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Abstract

The goal of this article is to analyze control properties of parabolic
equations with a singular potential −µ/|x|2, where µ is a real number.
When µ ≤ (N −2)2/4, it was proved in [19] that the equation can be con-
trolled to zero with a distributed control which surrounds the singularity.
In the present work, using Carleman estimates, we will prove that this
assumption is not necessary, and that we can control the equation from
any open subset as for the heat equation. Then we will study the case
µ > (N −2)2/4, and prove that the situation changes completely: Indeed,
we will consider a sequence of regularized potentials µ/(|x|2 + ε2), and
prove that we cannot stabilize the corresponding systems uniformly with
respect to ε > 0, due to the presence of explosive modes which concentrate
around the singularity.
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1 Introduction

Let N ≥ 3 and consider a smooth bounded domain Ω ⊆ lRN such that
0 ∈ Ω, and let ω ⊂ Ω be a non-empty open set.
We are interested in the control and stabilization properties of the following
equation 

∂tu−∆u− µ

|x|2
u = f, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where u0 ∈ L2(Ω). Here, f ∈ L2((0, T );H−1(Ω)) is the control that we assume
to be null in Ω\ω̄, that is

∀θ ∈ D(Ω\ω̄), θf = 0 in L2((0, T );H−1(Ω)). (1.2)

First of all, let us briefly mention that the Cauchy problem with such singular
potential is not straightforward. Indeed, it has been proved that there is a
critical value µ∗(N) = (N − 2)2/4 of µ which determines the well-posedness of
(1.1). Actually, this problem is strongly related to the Hardy inequality:

∀u ∈ H1
0 (Ω), µ∗(N)

∫
Ω

u2

|x|2
dx ≤

∫
Ω

|Ou|2 dx, (1.3)

where µ∗(N) is the optimal constant. Note that equality in (1.3) is not attained.
The first work [1] on the Cauchy problem was considering positive initial

data. In [1], it was proved that if µ ≤ µ∗(N) and if the initial data u0 is
positive, then equation (1.1) has a global weak solution whereas if µ > µ∗(N),
then equation (1.1) has no solution if u0 > 0 and f ≥ 0, even locally in time
(see also [4]).

Actually, the Cauchy problem properties for equation (1.1) can be deduced
from generalizations of the Hardy inequality (1.3). Studying more precisely
(1.3), it is proved in [20] that the Cauchy problem is well-posed in L2(Ω) for
any µ ≤ µ∗(N). A precise functional setting is given even in the special case
µ = µ∗(N) (see [20]).

The objective of the present paper is twofold. First, when µ ≤ µ∗(N), we
will prove the null-controllability of (1.1) with a control f ∈ L2((0, T );L2(ω)).
Second, we will show that when µ > µ∗(N), there is no way to stabilize system
(1.1) with a control supported in ω in a reasonable sense when 0 /∈ ω̄.

The null-controllability problem reads as follows: Given any u0 ∈ L2(Ω),
find a function f ∈ L2(ω × (0, T )) such that the solution of (1.1) satisfies

u(x, T ) = 0, x ∈ Ω. (1.4)
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The controllability issue was already discussed under the assumption µ ≤
µ∗(N) in the recent work [19], in the special case where ω contains an annulus
centered in the singularity. The authors of [19] need this assumption since
their proof strongly uses a decomposition in spherical harmonics which allows
to reduce the problem to the study of 1-d singular equations. J. Le Rousseau
mentioned an argument in [19] to relax this strong geometric assumption into
these two conditions: ω circles the singularity, and the exterior part of ω contains
an annular set centered in the singularity. Even with this improvement, a non-
trivial geometric assumption on ω is needed. Our purpose is to prove that we
can actually remove this assumption and consider any non-empty open subset
ω of Ω.

Theorem 1.1. Let µ be a real number such that µ ≤ µ∗(N).
Given any non-empty open set ω ⊂ Ω, for any T > 0 and u0 ∈ L2(Ω), there

exists a control f ∈ L2((0, T )×ω) such that the solution of (1.1) satisfies (1.4).
Besides, there exists a constant CT such that

‖f‖L2((0,T )×ω) ≤ CT ‖u0‖L2(Ω) . (1.5)

Following the by now classical HUM method ([16]), the controllability prop-
erty is equivalent to an observability inequality for the adjoint system

∂tw + ∆w +
µ

|x|2
w = 0, (x, t) ∈ Ω× (0, T ),

w(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
w(x, T ) = wT (x), x ∈ Ω.

(1.6)

More precisely, when µ ≤ µ∗(N), we need to prove that there exists a constant
C such that for all wT ∈ L2(Ω), the solution of (1.6) satisfies∫

Ω

|w(x, 0)|2 dx ≤ C
∫∫

ω×(0,T )

|w(x, t)|2 dx dt. (1.7)

In order to prove (1.7), we will use a particular Carleman estimate, which
is by now a classical technique in control theory, see for instance [2, 9, 10, 11,
12, 13, 14]. . . Indeed, the Carleman estimate we will derive later implies that for
any solution w of (1.6)∫∫

Ω×( T
4 ,

3T
4 )

|w(x, t)|2 dx dt ≤ C
∫∫

ω×(0,T )

|w(x, t)|2 dx dt, (1.8)

which directly implies inequality (1.7) since t 7→ ‖w(t, .)‖2L2(Ω) is increasing by
the Hardy inequality (1.3).

The Carleman estimate derived here is inspired by the works [5, 17] on 1-
d degenerate heat equations, the recent paper [19] which is inspired from the
methods and results in [5, 17] to obtain radial estimates, and the article [13] on
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the controllability of the heat equation in any dimension. As in [5, 17, 19, 13],
the major difficulty is to choose a special weight function appearing in the
Carleman estimate. In [19], this has been done in the 1d case only, using
spherical harmonics to recover results in the multi-d case, but with an extra
geometric condition on the support of the control region. We thus adapt the
results in [19] to derive directly Carleman estimates without using a spherical
harmonics decomposition, in order to avoid the use of the geometric condition
needed in [19].

Let us briefly present the existing results concerning the observability prop-
erties of a parabolic equation with a potential V : ∂tz + ∆z + V z = 0, (x, t) ∈ Ω× (0, T ),

z(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
z(T ) = zT ∈ L2(Ω).

(1.9)

It has been proved in [13] using Carleman estimates that, for potentials V ∈
L∞(Ω× (0, T )), such systems are observable in the sense of (1.7) for any open
set ω ⊂ Ω. Later, in [14], this result has been extended to the case V ∈
L∞((0, T );L2N/3(Ω)). To our knowledge, the case V ∈ L∞((0, T );LN/2+ε(Ω))
with ε > 0 is still open. Note that our work presents a case in which the
potential V = µ/|x|2 is not in LN/2(Ω), and therefore none of these results
applies. In this context, it is worth mentioning the work [15] which proves the
strong unique continuation property for system (1.9) for a general potential
V ∈ L(N+1)/2(Ω× (0, T )).

The second part of this work is devoted to the case µ > µ∗(N). In this case,
the Cauchy problem is severely ill-posed as proved in [1] and [4]. Indeed, if u0

is positive and f = 0 in (1.1), there is complete instantaneous blow-up, which
makes impossible to define a reasonable solution. However, it does not answer
to the following stabilization problem:

Given u0 ∈ L2(Ω), can we find a control f ∈ L2((0, T );H−1(Ω)) localized in
ω such that there exists a solution u ∈ L2((0, T );H1

0 (Ω)) of (1.1) ?
In other words, we ask whether it is possible or not to prevent from blow-

up phenomena by acting only on a subset. Before going further, note that if
u ∈ L2((0, T );H1

0 (Ω)) satisfies (1.1) with f ∈ L2((0, T );H−1(Ω)), then ∂tu ∈
L2((0, T );H−1(Ω)), and therefore u ∈ C([0, T ];L2(Ω)), and the equality u(0) =
u0 in (1.1) makes sense.

Following the ideas of optimal control, for any u0 ∈ L2(Ω), we consider the
functional

Ju0(u, f) =
1
2

∫∫
Ω×(0,T )

|u(t, x)|2 dx dt +
1
2

T∫
0

‖f(t)‖2H−1(Ω) dt, (1.10)
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defined on the set

C(u0) =
{

(u, f) ∈ L2((0, T );H1
0 (Ω))× L2((0, T );H−1(Ω)) such that u

satisfies (1.1) with f as in (1.2)
}
. (1.11)

We say that we can stabilize system (1.1) if we can find a constant C such that

∀u0 ∈ L2(Ω), inf
(u,f)∈C(u0)

Ju0(u, f) ≤ C ‖u0‖2L2(Ω) . (1.12)

Of course, this property strongly depends on the set ω where the stabilization
is effective. Especially, when 0 ∈ ω, (1.12) holds (see Section 4 B1).

When 0 /∈ ω̄, the situation is more intricate. Therefore we focus our study
on this particular case, and give a severe obstruction, in this case, to the stabi-
lization property (1.12).

More precisely, for ε > 0, we approximate (1.1) by the systems
∂tu−∆u− µ

|x|2 + ε2
u = f, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω.

(1.13)

For these approximate problems, the Cauchy problem is well-posed. Therefore
we can consider the functionals

Jεu0
(f) =

1
2

∫∫
Ω×(0,T )

|u(x, t)|2 dx dt +
1
2

T∫
0

‖f(t)‖2H−1(Ω) dt, (1.14)

where f ∈ L2((0, T );H−1(Ω)) is localized in ω in the sense of (1.2) and u is the
corresponding solution of (1.13). We prove the following:

Theorem 1.2. Assume that µ > µ∗(N), and that 0 /∈ ω̄.
There is no constant C such that for all ε > 0, and for all u0 ∈ L2(Ω),

inf
f ∈ L2((0, T );H−1(Ω))

f as in (1.2)

Jεu0
(f) ≤ C ‖u0‖2L2(Ω) . (1.15)

In particular, this result implies that the stabilization of (1.1) is impossible
to attain through regularization processes when µ > µ∗(N) and 0 /∈ ω̄, and that
we cannot prevent the system from blowing up.

Let us briefly mention the related work [12], which presents a study of the
control properties of weakly blowing-up semi-linear heat equations, which deals
with a similar question as the one asked here. In particular, in [12], examples of
systems are given for which blow up may occur in finite time, but this blow-up
can be controlled in any time for any initial data.
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The structure of the paper is the following. In Section 2, we give the proof
of Theorem 1.1 for µ ≤ µ∗(N), or, to be more precise, of inequality (1.7) for
the solutions of the adjoint equation (1.6). In Section 3, we prove that when
µ > µ∗(N) we cannot uniformly stabilize system (1.1), in the sense of Theorem
1.2. In Section 4, we add some comments.
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where this work was completed. The author would like to thank E. Zuazua for
having invited him in the IMDEA several months and for having suggested this
work. The author also thanks J.-P. Puel for fruitful discussions and remarks.

2 Null controllability in the case µ ≤ µ∗(N)

First of all, to simplify the presentation, we assume that 0 /∈ ω̄, that can always
be done, taking if necessary a smaller set. We also assume that the unit ball
B̄(0, 1) is included in Ω and B̄(0, 1) ∩ ω̄ is empty. This can always be done by
a scaling argument.

2.1 Carleman estimate

As said in the introduction, the main tool we use to address the observability
inequality (1.8) is a Carleman estimate. However, since it is based on tedious
computations, we postpone the proofs of several technical lemmas in Subsection
2.3.

The major problem when designing a Carleman estimate is the choice of a
smooth weight function σ, which is in general assumed to be positive, and to
blow up as t goes to zero and as t goes to T . Hence we are looking for a weight
function σ that satisfies:{

σ(t, x) > 0, (x, t) ∈ Ω× (0, T ),

lim
t→0+

σ(t, x) = lim
t→T−

σ(t, x) = +∞, x ∈ Ω. (2.1)

More precisely, we propose the weight

σ(t, x) = sθ(t)
(
e2λ supψ − 1

2
|x|2 − eλψ(x)

)
(2.2)

where s and λ are positive parameters aimed at being large,

θ(t) =
( 1
t(T − t)

)3

, (2.3)

and ψ is a function satisfying ψ(x) = ln(|x|), x ∈ B(0, 1),
ψ(x) = 0, x ∈ ∂Ω,
ψ(x) > 0, x ∈ Ω\B̄(0, 1),

(2.4)
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and there exists an open set ω0 such that ω̄0 ⊂ ω and δ > 0 such that

|Oψ(x)| ≥ δ, x ∈ Ω̄\ω0. (2.5)

The existence of such function ψ is not straightforward but can be easily deduced
from the construction given in [13].

Indeed, there exists a smooth function which extends ln(|x|) outside the ball,
which vanishes on the boundary, and with finitely many critical points, since
this property is generically true. Then it is sufficient to consider such a function,
and to move its critical points into ω0 without modifying the function in B(0, 1).
This can be done following the construction given in [13].

Note that the weight function σ defined by (2.2) indeed satisfies (2.1) and is
smooth (at least in C4((0, T )× Ω̄)) when λ is large enough.

To explain this choice for the weight function σ, we point out that in the
ball B(0, 1), since ψ is negative, the weight function σ behaves like

sθ(t)(C − 1
2
|x|2)

when λ is large. This corresponds precisely to the weight given in [17] for
dealing with singular 1-d heat-type equation and in [19] when dealing with the
observability around the singularity. On the contrary, outside the unit ball,
since ψ is positive, when λ is large enough, the weight is very close to the one
used for the observability of the heat equation in [13].

To simplify notations, let us denote by φ the function

φ(x) = eλψ(x), (2.6)

by O the open set Ω\(B̄(0, 1) ∪ ω̄0) and by Õ the open set Ω\B̄(0, 1).
We are now in position to state the Carleman estimate.

Theorem 2.1. There exist positive constants K and λ0 such that for λ ≥ λ0,
there exists s0(λ) such that for all s ≥ s0, any w solution of (1.6) satisfies

sλ2

∫∫
Õ×(0,T )

θφe−2σ|Ow|2 dx dt + s

∫∫
Ω×(0,T )

θe−2σ |w|2

|x|
dx dt

+ s3

∫∫
Ω×(0,T )

θ3e−2σ|x|2|w|2 dx dt + s3λ4

∫∫
Õ×(0,T )

θ3φ3e−2σ|w|2 dx dt

≤ K

(
sλ2

∫∫
ω0×(0,T )

θφe−2σ|Ow|2 dx dt

+ s3λ4

∫∫
ω0×(0,T )

θ3φ3e−2σ|w|2 dx dt

)
. (2.7)
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Remark 2.2. Following the proof carefully, one can check that there exists a
constant s1(ψ) > 0 such that the choice

s0(λ) = s1e
3λ supψ

is convenient in Theorem 2.1.
Remark 2.3. We stated the Carleman estimate (2.7) in the restrictive setting
that we need, but we can handle a source term. To be more precise, for any
w ∈ D([0, T ]× Ω), taking s and λ large enough, the following holds:

sλ2

∫∫
Õ×(0,T )

θφe−2σ|Ow|2 dx dt + s

∫∫
Ω×(0,T )

θe−2σ |w|2

|x|
dx dt

+ s3

∫∫
Ω×(0,T )

θ3e−2σ|x|2|w|2 dx dt + s3λ4

∫∫
Õ×(0,T )

θ3φ3e−2σ|w|2 dx dt

+ s(µ∗(N)− µ)
∫∫

Ω×(0,T )

θe−2σ |w|2

|x|2
dx dt

≤ K

( ∫∫
Ω×(0,T )

e−2σ
∣∣∣∂tw + ∆w +

µ

|x|2
w
∣∣∣2 dx dt

+ sλ2

∫∫
ω0×(0,T )

θφe−2σ|Ow|2 dx dt + s3λ4

∫∫
ω0×(0,T )

θ3φ3e−2σ|w|2 dx dt

)
.

Proof. We present the main ideas and steps of the proof of Theorem 2.1, using
several technical Lemmas, that are proved later in Subsection 2.3.

Let us first remark that using the density the density of H1
0 (Ω) in L2(Ω), if

estimate (2.7) holds for any solution w of (1.6) with initial data wT ∈ H1
0 (Ω),

then (2.7) also holds for any solution w of (1.6) with initial data wT ∈ L2(Ω).
We thus prove (2.7) only for solutions of (1.6) with initial data in H1

0 (Ω).
Now, let us assume that w is a solution of (1.6) for some initial data wT ∈

H1
0 (Ω), and define

z(t, x) = exp(−σ(t, x))w(t, x), (2.8)

which obviously satisfies

z(T ) = z(0) = 0 in H1
0 (Ω) (2.9)

due to the assumptions (2.1) on σ.
Then, plugging w = z exp(σ(t, x)) in the equation (1.6), we obtain that z

satisfies

∂tz + ∆z +
µ

|x|2
z + 2Oz · Oσ + z∆σ

+ z
(
∂tσ + |Oσ|2

)
= 0, (x, t) ∈ Ω× (0, T ), (2.10)
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with the boundary condition

z = 0, (x, t) ∈ ∂Ω× (0, T ). (2.11)

Let us define a smooth positive radial function α(x) = α(|x|) such that

α(x) = 0, |x| ≤ 1
2
, α(x) =

1
N
, |x| ≥ 3

4
,

0 ≤ α(x) ≤ 1
N
,

1
2
≤ |x| ≤ 3

4
.

(2.12)

Setting
Sz = ∆z +

µ

|x|2
z + z

(
∂tσ + |Oσ|2

)
,

Az = ∂tz + 2Oz · Oσ + z∆σ
(

1 + α
)
,

(2.13)

one easily deduces from (2.10) that

Sz +Az = −αz∆σ, ‖Sz‖2 + ‖Az‖2 + 2 < Sz,Az >= ‖αz∆σ‖2 ,

where ‖·‖ denotes the L2(Ω× (0, T )) norm and < ·, · > the corresponding scalar
product. Especially, the quantity

I =< Sz,Az > −1
2
‖αz∆σ‖2 (2.14)

is non positive.

Lemma 2.4. The following equality holds:

I = −2
∫∫

Ω×(0,T )

D2σ(Oz,Oz) dx dt +
∫∫

∂Ω×(0,T )

|∂nz|2 ∂nσ ds dt

−
∫∫

Ω×(0,T )

|Oz|2∆σ α dx dt +
1
2

∫∫
Ω×(0,T )

|z|2∆2σ
(

1 + α
)

dx dt

+
∫∫

Ω×(0,T )

|z|2Oα · O∆σ dx dt +
1
2

∫∫
Ω×(0,T )

|z|2∆σ ∆α dx dt

− 1
2

∫∫
Ω×(0,T )

|z|2
(
∂2
ttσ + 2∂t

(
|Oσ|2

))
dx dt− 2

∫∫
Ω×(0,T )

|z|2D2σ
(
Oσ,Oσ

)
dx dt

+
∫∫

Ω×(0,T )

α|z|2∆σ
(
∂tσ + |Oσ|2

)
dx dt− 1

2

∫∫
Ω×(0,T )

α2|z|2|∆σ|2 dx dt

+ µ

∫∫
Ω×(0,T )

|z|2

|x|2
∆σ α dx dt + 2µ

∫∫
Ω×(0,T )

|z|2

|x|3
∂rσ, (2.15)

where ∂n = ~n·O, ~n being the normal outward vector on the boundary, ∂r = x
|x| ·O

and ds denotes the trace of the Lebesgue measure on ∂Ω.
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For the proof, see Subsection 2.3.
Now, we will decompose the term I in (2.15) into several terms that we

handle separately.

Let us define Il as the sum of the integrals linear in σ which do not have any
time derivative:

Il = −2
∫∫

Ω×(0,T )

D2σ(Oz,Oz) dx dt +
∫∫

∂Ω×(0,T )

|∂nz|2 ∂nσ ds dt

−
∫∫

Ω×(0,T )

|Oz|2∆σ α dx dt +
1
2

∫∫
Ω×(0,T )

|z|2∆2σ
(

1 + α
)

dx dt

+
∫∫

Ω×(0,T )

|z|2Oα · O∆σ dx dt +
1
2

∫∫
Ω×(0,T )

|z|2∆σ ∆α dx dt

+ µ

∫∫
Ω×(0,T )

|z|2

|x|2
∆σ α dx dt + 2µ

∫∫
Ω×(0,T )

|z|2

|x|3
∂rσ dx dt. (2.16)

Then we have the following estimate:

Lemma 2.5. There exist positive constants such that for λ large enough, we
have:

Il ≥ 2s
∫∫

Ω×(0,T )

θ
|z|2

|x|
dx dt + sN

∫∫
Ω×(0,T )

θα|Oz|2 dx dt

+ C1sλ
2

∫∫
Õ×(0,T )

θφ|Oz|2 dx dt− C2sλ
2

∫∫
ω0×(0,T )

θφ|Oz|2 dx dt

− C3sλ
4

∫∫
Ω×(0,T )

θ|z|2 dx dt− C4sλ
4

∫∫
Õ×(0,T )

θφ|z|2 dx dt. (2.17)

Again, the proof is given in Subsection 2.3. Note that the proof of Lemma
2.5 uses an improved form of the Hardy inequality (1.3), which can be found
for instance in [18], namely:

Lemma 2.6. There exists a positive constant C5 > 0, such that

µ∗(N)
∫

Ω

|z|2

|x|2
dx +

∫
Ω

|z|2

|x|
dx ≤

∫
Ω

|Oz|2 dx + C5

∫
Ω

|z|2 dx, z ∈ H1
0 (Ω).

(2.18)

Of course, this inequality also holds for µ < µ∗(N).
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We then consider the integrals involving non-linear terms in σ and without
any time derivative, that is

Inl = −2
∫∫

Ω×(0,T )

|z|2D2σ
(
Oσ,Oσ

)
dx dt +

∫∫
Ω×(0,T )

α|z|2∆σ|Oσ|2 dx dt

− 1
2

∫∫
Ω×(0,T )

α2|z|2|∆σ|2 dx. (2.19)

Then, with σ as in (2.2), we obtain (see Subsection 2.3) that

Lemma 2.7. There exist positive constants such that for λ large enough, for
s ≥ s0(λ),

Inl ≥ C6s
3

∫∫
Ω×(0,T )

θ3|x|2|z|2 dx dt + C7s
3λ4

∫∫
Õ×(0,T )

θ3φ3|z|2 dx dt

− C8s
3λ4

∫∫
ω0×(0,T )

θ3φ3|z|2 dx dt. (2.20)

We finally estimate the terms involving the time derivatives in σ:

It = −1
2

∫∫
Ω×(0,T )

|z|2
(
∂2
ttσ + 2∂t

(
|Oσ|2

))
dx dt

+
∫∫

Ω×(0,T )

α|z|2∆σ∂tσ dx dt. (2.21)

We also add to It the integrals appearing in Lemma 2.5 that we want to get rid
of and define

Ir = It − C3sλ
4

∫∫
Ω×(0,T )

θ|z|2 dx dt− C4sλ
4

∫∫
Õ×(0,T )

θφ|z|2 dx dt. (2.22)

Then we have to prove that Ir is negligible with respect to the positive terms
in (2.17) and (2.20).

Lemma 2.8. For any λ large enough, there exists s0(λ) such that for s ≥ s0(λ),

|Ir| ≤ s
∫∫

Ω×(0,T )

θ
|z|2

|x|
dx dt +

C6

2
s3

∫∫
Ω×(0,T )

θ3|x|2|z|2 dx dt

+
C7

2
s3λ4

∫∫
Õ×(0,T )

θ3φ3|z|2 dx dt, (2.23)

where C6 and C7 are as in (2.20).
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Using (2.14) and Lemmas 2.5, 2.7 and 2.8, whose proofs are postponed to
Subsection 2.3, we obtain a Carleman estimate in the z variable. Undoing the
change of variable (2.8) provides the Carleman estimate (2.7).

2.2 From the Carleman estimate to the Observability in-
equality

In this Subsection, we explain why the Carleman estimate (2.7) implies the
observability inequality (1.8).

We fix λ > λ0 and s > s0(λ) such that (2.7) holds. These parameters now
enter in the constant K :∫∫

Ω×(0,T )

θe−2σ |w|2

|x|
dx dt ≤ K

∫∫
ω0×(0,T )

θφe−2σ|Ow|2 dx dt

+K

∫∫
ω0×(0,T )

θ3φ3e−2σ|w|2 dx dt. (2.24)

One easily checks the existence of a constant C such that

θ e−2σ 1
|x|

≥ C, (x, t) ∈ Ω×
[T

4
,

3T
4

]
,

θ φ e−2σ ≤ Ce−σ, (x, t) ∈ ω0 × (0, T ),

θ3φ3e−2σ ≤ C, (x, t) ∈ ω0 × (0, T ).

Thus, (2.24) implies∫∫
Ω×(T/4,3T/4)

|w|2 dx dt ≤ K
∫∫

ω0×(0,T )

e−σ|Ow|2 dx dt

+K

∫∫
ω0×(0,T )

|w|2 dx dt. (2.25)

Therefore to obtain inequality (1.8), it is sufficient to prove the following
lemma:

Lemma 2.9 (Cacciopoli’s inequality). Let σ̄ : (0, T ) × ω̄ → lR∗+ be a smooth
nonnegative function such that

σ̄(t, x)→ +∞ as t→ 0+ and as t→ T−.

There exists a constant C independent of µ ≤ µ∗(N) such that any solution w
of (1.6) satisfies ∫∫

ω0×(0,T )

e−σ̄|Ow|2 dx dt ≤ C
∫∫

ω×(0,T )

|w|2 dx dt. (2.26)
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The proof of this lemma is given for instance in [19, Lemma III.3]. This
obviously implies (1.8) by taking σ̄ = σ in Lemma 2.9, since σ satisfies (2.1).
It follows that inequality (1.7) holds as well and, by the classical HUM duality
([16]), this proves Theorem 1.1.

2.3 Proofs of technical Lemmas

Here we present the proofs of the technical Lemmas stated in Subsection 2.1.
This part can be skipped in a first lecture. In this subsection, all the constants
are positive and independent of λ or s.

Proof of Lemma 2.4. To make the computations easier, we define

S1z = ∆z, S2z =
µ

|x|2
z, S3z = z

(
∂tσ + |Oσ|2

)
,

A1z = ∂tz, A2z = 2Oz · Oσ, A3z = z∆σ
(
1 + α

)
,

(2.27)

and denotes by Iij the scalar product < Si, Aj >. We will compute each term
using integration by parts and the boundary conditions (2.9) and (2.11).

Computation of I11:

I11 =
∫∫

Ω×(0,T )

∆z ∂tz dx dt = −
∫∫

Ω×(0,T )

∂t

( |Oz|2
2

)
dx dt = 0, (2.28)

where the last identity is justified by (2.9).
Computation of I12: Note that, since z vanishes on the boundary, its gradient

Oz on the boundary is normal to the boundary, and therefore Oz = ∂nz ~n, where
~n denotes the normal outward vector on the boundary.

I12 = 2
∫∫

Ω×(0,T )

∆z Oz · Oσ dx dt

= −2
∫∫

Ω×(0,T )

Oz · O
(
Oz · Oσ

)
dx dt + 2

∫∫
∂Ω×(0,T )

|∂nz|2 ∂nσ ds dt,

Besides, one can check that

Oz · O
(
Oz · Oσ

)
=

1
2
O
(
|Oz|2

)
· Oσ +D2σ(Oz,Oz).

It follows easily that

I12 =
∫∫

Ω×(0,T )

|Oz|2∆σ dx dt− 2
∫∫

Ω×(0,T )

D2σ(Oz,Oz) dx dt

+
∫∫

∂Ω×(0,T )

|∂nz|2 ∂nσ ds dt. (2.29)
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Computation of I13:

I13 =
∫∫

Ω×(0,T )

∆z z∆σ
(

1 + α
)

dx dt

= −
∫∫

Ω×(0,T )

Oz · O
(
z∆σ

(
1 + α

))
dx dt.

Thus we obtain

I13 = −
∫∫

Ω×(0,T )

|Oz|2∆σ
(

1 + α
)

dx dt

+
1
2

∫∫
Ω×(0,T )

|z|2∆2σ
(

1 + α
)

dx dt +
∫∫

Ω×(0,T )

|z|2Oα · O∆σ dx dt

+
1
2

∫∫
Ω×(0,T )

|z|2∆σ ∆α dx dt. (2.30)

Computation of I21: As in (2.28), using (2.9), one easily checks that

I21 = 0. (2.31)

Computation of I22:

I22 = µ

∫∫
Ω×(0,T )

1
|x|2
O
(
|z|2
)
· Oσ dx dt

= −µ
∫∫

Ω×(0,T )

|z|2

|x|2
∆σ dx dt + 2µ

∫∫
Ω×(0,T )

|z|2

|x|3
∂rσ dx dt. (2.32)

Computation of I23:

I23 = µ

∫∫
Ω×(0,T )

|z|2

|x|2
∆σ
(

1 + α
)

dx dt. (2.33)

Computation of I31:

I31 =
1
2

∫∫
Ω×(0,T )

∂t

(
|z|2
)(
∂tσ + |Oσ|2

)
dx dt

= −1
2

∫∫
Ω×(0,T )

|z|2∂t
(
∂tσ + |Oσ|2

)
dx dt. (2.34)

Computation of I32:

I32 =
∫∫

Ω×(0,T )

O
(
|z|2
)
· Oσ

(
∂tσ + |Oσ|2

)
dx dt.
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It follows that

I32 = −
∫∫

Ω×(0,T )

|z|2∆σ
(
∂tσ + |Oσ|2

)
dx dt

−
∫∫

Ω×(0,T )

|z|2Oσ · O
(
∂tσ
)
− 2

∫∫
Ω×(0,T )

|z|2D2σ
(
Oσ,Oσ

)
dx dt. (2.35)

Computation of I33:

I33 =
∫∫

Ω×(0,T )

|z|2∆σ
(
∂tσ + |Oσ|2

)(
1 + α

)
dx dt. (2.36)

Lemma 2.4 follows directly from these computations.

Proof of Lemma 2.5. Since the integral Il is linear in σ, we decompose σ as

σ = sθ(t)e2λ supψ + σx2(t, x) + σφ(t, x),

with

σx2(t, x) = −sθ(t) |x|
2

2
, σφ(t, x) = −sθ(t)φ(x).

Note that the term sθ exp(2λ supψ) in σ does not appear in the computations of
Il, since it is constant in the space variable, and each integral in (2.16) involves
space derivatives.

We then define Il,x2 and Il,φ as the terms in Il corresponding respectively
to σx2 and σφ.

First, we compute Il,x2 . In this case, all the computations are explicit:

Il,x2 = 2s
∫∫

Ω×(0,T )

θ|Oz|2 dx dt− s
∫∫

∂Ω×(0,T )

θ|∂nz|2~x · ~n ds dt

+ sN

∫∫
Ω×(0,T )

θα|Oz|2 dx dt− sN
2

∫∫
Ω×(0,T )

θ|z|2∆α dx dt

− sµN
∫∫

Ω×(0,T )

θα
|z|2

|x|2
dx dt− 2sµ

∫∫
Ω×(0,T )

θ
|z|2

|x|2
dx dt.

Thus, from the Hardy improved inequality (2.18), since θ only depends on the
time variable t and since α vanishes on B(0, 1/2) by (2.12), there exists a con-
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stant such that

Il,x2 ≥ 2s
∫∫

Ω×(0,T )

θ
|z|2

|x|
dx dt + sN

∫∫
Ω×(0,T )

θα|Oz|2 dx dt

− s
∫∫

∂Ω×(0,T )

θ|∂nz|2~x · ~n ds dt− Cs
∫∫

Ω×(0,T )

θ|z|2 dx dt. (2.37)

Second, let us consider Il,φ. To simplify, we decompose this integral into the
integrals Il,φ,1 in B(0, 1) and Il,φ,2 outside B(0, 1).

In the unit ball, φ(x) = |x|λ and then, all the computations are explicit.
Especially, φ is convex (at least for λ > 1, which can be assumed since λ is
aimed at being large), and therefore D2φ(ξ, ξ) is a positive quadratic form in ξ,
and ∆φ > 0. Besides, all the terms

∆2φ, O∆φ, ∆φ,
∆φ
|x|2

,
∂rφ

|x|3

are bounded by Cλ4|x|λ−4 for λ large enough (namely λ > 4). Then

Il,φ,1 ≥ −Csλ4

∫∫
B(0,1)×(0,T )

θ(t)|x|λ−4|z|2 dx dt. (2.38)

Outside the unit ball, the computations are more intricate. First, let us
compute the first derivative of φ :

Oφ = λφOψ, ∂2
i,jφ = λφ∂2

i,jψ + λ2φ ∂iψ ∂jψ,
∆φ = λφ∆ψ + λ2φ|Oψ|2. (2.39)

Besides, due to the particular choice of ψ, and especially (2.5), one can get the
following estimates :

2D2φ(ξ, ξ) + α∆φ|ξ|2 ≥ Cλ2φ|ξ|2, ξ ∈ lRN , x ∈ O,∣∣∣2D2φ(ξ, ξ) + α∆φ|ξ|2
∣∣∣ ≤ Cλ2φ|ξ|2, ξ ∈ lRN , x ∈ ω0,

|∆2φ|+ |∆φ|+ |Oφ|+ |∂rφ|+ |O∆φ| ≤ Cφλ4, x ∈ Õ,

for λ large enough. Hence we deduce that

Il,φ,2 ≥ Csλ2

∫∫
O×(0,T )

θφ|Oz|2 dx dt− sλ
∫∫

∂Ω×(0,T )

θφ|∂nz|2Oψ · ~n ds dt

− Csλ4

∫∫
Õ×(0,T )

θφ|z|2 dx dt− sλ2

∫∫
ω0×(0,T )

θφ|Oz|2 dx dt. (2.40)
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Taking λ large enough, due to the properties (2.4) and (2.5), the sum of
boundary terms in (2.37) and in (2.40) is positive. Indeed, from (2.4) and (2.5),
Oψ · ~n = −|Oψ| ≤ −δ, and thus the choice λ ≥ diam(Ω)/δ, where diam(Ω) is
the diameter of Ω, is convenient.

Hence, combining (2.37), (2.38) and (2.40) gives Lemma 2.5.

Proof of Lemma 2.7. Again, we handle separately the integrals Inl1 in the unit
ball and Inl2 outside the unit ball. This is needed since the terms |x|2 and φ of
σ (see (2.2)) do not have the same order inside and outside the unit ball.

Notice that, in the unit ball, Oσ = −sθx
(

1 + λ|x|λ−2
)
,

∆σ = −sθ
(
N + λ(N + λ− 2)|x|λ−2

)
.

(2.41)

Hence we compute explicitly the terms appearing in the integrals for a radial
vector ξ of RN , which is the case of Oσ in the unit ball:

α∆σ|ξ|2 − 2D2σ(ξ, ξ) = sθ
(

(2− αN)|ξ|2 + 2λ|x|λ−2|ξ|2

+ λ|x|λ−4|ξ|2
(
(2− α)λ− 4− α(N + 2)

))
.

Thus we can take λ large enough such that

− 2
∫∫

B(0,1)×(0,T )

|z|2D2σ
(
Oσ,Oσ

)
dx dt +

∫∫
B(0,1)×(0,T )

α|z|2∆σ|Oσ|2 dx dt

≥ Cs
∫∫

B(0,1)×(0,T )

θ|z|2|Oσ|2 dx dt ≥ s3

∫∫
B(0,1)×(0,T )

θ3|x|2|z|2 dx dt. (2.42)

The last term in (2.19) can be absorbed, since from (2.41), we have∣∣∆σ∣∣2 ≤ Cs2θ2λ4.

Indeed, combined with the assumption (2.12) on the support of α, the last
integral in (2.19) satisfies∫∫

B(0,1)×(0,T )

α2|z|2|∆σ|2 dx dt ≤ Cs2λ4

∫∫
B(0,1)×(0,T )

θ2|x|2|z|2 dx dt.

Then taking s large, for instance s > Cλ4, we can absorb the third term in
(2.19), and we obtain that

Inl1 ≥ Cs3

∫∫
B(0,1)×(0,T )

θ3|x|2|z|2 dx dt. (2.43)
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Outside the unit ball, due to the particular choice of ψ, and especially (2.5),
and since ‖α‖L∞(Ω) < 2, as in [13] we remark that, for s and λ large enough,

α∆σ|Oσ|2 − 2D2σ(Oσ,Oσ) ≥ Cs3λ4θ3φ3, x ∈ O,∣∣∣α∆σ|Oσ|2 − 2D2σ(Oσ,Oσ)
∣∣∣ ≤ Cs3λ4θ3φ3, x ∈ ω0,

and
|∆σ|2 ≤ Cs2λ4θ2φ2, x ∈ Õ.

Then, taking s large yields

Inl2 ≥ Cs3λ4

∫∫
Õ×(0,T )

θ3φ3|z|2 dx dt− Cs3λ4

∫∫
ω0×(0,T )

θ3φ3|z|2 dx dt. (2.44)

Hence the proof of Lemma 2.7 is completed.

Proof of Lemma 2.8. First notice that∣∣∣θθ′∣∣∣ ≤ Cθ3,
∣∣∣θ′∣∣∣ ≤ Cθ3,

∣∣∣θ′′∣∣∣ ≤ Cθ5/3.

Then, since α vanishes in B(0, 1/2), bounding the integral in B(0, 1) and Õ
using respectively (2.39) and (2.41),∣∣∣ ∫∫

Ω×(0,T )

α|z|2∆σ∂tσ dx dt
∣∣∣ ≤ Cs2λ2e2λ supψ

∫∫
B(0,1)×(0,T )

θ3|x|2|z|2 dx dt

+ Cs2λ2e2λ supψ

∫∫
Õ×(0,T )

θ3φ|z|2 dx dt.

Similarly,∣∣∣ ∫∫
Ω×(0,T )

|z|2∂t
(
|Oσ|2

)
dx dt

∣∣∣ ≤ Cs2λ2

∫∫
B(0,1)×(0,T )

θ3|x|2|z|2 dx dt

+ Cs2λ2

∫∫
Õ×(0,T )

θ3φ2|z|2 dx dt. (2.45)

The remaining term

R = −1
2

∫∫
Ω×(0,T )

|z|2∂2
ttσ dx dt− C3sλ

4

∫∫
Ω×(0,T )

θ|z|2 dx dt

− C4sλ
4

∫∫
Õ×(0,T )

θφ|z|2 dx dt
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satisfies for λ large enough∣∣∣R∣∣∣ ≤ Cse2λ supψ

∫∫
Ω×(0,T )

θ5/3|z|2 dx dt. (2.46)

Let us then estimate this last integral. Take β a positive number that we will
choose later on. Then∫∫

Ω×(0,T )

θ5/3|z|2 dx dt

=
∫∫

Ω×(0,T )

(
βθ|x|2/3|z|2/3

)( 1
β
θ2/3|x|−2/3|z|4/3

)
dx dt

≤ β3

3

∫∫
Ω×(0,T )

θ3|x|2|z|2 dx dt +
2

3β3/2

∫∫
Ω×(0,T )

θ
|z|2

|x|
dx dt,

where we used the classical convexity inequality

ab ≤ 1
3
a3 +

2
3
b3/2.

Then we get three constants such that

|Ir| ≤ c1
(
s2λ2 + s2λ2e2λ supψ + se2λ supψβ3

) ∫∫
Ω×(0,T )

θ3|x|2|z|2 dx dt

+ c2

(
s2λ2e2λ supψ + s2λ2

) ∫∫
Õ×(0,T )

θ3φ3|z|2 dx dt

+ c3se
2λ supψ 1

β3/2

∫∫
Ω×(0,T )

θ
|z|2

|x|
dx dt. (2.47)

Thus, for a given λ > 0, choosing β such that

c3e
2λ supψ = β3/2,

there exists s0(λ) such that for any s ≥ s0(λ), inequality (2.23) holds.

3 Non uniform stabilization in the case µ > µ∗(N)

The goal of this section is to prove Theorem 1.2. The proof is divided into two
main steps.

First, we prove some basic estimates on the spectrum of the operator

Lε = −∆− µ

|x|2 + ε2
(3.1)
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on Ω with Dirichlet boundary conditions, especially on the first eigenvalue λε0
and the corresponding eigenfunction φε0. This will be done in Subsection 3.1.

Second, we deduce Theorem 1.2 in Subsection 3.2 by giving a lower bound
on the quantity Jεφε

0
that goes to infinity when ε→ 0.

3.1 Spectral estimates

Since for ε > 0, the function 1/(|x|2 + ε2) is smooth and bounded in Ω, the
spectrum of Lε is formed by a sequence of real eigenvalues λε0 ≤ λε1 ≤ · · · ≤
λεn ≤ · · · , with λεn → +∞. The corresponding eigenvectors φεn are a basis of
L2(Ω), orthonormal with respect to the L2 scalar product. We choose φεn of
unit L2-norm.

In the sequel, we focus on the bottom of the spectrum -the most explosive
mode.

Proposition 3.1. Assume that µ > µ∗(N). Then we have that

lim
ε→0

λε0 = −∞. (3.2)

and for all α > 0,
lim
ε→0
‖φε0‖H1(Ω\B̄(0,α)) = 0. (3.3)

Proof. We argue by contradiction, and assume that λε0 is bounded from below
for a subsequence by a real number C. Then, from the Rayleigh formula we get

∀ε > 0,∀u ∈ H1
0 (Ω), µ

∫
Ω

|u|2

|x|2 + ε2
dx ≤

∫
Ω

|Ou|2 dx− C
∫

Ω

|u|2 dx.

Taking u ∈ D(Ω), we pass to the limit ε→ 0 and get

µ

∫
Ω

|u|2

|x|2
dx ≤

∫
Ω

|Ou|2 dx− C
∫

Ω

|u|2 dx, (3.4)

that must therefore hold for any u ∈ H1
0 (Ω) by a density argument.

Now, there exists α0 > 0 such that B(0, α0) ⊂ Ω. We then choose u ∈
H1

0 (B(0, α0)) that we extend by 0 on lRN , and define for a ≥ 1

ua(r) = aN u(ar).

These functions are in H1
0 (B(0, α0)), and therefore in H1

0 (Ω), and we can apply
(3.4) to them:

a2
(
µ

∫
Ω

|u|2

|x|2
dx−

∫
Ω

|Ou|2 dx
)
≤ −C

∫
Ω

|u|2 dx.

Passing to the limit a→∞, we obtain that

∀u ∈ H1
0 (B(0, α0)), µ

∫
Ω

|u|2

|x|2
dx ≤

∫
Ω

|Ou|2 dx.
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Therefore we should have that µ ≤ µ∗(N), since this is the Hardy inequality
(1.3) in the set B(0, α0), and then we have a contradiction.

Now, consider the first eigenvector φε0 ∈ H1
0 (Ω) of Lε:

−∆φε0 −
µ

|x|2 + ε2
φε0 = λε0φ

ε
0, in Ω. (3.5)

Remark that since the potential is smooth in Ω, the function φε0 is smooth by
classical elliptic estimates.

Set α > 0. Let ηα be a nonnegative smooth function that vanishes in
B(0, α/2) and equals 1 in lRN\B(0, α) with ‖ηα‖∞ ≤ 1. Multiplying (3.5)
by ηαφε0, we get:∫

Ω

ηα|Oφε0|2 dx + |λε0|
∫

Ω

ηα|φε0|2 = µ

∫
Ω

ηα
|φε0|2

|x|2 + ε2
dx +

1
2

∫
Ω

∆ηα|φε0|2 dx.

(3.6)
Therefore, since φε0 is of unit L2-norm, due to the particular choice of ηα, we
get

|λε0|
∫

Ω\B(0,α)

|φε0|2 dx ≤ 4µ
α2

+
1
2
‖∆ηα‖L∞(Ω) .

Since |λε0| → ∞ when ε→ 0, we get that for any α > 0,

lim
ε→0

∫
Ω\B(0,α)

|φε0|2 dx = 0. (3.7)

Besides, still using (3.6) and the particular form of ηα∫
Ω\B(0,α)

|Oφε0|2 dx ≤
(4µ
α2

+
1
2
‖∆ηα‖L∞(Ω)

)∫
Ω\B(0,α/2)

|φε0|2 dx.

Therefore the proof of (3.3) is completed by using (3.7) for α/2 instead of α.

3.2 Proof of Theorem 1.2

Fix ε > 0, and choose uε0 = φε0, which is of unit L2-norm. Our goal is to prove
that

inf
f ∈ L2((0, T );H−1(Ω))

f as in (1.2)

Jεuε
0
(f) −→

ε→0
∞. (3.8)

Let f ∈ L2((0, T );H−1(Ω)) as in (1.2), and consider u the corresponding
solution of (1.13) with initial data uε0 = φε0.

Set

a(t) =
∫

Ω

u(t, x)φε0(x) dx, b(t) =< f(t), φε0 >H−1(Ω)×H1
0 (Ω) .

Then a(t) satisfies the equation

a′(t) + λε0a(t) = b(t), a(0) = 1.
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Duhamel’s formula gives

a(t) = exp(−λε0t) +
∫ t

0

exp(−λε0(t− s)) b(s) ds.

Therefore∫∫
Ω×(0,T )

|u(t, x)|2 dx dt ≥
∫ T

0

a(t)2 dt

≥ 1
2

∫ T

0

exp(−2λε0t) dt−
∫ T

0

(∫ t

0

exp(−λε0(t− s))b(s) ds
)2

dt. (3.9)

Of course,
1
2

∫ T

0

exp(−2λε0t) dt =
1

4|λε0|

(
exp(2|λε0|T )− 1

)
.

The other term satisfies∫ T

0

(∫ t

0

exp(−λε0(t− s))b(s) ds
)2

dt

≤
∫ T

0

(∫ t

0

exp(−2λε0(t− s)) ds
)(∫ t

0

|b(s)|2 ds
)

dt

≤
∫ T

0

1
2|λε0|

exp(2|λε0|t)
(∫ t

0

|b(s)|2 ds
)

dt

≤ 1
4|λε0|2

exp(2|λε0|T )
∫ T

0

|b(s)|2 ds.

Besides, from the definition of b and the assumption (1.2), we get that

|b(t)|2 ≤ ‖f(t)‖2H−1(Ω) ‖φ
ε
0‖

2
H1(ω) .

Hence we deduce from (3.9) that

1
4|λε0|

(
e2|λε

0|T−1
)
≤
∫∫

Ω×(0,T )

|u(t, x)|2 dx dt+
‖φε0‖

2
H1(ω)

4|λε0|2
e2|λε

0|T
∫ T

0

‖f(t)‖2H−1(Ω) dt.

Therefore, either

1
8|λε0|

(
e2|λε

0|T − 1
)
≤
∫∫

Ω×(0,T )

|u(t, x)|2 dx dt

or
1

8|λε0|

(
e2|λε

0|T − 1
)
≤
‖φε0‖

2
H1(ω)

4|λε0|2
e2|λε

0|T
∫ T

0

‖f(t)‖2H−1(Ω) dt,
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and in any case, for any f as in (1.2), we get

Jεuε
0
(f) ≥ inf

{
e2|λε

0|T − 1
16|λε0|

,
|λε0|

4 ‖φε0‖
2
H1(ω)

(
1− e−2|λε

0|T
)}

.

This bound blows up when ε→ 0 from the estimates (3.2). Indeed, since 0 /∈ ω̄,
we can choose α > 0 small enough such that ω ⊂ Ω\B(0, α) and therefore

‖φε0‖H1(ω) ≤ ‖φ
ε
0‖H1(Ω\B(0,α)) −→ε→0

0. �

4 Comments

In this article we proposed a study of a parabolic equation with an inverse-square
potential −µ/|x|2 from a control point of view, in the two cases µ ≤ µ∗(N),
which corresponds to a subcritical case, and µ > µ∗(N), the surcritical case.

A. When µ ≤ µ∗(N), we have addressed the null-controllability problem for
a distributed control in an arbitrary open subset of Ω. To this end, we have
derived a new Carleman inequality (2.7) inspired by the articles [19] and [13].

1. Our arguments can be adapted in much more general settings than pre-
sented here. For instance, one can handle several inverse-square singularities: ∂tu−∆u−

∑
i

µi
|x− xi|2

u = f, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
(4.1)

where µi ≤ µ∗(N) for each i and f is localized in some open subset ω ⊂ Ω in
the sense of (1.2). In this case, the difficulty will again come from the choice of
the weight. Let us assume that the points xi satisfy the following properties

|xi − xj | ≥ 3, i 6= j, d(xi, ∂Ω) ≥ 3.

Note that by a scaling argument, this can be assumed as soon as the set {xi}i
does not have any accumulation point in Ω̄, which is equivalent to say that they
are in finite numbers since Ω is bounded. In this case, we propose a weight of
the form

σ(t, x) = sθ
(
e2λ supψ − 1

2

∑
i

|x− xi|2γ(x− xi)− eλψ(x)
)
,

where λ and s are positive parameters, θ is as in (2.3), ψ satisfies
ψ(x) = ln(|x− xi|), x ∈ B(xi, 1),
ψ(x) = 0, x ∈ ∂Ω,
ψ(x) > 0, x ∈ Ω\

(
∪i B̄(xi, 1)

)
,

and (2.5), and γ = γ(|x|) is a smooth cut-off function such that

γ(x) = 1, |x| ≤ 1, γ(x) = 0, |x| ≥ 3/2.
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Using this weight and following the proof of Theorem 2.1, one can prove a
Carleman estimate for the adjoint system of (4.1), which still directly implies
(1.8). However it may occur that the system (4.1) is not dissipative (see [8]
where a necessary and sufficient condition is given for a multipolar potential to
be positive on lRn), and therefore we need to explain why inequality (1.7) is still
implied by (1.8). Following for instance [6, Lemma 2.1], one can prove that

F (t) =
∫

Ω

|w(t, x)|2 dx

satisfies
F ′(t) ≥ −CF (t).

Thus a Gronwall inequality allows us to conclude (1.7) from (1.8).
2. Note also the dispersive properties (that is Strichartz estimates) of the

operators i∂t + P and ∂2
tt + P , with

P = −∆− µ

|x|2
,

were studied in the whole space lRN , N ≥ 3, in [3]. In [3], it is proved that
Strichartz estimates hold for the Schrödinger and the wave equations provided
µ < µ∗(N). This result was generalized to the critical case µ = µ∗(N) and to
the multipolar case in [6]. To complete this picture, we mention [7], in which a
positive potential V of order

log(|x|)2

|x|2

was constructed in such a way that there exist quasi-modes for P = −∆ +
V localized around the singularity. Note that in this case, the operator P
is strongly elliptic since V is positive. To our knowledge, the controllability
properties for the wave or Schrödinger equations with an inverse-square potential
are widely open. Especially, it would be interesting to understand precisely the
behavior of the rays of Geometric Optics around the singularities.

B. When µ > µ∗(N), we have shown that we cannot uniformly stabilize
regularized approximations of (1.1) with a control supported in ω when 0 /∈ ω̄.

1. To complete this result, we comment the case 0 ∈ ω, for which the sta-
bilization property (1.10) holds. Given u0 ∈ L2(Ω), we claim that we can find
u ∈ L2((0, T );H1

0 (Ω)) and f ∈ L2((0, T );H−1(Ω)) as in (1.2) such that u is the
solution of (1.1) and that Ju0(u, f) ≤ C ‖u0‖2L2(Ω) (see (1.10)).

Indeed, denote by χ a smooth function that equals 1 in a neighborhood of 0
and vanishing outside ω. Then consider the solution u of

∂tu−∆u− (1− χ)
µ

|x|2
u = 0, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω.
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which satisfies u ∈ L2((0, T );H1
0 (Ω)), and ‖u‖L2(0,T ;H1

0 (Ω)) ≤ C ‖u0‖L2 for some
constant C. Then taking f = µχu/|x|2 ∈ L2((0, T );H−1(Ω)) provides an
admissible stabilizer with the required property (1.2).

The same argument can also be applied to derive the null-controllability
property for (1.1) when 0 ∈ ω. Indeed, the results in [13] proves that there
exists a control v ∈ L2((0, T )× ω) such that the solution of

∂tu−∆u− (1− χ)
µ

|x|2
u = v, (x, t) ∈ Ω× (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),
u(x, 0) = u0(x), x ∈ Ω.

satisfies u(T ) = 0. Besides, the norms of v in L2((0, T )×ω) and u in L2((0, T );H1
0 (Ω))

are bounded by the norm of u0 in L2(Ω). Then, taking f = v + µχu/|x|2 pro-
vides a control in L2((0, T );H−1(Ω)) for (1.1) that drives the solution to 0 in
time T .

2. Since we proved that we cannot uniformly stabilize (1.13) when 0 /∈ ω̄,
there is no uniform observability properties such as (1.7) for the corresponding
adjoint regularized systems.
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