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Abstract

In this article, we show a local exact boundary controllability result for the 1d isentropic compress-
ible Navier Stokes equations around a smooth target trajectory. Our controllability result requires
a geometric condition on the flow of the target trajectory, which comes naturally when dealing with
the linearized equations. The proof of our result is based on a fixed point argument in weighted
spaces and follows the strategy already developed in [13] in the case of a non-zero constant velocity
field. The main novelty of this article is in the construction of the controlled density in the case of
possible oscillations of the characteristics of the target flow on the boundary.

1 Introduction
Let us consider the 1d compressible Navier-Stokes equations stated in a bounded domain (0, L) and in
finite time horizon T > 0:{

∂tρs + ∂x(ρsus) = 0 in (0, T )× (0, L),
ρs(∂tus + us∂xus)− ν∂xxus + ∂xp(ρs) = 0 in (0, T )× (0, L).

(1.1)

Here, ρs is the density of the fluid, and us represents its velocity. The pressure term p = p(ρs) is assumed
to depend on the density ρs, according to a law which can take different forms. In this article, we will
only require p ∈ C2(R∗+;R), which encompasses the cases of pressure of the form

p(ρs) = Aργs , with A > 0 and γ ≥ 1, (1.2)

corresponding to the isentropic law for perfect gases. The constant ν > 0 stands for the viscosity of the
fluid.

To be well posed, system (1.1) should be completed with initial data at t = 0 and boundary conditions,
but we will not make them precise yet.

Instead, we assume that we have a solution (ρ, u) of (1.1) in (0, T )×(0, L), which enjoys the following
regularity:

(ρ, u) ∈ C2([0, T ]× [0, L])× C2([0, T ]× [0, L]), with inf
[0,T ]×[0,L]

ρ(t, x) > 0. (1.3)

The question of local exact boundary controllability we aim at addressing is the following: if we
consider a solution (ρs, us) of (1.1) starting at t = 0 from an initial data close to (ρ(0, ·), u(0, ·)), can we
find boundary controls such that the corresponding solution of (1.1) reaches exactly (ρ(T, ·), u(T, ·)) at
time T?
∗ervedoza@math.univ-toulouse.fr.
†savel@math.univ-toulouse.fr.
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In order to state our result precisely, we introduce an extension of (ρ, u) on [0, T ] × R, still denoted
in the same way for sake of simplicity, enjoying the same conditions as in (1.3):

(ρ, u) ∈ C2([0, T ]× R)× C2([0, T ]× R), with inf
[0,T ]×R

ρ(t, x) > 0. (1.4)

These regularity assumptions allow to define the flow X = X(t, τ, x) corresponding to u defined for
(t, τ, x) ∈ [0, T ]× [0, T ]× R as follows:

dX

dt
(t, τ, x) = u(t,X(t, τ, x)) in (0, T ),

X(τ, τ, x) = x.

(1.5)

Our main assumption then is the following one:

(X,T ) is such that ∀x ∈ [0, L], ∃tx ∈ (0, T ) such that X(tx, 0, x) /∈ [0, L]. (1.6)

Before going further, let us emphasize that Condition (1.6) is of geometric nature and does not depend
on the choice of the extension of (ρ, u) on R, but only depends on the original target trajectory (ρ, u)
defined only on [0, T ]× [0, L].

The main result of this article then states as follows:

Theorem 1.1. Let T > 0, and (ρ, u) ∈ (C2([0, T ] × [0, L]))2 as in (1.3) be a solution of (1.1) in
(0, T ) × (0, L) in the distribution sense, and such that there exists an extension still denoted the same
satisfying the regularity conditions (1.4). Assume that the flow X in (1.5) satisfies (1.6).

Then there exists ε > 0 such that for all (ρ0, u0) ∈ H1(0, L)×H1(0, L) satisfying

‖(ρ0, u0)‖H1(0,L)×H1(0,L) ≤ ε, (1.7)

there exists a controlled trajectory (ρs, us) of (1.1) satisfying

(ρs(0, ·), us(0, ·)) = (ρ(0, ·), u(0, ·)) + (ρ0, u0) in (0, L), (1.8)

and the control requirement

(ρs(T, ·), us(t, ·)) = (ρ(T, ·), u(T, ·)) in (0, L). (1.9)

Furthermore, (ρs, us) enjoys the following regularity:

ρs ∈ C0([0, T ];H1(0, L)) ∩ C1([0, T ];L2(0, L)) and us ∈ H1(0, T ;L2(0, L)) ∩ L2(0, T ;H2(0;L)). (1.10)

Note that the control functions do not appear explicitly in Theorem 1.1. As said earlier, the controls
are applied on the boundary of the domain, i.e. on (0, T ) × {0, L}. If one wants to make them appear
explicitly, the equation (1.1)–(1.8) should be completed with

ρs(t, 0) = ρ(t, 0) + v0,ρ(t) for t ∈ (0, T ) with us(t, 0) > 0,
ρs(t, L) = ρ(t, L) + vL,ρ(t) for t ∈ (0, T ) with us(t, L) < 0,
us(t, 0) = u(t, 0) + v0,u(t) for t ∈ (0, T ),
us(t, L) = u(t, L) + vL,u(t) for t ∈ (0, T ),

where v0,ρ, vL,ρ, v0,u, vL,u are the control functions. Our strategy will not make them appear explicitly,
but we emphasize that these are the control functions used to control the fluid in Theorem 1.1.

Theorem 1.1 generalizes [13] where the same local boundary controllability result is proved when
(ρ, u) is a constant trajectory with u 6= 0 and ‖(ρ0, u0)‖H3(0,L)×H3(0,L) ≤ ε instead of (1.7). In this case,
the geometric condition (1.6) reduces to T > L/|u| and coincides with the geometric constraint in [13].
Note that even when considering the case of constant reference trajectories (ρ, u) with u 6= 0, Theorem
1.1 is more precise than the result in [13] as the smallness of (ρ0, u0) is required in the H1(0, L)×H1(0, L)
norm in (1.7), while it was required in the H3(0, L)×H3(0, L) norm in [13] due to the use of the work
[24]. This improvement is obtained by using the Carleman estimates recently derived in [3] instead of
the ones in [16].
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The proof of Theorem 1.1 follows the one in [13] in the case of constant trajectory and is based on
a fixed point argument on a kind of linearized system. The main difference in our approach is on the
control of the density, which is more delicate than in [13] due to possible cancellations on the target
velocity u at x = 0 and x = L. Of course, the geometric condition (1.6) originates from the control of the
density and it cannot be avoided when working on the linearized equations, as pointed out for instance
in the recent work [22]. Such geometric conditions also appeared in [3] in order to obtain a local exact
controllability result for the incompressible Navier-Stokes equations in 2 and 3d, but in that context,
the authors did not require regularity conditions on the controlled density, while we need them in our
problem.

Results on the local exact controllability of viscous compressible flows are very recent. The first
one is due to [2] in the one-dimensional case when the equations are stated in Lagrangian forms and
the density coincides with the target density at the time t = 0. The work [13] then obtained a similar
result as Theorem 1.1 but in the context of constant trajectories (ρ, u) with u 6= 0 and T > L/|u|. This
geometric condition appears naturally when dealing with the linearized equations and can already be
found in [25] for a structurally damped wave equation, which is of similar nature as the 1d linearized
compressible Navier-Stokes equations around the constant state (ρ, 0). This has later been thoroughly
discussed in the work [8] on the stabilization of the linearized compressible Navier-Stokes equation when
the actuator is located in the velocity equation. When the equations are linearized around constant
trajectories (ρ, u) with u 6= 0, some controllability results were obtained in the case of controls acting
only on the velocity field [7]. These results are also deeply related to the ones obtained on the structurally
damped wave equation with moving controls [23, 6].

The fact that we are dealing with the non-linear problem induces the use of a flexible tool to control
the linearized equations. Therefore, we shall use Carleman estimates in the spirit of [16]. But in our
context, the linearized equations encompass both parabolic and hyperbolic behaviors. We are therefore
led to using Carleman estimates with a weight function traveling along the characteristics of the reference
velocity, following an idea already used in several previous works, e.g. [1] for linear thermoelasticity, [13, 3]
for non-homogeneous viscous fluids, or [6] for linear viscoelasticity with moving controls.

Let us also mention that other controllability results were derived in the case of compressible perfect
fluids corresponding to ν = 0. In that context, several results were obtained depending if one considers
regular solutions [21] or BV solutions [18, 19]. But the methods developed in this context are very
different from the ones used for viscous flows.

The literature is also very rich for what concerns incompressible fluids (with homogeneous density) in
the two and three dimensional setting. With no aim at exhaustivity, we refer for instance to [10, 17] for
the controllability of the incompressible Euler equations, and to [9, 12, 15, 20, 14] for the controllability
of the incompressible Navier-Stokes equations.

Let us also mention that Theorem 1.1 states a result of local exact controllability to smooth trajecto-
ries under the geometric condition (1.6). But this geometric condition may not be necessary in order to
get a local controllability result for the non-linear equations (1.1) based on the use of the non-linearity,
for instance in the spirit of the return method, see e.g. [10, 17] where this idea has been developed in
the context for Euler equations, and [11] for several examples in which the non-linear effects help in
controlling the equations at hand. To our knowledge, this idea has not been developed yet in the context
of compressible Navier-Stokes equations.

The article is organized as follows. Section 2 presents the global strategy of the proof and introduces
the mathematical framework. We will in particular present some geometrical considerations and we will
define the fixed point map subsequently. Section 3 deals with the control of the density equation, which
is the main contribution of this article. Section 4 is dedicated to the control of the velocity. Finally,
Section 5 puts together the ingredients developed in the preceding sections and concludes the proof of
Theorem 1.1. The appendix recalls a weighted Poincaré’s inequality proved in [13, Lemma 4.9].

2 Main steps of the proof of Theorem 1.1
The aim of this section is to structure the proof of Theorem 1.1 and gives its main steps.
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2.1 Reformulation of the problem
We start by introducing the variation (ρ, u) of (ρs, us) around the trajectory (ρ, u), defined by

(ρ, u) = (ρs, us)− (ρ, u) in (0, T )× (0, L). (2.1)

The new unknowns (ρ, u) then satisfy ∂tρ+ (u+ u)∂xρ+ ρ∂xu+

(
ρ

ν
p′(ρ) + ∂xu

)
ρ = f(ρ, u) in (0, T )× (0, L),

ρ(∂tu+ u∂xu)− ν∂xxu = g(ρ, u) in (0, T )× (0, L),

(2.2)

where f(ρ, u) = −ρ∂xu+
ρ

ν
p′(ρ)ρ− ∂xρu,

g(ρ, u) = −ρ
(
∂t(u+ u) + (u+ u)∂x(u+ u)

)
− ρu∂x(u+ u)− p′(ρ+ ρ)∂x(ρ+ ρ) + p′(ρ)∂xρ,

(2.3)

with initial data
(ρ(0, ·), u(0, ·)) = (ρ0, u0) in (0, L), (2.4)

and controls acting on the boundary conditions, that we do not specify here. The control requirement
(1.9) then reads as follows:

(ρ(T, ·), u(T, ·)) = (0, 0) in (0, L). (2.5)

The strategy will then consist in finding a trajectory (ρ, u) solving (2.2)–(2.4) and satisfying the control
requirement (2.5). This will be achieved by a fixed point argument that we will present in Section 2.4
and that will be detailed in Section 5.

2.2 Geometric considerations
To deal with system (2.2), we introduce a suitable extension of the spatial domain (0, L) designed from
the extension u on R. This will allow us to pass from boundary controls to distributed controls which is
easier to deal with from a theoretical point of view.

We first introduce the point x0 ∈ [0, L] defined by

x0 = sup
{
x ∈ [0, L] | ∃tx ∈ [0, T ), X(tx, 0, x) = 0 and ∀t ∈ (0, tx), X(t, 0, x) ∈ (0, L)

}
, (2.6)

where X is the flow corresponding to u (recall (1.5)). This point x0 has interesting properties due to the
uniqueness of Cauchy-Lipschitz’s theorem forbidding the crossing of characteristics (recall that u belongs
to C2([0, T ]× R) by Assumption (1.4)):

• All trajectories t 7→ X(t, 0, x) starting from x ∈ [0, x0) first exit the domain [0, L] through x = 0;

• According to the geometric assumption (1.6), all trajectories t 7→ X(t, 0, x) starting from x ∈ (x0, L]
necessary exit the domain [0, L] through x = L, and thus x0 in (2.6) can also be defined as

x0 = inf
{
x ∈ [0, L] | ∃tx ∈ [0, T ), X(tx, 0, x) = L and ∀t ∈ (0, tx), X(t, 0, x) ∈ (0, L)

}
. (2.7)

Besides, using again (1.6), there exists T2 < T such that X(T2, 0, x0) /∈ [0, L].
If X(T2, 0, x0) > L, by definition of x0, there exists T1 ∈ [0, T2) such that X(T1, 0, x0) = 0.
If X(T2, 0, x0) < 0, from (2.7), there exists T1 ∈ [0, T2) such that X(T1, 0, x0) = L.

We are therefore in one of the configurations displayed in Figure 1. Using the change of variables
x 7→ L− x if needed, we now assume without loss of generality that

X(T2, 0, x0) > L and T1 ∈ [0, T2) with X(T1, 0, x0) = 0.

Using the continuity of X(T2, 0, ·), there exists x1 < x0 (x1 may not belong to [0, L] if x0 = 0) such that
X(T2, 0, x1) > L, while due to Cauchy Lipschitz’s theorem, X(T1, 0, x1) < 0. By continuity of X(·, 0, x1),
we also have the existence of T ′1 ∈ (0, T2) such that X(T ′1, 0, x1) = X(T1, 0, x1)/2. We then define

a =
X(T ′1, 0, x1)

2
(< 0), b =

X(T2, 0, x1) + L

2
(> L), (2.8)
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Figure 1: Some possible trajectories t 7→ X(., 0, x0).

and we set
T0 =

T ′1
2

(> 0), TL = T2 (∈ (T ′1, T )), (2.9)

so that
X(2T0, 0, x1) < a and X(TL, 0, x1) > b. (2.10)

Lastly, remark that due to the fact that two different characteristics do not cross each other due to the
regularity of u in (1.4), we have the following counterpart of (1.6) on the domain (a, b):

∀x ∈ [a, b], ∃tx ∈ (0, TL), X(tx, 0, x) /∈ [a, b]. (2.11)

We refer to Figure 2 for a summary of the notations introduced above.
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Figure 2: Choice of x1 and construction of the extended domain (a, b) and the times (T0, TL) in two
different configurations: Left, x0 = 0, right, x0 ∈ (0, L).

For convenience, we then redefine the time horizon T by reducing it if necessary by setting

T = min{T, TL + 1}. (2.12)

This can be done without loss of generality as a local exact controllability result on a given trajectory
in some time obviously implies a local exact controllability result on the target trajectory in all larger
times.
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2.3 Carleman weights
Our fixed point argument will be done in suitable weighted spaces coming from the use of Carleman
estimates, namely the ones in [3, Theorem 2.5]. In this section, we construct once for all the Carleman
weights that will be used along the article.

Let us introduce a cut-off function η ∈ C∞(R; [0, 1]) such that

∀x ∈ R, η(x) =

 1 for x ∈ [0, L],

0 for x ∈ R \
(
a

2
,
L+ b

2

)
.

(2.13)

We then construct a weight function ψ as follows:

Lemma 2.1. Let η as in (2.13). There exists ψ ∈ C2([0, T ]× R) such that:

∀(t, x) ∈ [0, T ]× R, ∂tψ + ηu∂xψ = 0, (2.14)
∀(t, x) ∈ [0, T ]× R, ψ(t, x) ∈ [0, 1], (2.15)
∀t ∈ (0, T ), ∂xψ(t, 2a) ≥ 0, (2.16)

sup
[0,T ]×[a,b]

∂xψ < 0. (2.17)

Proof of Lemma 2.1. Let ψ0 ∈ C2(R; [0, 1]) such that ∂xψ0(2a) ≥ 0 and

sup
[a,b]

∂xψ0 < 0. (2.18)

We then define ψ as the solution of the equation{
∂tψ + ηu∂xψ = 0 in (0, T )× R,
ψ(0, ·) = ψ0 in R. (2.19)

It is easy to check that ψ ∈ C2([0, T ] × R) as u ∈ C2([0, T ] × R) (recall (1.4)) and ψ0 ∈ C2(R). The
function ψ takes value in [0, 1] as ψ0 ∈ C2(R; [0, 1]). In order to check conditions (2.16)–(2.17), we simply
look at the equation satisfied by ∂xψ:{

∂t∂xψ + ηu∂x(∂xψ) + ∂x(ηu)∂xψ = 0 in (0, T )× R,
∂xψ(0, ·) = ∂xψ0 in R. (2.20)

It follows that ∂xψ(t, 2a) = ∂xψ0(2a) for all t ∈ [0, T ], so that (2.16) holds true, and that the critical
points of ψ(t, ·) are transported along the characteristics of ηu. As the velocity field ηu vanishes outside
(a/2, (L+b/2)), the fact that ψ0 does not have any critical point in [a, b] (recall (2.18)) implies that ψ(t, ·)
cannot have a critical point in [a, b]. Thus, ∂xψ cannot vanish in [0, T ]× [a, b], and the sign condition in
(2.18) implies (2.17), therefore concluding the proof of Lemma 2.1.

For s ≥ 1 and λ ≥ 1, we set µ = sλ2e2λ and we define θ ∈ C2([0, T );R) as follows:

∀t ∈ [0, T ), θ(t) =



1 +

(
1− t

T0

)µ
for t ∈ [0, T0],

1 for t ∈ [T0, TL],

nondecreasing for t ∈
[
TL,

T + TL
2

]
,

1

T − t
for t ∈

[
T + TL

2
, T

)
,

(2.21)

where T0 and TL are defined in (2.9). Note that such construction is possible according to (2.12). We
also define ϕ = ϕ(t, x) by

ϕ(t, x) = θ(t)(λe12λ − eλ(ψ(t,x)+6)) for all (t, x) ∈ [0, T ]× R. (2.22)
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These functions θ and ϕ depend on the parameters s ≥ 1 and λ ≥ 1, but we shall omit these dependencies
for simplicity of notations. Actually, the parameter λ ≥ 1 in the definitions (2.21)-(2.22) of θ and ϕ is
chosen sufficiently large for Theorem 2.5 in [3], recalled in the present paper in Theorem 4.2, to be true
and is fixed in all the article. Yet, the Carleman parameter s ≥ 1 is not fixed and will be chosen at the
end of the proof. Consequently, in all the article, constants C never depend on the parameter s, except
if specifically said.

These functions will appear naturally as weights when using Carleman estimates, see Section 4. Our
approach here is based on the Carleman estimate developed in [3, Theorem 2.5], but it shares very close
features to the ones developed in [16].

Here, we will use the Carleman estimates developed in [3, Theorem 2.5] as they allow to avoid doing a
lifting of the initial data and the use of technical results concerning the Cauchy problem (for instance [24]
which was used in [13]). The Carleman estimate in [3, Theorem 2.5] has also been developed for weight
functions ψ = ψ(t, x) depending on the time and space variables, which will be needed in our analysis to
get estimates on the controlled density, see Section 3.2.3. In this step indeed, we shall strongly use that
ψ solves the transport equation (2.14).

2.4 Definition of the fixed point map
We now make precise the fixed point map and the intermediate results which will be needed to conclude
Theorem 1.1.

The controllability of (2.2)–(2.4) will be studied in the extended domain (a, b), where a and b are
defined in (2.8). We thus extend (ρ0, u0) such that (ρ0, u0) ∈ H1

0 (a, b)×H1
0 (a, b) and

‖(ρ0, u0)‖H1
0 (a,b)×H1

0 (a,b)
≤ Cε, (2.23)

where C is independent of ε. We also introduce the characteristic function of (a, b) \ [0, L]

χ(x) =

{
1 for x ∈ (a, 0) ∪ (L, b),
0 for x ∈ [0, L].

(2.24)

Instead of considering the equations (2.2)–(2.4), we now consider the following system of equations: ∂tρ+ (u+ u)∂xρ+ ρ∂xu+

(
ρ

ν
p′(ρ) + ∂xu

)
ρ = f(ρ, u) + vρχ in (0, T )× (a, b),

ρ(∂tu+ u∂xu)− ν∂xxu = g(ρ, u) in (0, T )× (a, b),

(2.25)

with initial data
(ρ(0, ·), u(0, ·)) = (ρ0, u0) in (a, b), (2.26)

source terms f(ρ, u), g(ρ, u) as in (2.3), and with boundary conditions
ρ(t, a) = 0 for t ∈ (0, T ) with (u+ u)(t, a) > 0,
ρ(t, b) = 0 for t ∈ (0, T ) with (u+ u)(t, b) < 0,
u(t, a) = vu(t) for t ∈ (0, T ),
u(t, b) = 0 for t ∈ (0, T ).

(2.27)

In (2.25) and (2.27), the functions vρ ∈ L2((0, T )×((a, 0)∪(L, b))) and vu ∈ L2(0, T ) are control functions
and will be chosen such that the solution (ρ, u) of (2.25)–(2.27) satisfies the control requirement

(ρ(T, ·), u(T, ·)) = 0 in (a, b). (2.28)

The existence of a controlled trajectory (ρ, u) satisfying (2.25)–(2.28) will be obtained through a fixed
point argument that we now introduce.

Let us first describe the functional space in which we will define our fixed point map. For s ≥ 1, we
introduce the norms ‖.‖Xs

and ‖.‖Ys defined by

‖ρ‖Xs
= s‖esϕρ‖L∞(0,T ;L2(a,b)) + ‖θ−1esϕ∂xρ‖L∞(0,T ;L2(a,b))

+ ‖esϕ/2ρ‖L∞(0,T ;L∞(a,b)) + ‖∂tρ‖L2(0,T ;L2(a,b)), (2.29)

7



and

‖u‖Ys = s3/2‖esϕu‖L2(0,T ;L2(a,b)) + s1/2‖θ−1esϕ∂xu‖L2(0,T ;L2(a,b)) + s−1/2‖θ−2esϕ∂xxu‖L2(0,T ;L2(a,b))

+ s−1/2‖θ−2esϕ∂tu‖L2(0,T ;L2(a,b)) + s1/2‖θ−1esϕu‖L∞(0,T ;L2(a,b)), (2.30)

and the corresponding spaces

Xs =
{
ρ ∈ L2(0, T ;H1

0 (a, b)) with ‖ρ‖Xs <∞
}
, (2.31)

Ys =
{
u ∈ L2(0, T ;L2(a, b)) with ‖u‖Ys <∞

}
. (2.32)

For s ≥ 1 and Rρ, Ru > 0, we also introduce the corresponding balls

Xs,Rρ = {ρ ∈Xs with ‖ρ‖Xs ≤ Rρ} , Ys,Ru = {u ∈ Ys with ‖u‖Ys ≤ Ru} . (2.33)

The fixed point map is then constructed as follows: For (ρ̂, û) ∈Xs,Rρ × Ys,Ru , find (ρ, u) solving ∂tρ+ (u+ u)∂xρ+ ρ∂xu+

(
ρ

ν
p′(ρ) + ∂xu

)
ρ = f(ρ̂, û) + vρχ in (0, T )× (a, b),

ρ(∂tu+ u∂xu)− ν∂xxu = g(ρ̂, û) in (0, T )× (a, b),
(2.34)

with initial data (2.26), source terms

f(ρ̂, û) = −ρ̂∂xû+
ρ̄

ν
p′(ρ̄)ρ̂− ∂xρ̄û, (2.35)

g(ρ̂, û) = −ρ̂
(
∂t(ū+ û) + (ū+ û)∂x(ū+ û)

)
− ρ̄û∂x(ū+ û)− p′(ρ̄+ ρ̂)∂x(ρ̄+ ρ̂) + p′(ρ̄)∂xρ̄, (2.36)

boundary conditions (2.27) and satisfying the controllability requirement (2.28).
Our main task is then to show that the above construction is well-defined for (ρ̂, û) ∈Xs,Rρ×Ys,Ru for

a suitable choice of parameters s ≥ 1, Rρ > 0 and Ru > 0, that the corresponding controlled trajectory
(ρ, u) can be constructed such that (ρ, u) ∈ Xs,Rρ × Ys,Ru and then to apply Schauder’s fixed point
theorem.

System (2.34) is not properly speaking the linearized system of (2.25) due to the term u∂xρ in the
equation (2.34)(1), which is quadratic. However, as in [13], this term cannot be handled as a source
term due to regularity issues. But still, the controllability of (2.34) can be solved using subsequently
two controllability results for linear equations. Indeed, one can first control the equation (2.34)(2) of the
velocity and obtaining u from (ρ̂, û), and once u is constructed, the equation (2.34)(1) of the density is
a linear transport equation which can be controlled independently. Our approach will then follows this
2-step construction.

Let us start with a controllability result for the equation of the velocity:

Theorem 2.2. There exist Cu > 0, s0 ≥ 1, λ ≥ 1, such that for all s ≥ s0, for all 0 < Rρ, Ru < 1, for
all u0 ∈ H1

0 (a, b) and for all (ρ̂, û) ∈Xs,Rρ ×Ys,Ru , there exists vu ∈ L2(0, T ) such that the solution u of
ρ(∂tu+ u∂xu)− ν∂xxu = g(ρ̂, û) in (0, T )× (a, b),
u(t, a) = vu(t) in (0, T ),
u(t, b) = 0 in (0, T ),
u(0, ·) = u0 in (a, b),

(2.37)

where g(ρ̂, û) is defined as in (2.36), satisfies

u(T, ·) = 0 in (a, b). (2.38)

Besides, u ∈ Ys and satisfies the estimate

‖u‖Ys ≤ Cu(s)‖u0‖H1(a,b) + CuRρ +
Cu
s
Ru + CuR

2
u, (2.39)

where Cu(s) depends on the parameter s.
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Theorem 2.2 does not present any significant new difficulty compared to [13, 3]. For sake of com-
pleteness, we shall nonetheless provide some details in Section 4.

In a second step, we analyze the controllability properties of the transport equation (2.34)(1):

Theorem 2.3. Let λ as in Theorem 2.2 and assume that (ρ0, u0) ∈ H1
0 (a, b) × H1

0 (a, b) and satisfies
(2.23) for some ε > 0. There exist Cρ > 0, s0 ≥ 1 such that for all s ≥ s0, there exists ε(s) > 0 such
that for all ε ∈ (0, ε(s)], for all 0 < Rρ, Ru < 1, for all (ρ̂, û) ∈ Xs,Rρ × Ys,Ru and for u constructed in
Theorem 2.2, there exists vρ ∈ L2(0, T ;L2((a, 0) ∪ (L, b))) such that the solution ρ of

∂tρ+ (u+ u)∂xρ+ ρ∂xu+

(
ρ

ν
p′(ρ) + ∂xu

)
ρ = f(ρ̂, û) + vρχ in (0, T )× (a, b),

ρ(t, a) = 0 for t ∈ (0, T ) with (u+ u)(t, a) > 0,
ρ(t, b) = 0 for t ∈ (0, T ) with (u+ u)(t, b) < 0,
ρ(0, ·) = ρ0 in (a, b),

(2.40)

where f(ρ̂, û) is defined as in (2.35), satisfies

ρ(T, ·) = 0 in (a, b). (2.41)

Besides, ρ ∈Xs and satisfies the estimate

‖ρ‖Xs
≤ Cρ(s)ε+

Cρ√
s

(Rρ +Ru) + Cρ(R
2
ρ +R2

u). (2.42)

where Cρ(s) depends on the parameter s.

The proof of Theorem 2.3 is developed in Section 3 and is the main contribution of our work.
The end of the proof of Theorem 1.1 then consists in putting together the aforementioned steps and

show that Schauder’s fixed point theorem applies. This last point will be explained in Section 5.

Notations. For simplicity of notations, we shall often use the notations

f̂ := f(ρ̂, û), ĝ := g(ρ̂, û), (2.43)

where f(ρ̂, û), g(ρ̂, û) are respectively defined in (2.35) and (2.36).

3 Control of the density
The proof of Theorem 2.3 is divided into two steps: the first step presents the construction of the
controlled trajectory and the second step is devoted to get estimates on it.

3.1 Construction of a controlled trajectory ρ

For the time being, let us fix f ∈ L2(0, T ;L2(a, b)) and assume that u satisfies

u ∈ L1(0, T ;W 1,∞(a, b)) ∩ L∞(0, T ;L∞(a, b)), with ‖u‖L1(0,T ;W 1,∞(a,b))∩L∞(0,T ;L∞(a,b)) ≤ ε0, (3.1)

for some ε0 > 0 small enough.
We then focus on the following controllability problem: find a control vρ ∈ L2(0, T ;L2((a, 0)∪ (L, b))

such that the solution ρ of
∂tρ+ (u+ u)∂xρ+

(
ρ

ν
p′(ρ) + ∂xu

)
ρ = f − ρ∂xu+ vρχ in (0, T )× (a, b),

ρ(t, a) = 0 for t ∈ (0, T ) with (u+ u)(t, a) > 0,
ρ(t, b) = 0 for t ∈ (0, T ) with (u+ u)(t, b) < 0,
ρ(0, ·) = ρ0 in (a, b),

(3.2)

satisfies (2.41), where χ is as in (2.24).
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The construction of such solution is done following the spirit of the construction in [13] by gluing
forward and backward solutions of the transport equation. More precisely, using the function η in (2.13),
we define ρf as the solution of ∂tρf + η(u+ u)∂xρf +

(
ρ

ν
p′(ρ) + ∂xu

)
ρf = η(f − ρ∂xu) in (0, T )× (a, b),

ρf (0, ·) = ρ0 in (a, b),
(3.3)

and ρb as the solution of ∂tρb + η(u+ u)∂xρb +

(
ρ

ν
p′(ρ) + ∂xu

)
ρb = η(f − ρ∂xu) in (0, T )× (a, b),

ρb(T, ·) = 0 in (a, b).
(3.4)

Remark that in (3.3) and (3.4), we do not need to specify any boundary condition as (η(u+ u))(t, a) =
(η(u+ u))(t, b) = 0. Besides, since ρ0 ∈ H1

0 (a, b),

ρf (t, a) = ρf (t, b) = 0 for all t ∈ (0, T ). (3.5)

Similarly, we also have
ρb(t, a) = ρb(t, b) = 0 for all t ∈ (0, T ). (3.6)

We now construct a suitable cut-off function η̃ traveling along the characteristics:

Lemma 3.1. Let χ as in (2.24). There exist positive constants C > 0 and ε0 ∈ (0, 1) such that for
all u belonging to L1(0, T ;W 1,∞(a, b)) ∩ L∞(0, T ;L∞(a, b)) and satisfying (3.1), there exists η̃ = η̃(t, x)
satisfying the equation

∂tη̃ + (u+ u)∂xη̃ = wχ in (0, T )× (a, b), (3.7)

for some w ∈ L2(0, T ;L2((a, 0) ∪ (L, b)), (recall χ in (2.24) is the indicator function of (a, 0) ∪ (0, b)),
the conditions

η̃(t, x) = 1 for all (t, x) ∈ [0, T0]× [a, b], (3.8)
η̃(t, x) = 0 for all (t, x) ∈ [TL, T ]× [a, b], (3.9)

and the bound
‖η̃‖W 1,∞((0,T )×(a,b)) ≤ C, (3.10)

for some constant C independent of ε0.

Before going into the proof of Lemma 3.1, let us briefly explain how we can conclude the construction
of a controlled trajectory ρ satisfying (3.2) when u ∈ L1(0, T ;W 1,∞(a, b)) ∩ L∞(0, T ;L∞(a, b)) satisfies
(3.1) for ε0 ∈ (0, 1) as in Lemma 3.1.

It simply consists in setting

ρ(t, x) = η̃(t, x)ρf (t, x) + (1− η̃(t, x))ρb(t, x) for all (t, x) ∈ [0, T ]× [a, b], (3.11)

where η̃ is the cut-off function constructed in Lemma 3.1. Indeed, one easily checks that ρ defined in
that way solves (3.2) with control function

vρ = (1− η)
[
(u+ u)

(
η̃∂xρf + (1− η̃)∂xρb

)
− f + ρ∂xu

]
+ w(ρf − ρb)χ, (3.12)

and satisfies
ρ(t, a) = ρ(t, b) = 0, for all t ∈ (0, T ). (3.13)

Furthermore, using (3.8)–(3.9), we immediately get the two following identities:

ρ(t, x) = ρf (t, x) for all (t, x) ∈ [0, T0]× [a, b], (3.14)
ρ(t, x) = ρb(t, x) for all (t, x) ∈ [TL, T ]× [a, b]. (3.15)

We now prove Lemma 3.1.
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Proof of Lemma 3.1. We first extend u to (0, T )×R such that u ∈ L1(0, T ;W 1,∞(R))∩L∞(0, T ;L∞(R))
satisfies

‖u‖L1(0,T ;W 1,∞(R))∩L∞(0,T ;L∞(R)) ≤ Cε0 (≤ C as ε0 ≤ 1). (3.16)

For (t, τ, x) ∈ [0, T ]× [0, T ]× R, we define the flow X associated to u+ u as the solution of:
dX

dt
(t, τ, x) = (u+ u)(t,X(t, τ, x)) in (0, T ),

X(τ, τ, x) = x.
(3.17)

Writing 
d

dt

(
X −X

)
(t, τ, x) = u(t,X(t, τ, x))− u(t,X(t, τ, x)) + u(t,X(t, τ, x)) in (0, T ),(

X −X
)
(τ, τ, x) = 0,

using (1.4) and (3.16), Gronwall’s lemma yields

sup
(t,τ,x)∈[0,T ]×[0,T ]×R

{
|X(t, τ, x)−X(t, τ, x)|

}
≤ Cε0.

Therefore, using (2.10), for ε0 > 0 small enough,

X(2T0, 0, x1) < a and X(TL, 0, x1) > b. (3.18)

We then perform the construction of η̃ in three steps, defining it separately on each time interval (0, 2T0),
(2T0, TL) and (TL, T ).

On [0, 2T0], we simply set

η̃(t, x) = 1− η1(t)η2(x), for all (t, x) ∈ [0, 2T0]× R, (3.19)

where η1 = η1(t) ∈ C∞([0, 2T0]) such that η1(t) = 0 for all t ∈ [0, T0] and η1(2T0) = 1, and η2 = η2(x) ∈
C∞(R) such that η2(x) = 0 in [0, L] and η2(x) = 1 in (−∞, a] ∪ [b,∞). On (2T0, TL), we solve the
equation {

∂tη̃ + (u+ u)∂xη̃ = 0 in (2T0, TL)× R,
η̃(2T0, ·) = 1− η1(2T0)η2(·) in R. (3.20)

On the time interval [TL, T ], we set

η̃(t, x) = 0, for all (t, x) ∈ [TL, T ]× R. (3.21)

The above piecewise construction (3.19)–(3.20)–(3.21) defines η̃ on the whole time interval [0, T ]. One
easily checks that this η̃ solves (3.7) on (0, T )× (a, b) (with w(t, x) = −1[0,2T0](∂tη1(t)η2(x) + η1(t)(u+

u)∂xη2(x))) as η̃(2T−0 , x) = η̃(2T+
0 , x) for all x ∈ (a, b) and η̃(T−L , x) = 0 for all x ∈ (a, b) according to

(3.18) and the fact that η̃(2T0, x) = 0 for all x ≤ a. Besides, η̃ obviously satisfies (3.8)–(3.9).
We then check that η̃ belongs to W 1,∞((0, T ) × (a, b)). Of course, the only difficulty is on the time

interval (2T0, TL). But we can then look at the equation satisfied by ∂xη̃, i.e.{
∂t(∂xη̃) + (u+ u)∂x(∂xη̃) + ∂x(u+ u)∂xη̃ = 0 in (2T0, TL)× R,
∂xη̃(2T0, ·) = −∂xη2(·) in R,

and solve it using the flow X in (3.17). The regularity (1.4) and the bound (3.16) then yields ∂xη̃ ∈
L∞((0, T ) × (a, b)) with an explicit bound independent of ε0 ∈ (0, 1). We then deduce that ∂tη̃ ∈
L∞((0, T )× (a, b)) from the equation (3.7). This concludes the proof of (3.10).

3.2 Estimates on ρ

The purpose of this section is to prove that the controlled trajectory ρ constructed in (3.11) satisfies the
estimate (2.42) claimed in Theorem 2.3.

We shall then put ourselves in the setting of Theorem 2.3. In particular, in the whole section we
assume the following:

11



Assumption and Setting. Let (ρ0, u0) ∈ H1
0 (a, b) × H1

0 (a, b) satisfying (2.23) for ε > 0, (ρ̂, û) ∈
Xs,Rρ × Ys,Ru for some Rρ, Ru ∈ (0, 1), and u the controlled trajectory given by Theorem 2.2.

Further assume the condition (3.1) for ε0 > 0 small enough so that the construction in Section 3.1
can be done. The controlled trajectory ρ in (3.11) is constructed for f = f̂ = f(ρ̂, û) defined in (2.35).

Note that due to the continuity of the embedding of L2(0, T ;H2(a, b)) ∩ H1(0, T ;L2(a, b)) into
L1(0, T ;W 1,∞(a, b)) ∩ L∞(0, T ;L∞(a, b)), the condition (3.1) for ε0 > 0 small enough can be imposed
by choosing s large enough and ε in (2.23) small enough according to (2.39).

3.2.1 The effective velocity

In order to derive estimates on the controlled trajectory ρ constructed in (3.11), similarly as in [13], we
introduce the following quantities, defined for (t, x) ∈ [0, T ]× [a, b]:

µf = ηu+
ν

ρ2
∂xρf , and µb = ηu+

ν

ρ2
∂xρb, (3.22)

where η denotes the cut-off function in (2.13).
Tedious computations show that µf satisfies

∂tµf + η(u+ u)∂xµf + kµf = h− ν

ρ2
∂x

(
ρ

ν
p′(ρ) + ∂xu

)
ρf in (0, T )× (a, b),

µf (0, ·) = ηu0 +
ρ2

ν
∂xρ0 in (a, b),

(3.23)

and µb satisfies ∂tµb + η(u+ u)∂xµb + kµb = h− ν

ρ2
∂x

(
ρ

ν
p′(ρ) + ∂xu

)
ρb in (0, T )× (a, b),

µb(T, ·) = 0 in (a, b),
(3.24)

where
k =

ρ

ν
p′(ρ) + ∂xu+ ∂x

(
η(u+ u)

)
+ 2

∂tρ

ρ
+ 2η(u+ u)

∂xρ

ρ
, (3.25)

and

h =
η

ρ

(ν
ρ
∂xf̂ + ĝ

)
+

ν

ρ2
∂xηf̂ +

[
η
(
η(u+ u)− u− ν

ρ2
∂xρ
)
− ν

ρ
∂xη

]
∂xu

+

[
ρ

ν
p′(ρ) + ∂xu+ ∂x

(
η(u+ u)

)
+ 2

∂tρ

ρ
+ 2η(u+ u)

∂xρ

ρ
+ ∂xη(u+ u)

]
ηu, (3.26)

in which f̂ = f(ρ̂, û) and ĝ = g(ρ̂, û) have been defined in (2.35)–(2.36).
The quantities µf and µb in (3.22) correspond to what is known as the effective velocity, and which has

been used for instance in [4, 5] in the study of the well-posedness of some models of viscous compressible
fluids. These quantities have also been used in [13] in order to get good estimates on the controlled
density. However, the approach [13] looks for a controlled density on the space interval (0, L) and thus
requires estimates on the trace of µ at x = 0 and x = L, which cannot be achieved in our case as
t 7→ u(t, a) and t 7→ u(t, b) may vanish for some values of time. Our approach avoids this difficulty by a
careful discussion of the geometry of the problem. In particular, this allows us to avoid the use of the
second parameter λ in the weight function ϕ in (2.22), contrarily to what is done in [13].

The interest of using the quantities µf and µb can be understood in terms of regularity. Indeed, when
looking at the linearized version of (3.3), it seems that ∂xρf in L∞(L2) can be estimated in terms of ∂xxu
in L1(L2). But considering the linearized version of (3.23) instead, it rather seems that µf in L∞(L2)
can be estimated in terms of ∂xu in L1(L2), and as ∂xρf in L∞(L2) can be estimated immediately from
µf and u in L∞(L2), this latter estimate seems better. The goal of the next sections is to make this
argument completely rigorous.
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3.2.2 Estimates on the coefficients

We start by estimating the coefficients appearing in (3.23)–(3.24):

Lemma 3.2. There exists C > 0 independent of s ≥ 1 and Rρ, Ru ∈ (0, 1) such that the following
estimates hold true for all s ≥ 1, Rρ, Ru ∈ (0, 1), (ρ̂, û) ∈Xs,Rρ × Ys,Rρ :

‖θ−1esϕf̂‖L2(0,T ;L2(a,b)) ≤
C

s
(Rρ +Ru) + C(R2

ρ +R2
u), (3.27)

‖θ−1esϕh‖L2(0,T ;L2(a,b)) ≤ C(s)‖u0‖H1(a,b) +
C√
s

(Rρ +Ru) + C(R2
ρ +R2

u), (3.28)

‖k‖L1(0,T ;L∞(a,b)) ≤ Ck(s)‖u0‖H1(a,b) + C, (3.29)

where f̂ = f(ρ̂, û) is defined in (2.35), h in (3.26), k in (3.25) and Ck(s) is a constant depending on the
parameter s.

Proof. In the proof below, we will often denote the norms by omitting the mention of the time and space
intervals, e.g. ‖ · ‖L2(L2) for denoting ‖ · ‖L2(0,T ;L2(a,b)).
We deal with each estimate separately.
• Proof of estimate (3.27). We derive the estimate on f̂ = f(ρ̂, û) in (2.35) term by term:

‖θ−1esϕρ̂∂xû‖L2(L2) ≤ ‖ρ̂‖L∞(L∞)‖θ−1esϕ∂xû‖L2(L2) ≤ CRρRu,

‖θ−1esϕ ρ
ν
p′(ρ)ρ̂‖L2(L2) ≤ C‖esϕρ̂‖L2(L2) ≤

C

s
Rρ,

‖θ−1esϕ∂xρû‖L2(L2) ≤ C‖θ−1esϕû‖L2(L2) ≤
C

s3/2
Ru.

Estimate (3.27) immediately follows.
• Proof of estimate (3.28). Taking the definition of h in (3.26) and using the bound (3.10), we remark
that for all (t, x) ∈ (0, T )× (a, b),

|h| ≤ C
[∣∣ν
ρ
∂xf̂ + ĝ

∣∣+ |f̂ |+ |u|+ |∂xu|+ |u|2 + |u∂xu|
]
. (3.30)

The estimation for the term f̂ is already done, see (3.27). The terms involving u can be estimated as
follows:

‖θ−1esϕ(|u|+ |∂xu|+ |u|2 + |u∂xu|)‖L2(L2)

≤ ‖θ−1esϕu‖L2(L2) + ‖θ−1esϕ∂xu‖L2(L2) + ‖θ−1esϕu2‖L2(L2) + ‖θ−1esϕu∂xu‖L2(L2)

≤ C

s3/2
‖u‖Ys +

C

s1/2
‖u‖Ys + ‖u‖L∞(L∞)‖θ−1esϕu‖L2(L2) + ‖u‖L∞(L∞)‖θ−1esϕ∂xu|‖L2(L2)

≤ C

s1/2
‖u‖Ys + C‖u‖2Ys ,

where we used
‖u‖L∞(L∞) ≤ ‖u‖L∞(H1) ≤ C‖u‖

1/2
H1(L2)‖u‖

1/2
L2(H2) ≤ C‖u‖Ys . (3.31)

Consequently, the proof of (3.28) will follow first from the above estimates and (2.39) from one side, and
second from an estimate on θ−1esϕ(ν∂xf̂/ρ+ĝ), on which we will focus from now. Recalling (2.35)–(2.36),
we obtain

ν

ρ
∂xf̂ + ĝ = −ν

ρ
∂xρ̂∂xû−

ν

ρ
ρ̂∂xxû+

ν

ρ
∂x
(ρ
ν
p′(ρ)

)
ρ̂+ p′(ρ)∂xρ̂−

ν

ρ
∂xxρû−

ν

ρ
∂xρ∂xû

− ρ̂
(
∂t(u+ û) + (u+ û)∂x(u+ û)

)
− ρû∂x(u+ û)− p′(ρ+ ρ̂)∂xρ+ p′(ρ)∂xρ− p′(ρ+ ρ̂)∂xρ̂. (3.32)
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We then use the following estimates:

‖θ−1esϕ ν
ρ
∂xρ̂∂xû‖L2(L2) ≤ C‖θ−1esϕ∂xρ̂‖L∞(L2)‖∂xû‖L2(L∞) ≤ CRρ‖∂xxu‖L2(L2) ≤ CRρRu,

‖θ−1esϕ ν
ρ
ρ̂∂xxû‖L2(L2) ≤ C‖ρ̂‖L∞(L∞)‖θ−1esϕ∂xxû‖L2(L2) ≤ CRρRu,

‖θ−1esϕ ν
ρ
∂x
(ρ
ν
p′(ρ)

)
ρ̂‖L2(L2) ≤ C‖esϕρ̂‖L2(L2) ≤

C

s
Rρ,

‖θ−1esϕ(p′(ρ)∂xρ̂− p′(ρ+ ρ̂)∂xρ̂)‖L2(L2) ≤ C‖ρ̂‖L∞(L∞)‖θ−1esϕ∂xρ̂‖L2(L2) ≤ CR2
ρ, (3.33)

‖θ−1esϕ ν
ρ
∂xxρû‖L2(L2) ≤ C‖θ−1esϕû‖L2(L2) ≤

C

s3/2
Ru,

‖θ−1esϕ ν
ρ
∂xρ∂xû‖L2(L2) ≤ C‖θ−1esϕ∂xû‖L2(L2) ≤

C

s1/2
Ru,

‖θ−1esϕ(−p′(ρ+ ρ̂)∂xρ+ p′(ρ)∂xρ)‖L2(L2) ≤ C‖θ−1esϕρ̂‖L2(L2) ≤
C

s
Rρ.

Using (3.31) for û, we also get

‖θ−1esϕρ̂
(
∂t(u+ û) + (u+ û)∂x(u+ û)

)
‖L2(L2)

≤ C

s
Rρ + C‖s1/2θρ̂‖L∞(L∞)‖s−1/2θ−2esϕ∂tû‖L2(L2)

+ C‖ρ̂‖L∞(L∞)

(
‖θ−1esϕ(|û|+ |∂xû|)‖L2(L2) + ‖û‖L∞(L∞)‖θ−1esϕ∂xû‖L2(L2)

)
≤ C

s
Rρ + CRρRu + CRρR

2
u, (3.34)

and

‖θ−1esϕρû∂x(u+ û)‖L2(L2) ≤ C‖θ−1esϕû∂xu‖L2(L2) + C‖θ−1esϕû∂xû‖L2(L2)

≤ C‖θ−1esϕû‖L2(L2) + C‖û‖L∞(L∞)‖θ−1esϕ∂xû‖L2(L2) ≤
C

s3/2
Ru + CR2

u. (3.35)

Combining the above estimates yields (3.28).
• Proof of estimate (3.29). From the definition of k in (3.25), we have

|k| ≤ C(1 + |u|+ |∂xu|).

Therefore,

‖k‖L1(L∞) ≤ C + ‖u‖L1(L∞) + ‖∂xu‖L1(L∞) ≤ C + ‖u‖L2(H1) + ‖u‖L2(H2) ≤ C + C‖u‖Ys .

Using Theorem 2.2 and Rρ, Ru ≤ 1, we deduce (3.29).

Remark 3.3. Let us point out that the estimate on h in (3.28) is based on the fact that the combination
of the terms p′(ρ)∂xρ̂ and p′(ρ+ ρ̂)∂xρ̂ coming from the pressure in ν∂xf̂/ρ+ ĝ cancels out at first order
in ρ̂, see (3.33). This cancellation motivates the introduction of the term ρp′(ρ)ρ/ν in the left hand side
of (2.34)(1) and ρp′(ρ)ρ̂/ν in the source term f(ρ̂, û) in (2.35).

3.2.3 Energy Lemma

In order to get estimates on µf solving (3.23) and µb solving (3.24), we remark that both quantities
µf and µb satisfy transport-type equation. Therefore, in this section we explain how to derive weighted
estimates on µf and µb using weighted energy methods. It turns out that we will only be able to get
good L∞(L2) estimates on θ−1esϕµf on the time interval (0, TL) and on θ−1esϕµb on the time interval
(T0, T ) as ∂tθ has constant sign on each of these intervals (recall (2.21)).

We start with the estimates on the time interval (0, TL).
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Lemma 3.4. There exists C > 0 such that for all s ≥ 1, for all u with θu ∈ L1(0, TL;W 1,∞(a, b)), for
all K ∈ L1(0, TL;L∞(a, b)), for all H ∈ L2(0, TL;L2(a, b)) with

‖θ−1esϕH‖L2(0,TL;L2(a,b)) < +∞, (3.36)

and for all c0 ∈ L2(a, b), the solution c of{
∂tc+ η(u+ u)∂xc+Kc = H in (0, TL)× (a, b),
c(0, ·) = c0 in (a, b),

(3.37)

satisfies

‖θ−1esϕc‖L∞(0,TL;L2(a,b))

≤ CeC(1+‖θu‖L1(0,TL;W1,∞(a,b))+‖K‖L1(0,TL;L∞(a,b)))
(
‖θ−1esϕH‖L2(0,TL;L2(a,b)) + C(s)‖c0‖L2(a,b)

)
. (3.38)

Proof. Multiplying the equation (3.37) by θ−2e2sϕc and integrating in space, we get:

d

dt

(∫ b

a

θ−2e2sϕ|c|2dx
)

=

∫ b

a

(
∂t(θ

−2e2sϕ) + ∂x
(
θ−2e2sϕη(u+ u)

))
|c|2dx

− 2

∫ b

a

θ−2e2sϕK|c|2dx+ 2

∫ b

a

θ−2e2sϕHcdx. (3.39)

Using then the choice of the weight function ψ in (2.1), which satisfies the transport equation (2.14), θ
in (2.21) and ϕ in (2.22),

∂t(θ
−2e2sϕ) + ∂x

(
θ−2e2sϕη(u+ u)

)
= ∂t(θ

−2e2sϕ) + η(u+ u)∂x
(
θ−2e2sϕ

)
+ ∂x(η(u+ u))θ−2e2sϕ

= 2∂tθθ
−3e2sϕ(−1 + sϕ)− 2sλeλ(ψ+6)u∂xψθ

−1e2sϕ + ∂x(η(u+ u))θ−2e2sϕ

≤ C(1 + ‖θu(t)‖W 1,∞(a,b))θ
−2e2sϕ,

as ∂tθ(t) ≤ 0 for t ∈ (0, TL) and sϕ ≥ 2 for s ≥ 1.
Therefore, (3.39) yields:

d

dt

(∫ b

a

θ−2e2sϕ|c|2dx
)

= C
(
1 + ‖θu(t)‖W 1,∞(a,b) + ‖K(t)‖L∞(a,b)

) ∫ b

a

θ−2e2sϕ|c|2dx

+

∫ b

a

θ−2e2sϕH2dx. (3.40)

The estimate (3.38) easily follows from Gronwall’s Lemma.

Using now that ∂tθ(t) ≥ 0 for all t ∈ (T0, T ) by construction, recall (2.21), we get the following
counterpart of Lemma 3.4:

Lemma 3.5. There exists C > 0 such that for all s ≥ 1, for all u with θu ∈ L1(T0, T ;W 1,∞(a, b)), for
all K ∈ L1(T0, T ;L∞(a, b)), for all H ∈ L2(T0, T ;L2(a, b)) with

‖θ−1esϕH‖L2(T0,T ;L2(a,b)) < +∞, (3.41)

the solution c of {
∂tc+ η(u+ u)∂xc+Kc = H in (T0, T )× (a, b),
c(T, ·) = 0 in (a, b),

(3.42)

satisfies

‖θ−1esϕc‖L∞(T0,T ;L2(a,b))

≤ CeC(1+‖θu‖L1(T0,T ;W1,∞(a,b))+‖K‖L1(T0,T ;L∞(a,b)))‖θ−1esϕH‖L2(T0,T ;L2(a,b)). (3.43)

Proof. The proof is exactly the same as Lemma 3.4. The only minor difference is that ϕ is singular at the
time t = T . In order to avoid this difficulty, we introduce θδ(t) = θ(t−δ) for t ∈ [T0+δ, T ] and θδ(t) = 1 for
t ∈ [T0, T0+δ]. We thus prove the estimate (3.43) with ϕ replaced by ϕδ(t, x) = θδ(t)(λe

12λ−eλ(ψ(t,x)+6)),
uniformly with respect to the parameter δ > 0, and we pass to the limit δ → 0.
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3.2.4 Proof of Theorem 2.3

We are then in position to prove Theorem 2.3.
We start by choosing ε ∈ (0, ε(s)) with ε(s) = min{1/Cu(s), 1/Ck(s)}, where Cu(s) and Ck(s) are

the constants in (2.39) and (3.29), so that ‖u‖Ys ≤ C. Remark that it implies

‖θu‖L1(W 1,∞)∩L∞(L∞) ≤ Ce−s. (3.44)

We then take s large enough so that we have (3.1) for ε0 given by Lemma 3.1.
Recall then that ρf and ρb have been constructed as solutions of (3.3) and (3.4) respectively, with

source term f = f̂ . Using then Lemma 3.2 and Lemma 3.4 for ρf , or Lemma 3.5 for ρb, we get that
θ−1esϕρf ∈ L∞(0, TL;L2(a, b)) and θ−1esϕρb ∈ L∞(T0, T ;L2(a, b)).

Using Lemma 3.2, we can then apply Lemma 3.4 to the solution µf of (3.23) with K = k in (3.25),

H = h− ν

ρ2
∂x

(
ρ

ν
p′(ρ) + ∂xu

)
ρf ,

where h is defined in (3.26) and c = µf in (3.23):

‖θ−1esϕµf‖L∞(0,TL;L2(a,b))

≤ C
(
‖θ−1esϕh‖L2(0,TL;L2(a,b)) + ‖θ−1esϕρf‖L2(0,TL;L2(a,b)) + C(s)‖µf (0, ·)‖L2(a,b)

)
≤ C(s)ε+

C√
s

(Rρ +Ru) + C(R2
ρ +R2

u) + ‖θ−1esϕρf‖L2(0,TL;L2(a,b)).

Using the definition of µf in (3.22), we deduce

‖θ−1esϕ∂xρf‖L∞(0,TL;L2(a,b))

≤ C√
s
‖u‖Ys + C(s)ε+

C√
s

(Rρ +Ru) + C(R2
ρ +R2

u) + ‖θ−1esϕρf‖L2(0,TL;L2(a,b)).

We then use the weighted Poincaré inequality in Lemma A.1 for ρf (recall that ρf vanishes at x = a and
x = b, see (3.5)): for s ≥ s0 with s0 large enough,

s‖esϕρf‖L∞(0,TL;L2(a,b)) + ‖θ−1esϕ∂xρf‖L∞(0,TL;L2(a,b))

≤ C√
s
‖u‖Ys + C(s)ε+

C√
s

(Rρ +Ru) + C(R2
ρ +R2

u) ≤ C(s)ε+
C√
s

(Rρ +Ru) + C(R2
ρ +R2

u),

where the last estimate comes from (2.39).
Using then the equation (3.3) satisfied by ρf and the estimates (3.27) on f = f̂ and (2.39) on ∂xu,

we deduce

s‖esϕρf‖L∞(0,TL;L2(a,b)) + ‖θ−1esϕ∂xρf‖L∞(0,TL;L2(a,b)) + ‖∂tρf‖L2(0,TL;L2(a,b))

≤ C√
s
‖u‖Ys + C(s)ε+

C√
s

(Rρ +Ru) + C(R2
ρ +R2

u) ≤ C(s)ε+
C√
s

(Rρ +Ru) + C(R2
ρ +R2

u),

We also have

‖esϕ/2ρf‖L∞(0,TL;L∞(a,b)) ≤ C‖esϕ/2ρf‖L∞(0,TL;H1(a,b))

≤ Cs‖θesϕ/2ρf‖L∞(0,TL;L2(a,b)) + C‖esϕ/2∂xρf‖L∞(0,TL;L2(a,b))

≤ Cs‖esϕρf‖L∞(0,TL;L2(a,b)) + C‖θ−1esϕ∂xρf‖L∞(0,TL;L2(a,b)).

Combining the above estimates on ρf we get

s‖esϕρf‖L∞(0,TL;L2(a,b)) + ‖θ−1esϕ∂xρf‖L∞(0,TL;L2(a,b)) + ‖esϕ/2ρf‖L∞(0,TL;L∞(a,b))

+ ‖∂tρf‖L2(0,TL;L2(a,b)) ≤ C(s)ε+
C√
s

(Rρ +Ru) + C(R2
ρ +R2

u). (3.45)
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Similar computations can be done for µb based on Lemma 3.2, Lemma 3.5, the boundary conditions
(3.6) satisfied by ρb and the weighted Poincaré inequality in Lemma A.1. That way, we achieve:

s‖esϕρb‖L∞(T0,T ;L2(a,b)) + ‖θ−1esϕ∂xρb‖L∞(T0,T ;L2(a,b)) + ‖esϕ/2ρb‖L∞(T0,T ;L∞(a,b))

+ ‖∂tρb‖L2(T0,T ;L2(a,b)) ≤ C(s)ε+
C√
s

(Rρ +Ru) + C(R2
ρ +R2

u). (3.46)

We then recall that ρ is given by (3.11) with η̃ constructed in Lemma 3.1 and satisfying the bound
(3.10). Using then the above estimates (3.45)–(3.46) and (3.14)–(3.15), we get (2.42).

4 Control of the velocity
The purpose of this section is to present the main ingredients of the proof of Theorem 2.2, which mainly
consists in a suitable adaptation of [3, Theorems 2.5 and 2.6].

4.1 Construction of a controlled trajectory u

For the time being let us fix g ∈ L2(0, T ;L2(a, b)) and u0 ∈ H1
0 (a, b), and consider the following control-

lability problem: Find a control function vu ∈ L2(0, T ) such that the solution u of
ρ∂tu+ ρu∂xu− ν∂xxu = g in (0, T )× (a, b),
u(t, a) = vu in (0, T ),
u(t, b) = 0 in (0, T ),
u(0, ·) = u0 in (a, b),

(4.1)

satisfies the controllability requirement (2.38).
We then claim the following result, strongly inspired in [3, Theorems 2.5 and 2.6]:

Theorem 4.1. There exist C > 0 and s0 ≥ 1 such that for all s ≥ s0, for all g ∈ L2(0, T ;L2(a, b)) with

‖θ−3/2esϕg‖L2(0,T ;L2(a,b)) < +∞, (4.2)

for all u0 ∈ H1
0 (a, b), there exists a controlled trajectory u of (4.1) satisfying (2.38) with the estimate

‖u‖Ys ≤ C(s)‖u0‖H1
0 (a,b)

+ C‖θ−3/2esϕg‖L2(0,T ;L2(a,b)). (4.3)

Sketch of the proof. As in [13, Section 3], we first extend the domain (a, b) into (2a, b) (recall a < 0),
with g and u0 both extended by 0 on (2a, a), and instead of solving the controllability problem (4.1),
(2.38) directly, we consider a distributed control v supported in space in (2a, a). We therefore focus on
the following system: ρ∂tu+ ρu∂xu− ν∂xxu = g + vχ(2a,a) in (0, T )× (2a, b),

u(t, 2a) = u(t, b) = 0 in (0, T ),
u(0, ·) = u0 in (2a, b).

(4.4)

Here, v is the control function and χ(2a,a) = χ(2a,a)(x) is the indicator of the space interval (2a, a):
χ(2a,a)(x) = 1 for x ∈ (2a, a) and χ(2a,a)(x) = 0 for x ∈ (a, b).

Our purpose now is to find v ∈ L2(0, T ;L2(2a, a)) such that the solution u of (4.4) satisfies

u(T, ·) = 0 in (2a, b). (4.5)

If we have such a controlled trajectory, then u restricted to (a, b) provides a solution of the controllability
problem (4.1), (2.38).

We then use the following weighted observability result, obtained in [3, Theorem 2.5]:
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Theorem 4.2. There exist C > 0, s0 ≥ 1 and λ ≥ 1 large enough such that for all z ∈ C∞([0, T ]×[2a, b])
with z(t, 2a) = z(t, b) = 0 for all t ∈ (0, T ) and for all s ≥ s0, we have

s3
∫ ∫

(0,T )×(2a,b)
θ3e−2sϕ|z|2 dtdx+ s2

∫ b

2a

e−2sϕ(0,·)|z(0, ·)|2dx

+ s

∫ ∫
(0,T )×(2a,b)

θe−2sϕ|∂xz|2 dtdx ≤ C
∫ ∫

(0,T )×(2a,b)
e−2sϕ|(−ρ∂t − ν∂xx)z|2 dtdx

+ Cs3
∫ ∫

(0,T )×(2a,a)
θ3e−2sϕ|z|2 dtdx. (4.6)

As it is done classically for control problems, see e.g. [16], we then use duality. From now, our
approach follows very closely the one in [3, Theorem 2.6 and Appendix A.2]. Namely, for z ∈ C∞([0, T ]×
[2a, b]) with z(t, 2a) = z(t, b) = 0 for all t ∈ (0, T ), we define

J(z) =
1

2

∫ ∫
(0,T )×(2a,b)

e−2sϕ|(−∂t(ρz)− ∂x(ρuz)− ν∂xxz|2dtdx

+
s3

2

∫ ∫
(0,T )×(2a,a)

θ3e−2sϕ|z|2dtdx−
∫ b

2a

ρu0z(0)dx−
∫ ∫

(0,T )×(2a,b)
gzdtdx. (4.7)

According to Theorem 4.2, the assumptions (1.4) and condition (4.2), for s large enough, the functional
J can be extended as a continuous, strictly convex and coercive function on the set

Yobs = {z ∈ C∞([0, T ]× [2a, b]) with z(t, 2a) = z(t, b) = 0 for all t ∈ (0, T )}
‖·‖obs

where ‖ · ‖obs is given by

‖z‖2obs =

∫ ∫
(0,T )×(2a,b)

e−2sϕ| − ∂t(ρz)− ∂x(ρuz)− ν∂xxz|2 + s3
∫ ∫

(0,T )×(2a,a)
θ3e−2sϕ|z|2.

Consequently, J admits a minimum zmin on Yobs. Using the Euler-Lagrange equation for J at zmin,
(u, v) defined by{

u = e−2sϕ(−∂t(ρzmin)− ∂x(ρuzmin)− ν∂xxzmin) in (0, T )× (2a, b),
v = −s3θ3e−2sϕzmin in (0, T )× (2a, a),

(4.8)

solves (4.4)–(4.5), see [3, Theorem 2.6].
The coercivity of the functional J in (4.7) immediately yields an estimate on the L2(L2)-norm of

esϕu and θ−3/2esϕv in terms of the L2(L2)-norm of θ−3/2esϕg and the L2 norm of esϕ(0,·)u0:

s3/2‖esϕu‖L2(0,T ;L2(2a,b)) + ‖θ−3/2esϕv‖L2(0,T ;L2(2a,a))

≤ C‖θ−3/2esϕg‖L2(0,T ;L2(2a,b)) + Cs1/2‖esϕ(0,·)u0‖L2(2a,b).

The computations to get the L2(L2) estimates on θ−1esϕ∂xu, θ−2esϕ∂xxu and θ−2esϕ∂tu closely follows
the ones in [3, Appendix A.2]. The only difference is that [3] considers an initial datum u0 = 0 while
we are not. This introduces boundary terms in time t = 0 when doing the weighted energy estimates [3,
Appendix A.2], which are all bounded by the H1

0 (a, b)-norm of u0esϕ(0,·). To be more precise, following
[3, Appendix A.2], we get

s3/2‖esϕu‖L2(0,T ;L2(2a,b)) + s1/2‖θ−1esϕ∂xu‖L2(0,T ;L2(a,b))

+ ‖θ−3/2esϕv‖L2(0,T ;L2(2a,a)) + s−1/2‖θ−2esϕ(∂tu, ∂xxu)‖L2(0,T ;L2(a,b))

≤ C‖θ−3/2esϕg‖L2(0,T ;L2(2a,b)) + Cs1/2‖esϕ(0,·)u0‖H1
0 (2a,b)

. (4.9)

In order to conclude (4.3), we shall also get an L∞(0, T ;L2(a, b)) norm of θ−1esϕu which has not been
derived in [3, Theorem 2.6], though this estimate can also be obtained by weighted energy estimates.
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Indeed, if we multiply (4.4) by sθ−2e2sϕu and integrate on (0, t)× (2a, b), we easily obtain:

s

∫ b

2a

ρ(t)θ(t)−2e2sϕ(t)|u(t)|2dx = s

∫ ∫
(0,t)×(2a,b)

∂t
(
ρθ−2e2sϕ

)
u2 − 2s

∫ ∫
(0,t)×(2a,b)

ρuθ−2e2sϕu∂xu

+ 2sν

∫ ∫
(0,t)×(2a,b)

ρθ−2e2sϕu∂xxu+ 2s

∫ ∫
(0,t)×(2a,b)

θ−2e2sϕ(g + vχ(2a,a))u

+ s

∫ b

2a

ρ(0, ·)θ(0)−2e2sϕ(0,·)|u0|2dx. (4.10)

Using then (4.9) and the fact that

∂t(θ
−2e2sϕ) ≤ Cse2sϕ on (0, T ),

we easily conclude (4.3).

4.2 Estimates on ĝ = g(ρ̂, û) in (2.36)
We wish to apply Theorem 4.1 to g = ĝ = g(ρ̂, û) defined in (2.36). We shall therefore show that for
(ρ̂, û) ∈Xs,Rρ × Ys,Ru , ĝ satisfies (4.2):

Lemma 4.3. There exists C > 0 such that for all s ≥ 1, 0 < Rρ, Ru ≤ 1 and (ρ̂, û) ∈ Xs,Rρ × Ys,Ru ,
ĝ = g(ρ̂, û) in (2.36) satisfies

‖θ−3/2esϕĝ‖L2(0,T ;L2(a,b)) ≤ CRρ +
C

s
Ru + CR2

u. (4.11)

Proof. Some terms in ĝ were already estimated in (3.34)–(3.35):

‖θ−3/2esϕρ̂
(
∂t(u+ û) + (u+ û)∂x(u+ û)

)
‖L2(L2) + ‖θ−3/2esϕρû∂x(u+ û)‖L2(L2)

≤ ‖θ−1esϕρ̂
(
∂t(u+ û) + (u+ û)∂x(u+ û)

)
‖L2(L2) + ‖θ−1esϕρû∂x(u+ û)‖L2(L2)

≤ C

s
(Rρ +Ru) + CR2

u.

We then only have to estimate the remaining terms in ĝ:

‖θ−3/2esϕ (−p′(ρ+ ρ̂)∂x(ρ+ ρ̂) + p′(ρ)∂xρ) ‖L2(L2)

≤ ‖θ−3/2esϕp′(ρ+ ρ̂)∂xρ̂‖L2(L2) + ‖θ−3/2esϕ(p′(ρ)− p′(ρ+ ρ̂))∂xρ)‖L2(L2)

≤ C(1 + ‖ρ̂‖L∞(L∞))‖θ−3/2esϕ∂xρ̂‖L2(L2) + C‖θ−3/2esϕρ̂‖L2(L2)

≤ CRρ + CR2
ρ ≤ CRρ.

Combining the above estimates yields (4.11) and concludes the proof of Lemma 4.3.

4.3 End of the proof of Theorem 2.2
For s ≥ 1, 0 < Rρ, Ru ≤ 1, (ρ̂, û) ∈ Xs,Rρ × Ys,Ru , and ĝ = g(ρ̂, û) in (2.36), applying Lemma 4.3, ĝ
satisfies (4.2). We can then apply Theorem 4.1 to g = ĝ and concludes Theorem 2.2 simply by putting
together estimates (4.3) and (4.11).

5 The fixed point argument
Theorems 2.2 and 2.3 allow to define, for s ≥ s0 large enough, Rρ, Ru ∈ (0, 1), and ε ∈ (0, ε(s)) in (2.23)
small enough, a map F : (ρ̂, û) ∈Xs,Rρ × Ys,Ru 7→ (ρ, u) ∈Xs × Ys, where

• u is the solution of the control problem (2.37)–(2.38) given by Theorem 2.2 with g(ρ̂, û) defined
in (2.36),
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• ρ is the solution of the control problem (2.40)–(2.41) given by Theorem 2.3 with f(ρ̂, û) defined
in (2.35).

We then choose the parameters s ≥ s0, Rρ, Ru ∈ (0, 1) and ε ∈ (0, ε(s)] in (2.23) such that F maps
Xs,Rρ × Ys,Ru into itself. This can be done according to the following lemma:

Lemma 5.1. Let Cu, Cu(s) and Cρ, Cρ(s) be the constants in Theorem 2.2 and 2.3 respectively. There
exist s ≥ s0, Rρ, Ru ∈ (0, 1), ε ∈ (0, ε(s)] such that

Cu(s)ε+ CuRρ +
Cu
s
Ru + CuR

2
u ≤ Ru, and Cρ(s)ε+

Cρ√
s

(Rρ +Ru) + Cρ(R
2
ρ +R2

u) ≤ Rρ. (5.1)

Proof. We set C0 = max{Cρ, Cu, 1} and C0(s) = max{Cρ(s), Cu(s)}, and we look for parameters s,
Rρ, Ru and ε such that

C0(s)ε+ C0Rρ +
C0

s
Ru + C0R

2
u ≤ Ru, and C0(s)ε+

C0√
s

(Rρ +Ru) + C0(R2
ρ +R2

u) ≤ Rρ.

We thus choose
Ru =

1

12C2
0 + 3

, Rρ =
1

4C0
Ru.

so that Rρ, Ru ∈ (0, 1) and satisfies:

C0R
2
u ≤

Ru
4
, C0Rρ ≤

Ru
4
, C0(R2

ρ +R2
u) ≤ Rρ

3
.

We then choose
s = max{s0, 4C0, 9C

2
0 (1 + 4C0)2},

which guarantees
C0

s
Ru ≤

Ru
4
,

C0√
s

(Rρ +Ru) ≤ Rρ
3
.

Lastly, we choose ε > 0 as follows:

ε = min

{
ε(s),

Rρ
3C0(s)

,
Ru

4C0(s)

}
.

One then easily checks that the inequalities (5.1) are satisfied with these choices of parameters, and this
concludes the proof of Lemma 5.1.

We thus fix the parameters s ≥ s0, Rρ, Ru ∈ (0, 1) and ε ∈ (0, ε(s)] such that the inequalities (5.1)
are satisfied. Using Theorems 2.2 and 2.3, we then have that F maps Xs,Rρ × Ys,Ru into itself.

We are then left to check that F satisfies the assumptions of Schauder’s fixed point theorem. In
order to do that, we endow the set Xs,Rρ ×Ys,Ru with the L2(0, T ;L2(a, b))-topology, which makes this
set compact (for the L2(0, T ;L2(a, b))-topology) by Aubin-Lions’ theorem, see [26].

It thus remains to prove that the map F is continuous on Xs,Rρ × Ys,Ru for the L2(0, T ;L2(a, b))
topology. This can be done as in [13, Section 5.3], but we recall the main ingredients for the convenience
of the reader. Let us then consider a sequence (ρ̂n, ûn) in Xs,Rρ ×Ys,Ru converging in L2(0, T ;L2(a, b))
towards some (ρ̂, û), and set (ρn, un) = F (ρ̂n, ûn), (ρ, u) = F (ρ̂, û). As the sequence (ρ̂n, ûn) is bounded
in Xs,Rρ × Ys,Ru , we then also have the following weak convergences:

ρ̂n ⇀
n→∞

ρ̂ weakly * in L∞(0, T ;H1(a, b)) ∩H1(0, T ;L2(a, b)), (5.2)

ûn ⇀
n→∞

û weakly in L2(0, T ;H2(a, b)) ∩H1(0, T ;L2(a, b)). (5.3)

Using interpolations of Lp and H1 spaces (see [27, Section 4.3.1, Theorem 1]), the functional space
Lp(0, T ;H1(a, b)) ∩ H1(0, T ;L2(a, b)) is continuously embedded into W 1/4,q(0, T ;H3/4(a, b)) (see [27,
Section 2.3.1 & Section 4.3.1]) with q given by

1

q
=

3

4
· 1

p
+

1

4
· 1

2
=

3

4p
+

1

8
.
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But, for p > 6, we have q > 4 and thus W 1/4,q(0, T ) embeds into some Hölder spaces C0,α(q)(0, T ) with
α(q) > 0 (see [27, Section 4.6.1]). Therefore, using the compact embedding of the spaces of Hölder spaces
into the space of continuous function (Ascoli’s theorem), the space L∞(0, T ;H1(a, b))∩H1(0, T ;L2(a, b))
is compactly embedded into the set of continuous functions C0([0, T ] × [a, b]). Furthermore, using
Aubin Lions’ Lemma, we also have a compact embedding of L2(0, T ;H2(a, b)) ∩ H1(0, T ;L2(a, b)) in
L∞(0, T ;L∞(a, b)). We finally obtain the following strong convergences:

ρ̂n →
n→∞

ρ̂ strongly in L∞(0, T ;L∞(a, b)), (5.4)

ûn →
n→∞

û strongly in L∞(0, T ;L∞(a, b)). (5.5)

We then easily show that

(f(ρ̂n, ûn), g(ρ̂n, ûn)) ⇀
n→∞

(f(ρ̂, û), g(ρ̂, û)) in (D ′((0, T )× (a, b)))2. (5.6)

The control process in Theorem 4.1 is linear in (u0, g), and therefore, following the construction done in
Section 4, un weakly converges to u in D ′((0, T ) × (a, b)). As F maps Xs,Rρ × Ys,Ru into itself, un is
bounded in Ys,Ru and we can therefore also deduce the convergences

un ⇀
n→∞

u weakly in L2(0, T ;H2(a, b)) ∩H1(0, T ;L2(a, b)), (5.7)

un →
n→∞

u strongly in L∞(0, T ;L∞(a, b)). (5.8)

We then focus on the construction of ρn, ρ performed in Section 3.1 and its continuity with respect to un
and f(ρ̂n, ûn). We then introduce ρf,n the solution of (3.3) with un instead of u and f = f(ρ̂n, ûn). Due
to (3.45), ρf,n is uniformly bounded in H1((0, TL) × (a, b)) and therefore weakly converges to some ρ∗f
in H1((0, TL)× (a, b)). Using the convergences (5.8) and (5.6), we can pass to the limit in the equation
satisfied by ρf,n and then obtain that ρ∗f is the solution ρf of (3.3) with u and f = f(ρ̂, û). Similarly,
the solutions ρb,n of (3.4) with un instead of u and f = f(ρ̂n, ûn) weakly converge in H1((T0, T )× (a, b))
to the solution ρb of (3.4) with u and f = f(ρ̂, û). It is then easy to check that the construction of
the cut-off function η̃ in Lemma 3.1 is continuous with respect to u. Indeed, if we call η̃n the cut-off
functions constructed in Lemma 3.1 corresponding to un, as the sequence η̃n is uniformly bounded in
H1((0, T ) × (a, b)), recall (3.10), we can pass to the limit in the construction and get that η̃n weakly
converges in H1((0, T ) × (a, b)) to η̃, the cut-off function constructed in Lemma 3.1 corresponding to
u, and thus strongly converges in L2(0, T ;L2(a, b)) according to Aubin-Lions’ Lemma. Therefore, the
sequence ρn = η̃nρf,n + (1− η̃n)ρb,n weakly converges to ρ = η̃ρf + (1− η̃)ρb in D ′((0, T )× (0, L)).

We have thus shown that F (ρ̂n, ûn) weakly converges as n → ∞ towards F (ρ̂, û) in (D ′((0, T ) ×
(a, b)))2. Moreover, the sequence F (ρ̂n, ûn) is bounded in Xs,Rρ × Ys,Ru . Recall then that this set
is compact for the (L2(0, T ;L2(a, b)))2 topology, so that the sequence F (ρ̂n, ûn) strongly converges in
(L2(0, T ;L2(a, b)))2 to F (ρ̂, û). This proves that F is continuous on Xs,Rρ × Ys,Ru endowed with the
(L2(0, T ;L2(a, b)))2 topology.

We can then use Schauder’s fixed point theorem for F defined on the set Xs,Rρ×Ys,Ru endowed with
the (L2(0, T ;L2(a, b)))2 topology. Let (ρ, u) be a fixed point of F . By construction, (ρ, u) ∈Xs,Rρ×Ys,Ru
and solves the controllability problem (2.25)–(2.26)–(2.28) for some vρ ∈ L2(0, T ;L2((a, 0) ∪ (L, b)) and
vu ∈ L2(0, T ). The restriction of (ρ, u) on the space interval (0, L) provides a solution of (2.2)–(2.4)–
(2.5). Therefore, (ρs, us) in (2.1) is a controlled solution of (1.1) satisfying the initial condition (1.8)
and the controllability requirement (1.9) with the regularity stated in (1.10). This concludes the proof
of Theorem 1.1.

Acknowledgments. The authors are indebted to Jean-Pierre Raymond for his advices and kind help
during the preparation of this work.

A A weighted Poincaré inequality
Here, we recall the following result, proved for instance in [13, Lemma 4.9]:
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Lemma A.1 (A weighted Poincaré inequality [13, Lemma 4.9]). Let ϕ as in (2.22) with θ and ψ as in
(2.21) and Lemma 2.1. There exist constants C > 0 and s0 ≥ 1 such that for all s ≥ s0, for all t ∈ [0, T )
and for all f ∈ H1

0 (a, b),

s‖esϕ(t,·)f‖L2(a,b) ≤ C‖θ−1(t)esϕ(t,·)∂xf‖L2(a,b). (A.1)

The proof of Lemma A.1 is not difficult and simply requires that ψ in Lemma 2.1 does not have any
critical point in [a, b], i.e. Assumption (2.17). We refer the interested reader to [13, Lemma 4.9] for a
detailed proof.
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