3 works as before, except some small error terms. Let us
present it briefly below on the first step.
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To write it properly, we shall introduce the orthogonal projections
Ph,αN on Xh,α

N and Phhf on Ch(Ω)⊥, respectively.

Set then z0h ∈ Xh,α
N + Ch(Ω)⊥ ∩ Ch(ε/hς), and decompose it into

z0h,N = Ph,αN z0h and z0h,hf = Phhfz0h. Let zh(t) be the solution of (4.17)
with intial data z0h and, for δ > 0, define vh as

vh(t) = zh(t)− 1
2δ

∫ δ

−δ
eimNszh(t− s) ds.

Expanding z0h on the basis Φhj , similarly as in (2.11), we obtain


∥∥Phhfz0h

∥∥2

h
≤ 1

(1− sinc(δγ))2
‖vh(0)‖2X .∥∥∥Ph,αN vh(0)

∥∥∥2

h
≤ (1− sinc(αδ))2

∥∥∥Ph,αN z0h

∥∥∥2

h
.

(4.31)

Besides, vh is a solution of (4.17), which implies that Phhfvh also is.
But Phhfvh lies in Ch(Ω)⊥ ∩ Ch(ε/hς), and then one can use (4.27):

∥∥Phhfvh(0)
∥∥2

X
≤ 1
k̃

∫ T̃

0

∥∥BhPhhfvh(t)
∥∥2

Y
dt

≤ 2
k̃

∫ T̃

0

‖Bhvh(t)‖2Y dt+
2KT̃

k̃

∥∥∥Ph,αN vh(0)
∥∥∥2

h

≤ 2
k̃

∫ T̃

0

‖Bhvh(t)‖2Y dt+
2KT̃

k̃
(1− sinc(αδ))2

∥∥∥Ph,αN zh(0)
∥∥∥2

h
(4.32)

Using the same estimates as in (2.13), combined with (2.11), we get

∥∥Phhfz0h

∥∥2

h
≤ 4
k̃(1− sinc(γδ))2

∫ T̃+δ

−δ
‖Bhzh(t)‖2Y dt

+
2KT̃

k̃

(
1− sinc(αδ)
1− sinc(γδ)

)2 ∥∥∥Ph,αN zh(0)
∥∥∥2

h
. (4.33)

We then focus on the component of the solution in Xh,α
N . Arguing

as in (2.15) and using (4.30), we obtain

∥∥∥Ph,αN z0h

∥∥∥2

h
≤ 2
T̃ β2

∫ T̃

0

‖Bhzh(t)‖2Y dt+
2KT̃

T̃ β2

∥∥Phhfz0h

∥∥2

h
. (4.34)
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Equations (4.33) and (4.34), together, give

∥∥∥Ph,αN z0h

∥∥∥2

h

(
1−

4K2
T̃

T̃ β2k̃

(
1− sinc(αδ)
1− sinc(γδ)

)2
)

≤
(

2
T̃ β2

+
8KT̃

T̃ β2k̃(1− sinc(γδ))2

)∫ T̃+δ

−δ
‖Bhzh(t)‖2Y dt (4.35)

In particular, if one can guarantee the left hand-side to be positive, which
can be done simply by choosing α > 0 small enough and

(1− sinc(αδ))2 ≤ T̃ β2k̃

16K2
T̃

(1− sinc(γδ))2, (4.36)

we deduce∥∥∥Ph,αN z0h

∥∥∥2

h
≤
(

4
T̃ β2

+
16KT̃

T̃ β2k̃(1− sinc(γδ))2

)∫ T̃+δ

−δ
‖Bhzh(t)‖2Y dt

From (4.33), we obtain an estimate for
∥∥∥Phhfz0h

∥∥∥2

h
. Using the or-

thogonality of Xh,α
N and Ch(Ω)⊥ ∩Ch(ε/hς), this proves that the observ-

ability inequality holds in any time T > T̃ , uniformly with respect to
h ∈ (0, hα), for solutions of (4.17) with initial data in Xh,α

N + Ch(Ω)⊥ ∩
Ch(ε/hς).

Note that (4.36) does not depend on h > 0. Thus, once α is chosen
according to (4.36), the above proof stands for any h ∈ (0, hα).

This concludes the inductive argument, and this slightly generalized
Haraux’s technique can be applied to conclude the proof of Theorem 4.5.

4.3 Fully discrete approximation schemes

We can also prove observability properties for fully discrete approxi-
mations of (4.8)-(4.9), uniformly with both discretization parameters
∆t > 0 and h > 0, in arbitrary small time.

To be more precise, we consider, for h > 0 and ∆t > 0, the following
system: i

(
zk+1
h − zkh

∆t

)
= A0h

(zkh + zk+1
h

2

)
, in Vh, k ∈ Z,

z0
h = z0h,

(4.37)

observed by
ykh = Bhz

k
h. (4.38)



Observability in arbitrary small time for conservative systems 25

For these systems, admissibility and observability results have been de-
rived in [8] using [10] in the class Ch(δ/∆t) ∩ Ch(εh−σ), with σ as in
(4.21), but the observability results in [8] need the time T to be large
enough. Later in [9], these admissibility and observability results have
been improved by using the Geometric Control Condition, yielding the
filtering class Ch(δ/∆t) ∩ Ch(ε/hς) with ς as in (4.24), but the observ-
ability time is again required to be large enough.

However, using [9] and the techniques developed above, we can prove
that the discrete systems (4.37)-(4.38) actually are observable in arbi-
trary small time.

Theorem 4.6. Under the assumptions of Theorem 4.4. Assume that
system (4.5)-(4.6) is admissible and exactly observable. Then, for any
time T ∗ > 0, for any δ > 0, there exist two positive constants ε > 0
and kδ,T∗ > 0 such that, for all h,∆t > 0 small enough, any solution of
(4.37) with initial data

z0h ∈ Ch
(

inf
{
δ

∆t
,
ε

hς

})
,

where ς is given by (4.24), satisfies

kδ,T∗ ‖z0h‖2h ≤ ∆t
∑

k∆t∈(0,T∗)

∥∥Bhzkh∥∥2

Y
. (4.39)

The proof of Theorem 4.6, which can be adapted easily from the
previous ones, is left to the reader. The keynote is the convergence of
the low components of the spectrum and the fact that all the above
proofs are explicit and shortcut any compacity argument.

5 Further comments

This work is based on the resolvent estimate given Condition 2. Un-
der Condition 2, observability properties hold in arbitrary small time.
However, there might be systems fitting the abstract setting (1.1)-(1.2)
which are observable in arbitrary small time but for which Condition 2
does not hold. In this sense, we did not completely solve the problem.

This is actually part of a more general question: can we read on
the operators A and B and their spectral properties the critical time of
observability ? To our knowledge, this is still not clear if the resolvent
estimates keep precisely track of this information, which is of primary im-
portance in applications, for instance when dealing with waves. It would
then be interesting to try to design an efficient spectral characterization
of the time of observability.
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