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Résumé
Dans cet article, nous étudions les propriétés de contrôlabilité appro-

chée pour un système d’équations de Schrödinger modélisant un ion piégé.
Nous nous limitons à un contrôle d’une forme particulière, correspondant
à des restrictions pratiques. Notre approche est fondée sur l’analyse de la
contrôlablité d’un système approché de dimension finie, pour lequel il est
possible de construire explicitement des contrôles exacts. Nous justifions
alors précisément les approximations qui relient le système complet au
système approché. Nous en déduisons des résultats de contrôlabilité ap-
prochée dans l’espace naturel (L2(R))2 mais aussi dans des espaces plus
forts correspondants aux domaines de l’opérateur harmonique.

Abstract
In this article, we analyze the approximate controllability properties

for a system of Schrödinger equations modeling a single trapped ion. The
control we use has a special form, which takes its origin from practical
limitations. Our approach is based on the controllability of an approxi-
mate finite dimensional system for which one can design explicitly exact
controls. We then justify the approximations which link up the complete
and approximate systems. This yields approximate controllability results
in the natural space (L2(R))2 and also in stronger spaces corresponding
to the domains of the harmonic operator.

1 Introduction
Notations: Let A be the harmonic oscillator operator on R

A =
1
2

(
− ∂2

xx + x2
)
. (1.1)

∗The authors were partially supported by the “Agence Nationale de la Recherche” (ANR),
Project C-QUID, number BLAN-3-139579.
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Note that A is a self-adjoint definite positive operator on L2(R), and we can
therefore introduce, for integers k ∈ lN, the spaces D(Ak/2), endowed with the
norm

‖·‖k =
∥∥∥Ak/2·∥∥∥

L2(R)
.

In the sequel, we will also consider the product spaces D(Ak/2)2, that we endow
with the classical product norm

‖(ψ1, ψ2)‖k×k =
(
‖ψ1‖2k + ‖ψ2‖2k

)1/2

, ∀(ψ1, ψ2) ∈ D(Ak/2)2.

For a function f , we will denote by f∗ its conjugate function. �

In this article, we consider the following system of Schrödinger equations:
i∂tψe = ωAψe +

Ω
2
ψe + (u + u∗)ψg, (t, x) ∈ (0, T )× R,

i∂tψg = ωAψg −
Ω
2
ψg + (u + u∗)ψe, (t, x) ∈ (0, T )× R,

(1.2)

with initial data

ψe(0, x) = ψ0
e(x), ψg(0, x) = ψ0

g(x), x ∈ R. (1.3)

In (1.2), ω and Ω are real numbers. The function u = u(t, x) is the control
function, which will be specified later on.

Equation (1.2) models a composite system made of 2-levels of excited and
ground states (corresponding respectively to the subscripts e and g). The control
u corresponds to an electro-magnetic wave.

The question we address here consists in describing the action of the control
u. To be more precise, we will study the possibility of driving the system from
a given initial state to the neighborhood of a given final state.

Due to physical restrictions, we furthermore assume that the control u has
the following specific form:

u(t, x) = u0e
i(Ωt−

√
2ηx) + ure

i((Ω−ω)t−
√

2ηx) + ube
i((Ω+ω)t−

√
2ηx), (1.4)

where (u0, ur, ub) ∈ C3 and η ∈ R∗+.
This assumption says that u is a superposition of three monochromatic

waves, one of pulsation Ω (ion electronic transition) and of amplitude u0 ∈ C,
one of pulsation Ω − ω (red shift by a vibration quantum) and of amplitude
ur ∈ C, and one of pulsation Ω + ω (blue shift by a vibration quantum) and
of amplitude ub ∈ C. We further assume that we can switch on and off these
monochromatic waves. In other words, the function t 7→ (u0(t), ub(t), ur(t)) is
piecewise constant.

Besides, we assume that only one control is active at each time t ≥ 0. In other
words, there is at most one non-zero component in the vector (u0(t), ur(t), ub(t))
in any time t ∈ [0, T ].
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The norm of the control u is of primary importance in applications. We thus
furthermore assume that for every time t ∈ [0, T ],

sup{|u0(t)|, |ur(t)|, |ub(t)|} ≤ K. (1.5)

In other words, K represents the size of the controls.
The parameter η is a real positive number, the so-called Lamb-Dicke param-

eter, which is related to the wavelength of the electro-magnetic wave.
In practice, ω is of order 1010, Ω of order 1015, the control function satisfies

|u(t, x)| � ω, or equivalently K � ω, and the Lamb-Dicke parameter is of small
magnitude η � 1 (see for instance [25]). Therefore, in our analysis, we shall
think of Ω and ω as large numbers and of η as a small one. From the physical
point of view, ω � Ω. However, this is not needed in our analysis, and we
simply require, all along this article, that

ω ≤ 2Ω
3
, (1.6)

which guarantees that ω is the smallest relevant frequency of the free system
(1.2). We refer for instance to [25] for more physical motivations.

As a preliminary result, we first study the Cauchy problem for (1.2):

Theorem 1.1. Let T > 0. Assume that f : (0, T )× R→ R, and that

f ∈ L∞((0, T );C0
b (R)). (1.7)

Consider the Cauchy problem for
i∂tψe = ωAψe +

Ω
2
ψe + fψg, (t, x) ∈ (0, T )× R,

i∂tψg = ωAψg −
Ω
2
ψg + fψe, (t, x) ∈ (0, T )× R,

(1.8)

with initial data (ψ0
e , ψ

0
g) ∈ L2(R)2 as in (1.3).

Then there exists a unique mild solution (ψe, ψg) of (1.8) in C([0, T ]; (L2(R))2)
and, for any time t ∈ [0, T ],

‖(ψe(t), ψg(t))‖0×0 =
∥∥(ψ0

e , ψ
0
g)
∥∥

0×0
. (1.9)

Besides, if for some integer k ∈ lN, (ψ0
e , ψ

0
g) ∈ D(Ak/2)2 and f ∈ L∞(0, T ;Ckb (R)),

then (ψe, ψg) belongs to C([0, T ];D(Ak/2)2).

To analyze the control properties of system (1.2), we consider the following
system, the so-called Law-Eberly equations (see [17]), which is a simplified model
of (1.2): 

i∂tφe =
(
u∗0 + v∗ra + v∗ba

†
)
φg, (t, x) ∈ (0, T )× R,

i∂tφg =
(
u0 + vra† + vba

)
φe, (t, x) ∈ (0, T )× R,

(1.10)
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where vr and vb correspond, respectively, to −iηur and −iηub, with initial
conditions

φe(0, x) = φ0
e(x), φg(0, x) = φ0

g(x), x ∈ R. (1.11)

In (1.10), we use the notations a and a† for:

a =
1√
2

(
x+ ∂x

)
, a† =

1√
2

(
x− ∂x

)
. (1.12)

These notations are standard in quantum mechanics. The operators a and a†

are, respectively, the so-called annihilation and creation operators. Also note
that a† is the adjoint of a.

System (1.10) indeed corresponds to a simplified model of (1.2) written in
the interaction frame, and after several approximations which, to our knowl-
edge, have not been rigorously justified yet. We will justify rigorously these
approximations below.

In order to use the controllability properties of system (1.10) for our original
system (1.2), we will recall and refine the results in [17] on the controllability of
(1.10). Roughly speaking, it is stated in [17] that any finite linear combination of
eigenvectors of A can be steered to any finite linear combination of eigenvectors
of A.

To state rigorously the results in [17], we introduce the spectrum of A, which
simply consists in a sequence (λj ,Φj) of increasing eigenvalues and normalized
(in L2(R)) eigenvectors (see [24] and Section 3 below). It is then convenient to
introduce, for an integer M ≥ 0, the finite dimensional subspace spanned by
the M + 1 first eigenvectors of A:

VM = span
{

Φj ; 0 ≤ j ≤M
}
.

Indeed, following the strategy in [17], we obtain a precise controllability
result for system (1.10):

Theorem 1.2 (Based on [17]). LetM ≥ 0 be an integer. Given any (φ0
e, φ

0
g) and

(φ1
e, φ

1
g) in V 2

M of equal (L2(R))2 norms, there exist a time T > 0 and a piece-
wise constant function t 7→ (u0(t), vr(t), vb(t)) such that the solution (φe, φg) of
(1.10) with initial data (φ0

e, φ
0
g) satisfies (φe(T ), φg(T )) = β(φ1

e, φ
1
g), for some

complex number β of modulus 1.
Besides, the following properties hold:

1. For each time t ∈ [0, T ], (φe(t), φg(t)) ∈ V 2
M .

2. At each time t ∈ [0, T ], there is only one nonzero component in the vector
(u0(t), vr(t), vb(t)), and there is at most 4M + 2 switching times.

3. If we impose a priori that the control functions u0, vr and vb satisfy |u0| ≤
K0 and |vr|, |vb| ≤ K1 for some constants K0 and K1, then T can be
chosen to be any time satisfying

T ≥ (M + 1)π
K0

+
π

K1

M∑
j=1

1√
j
. (1.13)
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Note that, in Theorem 1.2, the control is exact up to a phase term β. This
parameter is actually irrelevant for physical purposes, and thus does not affect
the results of Theorem 1.2.

Theorem 1.2 is then used to deduce the following approximate controllability
result:

Theorem 1.3 (Approximate Controllability in (L2(R))2). Consider two couples
of data (ψ0

e , ψ
0
g) and (ψ1

e , ψ
1
g) of unit (L2(R))2 norms.

For any δ > 0, there exist a constant ℵ = ℵ(δ, ψ0
e , ψ

0
g , ψ

1
e , ψ

1
g) > 0, two

parameters η0 = η0(δ, ψ0
e , ψ

0
g , ψ

1
e , ψ

1
g) > 0 and ρ0(δ, ψ0

e , ψ
0
g , ψ

1
e , ψ

1
g), such that for

(ω,Ω) as in (1.6) and for

0 < η ≤ η0, KT =
ℵ
η
,

ωη

K
≥ ρ0, (1.14)

for a control function u(t, x) of the form (1.4), given by a map t 7→ (u0(t), ur(t), ub(t))
of piecewise constant functions,

• The solution (ψe, ψg) of (1.2) with initial data (ψ0
e , ψ

0
g) satisfies, for some

complex number β of modulus 1,∥∥(ψe(T ), ψg(T ))− β(ψ1
e , ψ

1
g)
∥∥

0×0
≤ δ. (1.15)

• For every time t ∈ [0, T ], u satisfies (1.5).

• At each time t ∈ [0, T ], there is at most one nonzero component in the
vector (u0(t), ur(t), ub(t)).

This result shows approximate controllability for system (1.2). This notion
is relevant because, after reaching a neighborhood of the target state (ψ1

e , ψ
1
g),

if we switch off the control, due to estimate (1.9), the solution will stay in this
neighborhood.

Note that the condition KT = ℵ/η in Theorem 1.3 corresponds to a con-
dition on the L1(0, T ;L∞(R)) norm of the control u. Theorem 1.3 can be
interpreted in several different ways:

• If we are limited by the size of the controls we can use, we need to control
system (1.2) during a time T = ℵ/(Kη) = T ∗/η, which blows up when
η → 0. In this case, condition (1.14) imposes that ω shall satisfy ω ≥ ω∗/η.

• If we want to obtain an approximate controllability result in a prescribed
time T , our method needs large controls to work, and K must be like K =
ℵ/(Tη) = K∗/η. Thus (1.14) imposes that ω shall satisfy the condition
ω ≥ K∗ρ0/η

2.

• If (ω,Ω) are constant positive numbers satisfying (1.6), one shall choose
K smaller than K∗η, for a suitable small enough positive constant K∗. In
this case, the time T must be larger than ℵ/(Kη).
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• If K = η, condition (1.14) simply imposes on ω that ω ≥ ω0, for ω0 = ρ0

independent of η and K. In this case, note that the time T has to be large
enough and grows as ℵ/η2.

Also remark that condition (1.14) can be satisfied only when ω/K is large
enough. This corresponds to the condition |u| � ω, which is of physical nature.

One of the interesting features of Theorem 1.3 is that the construction of
the approximate control function u is explicit. This result fully justifies the
approximate control problem (1.10).

Besides, similar results can be proved for the stronger norms ‖(·, ·)‖k×k.
Indeed, our proofs can be extended to deal with these norms, again by using
Theorem 1.2. This will be done in Theorem 4.6. Note that, as in the L2 case,
this is relevant since, after reaching a D(Ak/2)2 neighborhood of the target
state, if we switch off the control, the solution will stay in this neighborhood
(see Lemma 2.1).

Let us briefly present the context of our work. We refer the interested
reader to [15] for a pedagogical introduction to controllabilty theory untill recent
developments of the theory.

In the pioneer work [2], the bilinear exact controllability for general abstract
systems has been proved to be impossible in natural spaces. As noticed in [26],
the analysis in [2] applies to the classical Schrödinger harmonic operator and
proves the lack of (even local) exact controllability in the natural space L2.
Though, this does not prove that local exact controllability does not hold when
considering higher order norms. Indeed, as proved in [6, 7, 8], it does hold for
the harmonic oscillator in a potential well (and thus in a bounded interval) in
H7 neighborhoods of the ground state (or any other stationary solutions). Let
us also mention the results in [14], which state the existence of a minimal time
of control even when dealing with H7 neighborhoods of the ground state. We
also refer to [20] where the controlled Schrödinger operator is decoupled into a
free uncontrolled part and a controllable one, which coincides with the classical
harmonic oscillator.

Note that the results in [2] also applies to system (1.2) and proves the lack
of local exact controllability in L2(R)2. To our knowledge, the case of stronger
norms has not been studied so far. We will present some comments related to
this issue at the end of the article.

It is then natural to consider weaker forms of controllability. For instance,
a lot of attention has been devoted to the study of controllability properties
for finite-dimensional harmonic oscillator Schrödinger equations and of their
numerical computations, essentially based on Lyapunov techniques [27, 9, 21].
In particular, this yields to approximate controllability results in L2 in infinite
time [18, 10, 19], and can be adapted for more regular spaces [22].

Let us also mention the optimal control approach developped in [4, 16] (and
[3] for a Hartree Fock model) in the infinite dimensional setting, and analyzed
numerically in [5], which provides other techniques for approximate controlla-
bility results.
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In [1], approximate state to state controllability (which consists in steering
the system from an eigenstate to a neighborhood of an eigenstate) is proved
in L2, by using specific features of the controlled systems when the eigenvalues
cross each other. The main disadvantage of this technique is that it requires
a good knowledge of the eigenvalues. Thus, a large time is needed to ensure a
good behavior of the spectrum, using the adiabatic theorem.

In [13], approximate controllability in L2 for abstract Schrödinger type sys-
tems is deduced from approximate controllability results for the Galerkin ap-
proximations of the system. This method yields L2 controllability results, using
piecewise constant controls. The setting and method in [13] are close to ours.
Roughly speaking, it consists in deriving global controllability results by using
the controls of conveniently chosen finite dimensional systems. Though, sev-
eral differences appear: in [13], spectral conditions, which are not satisfied in
our case, are required to avoid resonant cases; there is only one scalar control,
whereas we handle several controls; the control is chosen as a piecewise constant
function, whereas we are looking for highly oscillatoring controls (recall (1.4));
in [13], no explicit form of the control is given, and no estimate on the control
time is available. Moreover, to our knowledge, the results in [13] do not extend
to the case of stronger norms.

The outline of the article is the following. In Section 2, we prove Theorem
1.1. In Section 3, we formally present the approximations which link (1.2) to
(1.10) and prove Theorem 1.2. In Section 4, we prove Theorem 1.3 and some
variants. We finally provide some further comments.

2 On the Cauchy problem
This section aims at proving Theorem 1.1. This part is inspired by the article
[4]. We first prove the existence of mild solutions for (1.8), which justifies the
computations which will be done in a second step to derive the estimates in
Theorem 1.1.

2.1 Mild solutions
Lemma 2.1. Let us denote by (S(t))t∈R the free Schrödinger semi-group e−itωA.
Then, for any T > 0, for any integer s ≥ 0, if ψ0 ∈ D(As/2), the function ψ
defined for t ∈ (0, T ) by ψ(t) = S(t)ψ0, which is the unique solution of

i∂tψ = ωAψ, (t, x) ∈ (0, T )× R, ψ(0, x) = ψ0(x), x ∈ R, (2.1)

belongs to C([0, T ];D(As/2)), and satisfies the following estimates:

‖ψ(t)‖s =
∥∥ψ0

∥∥
s
, t ∈ [0, T ]. (2.2)

Indeed, Lemma 2.1 simply follows from the fact that A is a self-adjoint
(unbounded) operator on L2(R) and thus that (S(t))t∈R is a semi-group of
isometries on L2(R) and on any D(As/2) for s ≥ 0.
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Proposition 2.2. Let k be a nonnegative integer. If f ∈ L∞((0, T );Ckb (R))
and if the initial data (ψ0

e , ψ
0
g) belongs to D(Ak/2)2, then there exists a unique

mild solution (ψe, ψg) ∈ C([0, T ];D(Ak/2)2) of (1.8).
Let ρ > 0 be such that ‖f‖L∞((0,T );Ck

b (R)) ≤ ρ. Then there exists a positive
constant CT,ρ such that

‖(ψe, ψg)‖C([0,T ];D(Ak/2)2) ≤ CT,ρ
∥∥(ψ0

e , ψ
0
g)
∥∥
k×k . (2.3)

Proof. Let us introduce the space Y = C([0, T ];D(Ak/2)2) endowed with the
norm

‖(ψe, ψg)‖Y = sup
t∈[0,T ]

{
e−λt ‖(ψe(t), ψg(t))‖k×k

}
,

where λ is a positive parameter which will be chosen later on. Remark that Y
is obviously a complete space.

The solution of (1.8) is obtained as a mild solution, i.e. as a solution of

ψe(t) = S(t)e−iΩt/2ψ0
e + i

∫ t

0

S(t− s)e−iΩ(t−s)/2f(s)ψg(s) ds,

ψg(t) = S(t)eiΩt/2ψ0
g + i

∫ t

0

S(t− s)eiΩ(t−s)/2f(s)ψe(s) ds.

We are thus going to show that this equation has a unique solution in Y , by
proving that the operator Ψ defined by

Ψe(ψe, ψg)(t) = S(t)e−iΩt/2ψ0
e + i

∫ t

0

S(t− s)e−iΩ(t−s)/2f(s)ψg(s) ds,

Ψg(ψe, ψg)(t) = S(t)eiΩt/2ψ0
g + i

∫ t

0

S(t− s)eiΩ(t−s)/2f(s)ψe(s) ds,

has a unique fixed point in Y .
First, remark that Ψ indeed maps Y into Y , since (ψ0

e , ψ
0
g) ∈ D(Ak/2)2 and

since there exists a constant c(ρ), which only depends on ρ, such that

‖f(s)ψ‖k ≤ c(ρ) ‖ψ‖k , ∀s ∈ [0, T ], ∀ψ ∈ D(Ak/2).

This, combined with Lemma 2.1, implies that Ψ : Y → Y .
It is then sufficient to prove that Ψ is a strict contraction on Y . Consider

then ψ = (ψe, ψg) and φ = (φe, φg) in Y . Then

Ψe(ψe, ψg)(t)−Ψe(φe, φg)(t) = i

∫ t

0

S(t− s)e−iΩ(t−s)/2f(s)(ψg − φg)(s) ds,
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and thus, for all t ∈ [0, T ],

‖Ψe(ψe, ψg)(t)−Ψe(φe, φg)(t)‖k

≤
∫ t

0

∥∥∥S(t− s)e−iΩ(t−s)/2f(s)(ψg − φg)(s)
∥∥∥
k
ds

≤
∫ t

0

‖f(s)(ψg − φg)(s)‖k ds

≤ c(ρ)
∫ t

0

‖(ψg − φg)(s)‖k ds

≤ c(ρ)
∫ t

0

eλs
(
e−λs ‖(ψg − φg)(s)‖k

)
ds

≤ c(ρ)
∫ t

0

eλs ‖ψ − φ‖Y ds

≤ c(ρ)
λ
eλt ‖ψ − φ‖Y .

The same can be done for Ψg. This yields the following estimate:

‖Ψ(ψ)−Ψ(φ)‖Y ≤
2c(ρ)
λ
‖ψ − φ‖Y .

Then, choosing λ = 4c(ρ), the map Ψ is a strict contraction on Y , and therefore
has a unique fixed point in Y , which coincides, by construction, with the solution
of (1.8) in C([0, T ];D(Ak/2)2).

Remark 2.3. In Proposition 2.2, we do not require f to be real-valued. Though,
this assumption, assumed in Theorem 1.1, will be used later on to derive a priori
estimates for solutions of (1.8).

Proposition 2.4. If f ∈ L∞((0, T );Cb(R)) is a real-valued function and if the
initial data (ψ0

e , ψ
0
g) belongs to (L2(R))2, then the mild solution (ψe, ψg) of (1.8)

satisfies:∫
R

(
|ψe(t)|2 + |ψg(t)|2

)
dx =

∫
R

(
|ψ0
e |2 + |ψ0

g |2
)
dx, t ∈ [0, T ]. (2.4)

Proof. The proof strongly uses the assumption that f is real-valued, and is
divided into several steps. We first prove Proposition 2.4 for smooth initial data
and potential f . We then develop a standard density argument to extend this
result to functions f ∈ L∞((0, T );Cb(R)) and initial data in L2(R)2.

We first assume that (ψ0
e , ψ

0
g) belongs toD(A)2 and that f ∈ L∞((0, T );C2

b (R)).
Note that, in this case, the computations below are justified due to the regu-
larity of the solutions of (1.8) proved in Proposition 2.2. Indeed, since the mild
solution (ψe, ψg) of (1.8) belongs to C([0, T ];D(A)2), for all t ∈ [0, T ], Aψe(t)
and Aψg(t) belong to L2(R).
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Let us now prove (2.4). Multiplying the first line of (1.8) by ψ∗e , we get, for
t ∈ [0, T ],

i

∫
R
∂tψe(t)ψ∗e(t) dx =

ω

2

∫
R

(
|∂xψe(t)|2 + x2|ψe(t)|2

)
dx

+
Ω
2

∫
R
|ψe(t)|2 dx+

∫
R
f(t)ψg(t)ψ∗e(t) dx.

Taking the imaginary part, we obtain:

1
2
d

dt

(∫
R
|ψe(t)|2 dx

)
= =

(∫
R
f(t)ψg(t)ψ∗e(t) dx

)
, t ∈ [0, T ].

Similarly, multiplying the second line of (1.8) by ψ∗g(t) and taking the imaginary
part yield:

1
2
d

dt

(∫
R
|ψg(t)|2 dx

)
= =

(∫
R
f(t)ψe(t)ψ∗g(t) dx

)
, t ∈ [0, T ].

Therefore, we obtain that, for t ∈ [0, T ],

1
2
d

dt

(∫
R

(
|ψe(t)|2 + |ψg(t)|2

)
dx
)

= =
(∫

R
f(t)[ψg(t)ψ∗e(t) + ψe(t)ψ∗g(t)] dx

)
.

As f is real-valued, this implies

d

dt

(∫
R

(
|ψe(t)|2 + |ψg(t)|2

)
dx
)

= 0, ∀t ∈ [0, T ]. (2.5)

We now assume that f ∈ L∞((0, T );Cb(R)) and that (ψ0
e , ψ

0
g) ∈ D(A)2.

Choose ζ ∈ C∞c (R) such that for all x ∈ R, ζ(x) ≥ 0 and
∫

R ζ(x) dx = 1.
For ε > 0, define the regularization function

ζε(x) =
1
ε
ζ
(x
ε

)
.

Now, introduce, for ε > 0, the function f ε = f ? ζε, where the convolution is
meant in the space variable. Remark that, with this definition, for each ε > 0, f ε
is in L∞((0, T );C2

b (R)), and then (2.4) holds for solutions of (1.8) corresponding
to f ε with initial data in D(A)2.

Consider (ψ0
e , ψ

0
g) ∈ D(A)2. Define (ψe, ψg) as the mild solution of (1.8)

with initial data (ψ0
e , ψ

0
g). For ε > 0, introduce the mild solution (ψεe, ψ

ε
g) ∈

C([0, T ]; (L2(R))2) of (1.8) corresponding to f ε with initial data (ψ0
e , ψ

0
g). We

10



thus have:

ψεe(t) = S(t)e−iΩt/2ψ0
e + i

∫ t

0

S(t− s)e−iΩ(t−s)/2f ε(s)ψεg(s) ds,

ψεg(t) = S(t)eiΩt/2ψ0
g + i

∫ t

0

S(t− s)eiΩ(t−s)/2f ε(s)ψεe(s) ds,

ψe(t) = S(t)e−iΩt/2ψ0
e + i

∫ t

0

S(t− s)e−iΩ(t−s)/2f(s)ψg(s) ds,

ψg(t) = S(t)eiΩt/2ψ0
g + i

∫ t

0

S(t− s)eiΩ(t−s)/2f(s)ψe(s) ds.

In particular,

ψεe(t)− ψe(t) = i

∫ t

0

S(t− s)e−iΩ(t−s)/2f ε(s)(ψεg(s)− ψg(s)) ds

+ i

∫ t

0

S(t− s)e−iΩ(t−s)/2(f ε(s)− f(s))ψg(s) ds.

We thus obtain

‖ψεe(t)− ψe(t)‖0 ≤ ‖f‖L∞((0,T )×R)

∫ t

0

∥∥ψεg(s)− ψg(s)∥∥0
ds

+
∫ t

0

‖(f ε(s)− f(s))ψg(s)‖0 ds

Doing the same estimate for ψεg(t)− ψg(t), we obtain that for t ∈ [0, T ],∥∥(ψεe(t), ψ
ε
g(t))− (ψe(t), ψg(t))

∥∥
0×0

≤ ‖f‖L∞((0,T )×R)

∫ t

0

∥∥(ψεe(s), ψ
ε
g(s))− (ψe(s), ψg(s))

∥∥
0×0

ds

+
∫ T

0

‖(f ε(s)− f(s))(ψe(s), ψg(s))‖0×0 ds. (2.6)

But, in any time s ∈ [0, T ], (ψe(s), ψg(s)) ∈ (L2(R))2 and almost everywhere in
s ∈ [0, T ], f(s) ∈ C0

b (R).
Recall that, for g ∈ C0

b (R), the sequence (gε) = (g?ζε)ε>0 strongly converges
to g in C0(K) for any compact K (see [12, Proposition IV.21]). It follows that,
if ψ ∈ L2(R), the sequence (gεψ)ε>0 strongly converges in L2(R) to gψ.

Hence, almost everywhere in s ∈ [0, T ], ‖(f ε(s)− f(s))(ψe(s), ψg(s))‖0×0
converges to zero. We finally use Lebesgue’s dominated convergence theorem to
prove that ∫ T

0

‖(f ε(s)− f(s))(ψe(s), ψg(s))‖0×0 ds −→
ε→0

0,

11



since, for s ∈ [0, T ],

‖(f ε(s)− f(s))(ψe(s), ψg(s))‖0×0 ≤ 2 ‖f‖L∞((0,T )×R) ‖(ψe(s), ψg(s))‖0×0 .

Applying Grönwall’s Lemma to (2.6), we then obtain

(ψεe, ψ
ε
g) −→

ε→0
(ψe, ψg) in C([0, T ]; (L2(R))2).

In particular, passing to the limit in ε in (2.4), estimate (2.4) holds for mild
solutions of (1.8) with initial data in D(A)2 for f ∈ L∞(0, T ;C0

b (R)).

The same conclusion holds for (ψ0
e , ψ

0
g) ∈ L2(R)2, using the standard density

argument of D(A) in L2(R) for the L2 norm. Indeed, for (ψ0
e , ψ

0
g) ∈ (L2(R))2,

consider a sequence (ψ0
ne, ψ

0
ng) ∈ D(A)2 such that

(ψ0
ne, ψ

0
ng) −→

n→∞
(ψ0
e , ψ

0
g) in (L2(R))2.

Then, denoting by (ψne, ψng) and (ψe, ψg) the corresponding mild solutions,
arguing as above, one can prove that

(ψne, ψng) −→
n→∞

(ψe, ψg) in C([0, T ]; (L2(R))2).

This completes the proof, since one can then pass to the limit in (2.4).

Theorem 1.1 then simply combines the results of Propositions 2.2 and 2.4.

3 Law-Eberly equations

3.1 Preliminaries
This subsection presents several standard results in quantum mechanics.

The operator A introduced in (1.1) is self-adjoint, positive definite, and with
compact resolvent. Besides, its spectral decomposition is well-known. Indeed
(see [24]), the eigenvalues of A are λn = n+1/2 for n ∈ lN, and the corresponding
eigenvectors Φn normalized in L2(R) form an orthonormal basis of L2(R) (the
so-called Hermite functions).

Besides, from the identities

A = a†a +
1
2

= aa† − 1
2
, (3.1)

and the explicit forms of a and a†, one can prove that the operators a and a†

act on the eigenvectors of A in the following way:

aΦ0 = 0,
{

aΦn+1 =
√
n+ 1 Φn,

a†Φn =
√
n+ 1 Φn+1,

∀n ∈ lN. (3.2)

12



3.2 From system (1.2) to (1.10)
Let us now briefly explain the approximations and change of variables which
yield from (1.2)-(1.4) to (1.10). This is done in a formal way in a first step.

First, since the Lamb-Dicke parameter η is small, u is approximated by uLD
given by

uLD(t, x) =
(
u0e

iΩt + ure
i(Ω−ω)t + ube

i(Ω+ω)t
)

(1− i
√

2ηx). (3.3)

Then we make the change of variables

φ̃e(t) = S(−t)eiΩt/2ψ̃e(t), φ̃g(t) = S(−t)e−iΩt/2ψ̃g(t),

where S(t) = exp(−itωA) is the free Schrödinger group and (ψ̃e, ψ̃g) is the
solution of (1.8) with f = uLD + u∗LD.

In these variables, we obtain the following equations:
i∂tφ̃e = eiΩtS(−t)(uLD + u∗LD)S(t)φ̃g, (t, x) ∈ (0, T )× R,

i∂tφ̃g = e−iΩtS(−t)(uLD + u∗LD)S(t)φ̃e, (t, x) ∈ (0, T )× R,

φ̃e(0, x) = ψ0
e(x), φ̃g(0, x) = ψ0

g(x), x ∈ R.

(3.4)

In physical language, system (3.4) corresponds to the so-called interaction frame
for system (1.2) with the Lamb-Dicke approximation (3.3).

Then we compute the operator S(−t)(uLD + u∗LD)S(t). Due to the form of
uLD, we actually need to compute exp(itωA)

√
2x exp(−itωA), or, equivalently,

exp(itωA)(a+a†) exp(−itωA). Using the identities (3.2), one easily proves that

exp(itωA)(a + a†) exp(−itωA) = e−iωta + eiωta†.

Thus, with uLD as in (3.3), we obtain

eiΩtS(−t)(uLD + u∗LD)S(t)
= u0e

2iΩt
(

1− iη
(
e−iωta + eiωta†

))
+ u∗0

(
1 + iη

(
e−iωta + eiωta†

))
+urei(2Ω−ω)t

(
1− iη

(
e−iωta + eiωta†

))
+ u∗re

iωt
(

1 + iη
(
e−iωta + eiωta†

))
+ubei(2Ω+ω)t

(
1− iη

(
e−iωta + eiωta†

))
+ u∗be

−iωt
(

1 + iη
(
e−iωta + eiωta†

))
.

(3.5)
The last approximation, the so-called averaging one, consists in neglecting all
the (highly) oscillating terms. In our setting, this yields the following approxi-
mation:

eiΩtS(−t)(uLD + u∗LD)S(t) ' u∗0 + iηu∗ra + iηu∗ba
†.

Thus, doing the same for e−iΩtS(−t)(uLD + u∗LD)S(t), we obtain the Law-
Eberly system (1.10), by setting, as claimed in the introduction, vr = −iηur
and vb = −iηub.
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3.3 Controllability results for the Law-Eberly equations
The goal of this subsection is to prove Theorem 1.2.

Before entering into the proof, remark that, in [17] or in the proof presented
below, only the two controls u0 and vr are used.

In [17], the method, roughly speaking, consists in steering the data to the
ground state (0,Φ0), the time reversibility of (1.10) yielding Theorem 1.2.

At this step, it is essential to remark that system (1.10) is skew-adjoint,
and thus that the (L2(R))2 norm of solutions of (1.10) (at least those that are
sufficiently regular, which is the case here since at each time s, (φe(s), φg(s)) ∈
V 2
M ) is constant in time.
Since Theorem 1.2 is fundamental for our results, we give here a brief idea

of its proof.

Sketch of the proof. When u0 is the only active control (we recall that u0 has
to be constant), system (1.10) takes the form

i∂tφe = u∗0φg, i∂tφg = u0φe, (t, x) ∈ (0, T )× R. (3.6)

Expand (φ0
e, φ

0
g) ∈ V 2

M on the basis Φj :

φ0
e =

∑
j≤M

a0
jΦj , φ0

g =
∑
j≤M

b0jΦj . (3.7)

Solving (3.6), we obtain

φe(t) =
∑
j≤M

aj(t)Φj , φg(t) =
∑
j≤M

bj(t)Φj , (3.8)

where, for j ∈ {0, · · · ,M},

aj(t) = cos(|u0|t)a0
j − i sin(|u0|t)

u∗0
|u0|

b0j ,

bj(t) = cos(|u0|t)b0j − i sin(|u0|t)
u0

|u0|
a0
j .

In other words, equations (3.6) are constituted by decoupled systems corre-
sponding to the projections onto (Φj ,Φj), and the ratio of populations at the
energy level Φj oscillates with a frequency |u0|.

When vr is the only active control, system (1.10) takes the form

i∂tφe = v∗raφg, i∂tφg = vra†φe, (t, x) ∈ (0, T )× R. (3.9)

In this case, writing (φ0
e, φ

0
g) ∈ V 2

M as in (3.7) with the additional assumption
that a0

M = 0, one can solve explicitly (3.9), and the solution of (3.9), expanded
as in (3.8), satisfies:

aj(t) = cos(t|vr|
√
j + 1)a0

j − i sin(t|vr|
√
j + 1)

v∗r
|vr|

b0j+1, 0 ≤ j ≤M − 1,

bj(t) = cos(t|vr|
√
j)b0j − i sin(t|vr|

√
j)
vr
|vr|

a0
j−1, 1 ≤ j ≤M, (3.10)

b0(t) = b00, aM (t) = 0.
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Again, one checks that the energy levels are associated by several coupled
2 × 2 systems corresponding to the projections onto (Φj ,Φj+1), for which the
system oscillates at a frequency |vr|

√
j + 1.

Thus, we only have to design, for a given initial data as in (3.7), a sequence
of impulses which yields to the ground state (0,Φ0). This is actually easy, since
one can, in two impulses, steer functions in V 2

M to functions in V 2
M−1.

Indeed, first, we turn on only u0, during a time τ0 such that aM (τ0) = 0.
This can be done by solving

|a0
M | cos(|u0|τ0) = |b0M | sin(|u0|τ0), arg(u0) =

π

2
+ arg(b0M )− arg(a0

M ).

This always has a solution for a time τ0 ≤ π/(2|u0|). Taking |u0| = K0, which
corresponds to the maximal size of the control function, we can thus solve the
equation above in a time τ0 ≤ π/(2K0).

Once this is done, at time τ0, we turn off the control u0 and activate vr
during a time τr in such a way that bM (τ0 + τr) = 0. This again yields to
explicit equations which can be solved within a time τr ≤ π/(2|vr|

√
M). Taking

|vr| = K1, which again corresponds to the maximal size of the controls, this can
be solved in a time τ1 ≤ π/(2K1

√
M).

It follows that any couple of functions in V 2
M can be steered to V 2

M−1 in a time
less π/(2K0) + π/(2K1

√
M). Iterating this process, and using the reversibility

of (1.10), one easily checks Theorem 1.2 and estimate (1.13).

Remark 3.1. Given K > 0, in view of the constraints (1.5), we will set in the
sequel K0 = K and K1 = ηK. Thus, we will choose a time T such that

TK ≥ π(M + 1) +
2π
η

√
M. (3.11)

In particular, for η ≤ ηM = 1/(2
√
M + 1), (3.11) holds for

TK =
ℵ
η
, with ℵ = 3π

√
M. (3.12)

Remark 3.2. We do not know if the strategy proposed above minimizes the
norm of the control in general. In particular, here we did not use the control
vb, which might help to obtain better time estimates. This question is, to our
knowledge, widely open.

4 Approximate controllability for (1.2)
This section aims at proving Theorem 1.3. Our proof is divided into two main
steps. The first one is devoted to derive precise estimates on the approxima-
tion process of Subsection 3.2. The second one proves the result of Theorem
1.3. We then give several extensions of Theorem 1.3, which derive approximate
controllability results in the stronger norms ‖(·, ·)‖k×k.
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In the sequel, to simplify notations, we will denote without ambiguity
∫

R
g(x) dx

by
∫

R
g.

4.1 Approximate controllability in (L2(R))2

Fix an integer M ≥ 1 and consider initial and target data in V 2
M .

The sizes of the parameters η, ω, Ω, K and T are not fixed a priori, and will
be chosen later on. Below, we will make the dependence in these parameters as
explicit as possible. In particular, C will denote a generic constant which does
not depend on any of these parameters.

Fix an initial state

ψ0
e =

∑
j≤M

a0
jΦj , ψ0

g =
∑
j≤M

b0jΦj , (4.1)

and a target state
ψ1
e =

∑
j≤M

a1
jΦj , ψ1

g =
∑
j≤M

b1jΦj , (4.2)

with same (L2)2 norm, say 1.
We assume that the control impulses u0, vb = −iηub and vr = −iηur satisfy,

for some constant K > 0,

|u0| ≤ K, |vb| ≤ Kη, |vr| ≤ Kη. (4.3)

In the sequel, we assume that η ≤ ηM = 1/(2
√
M + 1).

Then Theorem 1.2 (see also Remark 3.1) guarantees that, for η ≤ ηM , in a
time T as in (3.12), for any couples of functions (φ0

e, φ
0
g) and (φ1

e, φ
1
g) in V 2

M ,
there exists a control function

t 7→ (u0(t), vr(t), vb(t)), (4.4)

which corresponds to a sequence of impulses and satisfies the properties of The-
orem 1.2, such that the solution (φe, φg) of (1.10) with initial data (φ0

e, φ
0
g)

satisfies
(φe(T ), φg(T )) = β(φ1

e, φ
1
g), (4.5)

where β is a complex number of modulus 1.
We then set

(φ1
e, φ

1
g) =

(
S(−T ) exp(iΩT/2)ψ1

e , S(−T ) exp(−iΩT/2)ψ1
g

)
, (4.6)

which belongs to V 2
M when (ψ1

e , ψ
1
g) belongs to V 2

M , and which is of unit (L2)2

norm. From Theorem 1.2, one can then choose a control function as in (4.4)
satisfying (4.3) which steers solutions of (1.10) from (φ0

e, φ
0
g) = (ψ0

e , ψ
0
g) to

(φ1
e, φ

1
g) defined in (4.6) in time T up to complex number β of modulus 1 as in

(4.5).
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Now, set ur(t) = ivr(t)/η and ub(t) = ivb(t)/η, and define u as in (1.4).
Then consider the solution (ψe, ψg) of (1.2) with initial data (ψ0

e , ψ
0
g) as in

(4.1). Our goal is to prove that

(ψe(T ), ψg(T ))− β(ψ1
e , ψ

1
g)

is small.

Theorem 4.1 (Approximate Controllability in V 2
M in (L2(R))2 norm). Let M

be a positive integer, and consider two couples of data (ψ0
e , ψ

0
g) and (ψ1

e , ψ
1
g) in

V 2
M of unit (L2(R))2 norms.
For η ∈ (0, ηM ), let K and T be such that KT = 3π

√
M/η as in (3.12).

Consider the control function t 7→ (u0, vr, vb) given by Theorem 1.2 under the
constraints (4.3), which steers solutions of (1.10) from (ψ0

e , ψ
0
g) to (φ1

e, φ
1
g) (de-

fined by (4.6)) up to a complex number β of modulus 1 as in (4.5).
Set ur = ivr/η and ub = ivb/η, and consider the control function u as defined

in (1.4).
Then, for any δ > 0, there exist η0 ∈ (0, ηM ) and ρ0 > 0 such that for (ω,Ω)

as in (1.6), for

0 < η ≤ η0, KT =
3π
√
M

η
,

ωη

K
≥ ρ0,

the solution (ψe, ψg) of (1.2) with initial data (ψ0
e , ψ

0
g) and the above defined

control u satisfies (1.15).

Remark 4.2. Note that the controlled trajectory t 7→ (ψe(t), ψg(t)) does not
stay in V 2

M but, as one can check following the proof, it stays always close (in
(L2)2 norm) to an element of V 2

M .

Proof of Theorem 4.1. Before going into the proof, we shall introduce the func-
tions

f = f(t, x) = u + u∗, fLD = fLD(t, x) = uLD + u∗LD, (4.7)

where uLD is as in (3.3). To simplify notations, we will often omit the depen-
dence in x of these functions and simply write f(t) and fLD(t).

We also define the operator

fLE = fLE(t) =
(
u0 − iηura† − iηuba

)
, (4.8)

where a and a† are defined by (1.12) and its adjoint operator f†LE = f†LE(t).

Let (ψe, ψg) be the solution of (1.2) with initial data (ψ0
e , ψ

0
g) for u being

the one given by Theorem 4.1.
Set

ξe(t) = S(−t)eiΩt/2ψe(t), ξg(t) = S(−t)e−iΩt/2ψg(t).
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Then (ξe, ξg) is the solution of{
i∂tξe = eiΩtS(−t)f(t)S(t)ξg, (t, x) ∈ (0, T )× R,
i∂tξg = e−iΩtS(−t)f(t)S(t)ξe, (t, x) ∈ (0, T )× R,

(4.9)

with initial data (ξe(0), ξg(0)) = (ψ0
e , ψ

0
g).

Consider (φe, φg) the solution of (1.10) with initial data (φ0
e, φ

0
g) for the

control function (4.4) computed from Theorem 1.2, which steers (φ0
e, φ

0
g) to

(φ1
e, φ

1
g) as in (4.6).

Note that, from (4.6),∥∥(ψe(T ), ψg(T ))− β(ψ1
e , ψ

1
g)
∥∥

0×0
=

∥∥(ξe(T ), ξg(T ))− β(φ1
e, φ

1
g)
∥∥

0×0

= ‖(ξe(T ), ξg(T ))− (φe(T ), φg(T ))‖0×0 .

We thus directly work on (ξe, ξg), which we will compare with (φe, φg).
Recall that (φe, φg) satisfies{

i∂tφe = fLE(t)†φg, (t, x) ∈ (0, T )× R,
i∂tφg = fLE(t)φe, (t, x) ∈ (0, T )× R.

We therefore introduce the functions

εe = εe(t, x) = ξe − φe, εg = εg(t, x) = ξg − φg, (4.10)

which satisfy∥∥(ψe(T ), ψg(T ))− β(ψ1
e , ψ

1
g)
∥∥

0×0
= ‖(εe(T ), εg(T ))‖0×0 .

Besides, the functions εe, εg satisfy the following system:

i∂tεe = eiΩtS(−t)f(t)S(t)εg + eiΩtS(−t)(f(t)− fLD(t))S(t)φg
+
(
eiΩtS(−t)fLD(t)S(t)− f†LE(t)

)
φg, (t, x) ∈ (0, T )× R,

i∂tεg = e−iΩtS(−t)f(t)S(t)εe + e−iΩtS(−t)(f(t)− fLD(t))S(t)φe
+
(
e−iΩtS(−t)fLD(t)S(t)− fLE(t)

)
φg, (t, x) ∈ (0, T )× R,

εe(0) = 0, εg(0) = 0.
(4.11)

From Theorem 1.2, the functions φe and φg belong to V 2
M in any time t ≥ 0.

Moreover, from Proposition 2.2, the functions ψe and ψg, which are solutions
of (1.2), are in ∩l>0D(Al) in any time t ≥ 0, and so are ξe and ξg. Then the
functions εe and εg inherit the same regularity: this justifies all the computations
below.

Define, for t ∈ [0, T ], the following functions

hLDe(t, x) = eiΩtS(−t)(f(t, x)− fLD(t, x))S(t)φg(t, x),

hme(t, x) =
∫ t

0

(
eiΩsS(−s)fLD(s, x)S(s)− fLE(s)†

)
φg(s, x) ds,

hLDg(t, x) = e−iΩtS(−t)(f(t, x)− fLD(t, x))S(t)φe(t, x),

hmg(t, x) =
∫ t

0

(
e−iΩsS(−s)fLD(s, x)S(s)− fLE(s)

)
φe(s, x) ds.

(4.12)
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System (4.11) then reads as{
i∂tεe = eiΩtS(−t)f(t)S(t)εg + hLDe(t, x) + ∂thme(t, x),

i∂tεg = e−iΩtS(−t)f(t)S(t)εe + hLDg(t, x) + ∂thmg(t, x).
(4.13)

Below, we give precise estimates for the quantities in (4.12), which will be needed
to bound the norm of (εe, εg).

Lamb-Dicke approximation. To deal with the Lamb-Dicke approximation,
roughly speaking measured by hLDe and hLDg in (4.12), one has essentially to
estimate the norm of the multiplication operator f(t, x)− fLD(t, x). Note that,
due to the explicit form of f(t, x) − fLD(t, x), one can check that gLD(t, x) =
f(t, x) − fLD(t, x) is a smooth function in x, for which there exists a constant
C such that for all (t, x),

|gLD(t, x)| ≤ Cη2K|x|2, |∂xgLD(t, x)| ≤ Cη2K|x|,
∀k ≥ 2, |∂kxgLD(t, x)| ≤ CηkK.

It follows that for all t ≥ 0,

‖gLD(t, x)φ‖k ≤ C(k)η2K ‖φ‖k+2 .

Now, remark that φg(t) and φe(t) both belong to VM for any t > 0, and thus
are smooth. Furthermore, for any φ ∈ VM , we have

‖φ‖k =
∥∥∥Ak/2φ∥∥∥

0
≤ (M + 1)k/2 ‖φ‖0 . (4.14)

Also recall that S(t) is a unitary map from VM to VM and from D(Ak/2) to
D(Ak/2). It follows that there exists a constant C1(k), which depends only on
k, such that

sup
t∈[0,T ]

‖hLDe(t)‖k ≤ C1(k)η2K(M + 1)(k+2)/2,

sup
t∈[0,T ]

‖hLDg(t)‖k ≤ C1(k)η2K(M + 1)(k+2)/2,
(4.15)

since ‖(φe(t), φg(t))‖0×0 = ‖(φe(0), φg(0))‖0×0 = 1 for all t > 0.

The mean approximation. Let us now focus on the integrals hme and hmg
in (4.12). According to (3.5), we define the operator gm = gm(s) by

g†m = g†m(s) = eiΩsS(−s)fLD(s)S(s)− f†LE(s)

= u0e
2iΩs − iηu0

(
ei(2Ω−ω)sa + ei(2Ω+ω)sa†

)
+ iηu∗0

(
e−iωsa + eiωsa†

)
+urei(2Ω−ω)s − iηur

(
e2i(Ω−ω)sa + e2iΩsa†

)
+ u∗re

iωs + iηu∗re
2iωsa†

+ubei(2Ω+ω)s − iηub
(
e2iΩsa + e2i(Ω+ω)sa†

)
+ u∗be

−iωs + iηu∗be
−2iωsa.

(4.16)
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Recall that for any t ≥ 0, (φe(t), φg(t)) ∈ V 2
M and that it is explicitly given by

the construction in Theorem 1.2. In particular, they are functions of time which
oscillate at a frequency sup{K,Kη

√
M} = K at most. To be more precise, there

is a sequence of times

0 = T0 ≤ T1 ≤ · · · ≤ T4M+2 = T,

which corresponds to the switching times of the controls, such that the functions
φe(t) and φg(t) for t ∈ (Tl, Tl+1) are linear combination of complex exponential
exp(±iF t) with F smaller than K. For instance, if the only active control in
(Tl, Tl+1) is vr and

φe(Tl) =
∑

j≤M−1

a0
jΦj , φg(Tl) =

∑
j≤M

b0jΦj ,

then (φe(t+ Tl), φg(t+ Tl)), expanded as in (3.8), is explicitly given by (3.10).
Our goal is to estimate∥∥∥∥∥

∫ Tl+1

Tl

gm(s)†φg(s) ds

∥∥∥∥∥
k

.

Due to the form of gm, we first focus on∫ Tl+1

Tl

eiωsφg(s) ds = eiωTl

∫ Tl+1−Tl

0

eiωtφg(t+ Tl) dt

= eiωTl

[ ∑
1 ≤j≤M

(∫ Tl+1−Tl

0

cos(t|vr|
√
j)eiωt dt

)
b0jΦj

− i
(∫ Tl+1−Tl

0

sin(t|vr|
√
j)eiωt dt

) vr
|vr|

a0
j−1Φj

]
+ eiωTl

(∫ Tl+1−Tl

0

eiωt dt
)
b00

Thus for ω > K (recall that |vr|
√
j ≤ KηM ≤ K since η ≤ ηM ), explicit

computations give∥∥∥∥∥
∫ Tl+1

Tl

eiωsφg(s) ds

∥∥∥∥∥
k

≤ C 1
(ω −K)

‖(φe(Tl), φg(Tl))‖k×k .

But (φe(Tl), φg(Tl)) ∈ V 2
M , and thus estimate (4.14) holds. Besides, (φe(Tl), φg(Tl))

is of the same L2(R)2 norm as (φ0
e, φ

0
g), which we assumed to be 1. Consequently,∥∥∥∥∥

∫ Tl+1

Tl

eiωsφg(s) ds

∥∥∥∥∥
k

≤ C

(ω −K)
(M + 1)k/2.

Similarly,∥∥∥∥∥
∫ Tl+1

Tl

e2iωsa†φg(s) ds

∥∥∥∥∥
k

≤

∥∥∥∥∥
∫ Tl+1

Tl

eiωsφg(s) ds

∥∥∥∥∥
k+1

≤ C

(ω −K)
(M + 1)(k+1)/2.
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Doing the same computations for the other oscillating terms in (4.16), one can
obtain ∥∥∥∥∥

∫ Tl+1

Tl

gm(s)†φg(s) ds

∥∥∥∥∥
k

≤ C K

(ω −K)
(M + 1)(k+1)/2.

(Notice that under condition (1.6), the slowest oscillating terms in (4.16) are
indeed the ones oscillating at frequency ω.)

The same estimates can be obtained when u0 is the only active control. The
computations actually are easier, and are left to the reader.

Since there are at most 4M + 2 switching times, it follows that there exists
a constant C2(k), which depends only on k, such that

sup
t∈[0,T ]

‖hme(t)‖k ≤ C2(k)
K

(ω −K)
(M + 1)(k+3)/2, (4.17)

and, similarly, that,

sup
t∈[0,T ]

‖hmg(t)‖k ≤ C2(k)
K

(ω −K)
(M + 1)(k+3)/2. (4.18)

Approximate controllablity. Using estimates (4.15) and (4.17)-(4.18) de-
rived above, we will prove that the norm of (εe, εg) is small. This will be done
by energy techniques. Note that Grönwall’s estimates are not sufficient to prove
the smallness of the norm of (εe, εg) since the leading term can only be bounded
by K, while KT blows up when η → 0.

Multiplying in (4.13) the first equation by ε∗e and the second by ε∗g, and
summing them, we obtain

1
2
d

dt

(
‖εe(t)‖20 + ‖εg(t)‖20

)
= =

(∫
R
hLDe(t)ε∗e(t) +

∫
R
∂thme(t)ε∗e(t)

+
∫

R
hLDg(t)ε∗g(t) +

∫
R
∂thmg(t)ε∗g(t)

)
.

Integrating in time, we get

1
2

(
‖εe(t)‖20 +‖εg(t)‖20

)
= =

(∫ t

0

∫
R
hLDe(s)ε∗e(s) ds+

∫ t

0

∫
R
∂thme(s)ε∗e(s) ds

+
∫ t

0

∫
R
hLDg(s)ε∗g(s) ds+

∫ t

0

∫
R
∂thmg(s)ε∗g(s) ds

)
. (4.19)

Set, for t ≥ 0,

F0(t) =
1
2

(
‖εe(t)‖20 + ‖εg(t)‖20

)
.

For the terms corresponding to the Lamb-Dicke approximation, using (4.15),
we check that∣∣∣ ∫ t

0

∫
R
hLDe(s)ε∗e(s) ds+

∫ t

0

∫
R
hLDg(s)ε∗g(s) ds

∣∣∣ ≤ Cη2K(M+1)
∫ t

0

√
F0(s) ds.

(4.20)
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For the mean value approximations, we need to be more careful, since we
cannot guarantee ∂thme to be small. Though, an integration by parts yields∫ t

0

∫
R
∂thme(s)ε∗e(s) ds =

∫
R
hme(t)ε∗e(t)−

∫ t

0

∫
R
hme(s)∂tε∗e(s) ds

=
∫

R
hme(t)ε∗e(t)− i

∫ t

0

∫
R
hme(s)∂th∗me(s) ds

−i
∫ t

0

∫
R
hme(s)

(
e−iΩsS(s)f(s)S(−s)ε∗g(s) + h∗LDe(s)

)
ds.

Remark that e−iΩsS(s)f(s)S(−s) is a bounded operator on L2 with norm
less than CK and that supt∈[0,T ] ‖hLDe(t, x)‖0 ≤ Cη2K(M + 1) (see (4.15)).
Thus, taking the imaginary part, we get∣∣∣=(∫ t

0

∫
R
∂thme(s)ε∗e(s) ds

)∣∣∣ ≤ C( ‖hme(t)‖0√F0(t) + ‖hme(t)‖20

+
∫ t

0

‖hme(s)‖0
(
K
√
F0(s) + η2K(M + 1)

)
ds
)
, (4.21)

Similar computations can be done for the term involving hmg.
For convenience, set

Hm = sup
t∈[0,T ]

{
‖hme(t)‖0 , ‖hmg(t)‖0

}
,

which, from (4.17)-(4.18), satisfies

Hm ≤ C
K

(ω −K)
(M + 1)3/2. (4.22)

Identity (4.19), combined with estimate (4.20), yields, for t ∈ [0, T ],

F0(t) ≤ C
((
η2K(M + 1) +KHm

)∫ t

0

√
F0(s) ds+Hm

√
F0(t)

+H2
m + Tη2HmK(M + 1)

)
,

and, using 2ab ≤ a2 + b2,

F0(t) ≤ C
((
η2K(M + 1) +KHm

)∫ t

0

√
F0(s) ds+H2

m + Tη2HmK(M + 1)
)
.

Lemma 4.3. Let F (t) be a continuous nonnegative function of time t ∈ [0, T ].
Assume that there exist nonnegative numbers α, β such that, for t ∈ [0, T ],

F (t) ≤ α
∫ t

0

√
F (s) ds+ β. (4.23)

Then, for t ∈ [0, T ], F satisfies√
F (t) ≤ α

2
t+
√
β.
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The proof of Lemma 4.3 is left to the reader. The trick consists in setting
G(t) = α

∫ t
0

√
F (s) ds+ β and writing (4.23) as

G′(t)
2
√
G(t)

≤ α

2
.

Applied to the function F0, Lemma 4.3 yields, for t ∈ [0, T ],√
F0(t) ≤ C

((
η2K(M+1)+KHm

)
T+

(
H2
m+Tη2HmK(M+1)

)1/2)
. (4.24)

Now, set δ > 0. Recall that M is fixed, KT = 3π
√
M/η is as in (3.12). We

now choose η0 such that for any η ≤ η0.

3πCη(M + 1)3/2 ≤ δ

2
, (4.25)

For η ≤ η0, we shall adjust the other free parameters to obtain

C
(3π
√
M

η
Hm +

(
H2
m + 3πηHm(M + 1)3/2

)1/2)
≤ δ

2
.

This can be done due to the estimate (4.22). Indeed, this last estimate is
equivalent to

3π(M + 1)2

η

( K

ω −K

)
+
[( K

ω −K

)2

(M + 1)3 + 3πη
( K

ω −K

)
(M + 1)3

]1/2
≤ δ

2C
, (4.26)

which can be satisfied if we assume ωη/K to be large enough (Recall that η is
supposed to be small, and then we can assume without restriction that η0 < 1).
The proof of Theorem 4.1 is then complete.

We now focus on Theorem 1.3.

Proof of Theorem 1.3. Roughly speaking, the idea consists in using Theorem
4.1 to control the most significant part of the system. We thus need to estimate
the error terms which have been introduced by this technique.

Set δ > 0.
Since (ψ0

e , ψ
0
g , ψ

1
e , ψ

1
g) belongs to (L2(R))4, and since the family (Φj) is an

orthonormal basis of L2, there exists an nonegative integer M > 0 such that
one can find a quadruplet of functions (ψ̃0

e , ψ̃
0
g , ψ̃

1
e , ψ̃

1
g) in V 4

M with∥∥∥(ψ0
e , ψ

0
g)− (ψ̃0

e , ψ̃
0
g)
∥∥∥

0×0
+
∥∥∥(ψ1

e , ψ
1
g)− (ψ̃1

e , ψ̃
1
g)
∥∥∥

0×0
≤ δ

2
.

Besides, since the couples (ψ0
e , ψ

0
g) and (ψ1

e , ψ
1
g) both have unit (L2(R))2 norm,

we can further impose that the couples (ψ̃0
e , ψ̃

0
g) and (ψ̃1

e , ψ̃
1
g) also have unit

norm in (L2(R))2.
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Set
(ε0e, ε

0
g, ε

1
e, ε

1
g) = (ψ0

e , ψ
0
g , ψ

1
e , ψ

1
g)− (ψ̃0

e , ψ̃
0
g , ψ̃

1
e , ψ̃

1
g).

Remark that the solution (ψe, ψg) of (1.2) with initial data (ψ0
e , ψ

0
g) coincides

with the sum of the solutions (ψ̃e, ψ̃g) of (1.2) with initial data (ψ̃0
e , ψ̃

0
g) and

(εe, εg) of (1.2) with initial data (ε0e, ε
0
g) ∈ (L2(R))2.

Now, (ψ̃0
e , ψ̃

0
g , ψ̃

1
e , ψ̃

1
g) are in V 4

M . Using Theorem 4.1, there exist positive
constants η0 > 0 and ρ0 > 0, such that for η ≤ η0, KTη = ℵ = 3π

√
M , (ω,Ω)

as in (1.6) and ωη/K ≥ ρ0, there exists a control function u as in (1.4) satisfying
the constraints (4.3) such that the solution (ψ̃e, ψ̃g) of (1.2) with initial data
(ψ̃0
e , ψ̃

0
g) satisfies, for a complex number β of modulus 1,∥∥∥(ψ̃e(T ), ψ̃g(T ))− β(ψ̃1

e , ψ̃
1
g)
∥∥∥

0×0
≤ δ

2
.

From now on, the parameters K, T , u, η, ω and β are fixed as above.
Now recall that, from Theorem 1.1, the (L2(R))2 norm of the solutions of

(1.2) is constant. In particular

‖(εe(T ), εg(T ))‖0×0 =
∥∥(ε0e, ε

0
g)
∥∥

0×0
.

Combining these two estimates, we obtain that∥∥(ψe(T ), ψg(T ))− β(ψ1
e , ψ

1
g)
∥∥

0×0
≤
∥∥(ε0e, ε

0
g)
∥∥

0×0

+
∥∥∥(ψ̃e(T ), ψ̃g(T ))− β(ψ̃1

e , ψ̃
1
g)
∥∥∥

0×0
+
∥∥(ε1e, ε

1
g)
∥∥

0×0
≤ δ,

and the proof is complete.

Remark 4.4. To sum up, our approach justifies the approximations presented
in Section 3 when the parameters satisfy the following orders of magnitude

η � 1,
ωη

K
� 1.

In this case, the time shall be chosen as T = ℵ/(Kη).

4.2 Approximate controllability in D(Ak/2)

We notice that the control given by Theorem 1.2 is smooth in space and piece-
wise constant in time. It follows from Theorem 1.1 that the controlled trajecto-
ries are as smooth (in the space variable) as the initial data. It is then natural
to look for extensions of the results of the previous section for stronger norms.

Several extensions can be considered, and we indicate below some of them.

Theorem 4.5 (Approximate Controllability in V 2
M in ‖·‖k×k norm). Let k be

a nonnegative integer. Let M be a positive integer, and consider two couples of
data (ψ0

e , ψ
0
g) and (ψ1

e , ψ
1
g) in V 2

M of unit (L2(R))2 norms.
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For any η ∈ (0, ηM ), let K and T be such that KT = 3π
√
M/η as in (3.12).

Consider the control function t 7→ (u0, vr, vb) given by Theorem 1.2 under the
constraints (4.3) which steers solutions of (1.10) from (ψ0

e , ψ
0
g) to (φ1

e, φ
1
g) as in

(4.6).
Set ur = ivr/η and ub = ivb/η, and consider the control function u as defined

in (1.4).
Then, for any δ > 0, there exist ηk(δ) ∈ (0, ηM ) and ρk(δ) > 0 such that for

(ω,Ω) as in (1.6) and for

0 < η ≤ ηk, KT =
3π
√
M

η
,

ωη

K
≥ ρk,

the solution (ψe, ψg) of (1.2) with initial data (ψ0
e , ψ

0
g) and the above defined

control u satisfies, for β a complex number of modulus 1,∥∥(ψe(T ), ψg(T ))− β(ψ1
e , ψ

1
g)
∥∥
k×k ≤ δ. (4.27)

When considering more general data than the ones in V 2
M , we can prove the

following:

Theorem 4.6 (Approximate Controllability in ‖·‖k norm). Let k be a nonnega-
tive integer. Consider two couples of data (ψ0

e , ψ
0
g) ∈ D(Ak/2)2 and (ψ1

e , ψ
1
g) ∈ D(Ak/2)2

of unit (L2(R))2 norms.
For any δ > 0, there exist a constant ℵ = ℵ(δ, ψ0

e , ψ
0
g , ψ

1
e , ψ

1
g) > 0, and two

positive parameters ηk = ηk(δ, ψ0
e , ψ

0
g , ψ

1
e , ψ

1
g) > 0, and ρk(δ, ψ0

e , ψ
0
g , ψ

1
e , ψ

1
g) > 0

such that for (ω,Ω) as in (1.6) and for

0 < η ≤ ηk, KT =
ℵ
η
,

ωη

K
≥ ρk,

then for a control function u(t, x) of the form (1.4), given by a map t 7→
(u0(t), ur(t), ub(t)) of piecewise constant functions,

• The solution (ψe, ψg) of (1.2) with initial data (ψ0
e , ψ

0
g) satisfies (4.27) for

some complex number β of modulus 1.

• For all time t ∈ [0, T ], estimates (1.5) are satisfied.

• At each time t ∈ [0, T ], there is only one nonzero component in the vector
(u0(t), ur(t), ub(t)).

These two theorems are a consequence of the following Lemma:

Lemma 4.7. Assume that (εe, εg) satisfies
i∂tεe = eiΩtS(−t)f(t)S(t)εg + hLDe + ∂thme,

i∂tεg = e−iΩtS(−t)f(t)S(t)εe + hLDg + ∂thmg,

(εe(0), εg(0)) = (ε0e, ε
0
g),

(4.28)
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where (ε0e, ε
0
g) ∈ ∩k∈lND(Ak/2), f = u+u∗ for u being as in (1.4) and satisfying

the constraints (1.5). Also assume that hLDe, hLDg, hme, hmg satisfy hme(0) =
hmg(0) = 0 and that, for all k ∈ lN, there exists aLDk, amk such that

sup
t∈[0,T ]

{
‖hLDe(t)‖k , ‖hLDg(t)‖k

}
≤ aLDk,

sup
t∈[0,T ]

{
‖hme(t)‖k , ‖hmg(t)‖k

}
≤ amk.

For any k ∈ lN, define

Fk(t) =
1
2

(
‖εe(t)‖2k + ‖εg(t)‖2k

)
. (4.29)

Then there exists a constant C0(k) such that

sup
t∈[0,T ]

{√
Fk(t)

}
≤ C0(k)

(
Kη sup

t∈[0,T ]

{√
Fk−1(t)

}
+ aLDk +Kamk

)
T

+
√

2Fk(0) + C0(k)
(
TamkaLDk + a2

mk

)1/2

. (4.30)

Proof of Lemma 4.7. Multiplying the first and second lines of (4.28) respec-
tively by Akε∗e and Akε∗g, we obtain

i

∫
R

(
∂tA

k/2εe(t)
)
Ak/2ε∗e(t) + i

∫
R

(
∂tA

k/2εg(t)
)
Ak/2ε∗g(t)

=
∫

R

(
eiΩtS(−t)f(t)S(t)εg(t)Akε∗e(t) + e−iΩtS(−t)f(t)S(t)εe(t)Akε∗g(t)

)
+
∫

R

(
hLDe(t)Akε∗e(t) + hLDg(t)Akε∗g(t)

)
+
∫

R

(
∂thme(t)Akε∗e(t) + ∂thmg(t)Akε∗g(t)

)
= If (t) + ILD(t) + Im(t).

(4.31)

Below, we estimate each of these integrals separately, or to be more precise,
only their imaginary part, since

d

dt
Fk(t) = =

(
i

∫
R

(
∂tA

k/2εe(t)
)
Ak/2ε∗e(t) + i

∫
R

(
∂tA

k/2εg(t)
)
Ak/2ε∗g(t)

)
.

We first consider If (t).
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In a first step, assume that k is even.∫
R

(
eiΩtS(−t)f(t)S(t)εg(t)Akε∗e(t) + e−iΩtS(−t)f(t)S(t)εe(t)Akε∗g(t)

)
=
∫

R

(
eiΩtAk/2(f(t)S(t)εg(t))Ak/2(S(t)εe(t))∗

+ e−iΩtAk/2(f(t)S(t)εe(t))Ak/2(S(t)εg(t))∗
)

But, for ψ ∈ D(Ak/2), one easily checks that there exists a constant C(k) which
depends on k such that, for any function g = g(x),∥∥∥Ak/2(g(x)ψ)− g(x)Ak/2ψ

∥∥∥
0

≤ C(k) sup
{
‖∂xg‖L∞(R) , · · · ,

∥∥∂kxg∥∥L∞(R)

}∥∥∥A(k−1)/2ψ
∥∥∥

0
.

In our case, recall that f = u + u∗ where u is as in (1.4). Then we obtain∥∥∥Ak/2(f(t)S(t)εg(t))− f(t)Ak/2S(t)εg(t)
∥∥∥

0
≤ C(k)Kη

√
Fk−1(t),∥∥∥Ak/2(f(t)S(t)εe(t))− f(t)Ak/2S(t)εe(t)

∥∥∥
0
≤ C(k)Kη

√
Fk−1(t),

and thus∣∣∣∣∣If (t)−
∫

R

[
f(t)

(
eiΩtAk/2(S(t)εg(t))Ak/2(S(t)εe(t))∗

+ e−iΩtAk/2(S(t)εe(t))Ak/2(S(t)εg(t))∗
)]∣∣∣∣∣ ≤ C(k)Kη

√
Fk−1(t)

√
Fk(t).

But

f(t)
(
eiΩtAk/2(S(t)εg(t))Ak/2(S(t)εe(t))∗+e−iΩtAk/2(S(t)εe(t))Ak/2(S(t)εg(t))∗

)
is real, and then we obtain that for all t,

=(If (t)) ≤ C(k)Kη
√
Fk−1(t)

√
Fk(t). (4.32)
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If k = 2l + 1 is odd, the situation slightly differs. Write∫
R

(
eiΩtS(−t)f(t)S(t)εg(t)Akε∗e(t) + e−iΩtS(−t)f(t)S(t)εe(t)Akε∗g(t)

)
=
∫

R

(
eiΩtAl(f(t)S(t)εg(t))

(
a†a +

1
2

)
Al(S(t)εe(t))∗

+e−iΩtAl(f(t)S(t)εe(t))
(
a†a +

1
2

)
Al(S(t)εg(t))∗

)
=

1
2

∫
R

(
eiΩtAl(f(t)S(t)εg(t))Al(S(t)εe(t))∗

+e−iΩtAl(f(t)S(t)εe(t))Al(S(t)εg(t))∗
)

+
∫

R

(
eiΩtaAl(f(t)S(t)εg)aAl(S(t)εe)∗

+e−iΩtaAl(f(t)S(t)εe(t))aAl(S(t)εg(t))∗
)
.

Each term can now be estimated as before, and one can then prove (4.32) as for
the case k even.

For the Lamb-Dicke approximation term, we get

ILD(t) =
∫

R
(Ak/2hLDe(t))(Ak/2 ε∗g(t)) +

∫
R

(Ak/2hLDg(t))(Ak/2 ε∗e(t)),

and thus,
|ILD(t)| ≤ aLDk

√
Fk(t). (4.33)

Finally, we compute
∫ t

0
Im(s) ds. Since hme(0) = 0 from the hypotheses,∫ t

0

∫
R
∂thme(s)Akε∗e(s) ds =

∫ t

0

∫
R
∂tA

khme(s)ε∗e(s) ds

=
∫

R
Ak/2hme(t)Ak/2ε∗e(t)−

∫ t

0

∫
R
Akhme(s)∂tε∗e(s) ds.

As for the L2 case, one can use the equations (4.28) to obtain∫ t

0

∫
R
Akhme(s)∂tε∗e(s) ds

= i

∫ t

0

∫
R
Akhme(s)e−iΩs(S(−s)f(s)S(s)εg(s))∗ ds

+i
∫ t

0

∫
R
Akhme(s)h∗LDe(s) ds+ i

∫ t

0

∫
R
Akhme(s)∂th∗me(s) ds

= i

∫ t

0

∫
R
e−iΩsf(s)

(
S(s)Ak/2hme(s)

)(
Ak/2S(s)εg(s)

)∗
ds

+i
∫ t

0

∫
R

(
Ak/2hme(s)

)(
Ak/2h∗LDe(s)

)
ds+ i

∫ t

0

∫
R
Ak/2hme(s)∂tAk/2h∗me(s) ds.
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Thus, doing the same computations for the other term in Im, taking the imag-
inary parts, we obtain, for t ∈ [0, T ],

∣∣∣=(∫ t

0

Im(s) ds
)∣∣∣

≤ C(k)
(
amk

√
Fk(t) +Kamk

∫ t

0

√
Fk(s) ds+ TamkaLDk + a2

mk

)
≤ C(k)

(
Kamk

∫ t

0

√
Fk(s) ds+ TamkaLDk + a2

mk

)
+

1
2
Fk(t).

(4.34)

Combining (4.32), (4.33) and (4.34) in (4.31) and integrating in time, we
obtain

Fk(t) ≤ Fk(0) + C(k)
(
Kη

∫ t

0

√
Fk−1(s)

√
Fk(s) ds+ aLDk

∫ t

0

√
Fk(s) ds

+Kamk

∫ t

0

√
Fk(s) ds+ TamkaLDk + a2

mk

)
+

1
2
Fk(t),

and then

Fk(t) ≤ 2Fk(0) + C(k)
(
TamkaLDk + a2

mk

)
+ C(k)

(
Kη

∥∥∥√Fk−1

∥∥∥
L∞(0,T )

+ aLDk +Kamk

)∫ t

0

√
Fk(s) ds. (4.35)

The proof of Lemma 4.7 then follows directly from Lemma 4.3.

Remark 4.8. Note that Lemma 4.7 applies to a wider class of initial data. In-
deed, if (ε0e, ε0g) is only in D(Ak0/2)2 for some k0 ∈ lN, similarly as in the proof
of Theorem 1.1, we can use the density of ∩k∈lND(Ak) in D(Ak0/2) to conclude
that estimates (4.30) hold for any solution of (4.13) and any k ≤ k0.

Proof of Theorem 4.5. Set M > 0.
Using the same notations as in the proof of Theorem 4.1, the norm ‖(·, ·)‖k×k

of (εe, εg) solution of (4.13) with initial data (0, 0) measures precisely the defect
of controllability in D(Ak/2)2. Besides, in Theorem 4.1 we proved that, for
δ > 0, K, T and η as in (3.12), for η small enough and ωη/K large enough, for
(ω,Ω) as in (1.6),

sup
t∈[0,T ]

‖(εe(t), εg(t))‖0×0 ≤ δ.

We now proceed by induction on k. Assume that for k−1, for any δ > 0, there
exist ηk−1(δ) > 0 and ρk−1(δ) > 0 such that for η ≤ ηk−1 and ωη/K ≥ ρk−1,
for (ω,Ω) as in (1.6) and for K, T and η as in (3.12), taking the control function
given by Theorem 1.2 under the constraints (4.3), the solution (εe, εg) of (4.13)
with initial data (0, 0) satisfies

sup
t∈[0,T ]

‖(εe(t), εg(t))‖(k−1)×(k−1) ≤ δ.
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We then estimate the norm ‖(·, ·)‖k×k of (εe, εg) solution of (4.13) with initial
data (0, 0), and hLDe, hLDg, hme, hmg satisfying (4.15)-(4.17)-(4.18).

Using the notations of Lemma 4.7, we can take (see (4.15)-(4.17)-(4.18))

aLDk = C(k)η2K(M+1)(k+2)/2, amK = C(k)
K

(ω −K)
(M+1)(k+3)/2. (4.36)

Besides, from the induction hypothesis, there exist ηk−1 > 0 and ρk−1 > 0 such
that for η ≤ ηk−1, TK = 3π

√
M/η and (ω,Ω) as in (1.6) satisfying ωη/K ≥

ρk−1, we get

sup
t∈[0,T ]

‖(εe(t), εg(t))‖(k−1)×(k−1) ≤
δ

9C0(k)π
√
M

=
δ

3C0(k)KηT
.

Then Lemma 4.7 yields

sup
t∈[0,T ]

√
Fk(t) ≤ δ

3
+C0(k)aLDkT+C0(k)

[
KamkT+

(
TamkaLDk+a2

mk

)1/2]
.

Using (4.36), we can then choose ηk(δ) smaller than ηk−1 such that any η with
η ≤ ηk(δ) satisfies

C0(k)aLDkT = 3πC0(k)C1(k)(M + 1)(k+3)/2 × η ≤ δ

3
. (4.37)

Now, for η ≤ ηk(δ), we want to adjust the parameters such that the following
estimate holds.

C0(k)
(
KamkT +

(
TamkaLDk + a2

mk

)1/2)
≤ δ

3
.

This can be done by imposing the condition ηω/K ≥ ρk(δ) for a suitable con-
stant ρk(δ) large enough (and greater than ρk−1(δ)), since this last inequality
is equivalent to

C(k)
[3π
η

( K

ω −K

)
(M + 1)k/2+2

+
(

3πη(M + 1)k+3
( K

ω −K

)
+ (M + 1)3

( K

ω −K

)2)1/2]
≤ δ

3
. (4.38)

It follows that, if η ≤ ηk(δ) and ωη/K ≥ ρk(δ), then

sup
t∈[0,T ]

√
Fk(t) ≤ δ,

and the proof is complete by induction.

Proof of Theorem 4.6. Take (ψ0
e , ψ

0
g) ∈ D(Ak/2)2 and (ψ1

e , ψ
1
g) ∈ D(Ak/2)2 as

ψ0
e =

∑
j

α0
jΦj ,

ψ0
g =

∑
j

β0
jΦj ,


ψ1
e =

∑
j

α1
jΦj ,

ψ1
g =

∑
j

β1
jΦj ,
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with∑
j

(
|α0
j |2 + |β0

j |2
)

(j + 1/2)k <∞,
∑
j

(
|α1
j |2 + |β1

j |2
)

(j + 1/2)k <∞.

Fix δ̃ > 0 and choose M such that∑
j>M

(
|α0
j |2 + |β0

j |2
)

(j + 1/2)k ≤
( δ̃∥∥(ψ1

e , ψ
1
g)
∥∥
k×k

)2

≤ δ̃2,

∑
j>M

(
|α1
j |2 + |β1

j |2
)

(j + 1/2)k ≤
( δ̃∥∥(ψ1

e , ψ
1
g)
∥∥
k×k

)2

≤ δ̃2.

(4.39)

Then define
ψ̃0
e =

∑
j≤M

α0
jΦj , ψ̃1

e =
∑
j≤M

α1
jΦj ,

ψ̃0
g =

∑
j≤M

β0
jΦj , ψ̃1

g =
∑
j≤M

β1
jΦj .

Considering the couples of functions (ψ̃0
e , ψ̃

0
g)/
∥∥∥(ψ̃0

e , ψ̃
0
g)
∥∥∥

0×0
and (ψ̃1

e , ψ̃
1
g)/
∥∥∥(ψ̃1

e , ψ̃
1
g)
∥∥∥

0×0
,

one can apply Theorem 4.5 : For η ≤ ηk(δ̃), KT = 3π
√
M/η and ωη/K ≥ ρk(δ̃),

for (ω,Ω) as in (1.6), there exist a complex number β of modulus 1 and a control
u as in (1.4) satisfying (1.5) such that the solution (ψ̌e, ψ̌g) of (1.2) with initial
data (ψ̃0

e , ψ̃
0
g)/
∥∥∥(ψ̃0

e , ψ̃
0
g)
∥∥∥

0×0
satisfies∥∥∥∥∥∥∥(ψ̌e(T ), ψ̌g(T ))− β

(ψ̃1
e , ψ̃

1
g)∥∥∥(ψ̃1

e , ψ̃
1
g)
∥∥∥

0×0

∥∥∥∥∥∥∥
k×k

≤ δ̃.

We fix δ̃, T , K, η, u, ω and Ω as above.
Remark that (ψ̌e, ψ̌g) = (ψ̃e, ψ̃g)/

∥∥∥(ψ̃0
e , ψ̃

0
g)
∥∥∥

0×0
, where (ψ̃e, ψ̃g) is the solu-

tion of (1.2) with initial data (ψ̃0
e , ψ̃

0
g). Thus we have from (4.39)

∥∥∥(ψ̃e(T ), ψ̃g(T ))− β(ψ̃1
e , ψ̃

1
g)
∥∥∥
k×k
≤
∥∥∥(ψ̃1

e , ψ̃
1
g)
∥∥∥
k×k

∣∣∣∣∣1−
∥∥∥(ψ̃0

e , ψ̃
0
g)
∥∥∥

0×0∥∥∥(ψ̃1
e , ψ̃

1
g)
∥∥∥

0×0

∣∣∣∣∣
+
∥∥∥(ψ̃0

e , ψ̃
0
g)
∥∥∥

0×0

∥∥∥∥∥∥∥
(ψ̃e(T ), ψ̃g(T ))∥∥∥(ψ̃0

e , ψ̃
0
g)
∥∥∥

0×0

− β
(ψ̃1
e , ψ̃

1
g)∥∥∥(ψ̃1

e , ψ̃
1
g)
∥∥∥

0×0

∥∥∥∥∥∥∥
k×k

≤ 3δ̃.

We then deduce ∥∥∥(ψ̃e(T ), ψ̃g(T ))− β(ψ̃1
e , ψ̃

1
g)
∥∥∥
k×k
≤ 3δ̃,∥∥∥(ψ̃e(T ), ψ̃g(T ))− β(ψ1

e , ψ
1
g)
∥∥∥
k×k
≤ 4δ̃.

(4.40)
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Let us now consider the error term we introduced by truncating the expan-
sions of (ψ0

e , ψ
0
g).

Set
(ε0e, ε

0
g) = (ψ0

e , ψ
0
g)− (ψ̃0

e , ψ̃
0
g),

(εe(t), εg(t)) = (eiΩt/2S(−t)ψe(t), e−iΩt/2S(−t)ψg(t))

−(eiΩt/2S(−t)ψ̃e(t), e−iΩt/2S(−t)ψ̃g(t)),

(4.41)

where (ψe, ψg) and (ψ̃e, ψ̃g) are, respectively, the solutions of (1.2) with initial
data (ψ0

e , ψ
0
g) and (ψ̃0

e , ψ̃
0
g). This choice makes (εe, εg) satisfy the equation

i∂tεe = eiΩtS(−t)f(t)S(t)εg, i∂tεg = e−iΩtS(−t)f(t)S(t)εe. (4.42)

with initial data (ε0e, ε
0
g).

The intial data (ε0e, ε
0
g) have the following expansion

ε0e =
∑
j>M

α0
jΦj , ε0g =

∑
j>M

β0
jΦj ,

with ∥∥(ε0e, ε
0
g)
∥∥2

k×k =
∑
j>M

(
|α0
j |2 + |β0

j |2
)

(j + 1/2)k < δ̃2.

In particular, with the notations introduced in (4.29), we have

∀l ∈ {0, · · · , k}, (M + 1)k/2−l/2
√
Fl(0) ≤ δ̃.

Applying Lemma 4.7, we obtain, for l ∈ {1, · · · , k},

sup
t∈[0,T ]

√
Fl(t) ≤ C0(l)KηT

∥∥∥√Fl−1

∥∥∥
L∞(0,T )

+
(

2Fl(0)
)1/2

, (4.43)

At this point, it is crucial that K, η and T are related by KTη = 3π
√
M.

Indeed, we can now conclude by induction on l between 0 and k similarly as
in the proof of Theorem 4.5. Let us briefly explain the first step. Note that√
F0(t) is constant and bounded by δ̃/(M + 1)k/2. Then (4.43) writes

sup
t∈[0,T ]

√
F1(t) ≤ 2πC0(1)

δ̃

(M + 1)k/2−1/2
+
√

2
δ̃

(M + 1)k/2−1/2
.

Hence we get

sup
t∈[0,T ]

√
F1(t) ≤ C1δ̃

(M + 1)k/2−1/2
,

where C1 is an explicit constant, which does not depend on the parameters
η, ω,M,K, T, δ̃.
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Similarly, by induction on l, we can prove that for all l ∈ {0, · · · , k},

sup
t∈[0,T ]

√
Fl(t) ≤

Clδ̃

(M + 1)k/2−l/2
,

where Cl is an explicit constant which does not depend on the parameters
η, ω,M,K, T, δ̃.

For l = k, this gives that

sup
t∈[0,T ]

√
Fk(t) ≤ Ck δ̃.

Combined with (4.40), we obtain that for η ≤ ηk and ωη/K ≥ ρk, the
solution (ψe, ψg) of (1.2) with initial data (ψ0

e , ψ
0
g) satisfies∥∥(ψe(T ), ψg(T ))− β(ψ1

e , ψ
1
g)
∥∥
k×k ≤ (4 + Ck)δ̃,

and the proof is complete by choosing δ̃ = δ/Ck for δ > 0.

Remark 4.9. If we have an estimate on the sizeM of the truncation, we can have
a bound on the constant ℵ in Theorem 4.6. In particular, such bounds can be
obtained when the initial and target states both belong to some D(Ak0/2)2 and
we are interested in approximate controllability results in the norms D(Ak/2)2

for k < k0.

5 Further comments
1. To go on further on the study of the controllability properties of (1.2),
one would like to study the local exact controllability of (1.2). As said in
the introduction, the resuts in [2] applies and proves the lack of local exact
controllability in the natural space (L2(R))2 but, similarly as in [6, 7], one could
hope local exact controllability results to hold in stronger norms. Though, this
question seems widely open.

Actually, one could first consider the local exact controllability properties
around the ground state of the simpler model

i∂tψ = Aψ + f(t)η(x)ψ, (t, x) ∈ (0, T )× R, (5.1)

where η = η(x) is a smooth real-valued function, say for instance in S ′(R) and
f = f(t) is the control function, which we assume to be real-valued.

This issue has not been dealt with yet. If one wants to use the same strategy
as in [6], it would be convenient to have a function η such that the coefficients∫

R
η(x)Φ0(x)Φj(x) dx

(recall that the functions Φj are the eigenvectors of A) never vanish and decay
polynomially, say as 1/jk, in j. Indeed, this would allow to prove an exact
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controllability result for the linearization of (5.1) in the space D(Ak) around the
ground state Φ0. We did not succeed to find a reasonable function η satisfying
this condition.

2. As said in Remark 3.2, we do not know if the strategy of [17] (and recalled
in the proof of Theorem 1.2) is sharp. It is very likely that better strategies
exist, since ours does not use all the controls. It would be very interesting to
optimize our strategy in order to use smaller controls/times, and it thus deserves
further work. Perhaps this issue might be addressed by using graph theory to
study system (1.10) as presented for instance in [23] (see also [11]).
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