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Abstract. We consider various time discretization schemes of abstract con-
servative evolution equations of the form ż = Az, where A is a skew-adjoint
operator. We analyze the problem of observability through an operator B.
More precisely, we assume that the pair (A, B) is exactly observable for the
continuous model, and we derive uniform observability inequalities for suit-
able time-discretization schemes within the class of conveniently filtered ini-
tial data. The method we use is mainly based on the resolvent estimate given
in [2]. We present some applications of our results to time-discrete schemes
for wave, Schrödinger and KdV equations and fully discrete approximation
schemes for wave equations.
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1. Introduction

Let X be a Hilbert space endowed with the norm ‖·‖X and let A : D(A) → X
be a skew-adjoint operator with compact resolvent. Let us consider the following
abstract system:

ż(t) = Az(t), z(0) = z0. (1.1)

Here and henceforth, a dot (˙) denotes differentiation with respect to the time
t. The element z0 ∈ X is called the initial state, and z = z(t) is the state of
the system. Such systems are often used as models of vibrating systems (e.g., the
wave equation), electromagnetic phenomena (Maxwell’s equations) or in quantum
mechanics (Schrödinger’s equation).

Assume that Y is another Hilbert space equipped with the norm ‖·‖Y . We
denote by L(X,Y ) the space of bounded linear operators from X to Y , endowed
with the classical operator norm. Let B ∈ L(D(A), Y ) be an observation operator
and define the output function

y(t) = Bz(t). (1.2)

In order to give a sense to (1.2), we make the assumption that B is an admissible
observation operator in the following sense (see [26]):

Definition 1.1. The operator B is an admissible observation operator for system
(1.1)-(1.2) if for every T > 0 there exists a constant KT > 0 such that∫ T

0

‖y(t)‖2Y dt ≤ KT ‖z0‖2X , ∀ z0 ∈ D(A). (1.3)

Note that if B is bounded in X, i.e. if it can be extended such that B ∈
L(X,Y ), then B is obviously an admissible observation operator. However, in
applications, this is often not the case, and the admissibility condition is then
a consequence of a suitable “hidden regularity” property of the solutions of the
evolution equation (1.1).
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The exact observability property of system (1.1)-(1.2) can be formulated as
follows:

Definition 1.2. System (1.1)-(1.2) is exactly observable in time T if there exists
kT > 0 such that

kT ‖z0‖2X ≤
∫ T

0

‖y(t)‖2Y dt, ∀ z0 ∈ D(A). (1.4)

Moreover, (1.1)-(1.2) is said to be exactly observable if it is exactly observable in
some time T > 0.

Note that observability issues arise naturally when dealing with controllabil-
ity and stabilization properties of linear systems (see for instance the textbook
[15]). Indeed, controllability and observability are dual notions, and therefore each
statement concerning observability has its counterpart in controllability. In the
sequel, we mainly focus on the observability properties of (1.1)-(1.2).

It was proved in [2] and [17] that system (1.1)-(1.2) is exactly observable if
and only if the following assertion holds:®

There exist constants M,m > 0 such that

M2 ‖(iωI −A)z‖2 +m2 ‖Bz‖2Y ≥ ‖z‖
2
, ∀ ω ∈ lR, z ∈ D(A).

(1.5)

This spectral condition can be viewed as a Hautus-type test, and generalizes the
classical Kalman rank condition, see for instance [25]. To be more precise, if (1.5)
holds, then system (1.1)-(1.2) is exactly observable in any time T > T0 = πM (see
[17]).

There is an extensive literature providing observability results for wave, plate,
Schrödinger and elasticity equations, among other models and by various methods
including microlocal analysis, multipliers and Fourier series, etc. Our goal in this
paper is to develop a theory allowing to get results for time-discrete systems as a
direct consequence of those corresponding to the time-continuous ones.

Let us first present a natural discretization of the continuous system. For any
4t > 0, we denote by zk and yk respectively the approximations of the solution
z and the output function y of system (1.1)–(1.2) at time tk = k4t for k ∈ Z.
Consider the following implicit midpoint time discretization of system (1.1):

zk+1 − zk

4t
= A

(zk+1 + zk

2

)
, in X, k ∈ Z,

z0 given.
(1.6)

The output function of (1.6) is given by

yk = Bzk, k ∈ Z. (1.7)

Note that (1.6)–(1.7) is a discrete version of (1.1)–(1.2).
Taking into account that the spectrum of A is purely imaginary, it is easy to

show that
∥∥zk∥∥

X
is conserved in the discrete time variable k ∈ Z, i.e.

∥∥zk∥∥
X

=∥∥z0
∥∥
X

. Consequently the scheme under consideration is stable and its convergence
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(in the classical sense of numerical analysis) is guaranteed in an appropriate func-
tional setting.

The uniform exact observability problem for system (1.6) is formulated as
follows: To find a positive constant k̃T , independent of 4t, such that the solutions
zk of system (1.6) satisfy:

k̃T
∥∥z0
∥∥2

X
≤ 4t

∑
k∈(0,T/4t)

∥∥∥yk∥∥∥2

Y
, (1.8)

for all initial data z0 in an appropriate class.
Clearly, (1.8) is a discrete version of (1.4).

Note that this type of observability inequalities appears naturally when deal-
ing with stabilization and controllability problems (see, for instance, [15], [25] and
[29]). For numerical approximation processes, it is important that these inequali-
ties hold uniformly with respect to the discretization parameter(s) (here 4t only)
to recover uniform stabilization properties or the convergence of discrete controls
to the continuous ones. We refer to the review article [29] and the references
therein for more precise statements. To our knowledge, there are very few results
addressing the observability issues for time semi-discrete schemes. We refer to [18],
where the uniform controllability of a fully discrete approximation scheme of the
1-d wave equation is analyzed, and to [27], where a time discretization of the wave
equation is analyzed using multiplier techniques. Especially, the results in [27] may
be viewed as a particular instance of the abstract models we address here.

In the sequel, we are interested in understanding under which assumptions
inequality (1.8) holds uniformly on 4t. One expects to do it so that, when letting
4t→ 0, one recovers the observability property of the continuous model.

It can be done by means of a spectral filtering mechanism. More precisely,
since A is skew-adjoint with compact resolvent, its spectrum is discrete and σ(A) =
{iµj : j ∈ lN}, where (µj)j∈lN is a sequence of real numbers. Set (Φj)j∈lN an
orthonormal basis of eigenvectors of A associated to the eigenvalues (iµj)j∈lN,
that is:

AΦj = iµjΦj . (1.9)

Moreover, we define

Cs = span {Φj : the corresponding iµj satisfies |µj | ≤ s}. (1.10)

We will prove that inequality (1.8) holds uniformly (with respect to 4t > 0)
in the class Cδ/4t for any δ > 0 and for Tδ large enough, depending on the filtering
parameter δ.

This result will be obtained as a consequence of the following theorem:

Theorem 1.3. Let δ > 0.
Assume that we have a family of vector spaces Xδ,4t ⊂ X and a family of

unbounded operators (A4t, B4t) depending on the parameter 4t > 0 such that
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(H1) For each 4t > 0, the operator A4t is skew-adjoint on Xδ,4t, and the vector
space Xδ,4t is globally invariant by A4t. Moreover,

‖A4tz‖X ≤
δ

4t
‖z‖X , ∀z ∈ Xδ,4t, ∀4t > 0. (1.11)

(H2) There exists a positive constant CB such that

‖B4tz‖Y ≤ CB ‖A4tz‖X , ∀z ∈ Xδ,4t, ∀4t > 0. (1.12)

(H3) There exist two positive constants M and m such that

M2 ‖(A4t − iωI)z‖2X +m2 ‖B4tz‖2Y ≥ ‖z‖
2
X ,

∀z ∈ Xδ,4t ∪ D(A4t),∀ω ∈ lR, ∀4t > 0.
(1.13)

Then there exists a time Tδ such that for all time T > Tδ, there exists a constant
kT,δ such that for 4t small enough, the solution of

zk+1 − zk

4t
= A4t

(zk+1 + zk

2

)
, in Xδ,4t, k ∈ Z, . (1.14)

with initial data z0 ∈ Xδ,4t satisfies

kT,δ
∥∥z0
∥∥2

X
≤ 4t

∑
k∈(0,T/4t)

∥∥∥B4tzk∥∥∥2

Y
, ∀ z0 ∈ Xδ,4t. (1.15)

Moreover, Tδ can be taken to be such that

Tδ = π
[(

1 +
δ2

4

)2

M2 +m2C2
B

δ4

16

]1/2
, (1.16)

where CB is as in (2.1).

As we shall see in Theorem 2.1, taking A4t = A, B4t = B and Xδ/4t =
Cδ/4t, Theorem 1.3 provides an observability result within the class Cδ/4t for
system (1.6)-(1.7), as a consequence of assumption (1.5) and since B ∈ L(D(A), Y ).

Theorem 1.3 is also useful to address observability issues for more general
time-discretization schemes of (1.1)-(1.2) than (1.6). For instance, one can consider
time semi-discrete schemes of the form

zk+1 = T4tzk, yk = Bzk, (1.17)

where T4t is a linear operator with the same eigenvectors as the operator A. We
will prove that, under some general assumptions on T4t, inequality (1.8) holds
uniformly on 4t for solutions of (1.17) when the initial data are taken in the class
Cδ/4t, as we shall see in Theorem 3.1.

We can also consider second order in time systems such as

ü(t) +A0u(t) = 0,
u(0) = u0, u̇(0) = v0,

(1.18)

where A0 is a positive self-adjoint operator. Of course, such systems can be writ-
ten in the same first-order form as (1.1). However, there are time-discretization
schemes such as the Newmark method which cannot be put in the form (1.17).
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Hence we present a specific analysis of the Newmark method for (1.18), still based
on Theorem 1.3.

One of the interesting applications of our results is that it allows us to de-
velop a two-step strategy to study the observability of fully discrete approximation
schemes of (1.1)-(1.2). First, one uses the observability properties for space semi-
discrete approximation schemes, uniformly with respect to the space mesh-size
parameter, as it has already been done in many cases (see [3], [6], [7], [10], [19],
[20], [28] and [29] for more references). Second, from the results of this paper on
time discretizations, the uniform observability (with respect to both the time and
space mesh-sizes) for the fully discrete approximation schemes is derived. To our
knowledge, the observability issues for fully discrete approximation schemes have
been studied only in [18], in the very particular case of the 1-d wave equation.
The results we present here can be applied to a much wider class of systems and
time-discretization schemes.

To complete our analysis of the discretizations of system (1.1)-(1.2), we also
analyze admissibility properties for the time semi-discrete systems introduced
throughout this paper. They are useful when deriving controllability results out of
the observability ones. More precisely, it allows proving controllability results by
means of duality arguments combined with observability and admissibility results
(see for instance the textbook [15] and the survey article [29]). In particular, we
prove that the admissibility inequality (1.3) can be interpreted in terms of the
behavior of wave packets. From this wave packet estimate, we will deduce ad-
missibility inequalities for the time semi-discrete schemes. This part can be read
independently from the rest of the article.

The outline of this paper is as follows.
In Section 2 we prove Theorem 1.3, from which we deduce the uniform ob-

servability property (1.8) for system (1.6)-(1.7), assuming that the initial data are
taken in some subspace of filtered data Cδ/4t for arbitrary δ > 0. Our proof of The-
orem 1.3 is mainly based on the resolvent estimate (1.13), combined with standard
Fourier arguments adapted to the time-discrete setting. In Section 3, we show how
to apply Theorem 1.3 to obtain similar results for time semi-discrete approxima-
tion schemes such as (1.17) and the Newmark approximation schemes, for which
we prove that a uniform observability inequality holds as well, provided the initial
data belong to Cδ/4t. In Section 4, we give some applications to the observability
of some classical conservative equations, such as the Schrödinger equation or the
linearized KdV equation, etc. In Section 5, we give some applications of our main
results to fully discrete schemes for skew-adjoint systems as (1.1). In Section 6,
we present admissibility results similar to (1.3) for the time semi-discrete schemes
used along the article. We end the paper by stating some further comments and
open problems.
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2. The implicit mid-point scheme

In this section we show the uniform observability of system (1.6)-(1.7), which
can be seen as a direct consequence of Theorem 1.3. In other words, its proof is
a simplified version of the one of Theorem 1.3. To avoid the duplication of the
process, we only give the proof of the latter one, which is more general.

Let us first introduce some notations and definitions.
The Hilbert space D(A) is endowed with the norm of the graph of A, which is

equivalent to ‖A·‖ since A has a compact resolvent. It follows that B ∈ L(D(A), Y )
implies

‖Bz‖Y ≤ CB ‖Az‖X , ∀z ∈ D(A). (2.1)

We are now in position to claim the following theorem based on the resolvent
estimate (1.5):

Theorem 2.1. Assume that (A,B) satisfy (1.5) and that B ∈ L(D(A), Y ).
Then, for any δ > 0, there exist Tδ and 4t0 > 0 such that for any T > Tδ

and 4t ∈ (0,4t0), there exists a positive constant kT,δ, independent of 4t, such
that the solution zk of (1.6) satisfies

kT,δ
∥∥z0
∥∥2

X
≤ 4t

∑
k∈(0,T/4t)

∥∥∥Bzk∥∥∥2

Y
, ∀ z0 ∈ Cδ/4t. (2.2)

Moreover, Tδ can be taken to be such that

Tδ = π
[
M2
(

1 +
δ2

4

)2

+m2C2
B

δ4

16

]1/2
, (2.3)

where CB is as in (2.1).

Remark 2.2. If we filter at a scale smaller than 4t, for instance in the class
Cδ/(4t)α , with α < 1, then δ in (2.3) vanishes as 4t tends to zero. In that case
the uniform observability time T0 we obtain is T0 = πM, which coincides with
the time obtained by the resolvent estimate (1.5) in the continuous setting (see
[17]). Note that, however, even in the continuous setting, in general πM is not the
optimal observability time.

Proof of Theorem 2.1. Theorem 2.1 can be seen as a direct consequence of
Theorem 1.3, which will be proved below. Indeed, one can easily verify that (H1)–
(H3) hold by taking A4t = A, B4t = B and Xδ,4t = Cδ/4t. ♦

Before getting into the proof of Theorem 1.3, let us first introduce the discrete
Fourier transform at scale 4t, which is one of the main ingredients of the proof of
Theorem 1.3.

Definition 2.3. Given any sequence (uk) ∈ l2(4tZ), we define its Fourier transform
as:

û(τ) = 4t
∑
k∈Z

uk exp(−iτk4t), τ4t ∈ (−π, π]. (2.4)
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For any function v ∈ L2(−π/4t, π/4t), we define the inverse Fourier transform
at scale 4t > 0:

ṽk =
1

2π

∫ π/4t

−π/4t
v(τ) exp(iτk4t) dτ, k ∈ Z. (2.5)

According to Definition 2.3,

˜̂u = u, ˆ̃v = v, (2.6)

and the Parseval identity holds

1
2π

∫ π/4t

−π/4t
|û(τ)|2 dτ = 4t

∑
k∈Z
|uk|2. (2.7)

These properties will be used in the sequel.

Proof of Theorem 1.3. The proof is split into three parts.

Step 1: Estimates in the class Xδ,4t. Let us take z0 ∈ Xδ,4t. Then the
solution of (1.14) has constant norm since A4t is skew-adjoint (see (H1)). Indeed,

zk+1 =
(I + 4t

2 A4t

I − 4t2 A4t

)
zk := T4tzk,

where the operator T4t is obviously unitary.
Further, since

zk + zk+1

2
=

1
2

(
I + T4t

)
zk =

( I

I − 4t2 A4t

)
zk,

we get that for any k,∥∥∥∥z0 + z1

2

∥∥∥∥2

X

=
∥∥∥∥zk + zk+1

2

∥∥∥∥2

X

≥ 1

1 +
(
δ
2

)2

∥∥z0
∥∥2

X
, (2.8)

as a consequence of (1.11) and the skew-adjointness assumption (H1) of A4t.

Step 2: The resolvent estimate. Set χ ∈ H1(lR) and χk = χ(k4t). Let gk =
χkzk, and

fk =
gk+1 − gk

4t
−A4t

(gk+1 + gk

2

)
. (2.9)
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One can easily check that

fk =
χk+1 − χk

4t
zk+1 + zk

2
+
χk+1 + χk

2
zk+1 − zk

4t

−A4t
(χk+1 + χk

2
zk+1 + zk

2
+
χk+1 − χk

2
zk+1 − zk

2

)
=

χk+1 − χk

4t

(zk + zk+1

2
− (4t)2

4
A4t

(zk+1 − zk

4t

))
=

(χk+1 − χk

4t

)(
I − (4t)2

4
A2
4t

)(zk + zk+1

2

)
. (2.10)

Especially, recalling (2.8) and (1.11), (2.10) implies∥∥∥fk∥∥∥2

X
≤
(χk+1 − χk

4t

)2
∥∥∥∥z0 + z1

2

∥∥∥∥2

X

(
1 +

δ2

4

)
. (2.11)

In particular, fk ∈ l2(4tZ;X).
Taking the Fourier transform of (2.9), for all τ ∈ (−π/4t, π/4t), we get

f̂(τ) = 4t
∑
k∈Z

fk exp(−ik4tτ)

= 4t
∑
k∈Z

(gk+1 − gk

4t
−A4t

(gk+1 + gk

2

))
exp(−ik4tτ)

= 4t
∑
k∈Z

(exp(i4tτ)− 1
4t

−A4t
(exp(i4tτ) + 1

2

))
gk exp(−ik4tτ)

=
(
i

2
4t

tan
(τ4t

2

)
I −A4t

)
ĝ(τ) exp

(
i
τ4t

2

)
cos
(τ4t

2

)
.

(2.12)
We claim the following Lemma:

Lemma 2.4. The solution (zk) in (1.14) satisfies

(1 + α)m24t
∑
k∈Z

(χk + χk+1

2

)2
∥∥∥∥B4t(zk + zk+1

2

)∥∥∥∥2

Y

≥
∥∥∥∥z0 + z1

2

∥∥∥∥2

X

[
a14t

∑
k∈Z

(χk + χk+1

2

)2

− a24t
∑
k∈Z

(χk+1 − χk

4t

)2
]
, (2.13)

with

a1 =
(

1− 1
β

)
,

a2 = M2
(

1 +
δ2

4

)2

+m2C2
B

(
1 +

1
α

) δ4

16
+

(4t)2

16
δ2(β − 1),

(2.14)

for any α > 0 and β > 1, where CB ,M,m are as in (1.12)-(1.13).
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Proof of Lemma 2.4. Let

G(τ) = ĝ(τ) exp(i
τ4t

2
) cos(

τ4t
2

). (2.15)

By its definition and the fact that zk ∈ Xδ,4t, it is obvious that G(τ) ∈ Xδ,4t.
In view of (2.12), applying the resolvent estimate (1.13) to G(τ), integrating

on τ from −π/4t to π/4t, it holds

M2

∫ π/4t

−π/4t

∥∥∥f̂(τ)
∥∥∥2

X
dτ +m2

∫ π/4t

−π/4t
‖B4tG(τ)‖2Y dτ

≥
∫ π/4t

−π/4t
‖G(τ)‖2X dτ. (2.16)

Applying Parseval’s identity (2.7) to (2.16), and noticing that

G̃k =
gk + gk+1

2
, i.e. G(τ) =

¤�(gk + gk+1

2

)
(τ),

we get

M24t
∑
k∈Z

∥∥∥fk∥∥∥2

X
+m24t

∑
k∈Z

∥∥∥∥B4t(gk + gk+1

2

)∥∥∥∥2

Y

≥ 4t
∑
k∈Z

∥∥∥∥gk + gk+1

2

∥∥∥∥2

X

. (2.17)

Now we estimate the three terms in (2.17). The first term can be bounded
above in view of (2.11).

Second, since

gk+1 + gk

2
=
χk+1 + χk

2
zk+1 + zk

2
+
4t
2
χk+1 − χk

4t
zk+1 − zk

2
, (2.18)

using

‖a+ b‖2 ≤ (1 + α) ‖a‖2 +
(

1 +
1
α

)
‖b‖2 ,

we deduce that∥∥∥∥B4t(gk+1 + gk

2

)∥∥∥∥2

Y

≤ (1 + α)
(χk+1 + χk

2

)2
∥∥∥∥B4t(zk+1 + zk

2

)∥∥∥∥2

Y

+
(

1 +
1
α

) (4t)4

16

(χk+1 − χk

4t

)2
∥∥∥∥B4t(zk+1 − zk

4t

)∥∥∥∥2

Y

≤ (1 + α)
(χk+1 + χk

2

)2
∥∥∥∥B4t(zk+1 + zk

2

)∥∥∥∥2

Y

+
(

1 +
1
α

) δ4

16
C2
B

(χk+1 − χk

4t

)2
∥∥∥∥z0 + z1

2

∥∥∥∥2

X

.

(2.19)
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In (2.19) we use the fact that (recalling (1.11) and (1.12))∥∥∥∥B4tA4t(zk + zk+1

2

)∥∥∥∥
Y

≤ CB
∥∥∥∥A2
4t

(zk + zk+1

2

)∥∥∥∥
X

≤ δ2CB
(4t)2

∥∥∥∥z0 + z1

2

∥∥∥∥
X

.

Finally, for any β > 1, recalling (2.8), (1.11) and (2.18), we get∥∥∥∥gk+1 + gk

2

∥∥∥∥2

X

≥
(

1− 1
β

)(χk+1 + χk

2

)2
∥∥∥∥zk+1 + zk

2

∥∥∥∥2

X

−(β − 1)
(4t

2

)2(χk+1 − χk

4t

)2
∥∥∥∥zk+1 − zk

2

∥∥∥∥2

X

≥
(

1− 1
β

)(χk+1 + χk

2

)2
∥∥∥∥z0 + z1

2

∥∥∥∥2

X

−(β − 1)
(4t

2

)4(χk+1 − χk

4t

)2
∥∥∥∥A4t(z0 + z1

2

)∥∥∥∥2

X

,

≥
(

1− 1
β

)(χk+1 + χk

2

)2
∥∥∥∥z0 + z1

2

∥∥∥∥2

X

−(β − 1)
(δ4t

4

)2(χk+1 − χk

4t

)2
∥∥∥∥(z0 + z1

2

)∥∥∥∥2

X

(2.20)

where we used
‖a+ b‖2 ≥

(
1− 1

β

)
‖a‖2 −

(
β − 1

)
‖b‖2 .

Applying (2.11), (2.19) and (2.20) to (2.17), we complete the proof of Lemma
2.4. ♦

Step 3: The observability estimate. This step is aimed to derive the ob-
servability estimate (1.15) stated in Theorem 1.3 from Lemma 2.4 with explicit
estimates on the optimal time Tδ.

First of all, let us recall the following classical Lemma on Riemann sums:

Lemma 2.5. Let χ(t) = φ(t/T ) with φ ∈ H2 ∩H1
0 (0, 1), extended by zero outside

(0, T ). Recalling that χk = χ(k4t), the following estimates hold:∣∣∣4t∑
k∈Z

(χk + χk+1

2

)2

− T ‖φ‖2L2(0,1)

∣∣∣ ≤ 2T4t ‖φ‖L2(0,1)

∥∥∥φ̇∥∥∥
L2(0,1)

,

∣∣∣4t∑
k∈Z

(χk+1 − χk

4t

)2

− 1
T

∥∥∥φ̇∥∥∥2

L2(0,1)

∣∣∣ ≤ 2
T
4t
∥∥∥φ̇∥∥∥

L2(0,1)

∥∥∥φ̈∥∥∥
L2(0,1)

.

(2.21)

Sketch of the proof of Lemma 2.5. It is easy to show that for all f = f(t) ∈
C1(0, T ) and sequence τk ∈ [k4t, (k + 1)4t], it holds∣∣∣ ∫ T

0

f(t)dt−4t
∑

k∈(0,T/4t)

f(τk)
∣∣∣ ≤ ∑

k∈(0,T/4t)

∫∫
[k4t,(k+1)4t]2

|ḟ(s)| ds dt

≤ 4t
∫ T

0

|ḟ | dt. (2.22)
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Replacing f by φ2 we get the first inequality (2.21). Similarly, replacing f by φ̇2,
the second one can be proved too. ♦

Taking Lemma 2.4 and 2.5 into account, the coefficient of
∥∥(z0 + z1)/2

∥∥2

X
in

(2.13) tends to

kT,δ,α,β,φ =
1

m2(1 + α)

[(
1− 1

β

)
T ‖φ‖2L2(0,1)

−
(
M2
(

1 +
δ2

4

)2

+m2C2
B

(
1 +

1
α

) δ4

16

) 1
T

∥∥∥φ̇∥∥∥2

L2(0,1)

]
,

when 4t→ 0.
Note that kT,δ,α,β,φ is an increasing function of T tending to −∞ when T →

0+ and to +∞ when T → ∞. Let Tδ,α,β,φ be the unique positive solution of
kT,δ,α,β,φ = 0. Then, for any time T > Tδ,α,β,φ, choosing a positive kT,δ such that

0 < kT,δ < kT,δ,α,β,φ,

there exists 4t0 > 0 such that for any 4t < 4t0, the following holds:

kT,δ

∥∥∥∥z0 + z1

2

∥∥∥∥2

X

≤ 4t
∑

k∈(0,T/4t)

∥∥∥B4tzk∥∥∥2

Y
. (2.23)

This combined with (2.8) yields (1.15).
This construction yields the following estimate on the time Tδ in Theorem

1.3. Namely, for any α > 0, β > 1 and smooth function φ, compactly supported
in [0, 1]:

Tδ ≤

∥∥∥φ̇∥∥∥
L2

‖φ‖L2

[ β

β − 1

]1/2[
M2
(

1 +
δ2

4

)2

+m2C2
B

(
1 +

1
α

) δ4

16

]1/2
.

We optimize in α, β and φ by choosing α =∞, β =∞ and

φ(t) =
ß

sin(πt), t ∈ (0, 1)
0, elsewhere, (2.24)

which is well-known to minimize the ratio∥∥∥φ̇∥∥∥
L2

‖φ‖L2

.

For this choice of φ, this quotient equals π, and thus we recover the estimate (1.16).
This completes the proof of Theorem 1.3.♦

Theorem 2.1 has many applications. Indeed, it roughly says that, for any
continuous conservative system, which is observable in finite time, there exists a
time semi-discretization which uniformly preserves the observability property in
finite time, provided the initial data are filtered at a scale 1/4t. Later, using for-
mally some microlocal tools, we will explain why this filtering scale is the optimal
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one. Note that in Theorem 7.1 of [27] this scale was proved to be optimal for a
particular time-discretization scheme on the wave equation.

Besides, as we will see in Section 3, Theorem 1.3 is a key ingredient to address
observability issues.

3. General time-discrete schemes

3.1. General time-discrete schemes for first order systems

In this section, we deal with more general time-discretization schemes of the form
(1.17). We will show that, under some appropriate assumptions on the operator
T4t, inequality (1.8) holds uniformly on 4t for solutions of (1.17) when the initial
data are taken in the class Cδ/4t.

More precisely, we assume that (1.17) is conservative in the sense that there
exist real numbers λj,4t such that

T4tΦj = exp(iλj,4t4t)Φj . (3.1)

Moreover, we assume that there is an explicit relation between λj,4t and µj (as in
(1.9)) of the following form:

λj,4t =
1
4t

h(µj4t), (3.2)

where h : [−δ, δ] 7→ [−π, π] is a smooth strictly increasing function, i.e.

|h(η)| ≤ π, inf{h′(η), |η| ≤ δ} > 0. (3.3)

Roughly speaking, the first part of (3.3) reflects the fact that one cannot mea-
sure frequencies higher than π/4t in a mesh of size 4t. The second part is a
non-degeneracy condition on the group velocity (see [21]) of solutions of (1.17)
which is necessary to guarantee the propagation of solutions that is required for
observability to hold.

We also assume
h(η)
η
−→ 1 as η → 0. (3.4)

This guarantees the consistency of the time-discrete scheme with the continuous
model (1.1).

We have the following Theorem:

Theorem 3.1. Assume that (A,B) satisfy (1.5) and that B ∈ L(D(A), Y ).
Under assumptions (3.1), (3.2), (3.3) and (3.4), for any δ > 0, there exists

a time Tδ such that for all T > Tδ, there exists a constant kT,δ > 0 such that for
all 4t small enough, any solution of (1.17) with initial value z0 ∈ Cδ/4t satisfies

kT,δ
∥∥z0
∥∥2

X
≤ 4t

∑
k∈(0,T/4t)

∥∥∥∥B(zk + zk+1

2

)∥∥∥∥2

Y

. (3.5)
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Besides, we have the following estimate on Tδ:

Tδ ≤ π

[
M2
(

1 + tan2
(h(δ)

2

))2

sup
|η|≤δ

{cos4(h(η)/2)
h′(η)2

}

+m2C2
B sup
|η|≤δ

{2
η

tan
(h(η)

2

)}2

tan4
(h(δ)

2

)]1/2

, (3.6)

where CB is as in (2.1).

Proof. The main idea is to use Theorem 1.3. Hence we introduce an operator A4t
such that the solution of (1.17) coincides with the solution of the linear system

zk+1 − zk

4t
= A4t

(zk + zk+1

2

)
, z0 = z0. (3.7)

This can be done defining the action of the operator A4t on each eigenfunction:

A4tΦj = ik4t(µj)Φj , (3.8)

where

k4t(ω) =
2
4t

tan
(h(ω4t)

2

)
. (3.9)

Indeed, if
z0 =

∑
ajΦj ,

then the solution of (1.17) can be written as

zk =
∑

ajφj exp(iλjk4t) =
∑

ajφj exp(ih(µj4t)k)

and the definition of A4t follows naturally.
Obviously, when the scheme (1.17) under consideration is the one of Section

2, that is (1.6), the operator A4t is precisely the operator A.

Then (3.5) would be a straightforward consequence of Theorem 1.3, if we
could prove the resolvent estimate for A4t. We will see in the sequel that a weak
form of the resolvent estimate holds, and that this is actually sufficient to get
the desired observability inequality. In the sequel, δ is a given positive number,
determining the class of filtered data under consideration.

Step 1: A weak form of the resolvent estimate. By hypothesis (1.5),

M2 ‖(A− iω)z‖2X +m2 ‖Bz‖2Y ≥ ‖z‖
2
X , z ∈ D(A), ω ∈ lR. (3.10)

For z ∈ Cδ/4t, that is

z =
∑

|µj |≤δ/4t

ajφj , (3.11)

one can easily check that

‖(A− iω)z‖2X =
∑
|aj |2

(
µj − ω

)2
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and

‖(A4t − iω)z‖2X =
∑
|aj |2

(
k4t(µj)− ω

)2

.

Especially, for any ω ∈ lR, this last estimate takes the form

‖(A4t − ik4t(ω))z‖2X =
∑
|aj |2

(
k4t(µj)− k4t(ω)

)2

with k4t as in (3.9). Thus, taking ε > 0, it follows that for any ω < (δ + ε)/4t,

‖(A4t − ik4t(ω))z‖2X ≥
(

inf
|ω|4t≤δ+ε

{
|k′4t(ω)|

})2

‖(A− iω)z‖2X .

Hence, setting

α4t,ε = k4t

(δ + ε

4t

)
, Cδ,ε =

(
inf{k′4t(ω) : |ω|4t ≤ δ + ε}

)−1

, (3.12)

which is finite in view of (3.3), we get the following weak resolvent estimate:

C2
δ,εM

2
∥∥∥(A4t − iω)z∥∥∥2

X
+m2 ‖Bz‖2Y ≥ ‖z‖

2
X , z ∈ Cδ/4t, |ω| ≤ α4t,ε. (3.13)

Our purpose is now to show that this is enough to get the time-discrete observabil-
ity estimate. We emphasize that the main difference between (3.13) and (1.13) is
that (1.13) is assumed to hold for all ω ∈ lR while (3.13) only holds for |ω| ≤ α4t,ε.

Step 2: Improving the resolvent estimate (3.13). Here we prove that (3.13) can be
extended to all ω ∈ lR. Indeed, consider ω such that |ω| ≥ α4t,ε and z ∈ Cδ/4t as
in (3.11). Then

‖(A4t − iω)z‖2X ≥
∑

|µj |≤δ/4t

(
k4t(µj)− k4t

(δ + ε

4t

))2

a2
j

≥
∑

|µj |≤δ/4t

(
k4t

( δ

4t

)
− k4t

(δ + ε

4t

))2

a2
j

≥
( ε

4t

)2(
inf

ω4t∈[δ,δ+ε]
k′4t(ω)

)2

‖z‖2 .

Using the explicit expression (3.9) of k4t, we get

‖(A4t − iω)z‖2X ≥
( ε

4t

)2

inf
η∈[δ,δ+ε]

{h′(η)}2 ‖z‖2 . (3.14)

Therefore, for each ε > 0, in view of (3.3) and (3.12), there exists (4t)ε > 0 such
that, for 4t ≤ (4t)ε

C2
δ,εM

2
∥∥∥(A4t − iω)z∥∥∥2

X
+m2 ‖Bz‖2Y ≥ ‖z‖

2
X , z ∈ Cδ/4t, ω ∈ lR. (3.15)
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Step 3: Application of Theorem 1.3. First, one easily checks from (3.8)-(3.9) that

4t ‖A4tz‖X ≤ δ̃ ‖z‖X , z ∈ Cδ/4t, (3.16)

with δ̃ = 2 tan(h(δ)/2).
Second, we check that there exists a constant CB,δ such that

‖Bz‖Y ≤ CB,δ ‖A4tz‖X , z ∈ Cδ/4t, (3.17)

where CB is as in (2.1). Indeed, for z ∈ Cδ/4t,

‖Az‖X ≤ sup
|ω|4t≤δ

{∣∣∣k4t(ω)
ω

∣∣∣} ‖A4tz‖X ,
and therefore one can take

CB,δ = βδCB , (3.18)

where

βδ = sup
|η|≤δ

{2
η

tan
(h(η)

2

)}
,

which is finite from hypothesis (3.3) and (3.4).
Third, the resolvent estimate (3.15) holds.
Then Theorem 1.3 can be applied and proves the observability inequality

(3.5) for the solutions of (1.17) with initial data in Cδ/4t. Besides, we have the
following estimate on the observability time Tδ,ε :

Tδ,ε = π
[(

1 +
δ̃2

4

)2

M2C2
δ,ε +m2C2

Bβ
2
δ

δ̃4

16

]1/2
.

In the limit ε → 0, Tδ,ε converges to an observability time Tδ. Besides, using the
explicit form of the constants Cδ,ε, δ̃ and βδ one gets (3.6). ♦

3.2. The Newmark method for second order in time systems

In this subsection we investigate observability properties for time-discrete schemes
for the second order in time evolution equation (1.18).

Let H be a Hilbert space endowed with the norm ‖·‖H and let A0 : D(A0)→
H be a self-adjoint positive operator with compact resolvent. We consider the
initial value problem (1.18), which can be seen as a generic model for the free
vibrations of elastic structures such as strings, beams, membranes, plates or three-
dimensional elastic bodies.

The energy of (1.18) is given by

E(t) = ‖u̇(t)‖2H +
∥∥∥A1/2

0 u(t)
∥∥∥2

H
, (3.19)

which is constant in time.
We consider the output function

y(t) = B1u(t) +B2u̇(t), (3.20)
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where B1 and B2 are two observation operators satisfying B1 ∈ L(D(A0), Y ) and
B2 ∈ L(D(A1/2

0 ), Y ). In other words, we assume that there exist two constants
CB,1 and CB,2, such that

‖B1u‖Y ≤ CB,1 ‖A0u‖H , ‖B2v‖Y ≤ CB,2
∥∥∥A1/2

0 v
∥∥∥ . (3.21)

In the sequel, we assume either B1 = 0 or B2 = 0. This assumption is needed for
technical reasons, as we shall see in Remark 3.3 and in the proof of Theorem 3.2.

System (1.18)–(3.20) can be put in the form (1.1)–(1.2). Indeed, setting

z1(t) = u̇+ iA
1/2
0 u, z2(t) = u̇− iA1/2

0 u, (3.22)

equation (1.18) is equivalent to

ż = Az, z =
Å
z1

z2

ã
, A =

Ç
iA

1/2
0 0
0 −iA1/2

0

å
, (3.23)

for which the energy space is X = H × H with the domain D(A) = D(A1/2
0 ) ×

D(A1/2
0 ). Moreover, the energy E(t) given in (3.19) coincides with half of the norm

of z in X.
Note that the spectrum of A is explicitly given by the spectrum of A0. Indeed,

if (µ2
j )j∈N∗ (µj > 0) is the sequence of eigenvalues of A0, i.e.

A0φj = µ2
jφj , j ∈ N∗,

with corresponding eigenvectors φj , then the eigenvalues of A are ±iµj , with cor-
responding eigenvectors

Φj =
Å
φj
0

ã
, Φ−j =

Å
0
φj

ã
, j ∈ lN∗. (3.24)

Besides, in the new variables (3.22), the output function is given by

y(t) = Bz(t) = B1A
−1/2
0

( iz2(t)− iz1(t)
2

)
+B2

(z1(t) + z2(t)
2

)
. (3.25)

Recalling the assumptions on B1 and B2 in (3.21), the admissible observation B
belongs to L(D(A), Y ).

In the sequel, we assume that the system (1.18)–(3.20) is exactly observable.
As a consequence of this we obtain that system (3.23)–(3.25) is exactly observable
and therefore the resolvent estimate (1.5) holds.

We now introduce the time-discrete schemes we are interested in. For any
4t > 0 and β > 0, we consider the following Newmark time-discrete scheme for
system (1.18):

uk+1 + uk−1 − 2uk

(4t)2
+A0

(
βuk+1 + (1− 2β)uk + βuk−1

)
= 0,(u0 + u1

2
,
u1 − u0

4t

)
= (u0, v0) ∈ D(A

1
2
0 )×H.

(3.26)
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The energy of (3.26) is given by

Ek+1/2 =
∥∥∥∥A1/2

0

(uk + uk+1

2

)∥∥∥∥2

+
∥∥∥∥uk+1 − uk

4t

∥∥∥∥2

+ (4β − 1)
(4t)2

4

∥∥∥∥A1/2
0

(uk+1 − uk

4t

)∥∥∥∥2

, k ∈ Z, (3.27)

which is a discrete counterpart of the continuous energy (3.19). Multiplying the
first equation of (3.26) by (uk+1−uk−1)/2 and using integration by parts, it is easy
to show that (3.27) remains constant with respect to k. Furthermore, we assume in
the sequel that β ≥ 1/4 to guarantee that system (3.26) is unconditionally stable.

The output function is given by the following discretization of (3.20):

yk+1/2 = B1

(uk + uk+1

2

)
+B2

(uk+1 − uk

4t

)
, (3.28)

where, as in (3.20), we assume that either B1 or B2 vanishes.
For any s > 0, we define Cs as in (1.10). Note that this space is invariant under

the actions of the discrete semi-groups associated to the Newmark time-discrete
schemes (3.26).

We have the following theorem:

Theorem 3.2. Let β ≥ 1/4 and δ > 0. We assume that either B1 ≡ 0 or B2 ≡ 0.
Then there exists a time Tδ such that for all T > Tδ, there exists a positive

constant kT,δ, such that for 4t small enough, the solution of (3.26) with initial
data (u0, v0) ∈ Cδ/4t satisfies

kT,δE
1/2 ≤ 4t

∑
k4t∈(0,T )

∥∥∥yk+1/2
∥∥∥2

Y
, (3.29)

where yk+1/2 is defined in (3.28) and B1, B2 satisfy (3.21).
Besides, Tδ can be chosen as

Tδ,1 = π
[
(1 + βδ2)2

(
1 +

(
β − 1

4
)δ2
)2

M2 +m2C2
B,1

δ

16

4]1/2
, (3.30)

if B2 = 0 and as

Tδ,2 = π
[
(1 + βδ2)2

(
1 +

(
β − 1

4

)
δ2
)
M2 +m2C2

B,2

δ4

16

]1/2
, (3.31)

if B1 = 0.

Remark 3.3. This result, and especially the time estimates (3.30) and (3.31) on
the observability time need further comments.

As in Theorem 2.1, we see that, if we filter at a scale smaller than 4t, for
instance in the class Cδ/(4t)α , with α < 1, then the uniform observability time T0

is given by T0 = πM , which coincides with the value obtained by the resolvent
estimate (1.5) in the continuous setting.
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Note that the estimates (3.30) and (3.31) do not have the same growth in δ
when δ goes to∞. This fact does not seem to be natural because the observability
time is expected to depend on the group velocity (see [21]) and not on the form of
the observation operator.

By now we could not avoid the assumption that either B1 or B2 vanishes,
the special case β = 1/4 being excepted. However, we can deal with an observable
of the form

yk+1/2 = B1

(
I + (β − 1/4)(4t)2A0

)1/2(uk + uk+1

2

)
+B2

(uk+1 − uk

4t

)
, (3.32)

with both non-trivial B1 and B2. Indeed, in this case, the operator B4t arising in
the proof of Theorem 3.2 does not depend on 4t and therefore the proof works as
in the case B1 = 0, and yields the time estimate (3.31). However, this observation
operator, which compares to the continuous one (3.20) when δ → 0, does not seem
to be the most natural discretization of (3.25).

When β = 1/4, both (3.30) and (3.31) have the same form. Besides, one can
easily adapt the proof to show that when β = 1/4, we can deal with a general
observation operator B as in (3.20). Actually, the Newmark scheme (3.26) with
β = 1/4 is equivalent to a midpoint scheme, and therefore Theorem 2.1 applies.

Proof. Step 1. We first transform system (3.26) into a first order time-discrete
scheme similar to (3.23). For this, we define

A0,4t = A0[I + (β − 1/4)(4t)2A0]−1. (3.33)

Then (3.26) can be rewritten as

uk+1 + uk−1 − 2uk

(4t)2
+A0,4t

(uk−1 + 2uk + uk+1

4

)
= 0. (3.34)

As in (3.22), using the following change of variables
z
k+1/2
1 =

uk+1 − uk

4t
+ iA

1/2
0,4t

(uk + uk+1

2

)
,

z
k+1/2
2 =

uk+1 − uk

4t
− iA1/2

0,4t

(uk + uk+1

2

)
,

(3.35)

system (3.26) (and also system (3.34)) is equivalent to

zk+1/2 − zk−1/2

4t
= A4t

(zk−1/2 + zk+1/2

2

)
, (3.36)

with

A4t =

Ç
iA

1/2
0,4t 0
0 −iA1/2

0,4t

å
, zk+1/2 =

Ñ
z
k+1/2
1

z
k+1/2
2

é
. (3.37)



20 Sylvain Ervedoza, Chuang Zheng and Enrique Zuazua

Consequently, the observation operator yk+1/2 in (3.28) is given by

yk+1/2 = B1A
−1/2
0,4t

( izk+1/2
2 − izk+1/2

1

2

)
+B2

(zk+1/2
1 + z

k+1/2
2

2

)
4
= B4tz

k+1/2. (3.38)

Step 2. We now verify that system (3.36)–(3.38) satisfies the hypothesis of
Theorem 1.3.

We first check (H1). It is obvious that the eigenvectors of A4t are the same
as those of A (see (3.24)). Moreover, for any Φj we compute

A4tΦj = `jΦj , with `j =
iµj»

1 + (β − 1/4)(4t)2µ2
j

. (3.39)

In other words, we are close to the situation considered in Subsection 3.1, and
the time semi-discrete approximation scheme (3.36) satisfies the hypothesis (3.1),
(3.2), (3.3), (3.3) and (3.4) with the function h defined by

h(η) = 2 arctan
(η

2
1√

1 + (β − 1/4)η2

)
. (3.40)

In particular, this implies that (3.16) holds in the class Cδ/4t, and takes the form

4t ‖A4tz‖X ≤
δ√

1 + (β − 1/4)δ2
‖z‖X , z ∈ Cδ/4t. (3.41)

Second, we check hypothesis (H2):

‖B4tz‖Y ≤ ‖A4tz‖H
(
CB,1

∥∥∥A0A
−1
0,4t

∥∥∥
L(Cδ/4t,H)

+CB,2
∥∥∥A1/2

0 A
−1/2
0,4t

∥∥∥
L(Cδ/4t,H)

)
≤ ‖A4tz‖H

(
(1 + (β − 1/4)δ2)CB,1 +

»
1 + (β − 1/4)δ2CB,2

)
≤ CB,δ ‖A4tz‖H . (3.42)

The third point is more technical. Following the proof of Theorem 3.1, for
any ε > 0, we obtain the following resolvent estimate:

C2
δ,εM

2
∥∥∥(A4t − iω)z∥∥∥2

X
+m2 ‖Bz‖2Y ≥ ‖z‖

2
X , z ∈ Cδ/4t, ω ∈ lR, (3.43)

where Cδ,ε is given by (3.12), with

k4t(ω) =
ω√

1 + (β − 1/4)(ω4t)2
.

Straightforward computations show that, actually,

Cδ,ε =
(

1 + (β − 1/4)(δ + ε)2
)3/2

. (3.44)
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Our goal now is to derive from (3.43) the resolvent estimate (H3) given in (1.13).
Here, we will handle separately the two cases B1 = 0 and B2 = 0.

The case B1 = 0. Under this assumption, B4t = B, and therefore, (3.43) is
the resolvent estimate (H3) we need.

The case B2 = 0. In this case, we observe that

B4tz = BR4tz, where R4t =

Ç
A

1/2
0 A

−1/2
0,4t 0

0 A
1/2
0 A

−1/2
0,4t

å
= AA−1

4t.

Note that the operator R4t commutes with A4t, maps Cδ/4t into itself, and is
invertible. Then, applying (3.43) to R4tz, we obtain that

C2
δ,εM

2
∥∥∥R4t(A4t − iω)z∥∥∥2

X
+m2 ‖B4tz‖2Y ≥ ‖R4tz‖

2
X ,

∀ z ∈ Cδ/4t, ω ∈ lR. (3.45)

We now compute explicitly the norm of R4t and R−1
4t in the class Cδ/4t. Since

A0A
−1
0,4t = 1 + (β − 1/4)(4t)2A0,

one easily checks that

‖R4t‖2δ = 1 + (β − 1/4)δ2,
∥∥∥R−1
4t

∥∥∥2

δ
= 1, (3.46)

where ‖·‖δ denotes the operator norm from Cδ/4t into itself. Applying (3.46) into
(3.45), we obtain

C2
δ,εM

2
(

1 + (β − 1/4)δ2
)∥∥∥(A4t − iω)z∥∥∥2

X
+m2 ‖B4tz‖2Y ≥ ‖z‖

2
X ,

∀ z ∈ Cδ/4t, ω ∈ lR. (3.47)

Thus, in both cases, we can apply Theorem 1.3, which gives the existence
of a time Tδ,ε such that for T > Tδ,ε, there exists a positive kT,δ such that any
solution of (3.36) with initial data z1/2 ∈ Cδ/4t satisfies

kT,δ

∥∥∥z1/2
∥∥∥2

X
≤
T/4t∑
k=0

∥∥∥B4tzk+1/2
∥∥∥2

Y
.

Besides, the estimates of Theorem 1.3 allow to estimate the observability time Tδ,ε:

Tδ,ε =



π
[
(1 + βδ2)2 (1 + (β − 1/4)(δ + ε)2)3

1 + (β − 1/4)δ2
M2 +m2C2

B,1

δ

16

4]1/2
,

if B2 = 0,

π
[
(1 + βδ2)2 (1 + (β − 1/4)(δ + ε)2)3

(1 + (β − 1/4)δ2)2
M2 +m2C2

B,2

δ4

16

]1/2
,

if B1 = 0.

Letting ε→ 0, we obtain the estimates (3.30)-(3.31).
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To complete the proof we check that if the initial data z1/2 is taken within
the class Cδ/4t, the solution of (3.26) satisfies∥∥∥z1/2

∥∥∥2

X
=
∥∥∥zk+1/2

∥∥∥2

X
≥ 2

1 + (β − 1/4)δ2
Ek+1/2,

which can be deduced from the explicit expression of the energy (3.27) and the
formula (3.35). ♦

4. Applications

4.1. Application of Theorem 2.1

4.1.1. Boundary observation of the Schrödinger equation. The goal of this subsec-
tion is to present a straightforward application of Theorem 2.1 to the observability
properties of the Schrödinger equation based on the results in [13].

Let Ω ⊂ lRn be a smooth bounded domain. Consider the equationß
iut = ∆xu, (t, x) ∈ (0, T )× Ω,
u(0) = u0, x ∈ Ω, u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω. (4.1)

where u0 ∈ L2(Ω) is the initial data. Equation (4.1) obviously has the form (1.1)
with A = −i∆x of domain D(A) = H1

0 (Ω) ∩H2(Ω).
Let Γ0 ⊂ ∂Ω be an open subset of ∂Ω and define the output

y(t) =
∂u(t)
∂ν

∣∣∣
Γ0

.

Using Sobolev’s embedding theorems, one can easily check that this defines a
continuous observation operator B from D(A) to L2(Γ0).

Let us assume that Γ0 satisfies in some time T the Geometric Control Condi-
tion (GCC) introduced in [1], which asserts that all the rays of Geometric Optics in
Ω touch the sub-boundary Γ0 in a time smaller than T . In this case, the following
observability result is known ([13]) :

Theorem 4.1. For any T > 0, there exist positive constants kT > 0 and KT > 0
such that for any u0 ∈ L2(Ω), the solution of (4.1) satisfies

kT ‖u0‖2L2(Ω) ≤
∫ T

0

∫
Γ0

∣∣∣∂u(t)
∂ν

∣∣∣2 dΓ0dt ≤ KT ‖u0‖2L2(Ω) . (4.2)

We introduce the following time semi-discretization of system (4.1):
i
uk+1 − uk

4t
= ∆x

(uk+1 + uk

2

)
, x ∈ Ω, k ∈ N

uk(x) = 0, x ∈ ∂Ω, k ∈ N
u0(x) = u0(x), x ∈ Ω,

(4.3)

that we observe through

yk =
∂uk

∂ν

∣∣∣
Γ0

.
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Then Theorem 2.1 implies the following result:

Theorem 4.2. For any δ > 0, there exists a time Tδ such that for any time T > Tδ,
there exists a positive constant kT,δ > 0 such that for 4t small enough, the solution
of (4.3) satisfies

kT ‖u0‖2L2(Ω) ≤ 4t
∑

k∈(0,T/4t)

∫
Γ0

∣∣∣∂uk
∂ν

∣∣∣2 dΓ0 (4.4)

for any u0 ∈ Cδ/4t.

Note that we do not know if inequality (4.4) holds in any time T > 0 as in
the continuous case (see (4.2)). This quesion is still open.

Remark 4.3. Note that in the present section, we do not state any admissibility
result for the time-discrete systems under consideration. However, uniform (with
respect to 4t > 0) admissibility results hold for all the examples presented in this
article. These results will be derived in Section 6 using the admissibility property
of the continuous system (1.1)-(1.2).

4.1.2. Boundary observation of the linearized KdV equation. We now present an
application of Theorem 2.1 to the boundary observability of the linear KdV equa-
tion.

We consider the following initial-value boundary problem for the KdV equa-
tion: 

ut + uxxx = 0, (t, x) ∈ (0, T )× (0, 2π),
u(t, 0) = u(t, 2π), t ∈ (0, T ),
ux(t, 0) = ux(t, 2π), t ∈ (0, T ),
uxx(t, 0) = uxx(t, 2π), t ∈ (0, T ),
u(0, x) = u0(x), x ∈ (0, 2π).

(4.5)

For any integer k we set

Hk
p
4
=
{
u ∈ Hk(0, 2π); ∂jxu(0) = ∂jxu(2π) for 0 ≤ j ≤ k − 1

}
, (4.6)

where Hk(0, 2π) denotes the classical Sobolev spaces on the interval (0, 2π). The

initial data of (4.5) are taken in the space X
4
= H2

p (0, 2π), endowed with the
classical H2(0, 2π)-norm.

Let A denote the operator Au = −∂3
xu with domain D(A) = H5

p . As shown in
[23], A is a skew-adjoint operator with compact resolvent. Moreover, its spectrum
is given by σ(A) = {iµj with µj = j3, j ∈ Z}. The output function y(t) and the
corresponding operator B : D(A) −→ Y is given by

y(t)
4
= Bu(t) =

Ñ
u(t, 0)
ux(t, 0)
uxx(t, 0)

é
,

with the norm ‖Bu‖2Y = |u(0)|2 + |ux(0)|2 + |uxx(0)|2. Note that B ∈ L(H5
p , lR

3).
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The following observability inequality for system (4.5) is well-known (Prop.
2.2 of [22]):

Lemma 4.4. Let T > 0. Then there exist positive numbers kT and KT such that
for every u0 ∈ H2

p (0, 2π),

kT ‖u0‖2H2
p
≤
∫ T

0

(
|u(t, 0)|2 + |ux(t, 0)|2 + |uxx(t, 0)|2

)
dt ≤ KT ‖u0‖2H2

p
. (4.7)

We now introduce the following time semi-discretization of system (4.5):

uk+1 − uk

4t
+
uk+1
xxx + ukxxx

2
= 0, x ∈ (0, 2π), k ∈ N

uk(0) = uk(2π), k ∈ N
ukx(0) = ukx(2π), k ∈ N
ukxx(0) = ukxx(2π), k ∈ N
u0(x) = u0(x), x ∈ (0, 2π).

(4.8)

It is easy to show that the eigenfunctions of A are given by {Φj = eijx}j∈Z
with the corresponding eigenvalues {ij3}j∈Z. Hence, for any δ > 0, we have

Cδ/4t = span {Φj , j3 ≤ δ/4t}. (4.9)

As a direct consequence of Theorem 2.1 we have the following uniform observability
result for system (4.8):

Theorem 4.5. For any δ > 0, there exists a time Tδ such that for any T > Tδ, there
exists a positive constant kT,δ > 0 such that for 4t small enough, the solution uk

of (4.8) satisfies

kT,δ ‖u0‖2H2
p
≤ 4t

∑
k4t∈(0,T )

(
|uk(0)|2 + |ukx(0)|2 + |ukxx(0)|2

)
, (4.10)

for any initial data u0 ∈ Cδ/4t.
As in Theorem 4.2, we do not know if the observability estimate (4.10) holds

in any time T > 0 as in the continuous case (see Lemma 4.4).

4.2. Application of Theorem 3.1

Let us present an application of Theorem 3.1 to the so-called fourth order Gauss
method discretization of equation (1.1) (see for instance [8]-[9]). This fourth order
Gauss method is a special case of the Runge-Kutta time approximation schemes,
which corresponds to the only conservative scheme within this class.

Consider the following discrete system:
κi = A

(
zk +4t

2∑
j=1

αijκi

)
, i = 1, 2,

zk+1 = zk +
4t
2

(κ1 + κ2),

z0 ∈ Cδ/4t given,
(αij) =

( 1
4

1
4 −

√
3

6
1
4 +

√
3

6
1
4

)
.

(4.11)
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The scheme is unstable for the eigenfunctions corresponding to the eigenvalues
µj such that µj4t ≥ 2

√
3 ([8]-[9]). Thus we immediately impose the following

restriction on the filtering parameter :

δ < 2
√

3.

To use Theorem 3.1, we only need to check the behavior of the semi-discrete scheme
(4.11) on the eigenvectors. If z0 = Φj , an easy computation shows that

z1 = exp(i`j4t)z0,

where

`j =
2
4t

arctan
( µj4t

2− (µj4t)2/6

)
. (4.12)

In other words, `j4t = h(µj4t), where

h(η) = 2 arctan
( η

2− η2/6

)
.

Then, a simple application of Theorem 3.1 gives :

Theorem 4.6. Assume that B is an observation operator such that (A,B) satisfy
(1.5) and B ∈ L(D(A), Y ).

For any δ ∈ (0, 2
√

3), there exists a time Tδ > 0 such that for any T > Tδ,
there exists 4t0 > 0 such that for all 0 < 4t < 4t0, there exists a constant
kT,δ > 0, independent of 4t, such that the solutions of system (4.11) satisfy

kT,δ
∥∥z0
∥∥2

X
≤ 4t

∑
k∈(0,T/4t)

∥∥∥Bzk∥∥∥2

Y
, ∀ z0 ∈ Cδ/4t. (4.13)

Note that Theorem 3.1 also provides an estimate on Tδ by using (3.6).
In particular, this provides another possible time-discretization of (4.5), for

which the observability inequality holds uniformly in 4t provided the initial data
are taken in Cδ/4t, with δ < 2

√
3, where Cδ/4t is as in (4.9).

4.3. Application of Theorem 3.2

There are plenty of applications of Theorem 3.2. We present here an application
to the boundary observability of the wave equation.

Consider a smooth nonempty open bounded domain Ω ⊂ lRd and let Γ0 be
an open subset of ∂Ω. We consider the following initial boundary value problem:

utt −∆xu = 0, x ∈ Ω, t ≥ 0,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0, ut(x, 0) = v0, x ∈ Ω

(4.14)

with the output

y(t) =
∂u

∂ν

∣∣∣
Γ0

. (4.15)
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This system is conservative and the energy of (4.14)

E(t) =
1
2

∫
Ω

[
|ut(t, x)|2 + |∇u(t, x)|2

]
dx, (4.16)

remains constant, i.e.
E(t) = E(0), ∀ t ∈ [0, T ]. (4.17)

The boundary observability property for system (4.14) is as follows: For some
constant C = C(T,Ω,Γ0) > 0, solutions of (4.14) satisfy

E(0) ≤ C
∫ T

0

∫
Γ0

∣∣∣∂u
∂ν

∣∣∣2dΓ0dt, ∀ (u0, v0) ∈ H1
0 (Ω)× L2(Ω). (4.18)

Note that this inequality holds true for all triplets (T,Ω,Γ0) satisfying the Geo-
metric Control Condition (GCC) introduced in [1], see Subsection 4.1.1. In this
case, (4.18) is established by means of micro-local analysis tools (see [1]). From
now, we assume this condition to hold.

We then introduce the following time semi-discretization of (4.14):

uk+1 + uk−1 − 2uk

(4t)2
=∆x

(
βuk+1 + (1− 2β)uk + βuk−1

)
, in Ω× Z,

uk = 0, in ∂Ω× Z,(u0 + u1

2
,
u1 − u0

4t

)
= (u0, v0) ∈ H1

0 (Ω)× L2(Ω),

(4.19)

where β is a given parameter satisfying β ≥ 1
4 .

The output functions yk are given by

yk =
∂uk

∂ν

∣∣∣
Γ0

. (4.20)

System (4.14)–(4.15) (or system (4.19)–(4.20)) can be written in the form
(1.18) (or (3.26)) with observation operator (3.20) by setting:

H = L2(Ω), D(A0) = H2(Ω) ∩H1
0 (Ω), Y = L2(Γ0),

A0ϕ = −∆xϕ ∀ϕ ∈ D(A0),

B1ϕ =
∂ϕ

∂ν

∣∣∣
Γ0

, ϕ ∈ D(A0).

One can easily check that A0 is self-adjoint in H, positive and boundedly invertible
and

D(A1/2
0 ) = H1

0 (Ω), D(A1/2
0 )∗ = H−1(Ω).

Proposition 4.7. With the above notation, B1 ∈ L(D(A0), Y ) is an admissible
observation operator, i.e. for all T > 0 there exists a constant KT > 0 such that:
If u satisfies (4.14) then∫ T

0

∫
Γ0

∣∣∣∂u
∂ν

∣∣∣2dΓ0dt ≤ KT

(
‖u0‖2H1

0 (Ω) + ‖v0‖2L2(Ω)

)
for all (u0, v0) ∈ H1

0 (Ω)× L2(Ω).
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The above proposition is classical (see, for instance, p. 44 of [15]), so we skip
the proof.

Hence we are in the position to give the following theorem:

Theorem 4.8. Set β ≥ 1/4.
For any δ > 0, system (4.19) is uniformly observable with (u0, v0) ∈ Cδ/4t.

More precisely, there exists Tδ, such that for any T > Tδ, there exists a positive
constant kT,δ independent of 4t, such that for 4t > 0 small enough, the solutions
of system (4.19) satisfy

kT,δ

(
‖Ou0‖2 + ‖v0‖2

)
≤ 4t

∑
k∈(0,T/4t)

∫
Γ0

∣∣∣∂uk
∂ν

∣∣∣2dΓ0, (4.21)

for any (u0, v0) ∈ Cδ/4t.

Proof. The scheme proposed here is a Newmark discretization. Hence this result
is a direct consequence of Theorem 3.1. ♦

Remark 4.9. One can use Fourier analysis and microlocal tools to discuss the
optimality of the filtering condition as in [27]. The symbol of the operator in
(4.19), that can be obtained by taking the Fourier transform of the differential
operator in space-time is of the form (see for instance [16])

4
4t2

sin2
(τ4t

2

)
−
∣∣∣ξ∣∣∣2(1− 4β sin2

(τ4t
2

))
.

Note that this symbol is not hyperbolic in the whole range (τ, ξ) ∈ (−π/4t, π/4t)×
lRn. However, the Fourier transform of any solution of (4.19) is supported in the
set of (τ, ξ) satisfying 1− 4β sin2(τ4t/2) > 0, where the symbol is hyperbolic.

As in the continuous case, one expects the optimal observability time to
be the time needed by all the rays to meet Γ0. Along the bicharacteristic rays
associated to this hamiltonian the following identity holds

|τ | = 2
4t

arctan

(
|ξ|4t

2
1√

1 + (β − 1/4)|ξ|2(4t)2

)
.

These rays are straight lines as in the continuous case, but their velocity is not
1 anymore. Indeed, one can prove that along the rays corresponding to |ξ| < δ/4t,
the velocity of propagation is given by∣∣∣dx

dt

∣∣∣ =
1

1 + β(|ξ|4t)2

1√
1 + (β − 1/4)(ξ4t)2

≥ 1
(1 + βδ2)

√
1 + (β − 1/4)δ2

.

In other words, in the class Cδ/4t, the velocity of propagation of the rays concen-
trated in frequency around δ/4t is (1+δ2/4)−1 times that of the continuous wave
equation. Therefore we expect the optimal observability time T ∗δ in the class Cδ/4t
to be

T ∗δ = T ∗0 (1 + βδ2)
…

1 +
(
β − 1

4

)
δ2, (4.22)
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where T ∗0 is the optimal observability time for the continuous system. According
to this, the estimate Tδ,2 in (3.31) on the time of observability has the good growth
rate when δ →∞. Besides, when δ goes to ∞, we have that

Tδ,2 ' πM(1 + βδ2)
…

1 +
(
β − 1

4

)
δ2. (4.23)

Recall that πM = T0 is the time of observability that the resolvent estimate (1.5)
in the continuous setting yields (see [17]). The similarity between (4.22) and (4.23)
indicates that the resolvent method accurately measures the group velocity.

Note however that πM is not the expected sharp observability time T ∗0 in
(4.22) in the continuous setting. This is one of the drawbacks of the method based
on the resolvent estimates we use in this paper. Even at the continuous level
the observability time one gets this way is far from being the optimal one that
Geometric Optics yields.

5. Fully discrete schemes

5.1. Main statement

In this section, we deal with the observability properties for time-discretization
systems such as (1.1)-(1.2) depending on an extra parameter, for instance the
space mesh-size, or the size of the microstructure in homogenization.

To this end, it is convenient to introduce the following class of operators:

Definition 5.1. For any (m,M,CB) ∈ (lR∗+)3, we define C(m,M,CB) as the class
of operators (A,B) satisfying:
(A1) The operator A is skew-adjoint on some Hilbert space X, and has a compact

resolvent.
(A2) The operator B is defined from D(A) with values in a Hilbert space Y , and

satisfies (2.1) with CB .
(A3) The pair of operators (A,B) satisfies the resolvent estimate (1.5) with con-

stants m and M .

In this class, Theorems 2.1-3.1-3.2 apply and provide uniform observability
results for any of the time semi-discrete approximation schemes (1.6)-(1.7), (1.17),
and (1.18). Indeed, this can be deduced by the explicit form of the constants Tδ
and kT,δ which only depend on m,M and CB . Note that this definition does not
depend on the spaces X and Y .

When considering families of pairs of operators (A,B), it is not easy, in
general, to show that they belong to the same class C(m,M,CB) for some choice
of the constants (m,M,CB). Indeed, item (A3) is not obvious in general. Therefore,
in the sequel, we define another class included in some C(m,M,CB) and that is
easier to handle in practice.

Definition 5.2. For any (CB , T, kT ,KT ) ∈ (lR∗+)4, we define D(CB , T, kT ,KT ) as
the class of operators (A,B) satisfying (A1), (A2) and:
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(B1) The admissibility inequality∫ T

0

∥∥B exp(tA)z0
∥∥2

Y
dt ≤ KT

∥∥z0
∥∥2

X
, (5.1)

where exp(tA) stands for the semigroup associated to the equation

ż = Az, z(0) = z0 ∈ X. (5.2)

(B2) The observability inequality

kT
∥∥z0
∥∥2

X
≤
∫ T

0

∥∥B exp(tA)z0
∥∥2

Y
dt. (5.3)

As we will see below, assumptions (B1)-(B2) imply (A3):

Lemma 5.3. If the pair (A,B) belongs to D(CB , T, kT ,Kt), then there exist m and
M such that (A,B) ∈ C(m,M,CB).

Besides m and M can be chosen as

m =

 
2T
kT

, M = T

 
KT

2kT
. (5.4)

Proof. We only need to prove (A3). This is actually already done in [17] or in
[25]. Indeed, it was proved that once the admissibility inequality (1.3) and the
observability inequality (1.4) hold for some time T , then the resolvent estimate
(1.5) hold with m and M as in (5.4).♦

Note that assumptions (B1)-(B2) are related to the continuous systems (5.2).
Now we consider a sequence of operators (Ap, Bp) depending on a param-

eter p ∈ P , which are in some L(Xp) × L(D(Ap), Yp) for each p, where Xp and
Yp are Hilbert spaces. We want to address the observability problem for a time-
discretization scheme of

ż = Apz, z(0) = z0 ∈ Xp, y(t) = Bpz(t) ∈ Yp. (5.5)

In applications, we need the observability to be uniform in both p ∈ P and
4t > 0 small enough. The previous analysis and the properties of the class
D(CB , T, kT ,KT ) suggest the following two-steps strategy:

1. Study the continuous system (5.5) for every parameter p and prove the uni-
form admissibility (5.1) and observability (5.3).

2. Apply one of the Theorems 2.1, 3.1 and 3.2 to obtain uniform observability
estimates (1.8) for the corresponding time-discrete approximation schemes.

This allows dealing with fully discrete approximation schemes. In that setting
the parameter p is actually the standard parameter h > 0 associated with the
space mesh-size. In this way one can use automatically the existing results for
space semi-discretizations as, for instance, [3], [6], [7], [10], [19], [20], [28] and [29],
etc.
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5.2. Applications

5.2.1. The fully discrete wave equation. Let us consider the wave equation (4.14)
in a 2-d square. More precisely, let Ω = (0, π)× (0, π) ⊂ lR2 and Γ0 be a subset of
the boundary of Ω constituted by two consecutive sides, for instance,

Γ0 = {(x1, π) : x1 ∈ (0, π)} ∪ {(π, x2) : x2 ∈ (0, π)} 4= Γ1 ∪ Γ2.

As in (4.15), the output function y(t) = Bu(t) is given by

Bu =
∂u

∂ν

∣∣∣
Γ0

=
∂

∂x2
u(x1, π)

∣∣∣
Γ1

+
∂

∂x1
u(π, x2)

∣∣∣
Γ2

.

Let us first consider the finite-difference semi-discretization of (4.14). The
following can be found in [28]. Given J,K ∈ lN we set

h1 =
π

J + 1
, h2 =

π

K + 1
. (5.6)

We denote by ujk(t) the approximation of the solution u of (4.14) at the point
xjk = (jh1, kh2). The space semi-discrete approximation scheme of (4.14) is as
follows:

üjk −
uj+1k + uj−1k − 2ujk

h2
1

− ujk+1 + ujk−1 − 2ujk
h2

2

= 0

0 < t < T, j = 1, · · · , J ; k = 1, · · · ,K
ujk = 0, 0 < t < T, j = 0, J + 1; k = 0,K + 1
ujk(0) = ujk,0, u̇jk(0) = ujk,1, j = 1, · · · , J ; k = 1, · · · ,K.

(5.7)

System (5.7) is a system of JK linear differential equations. Moreover, if we
denote the unknown

U(t) = (u11(t), u21(t), · · · , uJ1(t), · · · , u1K(t), u2K(t), · · · , uJK(t))T ,

then system (5.7) can be rewritten in vector form as follows®
Ü(t) +A0,hU(t) = 0, 0 < t < T.

U(0) = Uh,0, U̇(0) = Uh,1,
(5.8)

where (Uh,0, Uh,1) = (ujk,0, ujk,1)1≤j≤J,1≤k≤K ∈ lR2JK are the initial data. The
corresponding solution of (5.7) is given by (Uh, U̇h) = (ujk, u̇jk)1≤j≤J,1≤k≤K . Note
that the entries of A0,h belonging to MJK(lR) may be easily deduced from (5.7).

As a discretization of the output, we choose

BhU =
((ujK

h2

)
j∈{1,··· ,J}

,
(uJk
h1

)
k∈{1,···K}

)
. (5.9)

The corresponding norm for the observation operator Bh is given by

‖BhU(t)‖2Yh = h1

J∑
j=1

∣∣∣ujK(t)
h2

∣∣∣2 + h2

K∑
k=1

∣∣∣uJk(t)
h1

∣∣∣2.
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Besides, the energy of the system (5.8) is given by

Eh(t) =
h1h2

2

J∑
j=0

K∑
k=0

(
|u̇jk(t)|2+

∣∣∣uj+1k(t)− ujk(t)
h1

∣∣∣2 +
∣∣∣ujk+1(t)− ujk(t)

h2

∣∣∣2). (5.10)

As in the continuous case, this quantity is constant.

Eh(t) = Eh(0), ∀ 0 < t < T.

In order to prove the uniform observability of (5.8), we have to filter the high
frequencies. To do that we consider the eigenvalue problem associated with (5.8):

A0,hϕ = λ2ϕ. (5.11)

As in the continuous case, it is easy to show that the eigenvalues λj,k,h1,h2 are
purely imaginary. Let us denote by ϕj,k,h1,h2 the corresponding eigenvectors.

Let us now introduce the following classes of solutions of (5.8) for any 0 <
γ < 1:

Ĉγ(h) = span {ϕj,k,h1,h2 such that |λj,k,h1,h2 |max(h1, h2) ≤ 2
√
γ}.

The following Lemma holds (see [28]):

Lemma 5.4. Let 0 < γ < 1. Then there exist Tγ such that for all T > Tγ there
exist kT,γ > 0 and KT,γ > 0 such that

kT,γEh(0) ≤
∫ T

0

‖BhU(t)‖2Yh dt ≤ KT,γEh(0) (5.12)

holds for every solution of (5.8) in the class Ĉγ(h) and every h1, h2 small enough
satisfying

sup
∣∣∣h1

h2

∣∣∣ <… γ

4− γ
.

Now we present the time discrete schemes we are interested in. For any 4t >
0, we consider the following time Newmark approximation scheme of system (5.8):

Uk+1 + Uk−1 − 2Uk

(4t)2
+A0,h

(
βUk+1 + (1− 2β)Uk + βUk−1

)
= 0,(U0 + U1

2
,
U1 − U0

4t

)
= (Uh,0, Uh,1),

(5.13)

with β ≥ 1/4.
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The energy of (5.13) given by

Ek =
1
2

∥∥∥∥A 1
2
0,h

(Uk + Uk+1

2

)∥∥∥∥2

+
1
2

∥∥∥∥Uk+1 − Uk

4t

∥∥∥∥2

+ (4β − 1)
(4t)2

8

∥∥∥∥A 1
2
0,h

(Uk+1 − Uk

4t

)∥∥∥∥2

, k ∈ Z (5.14)

which is a discrete counterpart of the time continuous energy (3.19) and remains
constant (see (3.27) as well).

In view of (5.12), conditions (B1) and (B2) are satisfied. Besides, conditions
(A1) and (A2) are straightforward. Therefore the following theorem can be ob-
tained as a direct consequence of Theorem 3.2:

Theorem 5.5. Set β ≥ 1/4. Set 0 < γ < 1. Assume that the mesh sizes h1, h2 and
4t tend to zero and

sup
∣∣∣h1

h2

∣∣∣ <… γ

4− γ
,

max{h1, h2}
4t

≤ τ, (5.15)

where τ is a positive constant.
Then, for any 0 < δ ≤ 2

√
γ/τ , there exist Tδ > 0 such that for any T > Tδ,

there exists kT,δ,γ > 0 such that the observability inequality

kT,δ,γE
k ≤ 4t

∑
k4t∈(0,T )

∥∥∥BhUk∥∥∥2

Yh

holds for every solution of (5.13) with initial data in the class Cδ/4t for h1, h2,4t
small enough satisfying (5.15).

Proof. We are in the setting given before and thus Lemma 5.3 applies. Hence, to
apply Theorem 3.1, we only need to verify that Cδ/4t ⊂ Ĉγ(h). But

|λ| < δ

4t
⇒ |λ| ≤ 2

√
γ

τ4t
≤ 2

√
γ

max{h1, h2}
.

and this completes the proof. ♦

5.2.2. The 1-d string with rapidly oscillating density. In this paragraph, we con-
sider a one-dimensional wave equation with rapidly oscillating density, which pro-
vides another example where the model under consideration depends on an extra
parameter.

Let us state the problem. Let ρ ∈ L∞(lR) be a periodic function such that
0 < ρm ≤ ρ(x) ≤ ρM < ∞, a.e. x ∈ lR. Given ε > 0, set ρε(x) = ρ(x/ε) and
consider the one-dimensional wave equation ρε(x)üε − ∂2

xxu
ε = 0, (x, t) ∈ (0, 1)× (0, T ),

uε(0, t) = uε(1, t) = 0, t ∈ (0, T ),
uε(x, 0) = u0(x), u̇ε(x, 0) = v0(x), x ∈ (0, 1).

(5.16)
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We consider the observation operator

Buε(t) = ∂xu
ε(1, t). (5.17)

The mathematical setting is the same as in Subsection 4.3 and therefore we do not
recall it.

The eigenvalue problem for (5.16) reads

ρε(x)λεnΦεn + ∂2
xxΦεn = 0, x ∈ (0, 1); Φεn(0) = Φεn(1) = 0. (5.18)

For each ε > 0, there exists a sequence of eigenvalues

0 < λε1 < λε2 < · · · < λεn < · · · → ∞

and a sequence of associated eigenfunctions (Φεn)n which can be chosen to consti-
tute an orthonormal basis in L2(0, 1) with respect to the norm

‖φ‖2L2 =
∫ 1

0

ρε(x)|φ(x)|2 dx.

In [4], the following is proved:

Theorem 5.6 ([4]). There exists a positive number D > 0, such that the following
holds:

Let T > 2
√
ρ̄, where ρ̄ denotes the mean value of ρ. Then there exist two

positive constants kT and KT such that for any initial data (u0, v0) in

C̃D/ε = span {Φεn : n < D/ε},

the solution uε of (5.16) verifies

kT ‖(u0, v0)‖2H1
0 (0,1)×L2(0,1) ≤

∫ T

0

|uεx(1, t)|2dt ≤ KT ‖(u0, v0)‖2H1
0 (0,1)×L2(0,1) .

Given β ≥ 1/4, let us consider the following time semi-discretization of (5.16)

ρε(x)
(uε,k+1 − 2uε,k + uε,k−1

(4t)2

)
− ∂2

xx

(
(1− 2β)uε,k + β(uε,k−1 + uε,k+1)

)
= 0,

(x, k) ∈ (0, 1)× lN, (5.19)

completed with the following boundary conditions and initial data uε,k(0) = uε,k(1) = 0, k ∈ lN,(uε,0 + uε,1

2

)
(x) = u0(x),

(uε,1 − uε,0
4t

)
(x) = v0(x), x ∈ (0, 1).

(5.20)
Since conditions (A1)-(A2)-(B1)-(B2) hold, we get the following result as a

consequence of Theorem 3.2:

Theorem 5.7. Let δ > 0 and β ≥ 1/4. Assume that the parameters 4t and ε tend
to zero.
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Then there exists a time Tδ such that for any T > Tδ, there exists a positive
constant kT,δ such that the observability inequality

kT,δ ‖(u0, v0)‖2H1
0 (0,1)×L2(0,1) ≤ 4t

∑
k4t∈(0,T )

|uε,kx (1)|2 (5.21)

holds for every solution of (5.19)-(5.20) with initial data (u0, v0) in the class
Cδ/4t ∩ C̃D/ε, independently of 4t and ε.

6. On the admissibility condition

The goal of this section is to provide admissibility results for the time-discrete
schemes used throughout the paper. These results are complementary to the ob-
servability results proved in Theorems 2.1, 3.1 and 3.2 when dealing with control-
lability problems (see [15]).

6.1. The time-continuous setting

Let us assume that system (1.1)-(1.2) is admissible. By definition, there exists a
positive constant KT such that :∫ T

0

‖y(t)‖2Y dt ≤ KT ‖z0‖2X ∀ z0 ∈ D(A). (6.1)

The goal of this section is to prove that this property can be read on the
wave packets setting as well.

Proposition 6.1. System (1.1)-(1.2) is admissible if and only if
There exists r > 0 and D > 0 such that

for all n ∈ Λ and for all z =
∑

l∈Jr(µn)

clΦl : ‖Bz‖Y ≤ D ‖z‖X , (6.2)

where
Jr(µ) = {l ∈ lN, such that |µl − µ| ≤ r}. (6.3)

Proof. We will prove separately the two implications.

First let us assume that system (1.1)-(1.2) is admissible.
Denote by

V (ω, ε) = span{Φj such that |µj − ω| ≤ ε}.
Then the following lemma holds:

Lemma 6.2. Let us define K(ω, ε) as

K(ω, ε) =
∥∥B(A− iωI)−1

∥∥
L(V (ω,ε)∗,Y )

.

Then for any ε > 0, K(ω, ε) is uniformly bounded in ω, that is

K(ε) = sup
ω∈lR

K(ω, ε) <∞. (6.4)
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Besides, the following estimate holds

K(ε) ≤
 

K1

1− exp(−1)

(
1 +

1
ε

)
, (6.5)

where K1 is the admissibility constant in (1.3).

Proof of Lemma 6.2.
Let us first notice these resolvent identities:

(A− iωI)− I = A− (1 + iω)I,
(A− (1 + iω)I)−1(I − (A− iωI)−1) = (A− iωI)−1.

Hence

K(ω, ε) ≤
∥∥B(A− (1 + iω)I)−1

∥∥
L(X,Y )

∥∥(I − (A− iωI)−1)
∥∥

L(V (ω,ε)∗,X)
.

Obviously ∥∥(I − (A− iωI)−1)
∥∥

L(V (ω,ε)∗,X)
≤ 1 +

1
ε

Hence we restrict ourselves to the study of∥∥B(A− (1 + iω)I)−1
∥∥

L(X,Y )
.

Let us remark that for all z =
∑
ajΦj ∈ X,

(A− (1 + iω)I)−1z =
∑ 1

i(µj − ω)− 1
ajΦj

=
∫ ∞

0

exp(−(1 + iω)t)z(t) dt,

where z(t) is the solution of (1.1) with initial value z. This implies that

∥∥B(A− (1 + iω)I)−1z
∥∥2

Y
=
∥∥∥∥∫ ∞

0

exp(−1− iωt)Bz(t) dt
∥∥∥∥2

Y

≤
∫ ∞

0

∣∣∣ exp(−1− 2iωt)
∣∣∣ dt (∫ ∞

0

exp(−t) ‖Bz(t)‖2Y dt
)

≤
∫ ∞

0

exp(−t) ‖Bz(t)‖2Y dt.

But using the admissibility property of the operator B, we obtain∫ ∞
0

exp(−t) ‖Bz(t)‖2Y dt ≤
∑
k∈lN

exp(−k)
∫ k+1

k

‖Bz(t)‖2Y dt

≤
(∑
k∈lN

exp(−k)
)
K1 ‖z‖2X

≤ K1

1− exp(−1)
‖z‖2X .

The estimate (6.5) follows.♦
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Let us now consider a wave packet z0 =
∑
l∈J1(µn) clΦl. Then taking ε = 1

in Lemma 6.2, one gets that

‖Bz‖Y ≤
∥∥B(A− i(µn − 2)I)−1

∥∥
L(V (µn−2,1)∗,Y )

‖(A− i(µn − 2)I)z‖

≤ K(1)
(

maxl∈J1(µn)|µl − µn|+ 1
)
‖z‖

≤ 3K(1) ‖z‖ .

Now we assume that estimate (6.2) holds for some r > 0 and D > 0. Set
z0 ∈ D(A), and expand z0 as

z0 =
∑
k∈Z

zk, zk =
∑

l∈Jr(2kr)

clΦl.

We need a special test function whose existence is established in the following
Lemma:

Lemma 6.3. There exists a time T and a function M satisfying
M(t) ≥ 0, |t| ≥ T/2,
M(t) ≥ 1, |t| ≤ T/2,
Supp M̂ ⊆ (−2r, 2r).

(6.6)

The proof is postponed to the end of this section. Note that functions sat-
isfying similar properties appear naturally in the proofs of various Ingham’s type
inequalities, see [11] and [25].

Taking Lemma 6.3 into account, we estimate∫ T

0

‖Bz(t)‖2Y ≤
∫

lR

M(t− T/2) ‖Bz(t)‖2Y dt

≤
∑
k1,k2

∫
lR

M(t− T/2) < Bzk1(t), Bzk2(t) >Y×Y dt.

But these scalar products vanish most of the time. Indeed, if |k1 − k2| ≥ 2, from
(6.6), we get

∫
lR

M(t− T/2) < Bzk1(t), Bzk2(t) >Y dt

=
∑

(l1,l2)∈Jr(2k1r)×Jr(2k2r)

M̂(µl1 − µl2) < al1BΦl1 , al2BΦl2 >Y = 0.
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This implies that∫ T

0

‖Bz(t)‖2Y≤
∫

lR

M(t− T/2)
∑
k

(
‖Bzk(t)‖2Y + 2Re < Bzk(t), Bzk+1(t) >Y×Y

)
dt

≤ 3
∫

lR

M(t− T/2)
∑
k

‖Bzk(t)‖2Y dt

≤ 3D
∫

lR

M(t− T/2)
∑
k

‖zk(t)‖2X dt

≤ 3DM̂(0) ‖z0‖2X .
This completes the proof, since admissibility at time T is obviously equivalent to
admissibility in any time.♦

Proof of Lemma 6.3.
In this proof, we do not care about the value of the parameters r and T that

can be handled through a scaling argument.
Let us consider the function

f(t) =
1
π

sinc(t) =
sin(t)
πt

.

It is well-known that its Fourier transform is f̂(τ) = χ(−1,1)(τ), where χ(−1,1)

denotes the characteristic function of (−1, 1).
Hence, the function

M(t) = f(t)2 =
sinc2(t)
π2

satisfies the following properties

M(t) ≥ 2
π3
, |t| < π

4
; M(t) ≥ 0, t ∈ lR; M̂(τ) = (2− |τ |)+, τ ∈ lR

and the proof is complete. For instance, for r > 0, one can take the function Mr(t)
as

Mr(t) =
π2

8
sinc2(rt) (6.7)

which satisfies (6.6) with T = π/2r. ♦

Remark 6.4. In the context of families of pairs (A,B), according to Proposition 6.1,
the uniform admissibility condition (5.1) is equivalent to a uniform wave packet
estimate similar to (6.2). To be more precise, if (Φpj )j∈lN denotes the eigenvectors
of Ap associated to the eigenvalues (λpj )j∈lN, that is ApΦ

p
j = λpjΦ

p
j , the uniform

admissibility condition is equivalent to:
There exists r > 0 and D > 0 such that for all p, n ∈ lN

and for all z =
∑

l∈Jr(λpn)

clΦ
p
l : ‖Bpz‖Yp ≤ D ‖z‖Xp .
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6.2. The time-discrete setting

This subsection is aimed to prove that if the continuous system (1.1)-(1.2) is
admissible, in the sense of Definition 1.1, then its time semi-discrete approximation
will be admissible as well under suitable assumptions. In this part, we will focus
on the particular discretization given in Subsection 3.1, but everything works as
well in all the time semi-discretization schemes considered in the article.

More precisely, we assume that the continuous system (1.1)-(1.2) is admissi-
ble, that is, from Proposition 6.1, the wave packet estimate (6.2) holds.

Then we claim that, under the assumptions (1.17), (3.1), (3.2), (3.3) and
(3.4), the following discrete admissibility inequality holds:

Theorem 6.5. Assume that system (1.1)-(1.2) is admissible. Set δ > 0. For any
T > 0, there exists a constant KT,δ > 0 such that for all 4t small enough, the
solution of equation (1.17) with initial data in Cδ/4t satisfies

4t
T/4t∑
k=0

∥∥∥Bzk∥∥∥2

Y
≤ KT,δ

∥∥z0
∥∥2

X
. (6.8)

Proof. The proof follows the one given in the continuous case. First of all, let us
remark the following straightforward fact: There exists rδ > 0 such that for all
n ∈ Z satisfying 4t|λn,4t| ≤ δ, for all 4t > 0, the set

J̃rδ(λn,4t) = {l ∈ Z, such that |λl,4t − λn,4t| ≤ rd},
where λl,4t is as in (3.2), is a subset of Jr(µn) (recall (6.3)). Besides, one can take:

rδ = r inf{|h′(η)|, |η| ≤ δ}.
Note that condition (3.3) implies the positivity of the right hand side.

Given 4t > 0, assume that there is a time T and a function M4t ∈ l2(4tZ)
such that 

M4t,k ≥ 0, |k4t| ≥ T/2,
M4t,k ≥ 1, |t| ≤ T/2,
Supp M̂4t ⊆ (−2rδ, 2rδ),

(6.9)

where this time M̂4t denotes the discrete Fourier transform at scale 4t defined in
Definition 2.3. One can easily check that we can take M4t = Mrδ for all 4t > 0
where Mrδ is as in (6.7).

With this definition, the proof of inequality (6.8) consists in rewriting the
one of Proposition 6.1 by replacing the continuous integrals and the Fourier trans-
form by their discrete versions. Since all the steps are independent of 4t, the
admissibility inequality holds uniformly. ♦

Note that this proof can be applied to derive uniform admissibility results for
families of operators (A,B) within the class D(CB , T, kT ,KT ) for the fully discrete
schemes. Indeed, in the setting of Section 5, according to Remark 6.4, the proof
presented above directly implies uniform admissibility properties for operators in
the class D(CB , T, kT ,KT ) when the initial data are taken in the filtered class
Cδ/4t.
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7. Further comments and open problems

1. The resolvent estimate is a useful tool to analyze time-discrete approxi-
mation schemes, as we have seen in this paper. However, although this method
is quite robust, it does not allow to deal with observability inequalities with loss,
arising, for instance, when dealing with networks (see [5], Chapter 4) or for the
wave equation in the absence of the Geometric Control Conditions (see [12], [14]).
In those cases one only needs a weaker version of the observability inequality (1.4),
in which the observed norm is weaker than ‖·‖X . Actually, this question is also
open at the continuous level.

2. As said in Remark 4.9, we are not able to recover the optimal value of the
time of observability for systems (1.1)–(1.2) and their time-discrete approximation
schemes. This is a drawback of the method based on the resolvent estimate. Indeed,
even in the continuous setting, to our knowledge, this method does not allow to
recover the optimal time of observability.

3. There are several different methods to derive uniform observability in-
equalities for systems (4.19). In [27], a discrete multiplier technique is developed
to derive the uniform observability of the time semi-discrete wave equation in a
bounded domain. There, the same order of filtering parameter δ/(4t) is attained
but a smallness condition on δ is imposed. Theorem 3.2 generalizes this result to
any δ > 0, as the dispersion diagram analysis in [27] suggests.

4. Along the paper, we derived uniform observability inequalities and admis-
sibility results for time-discretization schemes of abstract first order and second
order (in time) systems. As it is well-known in controllability theory, they imply
uniform controllability results as well. For instance, in the context of the time-
discrete wave equation analyzed in [27], combining the duality arguments in it
and the results of this paper, one can immediately deduce the uniform (with re-
spect to4t > 0) controllability of projections on the classes of filtered space Cδ/4t,
for T > Tδ large enough and δ > 0 arbitrary. This improves the results in [27] that
required the filtering parameter δ > 0 to be small enough.

The same duality arguments combined with the uniform observability and
admissibility results we have presented in this paper allow proving uniform con-
trollability results in a number of other cases including the time-discrete KdV and
Schrödinger equations, the fully discrete wave equation, the time-discretization of
wave equations with rapidly oscillating coefficients, etc.
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Laboratoire de Mathématiques de Versailles,
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