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Abstract

We consider time semi-discrete approximations of a class of exponen-
tially stable infinite dimensional systems modeling, for instance, damped
vibrations. It has recently been proved that for time semi-discrete sys-
tems, due to high frequency spurious components, the exponential decay
property may be lost as the time step tends to zero. We prove that adding
a suitable numerical viscosity term in the numerical scheme, one obtains
approximations that are uniformly exponentially stable. This result is
then combined with previous ones on space semi-discretizations to derive
similar results on fully-discrete approximation schemes. Our method is
mainly based on a decoupling argument of low and high frequencies, the
low frequency observability property for time semi-discrete approxima-
tions of conservative linear systems and the dissipativity of the numerical
viscosity on the high frequency components. Our methods also allow to
deal directly with stabilization properties of fully discrete approximation
schemes without numerical viscosity, under a suitable CFL type condition
on the time and space discretization parameters.

Résumé

Nous étudions diverses discrétisations en temps de systèmes de dimen-
sion infinie intervenant dans la modélisation de systèmes amortis. Récem-
ment, il a été prouvé que les systèmes semi-discrétisés en temps peuvent ne
pas satisfaire des propriétés de décroissance exponentielle de l’énergie, uni-
formémement en le pas de temps, à cause de hautes fréquences parasites.
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Nous prouvons que l’addition d’une viscosité numérique permet de réta-
blir ces propriétés de décroissance de l’énergie. Notre méthode, combinée
avec les résultats existants sur les discrétisations spatiales, nous permet
d’étendre notre étude aux cas de schémas numériques totalement discré-
tisés. Nous nous basons principalement sur un découplage des basses et
hautes fréquences, l’observabilité des basses fréquences pour des systèmes
discrétisés en temps, et la dissipativité introduite par la viscosité numé-
rique pour les hautes fréquences. Notre méthode s’adapte aussi à l’étude
directe de schémas numériques totalement discrétisés, sans viscosité nu-
mérique, mais avec une condition CFL sur les paramètres de discrétisation
en temps et en espace.

1 Introduction
Let X and Y be Hilbert spaces endowed with the norms ‖·‖X and ‖·‖Y

respectively. Let A : D(A) ⊂ X → X be a skew-adjoint operator with compact
resolvent and B ∈ L(X,Y ).

We consider the system described by

ż = Az −B∗Bz, t ≥ 0, z(0) = z0 ∈ X. (1.1)

Here and henceforth, a dot (˙) denotes differentiation with respect to time t.
The element z0 ∈ X is the initial state, and z(t) is the state of the system.

Most of the linear equations modeling the damped vibrations of elastic struc-
tures can be written in the form (1.1). Some other relevant models, as the
damped Schrödinger equations, fit in this setting as well.

We define the energy of the solutions of system (1.1) by

E(t) =
1
2
‖z(t)‖2X , t ≥ 0, (1.2)

which satisfies
dE

dt
(t) = −‖Bz(t)‖2Y , t ≥ 0. (1.3)

In this paper, we assume that system (1.1) is exponentially stable, that is
there exist positive constants µ and ν such that any solution of (1.1) satisfies

E(t) ≤ µ E(0) exp(−νt), t ≥ 0. (1.4)

Our goal is to develop a theory allowing to get, as a consequence of (1.4),
exponential stability results for time-discrete systems.

We start considering the following natural time-discretization scheme for the
continuous system (1.1). For any 4t > 0, we denote by zk the approximation
of the solution z of system (1.1) at time tk = k4t, for k ∈ lN, and introduce the
following implicit midpoint time discretization of system (1.1): zk+1 − zk

4t
= A

(zk + zk+1

2

)
−B∗B

(zk + zk+1

2

)
, k ∈ lN,

z0 = z0.
(1.5)
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As in (1.2), we can define the discrete energy by

Ek =
1
2

∥∥zk∥∥2

X
, k ∈ lN, (1.6)

that satisfies the dissipation law

Ek+1 − Ek

4t
= −

∥∥∥∥B(zk + zk+1

2

)∥∥∥∥2

Y

, k ∈ lN. (1.7)

The results in [28], in the context of the conservative wave equation, which is a
particular instance of (1.1) with B = 0, show that we cannot expect in general
to find positive constants µ0 and ν0 such that

Ek ≤ µ0 E
0 exp(−ν0k4t), k ∈ lN, (1.8)

holds for any solution of (1.9) uniformly with respect to 4t > 0. Indeed, it was
proved in [28] that spurious high-frequency modes may arise when discretizing in
time the wave equation, which propagate with an arbitrarily small velocity and
that, when the operator B is localized somewhere in the domain where waves
propagate, cannot be observed uniformly with respect to 4t. This constitutes
an obstruction to the stabilization property (1.8) as well.

Therefore, in order to get a uniform decay, it seems natural to add in system
(1.5) a suitable extra numerical viscosity term to damp these high-frequency
spurious components. When doing it at the right scale, the new system we
obtain is as follows

z̃k+1 − zk

4t
= A

(zk + z̃k+1

2

)
−B∗B

(zk + z̃k+1

2

)
, k ∈ lN,

zk+1 − z̃k+1

4t
= (4t)2A2zk+1, k ∈ lN,

z0 = z0.

(1.9)

This system introduces, indeed, numerical viscosity at the right scale since the
spurious high-frequency modes arising in [28] precisely correspond to solutions
for which (4t)A is of unit order or more.

Let us also remark that system (1.9) can be rewritten as

zk+1 − zk

4t
= A

(zk + zk+1

2

)
−B∗B

(zk + zk+1

2

)
+ (4t)2A2zk+1

− (4t)3

2
A3zk+1 +

(4t)3

2
B∗BA2zk+1, (1.10)

which is consistent with system (1.1).
To motivate system (1.9), one can compare it with the time continuous

system
ż = Az −B∗Bz + (4t)2A2z, (1.11)
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which generates the semigroup S(t) = exp(t(A − B∗B + (4t)2A2)). In (1.9),
z̃k+1 corresponds to an approximation of exp(4t(A − B∗B))zk and zk+1 to
an approximation of exp((4t)3A2)z̃k+1. Doing this, zk+1 is an approximation
of S(4t)zk ' exp((4t)3A2) exp(4t(A − B∗B))zk. Thus, system (1.9) can be
viewed as an alternating direction time-discrete approximation of (1.11), for
which dissipation properties have been derived in the recent article [14].

Note that this numerical scheme is based on the decomposition of the op-
erator A − B∗B + (4t)2A2 into its conservative and dissipative parts, that we
treat differently. Indeed, the midpoint scheme is appropriate for conservative
systems since it preserves the norm conservation property. This is not the case
for dissipative systems, since midpoint schemes do not preserve the dissipative
properties of high frequency solutions. Therefore, we rather use an implicit
Euler scheme, which efficiently preserves these dissipative properties.

In Subsection 2.3, we will consider other possible discretization schemes,
variants of (1.9), which still preserve the conservative properties of exp(tA) and
the dissipative effects of exp(t(4t)2A2). We will also present other possible
choices for the numerical viscosity term.

The energy of (1.9), still defined by (1.6), now satisfies
Ẽk+1 = Ek −4t

∥∥∥∥B(zk + z̃k+1

2

)∥∥∥∥2

Y

, k ∈ lN,

Ek+1 + (4t)3
∥∥Azk+1

∥∥2

X
+

(4t)6

2

∥∥A2zk+1
∥∥2

X
= Ẽk+1, k ∈ lN.

(1.12)

Putting these identities together, we get

Ek+1 + (4t)3
∥∥Azk+1

∥∥2

X
+

(4t)6

2

∥∥A2zk+1
∥∥2

X
+4t

∥∥∥∥B(zk + z̃k+1

2

)∥∥∥∥2

Y

= Ek.

(1.13)
The convergence of the solutions of (1.9) towards those of the original system
(1.1) when 4t→ 0 holds in a suitable topology. Indeed, the scheme is stable in
view of (1.12), and its consistency is obvious. Therefore its convergence (in the
classical sense of numerical analysis) is guaranteed: When4t→ 0, the solutions
z4t of (1.9), extended in a standard way as piecewise affine functions on lR+,
converge to the solution z of (1.1) in L2((0, T );X).

The main result of this paper is that system (1.9) enjoys a uniform stabi-
lization property. It reads as follows:

Theorem 1.1. Assume that system (1.1) is exponentially stable, i.e. satisfies
(1.4) with constants µ and ν, and that B ∈ L(X,Y ).

Then there exist two positive constants µ0 and ν0 depending only on µ, ν
and ‖B‖L(X,Y ) such that any solution of (1.9) satisfies (1.8) with constants µ0

and ν0 uniformly with respect to the discretization parameter 4t > 0.

Our strategy is based on the fact that the uniform exponential decay prop-
erties of the energy for systems (1.1) and (1.9) respectively are equivalent to
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uniform observability properties for the conservative system

ẏ = Ay, t ∈ lR, y(0) = y0 ∈ X, (1.14)

and its time semi-discrete viscous version

ũk+1 − uk

4t
= A

(uk + ũk+1

2

)
, k ∈ lN,

uk+1 − ũk+1

4t
= (4t)2A2uk+1, k ∈ lN,

u0 = u0,

(1.15)

At the continuous level the observability property consists in the existence
of a time T > 0 and a positive constant kT > 0 such that

kT ‖y0‖2X ≤
∫ T

0

‖By(t)‖2Y dt, (1.16)

for every solution of (1.14) (see [16] and Lemma 2.3 below).
A similar argument can be applied to the semi-discrete system (1.9). Namely,

the uniform exponential decay (1.8) of the energy of solutions of (1.9) is equiv-
alent to the following observability inequality: there exist positive constants T
and c such that, for any 4t > 0, every solution u of (1.15) satisfies

c ‖u0‖2X ≤ 4t
∑

k4t∈[0,T ]

∥∥Buk∥∥2

Y
+4t

∑
k4t∈[0,T ]

(4t)2
∥∥Auk+1

∥∥2

X

+4t
∑

k4t∈[0,T ]

(4t)5
∥∥A2uk+1

∥∥2

X
. (1.17)

Note that, since the operator (4t)2A2 is unbounded, we cannot use the
standard arguments in [16], which state the equivalence between the uniform
exponential decay of the energy for (1.9) and uniform observability properties
such as (1.17) for solutions of the conservative system

yk+1 − yk

4t
= A

(yk + yk+1

2

)
, k ∈ lN, y0 = y0, (1.18)

or, equivalently,

ỹk+1 − yk

4t
= A

(yk + ỹk+1

2

)
, yk+1 = ỹk+1 k ∈ lN, y0 = y0. (1.19)

Let us now give some insights of the proof of (1.17) for solutions of (1.15).
The main idea is to decompose the solution u of (1.15) into its low and high
frequency parts, that we handle separately. We first use a uniform observability
inequality proven in [12] for solutions of (1.18) in a filtered space, which yields a
partial observability inequality for the low frequency components of solutions of
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(1.15). Second, using the explicit dissipativity of (1.15) at high frequencies, we
deduce a partial observability inequality for the high frequency components. To-
gether, these two partial observability inequalities yield the needed observability
property (1.17) leading to the uniform exponential decay result.

Our results yield also uniform exponential decay rates for families of equa-
tions of the form (1.1), with pairs of operators (A,B), within a class in which the
exponential decay rate of the continuous system (1.1) is known to be uniform.

One of the interesting applications of this fact is that our results can be
combined with the existing ones derived for space semi-discrete approximation
schemes of various PDE models entering in the abstract frame (1.1) as [5, 6,
13, 11, 24, 27, 23] (see [32] for more references). Indeed, knowing that some
space semi-discrete approximation schemes of (1.1) are exponentially stable,
uniformly with respect to the space mesh size, this fact, combined with Theorem
1.1, allows deducing uniform exponential decay properties for the corresponding
fully discrete approximation schemes.

Our methods can also be applied directly to fully discrete approximation
schemes under a suitable CFL type condition on the time and space discretiza-
tion parameters. This can be done without adding a numerical viscosity term
since the CFL condition by itself rules out the high frequency components. As
we will see in the examples, this CFL condition might be very strong and yield
severe restrictions, which do not appear when adding numerical viscosity as in
(1.9) (see Theorem 1.1).

As said above, these approaches require observability properties such as
(1.16) to hold uniformly (with respect to the space discretization parameter)
for solutions of the space semi-discrete schemes for any initial data. However, it
often occurs in applications that the space semi-discrete schemes are uniformly
observable only for filtered initial data corresponding to low frequencies (see
[18, 31, 13, 32]). We therefore adapt our methods to this case, and prove that
adding a numerical viscosity term which is strong enough to efficiently damp
out the high frequency components, one obtains uniformly exponentially sta-
ble fully discrete approximation schemes. When doing this, we also prove that,
when considering space semi-discrete approximation schemes that are uniformly
observable in filtered low-frequency subspaces, adding a suitable numerical vis-
cosity term makes the space semi-discrete approximation schemes uniformly
(with respect to the space discretization parameter) exponentially stable. This
generalizes the results [27, 25, 13], where particular instances of viscosity terms
have been used. This also generalizes [14], where it was proven that if (1.1) is
exponentially stable, then adding a suitable viscosity term does not deteriorate
the exponential stability of solutions.

In this sense, the two approaches presented in this article are complementary.

Note however that we cannot apply these methods when the damped op-
erator B is not bounded, as in [26], where the wave equation is damped by a

6



feedback law on the boundary. Dealing with unbounded damping operators B
needs further work.

The results in this paper on the uniform stabilization of time-discrete approx-
imation schemes with numerical viscosity term are related to several previous
ones. The following ones are worth mentioning. In [27, 26, 23, 13] numerical vis-
cosity is added to guarantee the uniform exponential decay for finite-difference
space semi-discrete approximation schemes of the wave equation. Similar re-
sults, in an abstract setting, with a stronger viscous damping term, have been
proved in [25]. Similar techniques have also been employed to obtain uniform
dispersive estimates for numerical approximation schemes to Schrödinger equa-
tions in [17].

Let us also mention the recent work [12], where observability issues were
discussed for time and fully discrete approximation schemes of (1.18). The
results of [12] will be used in the present work to derive observability properties
for system (1.18) within the class of conveniently filtered low frequency data.
Since they constitute a key point of our proofs, we recall them in Section 2.

Despite all the existing literature, this article seems to be the first one to
provide a systematic way of transferring exponential decay properties from the
continuous to the time-discrete setting.

The outline of this paper is as follows.
In Section 2, we recall the results of [12] and prove Theorem 1.1. Section
3 is devoted to explain how we can deduce uniform stabilization results for
the fully discrete approximation schemes combining Theorem 1.1 and known
results on uniform stabilization for space semi-discrete approximations. We
also present an abstract setting specifically designed to address stabilization
issues for fully discrete approximation schemes without viscosity. In Section 4,
we present some concrete applications in the context of the wave equation for
which several uniformly exponentially stable schemes are derived. Finally, some
further comments and open problems are collected in Section 5.

2 Stabilization of time-discrete systems
This section is organized as follows. We first recall the results of [12] on the

observability of the time-discrete conservative system (1.18). Second, we prove
Theorem 1.1. Third, we present several variants of the numerical scheme (1.9)
that lead to uniform exponential decay results similar to Theorem 1.1.

2.1 Observability of time-discrete conservative systems
We first need to introduce some notations.
Since A is a skew-adjoint operator with compact resolvent, its spectrum is

discrete and σ(A) = {iµj : j ∈ lN}, where (µj)j∈lN is a sequence of real
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numbers such that |µj | → ∞ when j → ∞. Set (Φj)j∈lN an orthonormal basis
of eigenvectors of A associated to the eigenvalues (iµj)j∈lN, that is

AΦj = iµjΦj . (2.1)

Moreover, define

Cs(A) = span {Φj : the corresponding iµj satisfies |µj | ≤ s}. (2.2)

The following was proved in [12]:

Theorem 2.1. Assume that B ∈ L(D(A), Y ), that is

‖Bz‖2Y ≤ C
2
B

(
‖Az‖2X + ‖z‖2X

)
, ∀z ∈ D(A), (2.3)

and that A and B satisfy the following hypothesis:{
There exist constants M,m > 0 such that
M2 ‖(iωI −A)y‖2 +m2 ‖By‖2Y ≥ ‖y‖

2
, ∀ ω ∈ lR, y ∈ D(A).

(2.4)

Then, for any δ > 0, there exists Tδ such that for any T > Tδ, there exists a
positive constant kT,δ, independent of 4t, that depends only on m, M , CB, T
and δ, such that for 4t > 0 small enough, the solution yk of (1.18) satisfies

kT,δ
∥∥y0
∥∥2

X
≤ 4t

∑
k4t∈[0,T ]

∥∥∥∥B(yk + yk+1

2

)∥∥∥∥2

Y

, ∀ y0 ∈ Cδ/4t(A). (2.5)

Moreover, Tδ can be taken to be such that

Tδ = π
[
M2
(

1 +
δ2

4

)2

+m2C2
B

δ4

16

]1/2
, (2.6)

where CB is as in (2.3).

In the sequel, when there is no ambiguity, we will use the simplified notation
Cδ/4t instead of Cδ/4t(A).

Note that if B ∈ L(X,Y ), then the operator B is also in L(D(A), Y ), and
(2.3) holds. Thus the assumption (2.3) is satisfied in the abstract setting we are
working on.

Hypothesis (2.4) is the so-called resolvent estimate, which has been proved in
[4, 22] to be equivalent to the continuous observability inequality (1.16) for the
conservative system (1.14) for suitable positive constants T and kT , which turns
out to be equivalent to the exponential decay property (1.4) for the continuous
damped system (1.1).

To be more precise, it was proved in [22] that if the operator B is bounded,
then the observability property (1.16) implies hypothesis (2.4) with

m =
√

2T
kT

, M = T ‖B‖L(X,Y )

√
T

2kT
, (2.7)
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where kT is as in (1.16).
Observe that Theorem 2.1 guarantees that, as soon as the observability

inequality (1.16) holds for the continuous system (1.14), then its time-discrete
counterpart holds uniformly for the solutions of the time discrete systems (1.18)
within the class of filtered solutions Cδ/4t(A) involving only the low-frequency
components corresponding to the eigenvalues |µi| ≤ δ/4t. This fact will play a
key role in the proof of Theorem 1.1.

2.2 Proof of Theorem 1.1
In this Subsection, we assume that system (1.1) is exponentially stable and

that B ∈ L(X,Y ), i.e. there exists a constant KB such that

‖Bz‖Y ≤ KB ‖z‖X , ∀z ∈ X. (2.8)

The proof is divided into several steps. First, we write carefully the energy
identity for z solution of (1.9). Second, we observe that the resolvent estimate
(2.4) holds, from which we deduce that (2.5) holds as well for solutions of system
(1.18) in the filtered space Cδ/4t. Third, we derive the observability inequality
(1.17) for solutions of (1.15). Finally, we deduce that the time-discrete systems
(1.9) are uniformly exponentially stable.

2.2.1 The energy identity

Lemma 2.2. For any 4t > 0 and z0 ∈ X, the solution z of (1.9) satisfies

∥∥zk2
∥∥2

X
+ 24t

k2−1∑
j=k1

∥∥∥∥B(zj + z̃j+1

2

)∥∥∥∥2

Y

+ 24t
k2−1∑
j=k1

(4t)2
∥∥Azj+1

∥∥2

X

+4t
k2−1∑
j=k1

(4t)5
∥∥A2zj+1

∥∥2

X
=
∥∥zk1

∥∥2

X
, ∀k1 < k2. (2.9)

The proof simply consists in summing the identities in (1.13) from k = l1 to
k = l2 − 1. Especially, it implies that

∥∥zk∥∥2

X
is decreasing, which confirms the

dissipativity of the time-discrete system.

2.2.2 The resolvent estimate

Lemma 2.3. Under the assumptions of Theorem 1.1, the resolvent estimate
(2.4) holds, with constants m and M that depend only on µ and ν given by
(1.4).

Proof. The proof is based on [16].
Since system (1.1) is exponentially stable, inequality (1.4) holds. In par-

ticular, there exists a positive constant T > 0 such that 2E(T ) ≤ E(0). But
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equality (1.3) implies that any solution z of (1.1) satisfies

E(T ) +
∫ T

0

‖Bz(t)‖2Y dt = E(0),

and therefore that ∫ T

0

‖Bz(t)‖2Y dt ≥ 1
4
‖z0‖2X . (2.10)

Let us now show that, as a consequence of this, (1.16) holds for the solution of
(1.14) as well.

Given y0 ∈ X, let y and z be the solutions of (1.14) and (1.1) with initial
data y0. Then w = z − y satisfies

ẇ = Aw −B∗Bw −B∗By, t ∈ lR, w(0) = 0.

Multiplying by w and integrating in time, we obtain that

1
2
‖w(T )‖2X +

∫ T

0

‖Bw(t)‖2Y dt ≤
∫ T

0

| < Bw(t), By(t) >Y | dt

≤ 1
2

∫ T

0

(
‖Bw(t)‖2Y + ‖By(t)‖2Y

)
dt.

In particular, ∫ T

0

‖Bw(t)‖2Y dt ≤
∫ T

0

‖By(t)‖2Y dt.

This inequality, combined with (2.10), leads to

1
4
‖y0‖2X ≤

∫ T

0

‖Bz(t)‖2Y dt

≤ 2
∫ T

0

(
‖Bw(t)‖2Y + ‖By(t)‖2Y

)
dt

≤ 3
∫ T

0

‖By(t)‖2Y dt. (2.11)

It follows that (1.16) holds, and the resolvent estimate (2.4) holds with m and
M as in (2.7), according to the results in [22].

Applying Theorem 2.1, for any δ > 0, choosing a time T ∗ > Tδ (where Tδ
is defined in (2.6)) there exists a positive constant kT∗,δ such that inequality
(2.5) holds for any solution y of (1.18) with y0 ∈ Cδ/4t. In the sequel, we fix a
positive number δ > 0 (for instance δ = 1), and T ∗ = 2Tδ.

2.2.3 Uniform observability inequalities

Lemma 2.4. There exists a constant c > 0 such that (1.17) holds with T = T ∗

for all solutions u of (1.15) uniformly with respect to 4t.
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Proof. In the sequel we deal with the solutions u of (1.15), for which we prove
(1.17) for T = T ∗ = 2Tδ. The proof presented below is inspired in previous work
[14] from the authors, where similar arguments have been used in the continuous
setting.

As said in the introduction, we decompose the solution u of (1.15) into its
low and high frequency parts. To be more precise, we consider

ul = πδ/4tu, uh = (I − πδ/4t)u, (2.12)

where δ > 0 is the positive number that have been chosen above, and πδ/4t is
the orthogonal projection on Cδ/4t defined in (2.2). Here the notation ul and
uh stands for the low and high frequency components, respectively.

Note that both ul and uh are solutions of (1.15).
Besides, uh lies in the space C⊥δ/4t, in which the following property holds:

4t ‖Ay‖X ≥ δ ‖y‖X , ∀y ∈ C⊥δ . (2.13)

The low frequencies. In a first step, we compare ul with yl solution of (1.18)
with initial data yl(0) = ul(0). Now, set wl = ul−yl. From (2.5), which is valid
for solutions of (1.18) with initial data in Cδ/4t, we get

kT∗,δ
∥∥u0

l

∥∥2

X
= kT∗,δ

∥∥y0
l

∥∥2

X
≤ 24t

∑
k4t∈[0,T∗]

∥∥∥∥∥B(ukl + ũk+1
l

2

)∥∥∥∥∥
2

Y

+ 24t
∑

k4t∈[0,T∗]

∥∥∥∥∥B(wkl + w̃k+1
l

2

)∥∥∥∥∥
2

Y

. (2.14)

In the sequel, to simplify the notation, c > 0 will denote a positive constant
that may change from line to line, but which does not depend on 4t.

Let us then estimate the last term in the right hand side of (2.14). To this
end, we write the equation satisfied by wl, which can be deduced from (1.18)
and (1.15): 

w̃k+1
l − wkl
4t

= A
(wkl + w̃k+1

l

2

)
, k ∈ lN,

wk+1
l − w̃k+1

l

4t
= (4t)2A2uk+1

l , k ∈ lN,

w0
l = 0.

(2.15)

The energy estimates for wl give
∥∥w̃k+1

l

∥∥2

X
=
∥∥wkl ∥∥2

X
,∥∥wk+1

l

∥∥2

X
=
∥∥w̃k+1

l

∥∥2

X
− 2(4t)3 < Auk+1

l , A
( w̃k+1

l + wk+1
l

2

)
>X .

(2.16)
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Note that wkl and w̃k+1
l belong to Cδ/4t for all k ∈ lN, since ul and yl both

belong to Cδ/4t. Therefore, the energy estimates for wl lead, for k ∈ lN, to

∥∥wkl ∥∥2

X
= −24t

k∑
j=1

(4t)2 < Aujl , A
(wjl + w̃j+1

l

2

)
>X

≤ 4t
k∑
j=1

(4t)2
∥∥∥Aujl ∥∥∥2

X
+ δ24t

k∑
j=1

∥∥∥∥∥wjl + w̃j+1
l

2

∥∥∥∥∥
2

X

≤ 4t
k∑
j=1

(4t)2
∥∥∥Aujl ∥∥∥2

X
+ δ24t

k∑
j=0

∥∥∥wjl ∥∥∥2

X
,

where we used the first line of (2.16).
Grönwall’s Lemma applies and allows to deduce from (2.14) and the fact

that the operator B is bounded, the existence of a positive c independent of 4t,
such that

c
∥∥u0

l

∥∥2

X
≤ 4t

∑
k4t∈[0,T∗]

∥∥∥∥∥B(ukl + ũk+1
l

2

)∥∥∥∥∥
2

Y

+4t
∑

k4t∈]0,T∗]

(4t)2
∥∥Aukl ∥∥2

X
.

Besides,

4t
∑

k4t∈[0,T∗]

∥∥∥∥∥B(ukl + ũk+1
l

2

)∥∥∥∥∥
2

Y

≤ 24t
∑

k4t∈[0,T∗]

∥∥∥∥B(uk + ũk+1

2

)∥∥∥∥2

Y

+ 24t
∑

k4t∈[0,T∗]

∥∥∥∥∥B(ukh + ũk+1
h

2

)∥∥∥∥∥
2

Y

and, since ukh and ũk+1
h belong to C⊥δ/4t for all k, we get from (2.13) that

4t
∑

k4t∈[0,T∗]

∥∥∥∥∥B(ukh + ũk+1
h

2

)∥∥∥∥∥
2

≤ K2
B4t

∑
k4t∈[0,T∗]

∥∥∥∥∥ukh + ũk+1
h

2

∥∥∥∥∥
2

X

≤ K2
B4t

∑
k4t∈]0,T∗]

∥∥ukh∥∥2

X
≤ K2

B

δ2
4t

∑
k4t∈]0,T∗]

(4t)2
∥∥Aukh∥∥2

X
+K2

B4t
∥∥u0

h

∥∥2

X
,

since, from the first line of (1.15),∥∥ũk+1
h

∥∥2

X
=
∥∥ukh∥∥2

X
, ∀k ∈ lN.

It follows that there exists c > 0 independent of 4t such that

c
∥∥u0

l

∥∥2

X
≤ 4t

∑
k4t∈[0,T∗]

∥∥∥∥B(uk + ũk+1

2

)∥∥∥∥2

Y

+4t
∑

k4t∈]0,T∗]

(4t)2
∥∥Aukl ∥∥2

X

+4t
∥∥u0

h

∥∥2

X
. (2.17)
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The high frequencies. We now discuss briefly the decay properties of solu-
tions uh of (1.15) with initial data u0

h ∈ C⊥δ/4t. In this case, we easily check that
for all k ∈ lN, ukh ∈ C⊥δ/4t. But, as in (1.13), we have

∥∥(I − (4t)3A2)uk+1
h

∥∥2

X
=
∥∥uk+1

h

∥∥2

X
+ 2(4t)3

∥∥Auk+1
h

∥∥2

X

+ (4t)6
∥∥A2uk+1

h

∥∥2

X
=
∥∥ũk+1

h

∥∥2

X
=
∥∥ukh∥∥2

X
, k ∈ lN. (2.18)

Due to the property (2.13), we get

(1 + 2(4t)δ2)
∥∥uk+1

h

∥∥2

X
≤
∥∥ukh∥∥2

X
.

We deduce that ∥∥uk+1
h

∥∥2

X
≤ 1

1 + 2(4t)δ2

∥∥ukh∥∥2

X
, k ∈ lN,

which implies ∥∥ukh∥∥2

X
≤
( 1

1 + 2(4t)δ2

)k ∥∥u0
h

∥∥2

X
, k ∈ lN. (2.19)

Especially, taking k∗ = dT ∗/4te, we get a constant γ < 1 independent of4t > 0
such that ∥∥∥uk∗h ∥∥∥2

X
≤ γ

∥∥u0
h

∥∥2

X
.

Since we also have from (2.18) that, for k ∈ lN,

∥∥ukh∥∥2

X
+ 24t

k−1∑
j=0

(4t)2
∥∥∥Auj+1

h

∥∥∥2

X
+4t

k−1∑
j=0

(4t)5
∥∥∥A2uj+1

h

∥∥∥2

X
=
∥∥u0

h

∥∥2

X
,

taking k = k∗ = dT ∗/4te, we deduce the existence of a positive constant C,
which depends only on T ∗ and δ (namely C = (1− γ)/2), such that

C
∥∥u0

h

∥∥2

X
≤ 4t

k∗−1∑
j=0

(4t)2
∥∥∥Auj+1

h

∥∥∥2

X
+4t

k∗−1∑
j=0

(4t)5
∥∥∥A2uj+1

h

∥∥∥2

X
, (2.20)

holds uniformly with respect to 4t > 0 for any solution of (1.15) with initial
data u0 ∈ C⊥δ/4t.

Combining (2.17) and (2.20) yields Lemma 2.4, since uh and ul lie in orthog-
onal spaces with respect to the scalar products < ·, · >X and < A·, A· >X .

2.2.4 Proof of Theorem 1.1

Proof of Theorem 1.1. Here we follow the argument in [16, 14].

13



We decompose z solution of (1.9) as z = u + w where u is the solution of
the system (1.15) with initial data u0 = z0. Applying Lemma 2.4 to u = z−w,
we get

c
∥∥z0
∥∥2

X
≤ 2
(
4t

∑
k4t∈[0,T∗]

∥∥∥∥B(zk + z̃k+1

2

)∥∥∥∥2

Y

+4t
∑

k4t∈[0,T∗[

(4t)2
∥∥Azk+1

∥∥2

X

+4t
∑

k4t∈[0,T∗[

(4t)5
∥∥A2zk+1

∥∥2

X

)
+ 2
(
4t

∑
k4t∈[0,T∗]

∥∥∥∥B(wk + w̃k+1

2

)∥∥∥∥2

Y

+4t
∑

k4t∈[0,T∗[

(4t)2
∥∥Awk+1

∥∥2

X
+4t

∑
k4t∈[0,T∗[

(4t)5
∥∥A2wk+1

∥∥2

X

)
. (2.21)

Below, we bound the terms in the right hand-side of (2.21) involving w by
the ones involving z.

The function w satisfies
w̃k+1 − wk

4t
= A

(wk + w̃k+1

2

)
−B∗B

(zk + z̃k+1

2

)
, k ∈ lN,

wk+1 − w̃k+1

4t
= (4t)2A2wk+1, k ∈ lN,

w0 = 0.

(2.22)

Multiplying the first line of (2.22) by wk + w̃k+1 and taking the norm of each
member in the second one, we get the following energy identities for k ∈ lN:

∥∥w̃k+1
∥∥2

X
=
∥∥wk∥∥2

X
− 24t < B

(zk + z̃k+1

2

)
, B
(wk + w̃k+1

2

)
>Y ,∥∥wk+1

∥∥2

X
+ 2(4t)3

∥∥Awk+1
∥∥2

X
+ (4t)6

∥∥A2wk+1
∥∥2

X
=
∥∥w̃k+1

∥∥2

X
.

(2.23)

In particular, this gives∥∥wk+1
∥∥2

X
+ 2(4t)3

∥∥Awk+1
∥∥2

X
+ (4t)6

∥∥A2wk+1
∥∥2

X

+ 24t < B
(zk + z̃k+1

2

)
, B
(wk + w̃k+1

2

)
>Y =

∥∥wk∥∥2

X
.

Using that B is bounded, we get

∥∥wk∥∥2

X
+ 2(4t)

k−1∑
j=0

(4t)2
∥∥Awj+1

∥∥2

X
+ (4t)

k−1∑
j=0

(4t)5
∥∥A2wj+1

∥∥2

X

≤ 4t
k−1∑
j=0

∥∥∥∥B(zj + z̃j+1

2

)∥∥∥∥2

Y

+
K2
B

2
(4t)

k−1∑
j=0

(∥∥wj∥∥2

X
+
∥∥w̃j+1

∥∥2

X

)
. (2.24)
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But the second line in (2.23) gives that

4t
k−1∑
j=0

∥∥w̃j+1
∥∥2

X
= 4t

k−1∑
j=0

∥∥wj+1
∥∥2

X
+ 2(4t)2

k−1∑
j=0

(4t)2
∥∥Awj+1

∥∥2

X

+ (4t)2
k−1∑
j=0

(4t)5
∥∥A2wj+1

∥∥2

X
. (2.25)

Therefore, for 4t small enough, (2.24) gives

∥∥wk∥∥2

X
+4t

k−1∑
j=0

(4t)2
∥∥Awj+1

∥∥2

X
+
4t
2

k−1∑
j=0

(4t)5
∥∥A2wj+1

∥∥2

X

≤ 4t
k−1∑
j=0

∥∥∥∥B(zj + z̃j+1

2

)∥∥∥∥2

Y

+K2
B4t

k−1∑
j=0

∥∥wj∥∥2

X
. (2.26)

Grönwall’s inequality then gives a constant G, that depends only on KB and
T ∗, such that

sup
k4t∈[0,T∗]

{∥∥wk∥∥2

X

}
+4t

∑
k4t∈]0,T∗]

(4t)2
∥∥Awk+1

∥∥2

X

+4t
∑

k4t∈]0,T∗]

(4t)5
∥∥A2wk+1

∥∥2

X
≤ G4t

k−1∑
j=0

∥∥∥∥B(zj + z̃j+1

2

)∥∥∥∥2

Y

.

Combined with (2.25), we get that

4t
∑

k4t∈]0,T∗]

(∥∥wk∥∥2

X
+
∥∥w̃k+1

∥∥2

X

)
+4t

∑
k4t∈]0,T∗]

(4t)2
∥∥Awk+1

∥∥2

X

+4t
∑

k4t∈]0,T∗]

(4t)5
∥∥A2wk+1

∥∥2

X
≤ G4t

k−1∑
j=0

∥∥∥∥B(zj + z̃j+1

2

)∥∥∥∥2

Y

. (2.27)

Combining (2.21), (2.27) and the fact that B is bounded, we get the existence
of a constant c such that

c
∥∥z0
∥∥2

X
≤ 4t

∑
k4t∈[0,T∗]

∥∥∥∥B(zk + z̃k+1

2

)∥∥∥∥2

Y

+4t
∑

k4t∈[0,T∗[

(4t)2
∥∥Azk+1

∥∥2

X

+4t
∑

k4t∈[0,T∗[

(4t)5
∥∥A2zk+1

∥∥2

X
. (2.28)

Finally, using the energy identity (2.9), we get that∥∥∥zT∗/4t∥∥∥2

X
≤ (1− c)

∥∥z0
∥∥2

X
. (2.29)

The semi-group property then implies Theorem 1.1.
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Remark 2.5. Our proof of Theorem 1.1 needs to introduce a parameter δ > 0,
that we can choose arbitrarily. It would be natural to look for the choice of
δ > 0 yielding the best estimate in the decay rate of the energy. However, our
method, based on the arguments of [16], does not give a good approximation
of the decay rate of the energy. This is a drawback of this method, which also
appears in the continuous setting.

2.3 Some variants
Other discretization schemes. Other discretization schemes for system
(1.1) are possible. For instance, we can consider the following one:

zk+1
1 − zk

4t
= A

(zk + zk+1
1

2

)
, k ∈ lN,

zk+1 − zk+1
1

4t
= −B∗Bzk+1, k ∈ lN,

z0 = z0.

(2.30)

As for system (1.5), the results of [28], in the context of the conservative wave
equation, allow proving the existence of spurious high-frequency waves, which
do not propagate. This suffices to show the lack of uniform exponential decay
for (2.30).

Therefore, we need to add a numerical viscosity term. We have at least two
choices to introduce this numerical viscosity: Either we consider

zk+1
1 − zk

4t
= A

(zk + zk+1
1

2

)
, k ∈ lN,

zk+1 − zk+1
1

4t
= −B∗Bzk+1 + (4t)2A2zk+1, k ∈ lN,

z0 = z0,

(2.31)

or 

zk+1
1 − zk

4t
= A

(zk + zk+1
1

2

)
, k ∈ lN,

zk+1
2 − zk+1

1

4t
= −B∗Bzk+1

2 , k ∈ lN,

zk+1 − zk+1
2

4t
= (4t)2A2zk+1, k ∈ lN,

z0 = z0.

(2.32)

The proof above of the uniform exponential decay rate can be adapted to both
systems. The low frequency components can be observed similarly. The same
decoupling argument between low and high frequencies can be applied as well.
Indeed, putting B = 0 into systems (2.31) and (2.32) yields again system (1.15).
Therefore we can get the same results as for system (1.9).

Theorem 2.6. Assume that system (1.1) is exponentially stable, i.e. satisfies
(1.4) with constants µ and ν and that B ∈ L(X,Y ).
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Then there exist two positive constants µ0 and ν0 depending only on µ, ν
and ‖B‖L(X,Y ), such that any solution of (2.31) or of (2.32) satisfies (1.8)
with constants µ0 and ν0 uniformly with respect to the discretization parameter
4t > 0.

We skip the proof since it is similar to the previous one.

Other viscosity operators. Other viscosity operators could have been cho-
sen. In our approach, we used the viscosity term (4t)2A2, which is unbounded,
but we could have considered the viscosity operator

(4t)V4t =
(4t)2A2

I − (4t)2A2
, (2.33)

which is well defined, since A2 is a definite negative operator, and commutes
with A. This choice presents the advantage that the viscosity operator now is
bounded, keeping the properties of being small at frequencies of order less than
1/4t and of order 1 on frequencies of order 1/4t and more. Again, the same
proof as the one presented above works.

The following result constitutes a generalization of Theorem 1.1, and applies
to a wide range of viscosity operators, and, in particular, to (2.33).

Theorem 2.7. Assume that system (1.1) is exponentially stable, and that B ∈
L(X,Y ).

Consider a viscosity operator V4t such that there exists δ > 0 such that:

1. V4t defines a self-adjoint negative definite operator.

2. The operators πδ/4t and V4t commute.

3. There exist two positive constants c > 0 and C > 0 such that
√
4t
∥∥∥(√−V4t)z∥∥∥

X
≤ C ‖z‖X , ∀z ∈ Cδ/4t,√

4t
∥∥∥(√−V4t)z∥∥∥

X
≥ c ‖z‖X , ∀z ∈ C

⊥
δ/4t,

uniformly with respect to 4t > 0.

Then the solutions of
z̃k+1 − zk

4t
= A

(zk + z̃k+1

2

)
−B∗B

(zk + z̃k+1

2

)
, k ∈ lN,

zk+1 − z̃k+1

4t
= (4t)V4tzk+1, k ∈ lN,

z0 = z0.

(2.34)

are exponentially uniformly decaying in the sense of (1.8).

A similar result holds for the corresponding variants of systems (2.31) and
(2.32).
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3 Stabilization of time-discrete systems depend-
ing on a parameter

This section is devoted to study time-discrete approximation schemes of ab-
stract systems of the form (1.1) depending on a parameter, that can be for
instance the space-mesh size when dealing with fully discrete approximation
schemes, in which case A is a space discretization of a partial differential oper-
ator. As we shall see, the results of the previous section apply.

Furthermore, in the context of fully discrete systems, we shall also show that
introducing a suitable CFL type condition, it is unnecessary to add a numerical
viscosity term to obtain the uniform exponential decay of the energy. This
is so, roughly, because the CFL condition itself rules out the high frequency
components without the need of numerical viscosity.

As said in the introduction, this approach requires observability properties to
hold uniformly with respect to the space discretization parameter for solutions
of the space semi-discrete schemes for any initial data. However, in numerous
applications, the space semi-discrete approximation schemes are only observ-
able at low frequencies. We therefore develop our arguments to deal with this
case adding a stronger numerical viscosity operator to efficiently damp out the
high-frequencies which are not ruled out in the time continuous setting. Si-
multaneously, we prove a result for space semi-discrete approximation schemes
which, to our knowledge, had not been stated so far in such a general setting,
even if some instances can be found in [27, 25, 13].

Again, the strategy we propose is strongly based on the methods and results
in [12], especially Theorem 2.1 given above. Applications to the stabilization of
numerical approximation schemes for the damped wave equation are given in
Section 4.

3.1 The general case
To state our result, it is convenient to introduce the following class of pairs

of operators (A,B):

Definition 3.1. For any (KB , µ, ν) ∈ (lR∗+)3, we define D(KB , µ, ν) as the class
of operators (A,B) satisfying:

(A1) The operator A is skew-adjoint on some Hilbert space X, and has a com-
pact resolvent.

(A2) The operator B is in L(X,Y ), where Y is a Hilbert space, and satisfies
(2.8) with constant KB .

(A3) System (1.1) is exponentially stable, and solutions of (1.1) satisfy (1.4)
with constants µ and ν.

Note that this definition does not depend on the Hilbert spaces X and Y .
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In this class, Theorems 1.1-2.6-2.7 apply and provide uniform exponential
decay properties for the time semi-discrete approximation scheme (1.9). This
can be deduced from the explicit dependence of the constants entering in The-
orems 1.1-2.6-2.7, which only depend on KB , µ and ν. At this point, the fact
that the class D(KB , µ, ν) is independent of the spaces X and Y plays a key
role.

Also note that Definition 3.1 only refers to the behavior of the continuous
system (1.1), although, as we have seen, and in particular in view of Theorem
2.1, it also has applications in what concerns time-discrete systems.

This method allows dealing with fully discrete approximation schemes. In
that setting, we consider a family of operators (A∆x, B∆x), where ∆x > 0 is
the standard parameter associated with the space mesh-size. In this way one
can use automatically the existing results for space semi-discretizations as, for
instance, [1, 5, 6, 13, 11, 23, 24, 27].

Note that the work [24] is not dealing with stabilization properties, but
rather with controllability properties of space semi-discrete schemes. However,
it is standard that these two properties (controllability and stabilization) are
very close, since both are equivalent to observability properties. Therefore,
these works can be adapted to study the stabilization properties as well. We
refer to the survey article [32] for more details and more references.

Remark 3.2. We emphasize that this approach is based on the systematic use
of existing results for space semi-discretizations. One could proceed all the way
around, first applying the results in this paper to derive uniform stabilization
results for time discrete approximation schemes and then discretizing the space
variables. For doing this, however, due to the more complex dependence of
the PDE and its space semi-discretizations on the space variables, there is no
systematic way of transferring results from the continuous to the discrete setting.
In this sense, the method we propose here of using the existing results for
space semi-discretizations to later apply the results in this paper about time
discretizations is much more easier to be implemented and yields better results.

3.2 Stabilization of fully discrete approximation schemes
without viscosity

This subsection is devoted to prove a particular result for fully discrete ap-
proximation schemes under a CFL type assumption on the space and time dis-
cretization parameters, which does not require adding numerical viscosity terms.
We observe, however, that this approach requires, often, restrictions on 4t that
can be avoided by adding numerical viscosity terms.

Theorem 3.3. Let (A∆x, B∆x)∆x>0 be a family of operators defined on Hilbert
spaces X∆x endowed with a norm ‖·‖∆x. Assume that there exist positive con-
stants KB, µ and ν such that, for all ∆x > 0, (A∆x, B∆x) ∈ D(KB , µ, ν).

Then, for any η > 0, there exist positive constants µη and νη such that the
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solutions of zk+1
∆x − zk∆x
4t

= A∆x

(zk∆x + zk+1
∆x

2

)
−B∗∆xB∆x

(zk∆x + zk+1
∆x

2

)
, k ∈ lN,

z0
∆x = z0,∆x ∈ X∆x,

(3.1)
satisfy ∥∥zk∆x∥∥2

∆x
≤ µη

∥∥z0
∆x

∥∥2

∆x
exp(−νηk4t), k ≥ 0, (3.2)

uniformly with respect to 4t > 0 and ∆x > 0 provided that

‖A∆x‖L(X∆x,X∆x) ≤
η

4t
. (3.3)

Remark 3.4. In practical applications, the operator A∆x is often a space dis-
cretization of an unbounded operator A, for which we typically have a bound of
the form ‖A∆x‖L(X∆x,X∆x) ' C(∆x)−σ for some positive exponent σ. In this
case, condition (3.3) is guaranteed as soon as

C

(∆x)σ
≤ η

4t
.

The CFL condition (3.3) therefore imposes the ratio 4t/(∆x)σ to be uniformly
bounded when ∆x and 4t go to 0.

Remark 3.5. This theorem implies that we do not need to add a numerical
viscosity term on the time-discrete approximation schemes to get a uniform
exponential decay of the energies if we impose a CFL type condition on the
discretization parameters ∆x and 4t.

Proof. The proof of Theorem 3.3 is actually easier than the one of Theorem
1.1, since we do not need the decomposition (2.12) into low and high frequency
components. In some sense, the CFL rules out the high frequency components.

First, we derive the energy identity for solutions of (3.1):

∥∥zl∆x∥∥2

∆x
=
∥∥z0

∆x

∥∥2

∆x
− 24t

l−1∑
k=0

∥∥∥∥∥B∆x

(zk∆x + zk+1
∆x

2

)∥∥∥∥∥
2

Y∆x

, l ∈ lN. (3.4)

Second, since (A∆x, B∆x) ∈ D(KB , µ, ν), the resolvent estimates (2.4) in-
volving A∆x and B∆x hold uniformly with respect to ∆x > 0, due to Lemma
2.3.

Then, applying Theorem 2.1 with δ = η, because of assumption (3.3) that
implies that Cη/4t(A∆x) = X∆x, we get a time T ∗ > 0 and a positive constant
kT∗ independent of ∆x > 0 such that any solution y∆x of yk+1

∆x − yk∆x
4t

= A∆x

(yk∆x + yk+1
∆x

2

)
, k ∈ lN,

y0
∆x = y0,∆x ∈ X∆x,

(3.5)
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satisfies

kT∗
∥∥y0

∆x

∥∥2

∆x
≤ 4t

∑
k4t∈[0,T∗]

∥∥∥∥∥B∆x

(yk∆x + yk+1
∆x

2

)∥∥∥∥∥
2

Y∆x

. (3.6)

Now, let z0,∆x ∈ X∆x, and consider the solutions z∆x of (3.1) and y∆x of
(3.5) with initial data y0,∆x = z0,∆x. Set w∆x = z∆x − y∆x. Then

kT∗
∥∥z0

∆x

∥∥2

∆x
≤ 24t

∑
k4t∈[0,T∗]

(∥∥∥∥∥B∆x

(zk∆x + zk+1
∆x

2

)∥∥∥∥∥
2

Y∆x

+

∥∥∥∥∥B∆x

(wk∆x + wk+1
∆x

2

)∥∥∥∥∥
2

Y∆x

)
. (3.7)

Therefore, we only need to bound the last term. This is easier than in (2.21).
Indeed, w∆x satisfies

wk+1
∆x − wk∆x
4t

= A∆x

(wk∆x + wk+1
∆x

2

)
−B∗∆xB∆x

(zk∆x + zk+1
∆x

2

)
, k ∈ lN, (3.8)

with w0
∆x = 0.

The energy estimates on w∆x now give, for l ∈ lN

∥∥wl∆x∥∥2

∆x
= −24t

l−1∑
k=0

< B∆x

(zk∆x + zk+1
∆x

2

)
, B∆x

(wk∆x + wk+1
∆x

2

)
>Y∆x ,

and then

∥∥wl∆x∥∥2

∆x
≤ 4t ‖B∆x‖2L(X∆xY∆x)

l−1∑
k=0

∥∥∥∥∥wk∆x + wk+1
∆x

2

∥∥∥∥∥
2

∆x

+4t
l−1∑
k=0

∥∥∥∥∥B∆x

(zk∆x + zk+1
∆x

2

)∥∥∥∥∥
2

Y∆x

.

Since ‖B∆x‖L(X∆x,Y∆x) ≤ KB , applying Grönwall’s Lemma, we obtain a con-
stant G independent of ∆x > 0 such that

4t
∑

k4t∈[0,T∗]

∥∥wk∆x∥∥2

∆x
≤ G4t

∑
k4t∈[0,T∗]

∥∥∥∥∥B∆x

(zk∆x + zk+1
∆x

2

)∥∥∥∥∥
2

Y∆x

.

This last inequality implies with (3.7) that

kT∗
∥∥z0

∆x

∥∥2

∆x
≤ 2(1 +K2

BG)4t
∑

k4t∈[0,T∗]

∥∥∥∥∥B∆x

(zk∆x + zk+1
∆x

2

)∥∥∥∥∥
2

Y∆x

.
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Plugging this inequality in (3.4) for l∗ = dT ∗/4te gives∥∥∥zl∗∆x∥∥∥2

∆x
≤
∥∥z0

∆x

∥∥2

∆x

(
1− kT∗

1 +K2
BG

)
.

As previously, setting

α =
(

1− kT∗

1 +K2
BG

)
,

which is independent of 4t, we obtain that∥∥zl∆x∥∥2

∆x
≤
∥∥z0

∆x

∥∥2

∆x
exp

(( l4t
T ∗
− 1
)

ln(α)
)
, ∀l ∈ lN,

which proves the result.

Remark 3.6. As before, the proof of Theorem 3.3 can also be carried out for the
time-discrete scheme

z̃k+1
∆x − zk∆x
4t

= A∆x

(zk∆x + z̃k+1
∆x

2

)
, k ∈ lN,

zk+1
∆x − z̃

k+1
∆x

4t
= −B∗∆xB∆xz

k+1
∆x , k ∈ lN,

z0
∆x = z0,∆x ∈ X∆x,

(3.9)

under the CFL condition (3.3).

3.3 Stabilization of fully discrete approximation schemes
with viscosity

In this Subsection, we consider the case in which the space semi-discrete
systems are uniformly observable for initial data lying in filtered subspaces, as
it occurs often, see [18, 31, 13, 32].

Theorem 3.7. Let (A∆x, B∆x)∆x>0 be a family of operators defined on Hilbert
spaces X∆x endowed with the norms ‖·‖∆x.

Assume that there exists a constant KB such that for all ∆x > 0, the operator
norm ‖B∆x‖L(X∆x,Y∆x) is bounded by KB.

Assume that there exist positive constants η, σ, T and kT such that for all
initial data y0 ∈ Cη/(∆x)σ (A∆x), the solution y of

ẏ = A∆xy, t ∈ lR, y(0) = y0 ∈ Cη/(∆x)σ (A∆x), (3.10)

satisfies

kT ‖y0‖2∆x ≤
∫ T

0

‖B∆xy(t)‖2Y∆x
dt. (3.11)

Set ε = max{4t, (∆x)σ}.
Consider a viscosity operator Vε such that:
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1. Vε defines a self-adjoint negative definite operator.

2. The operators π1/ε and Vε commute.

3. There exist two positive constants c > 0 and C > 0 such that
√
ε
∥∥∥(√−Vε)z∥∥∥

∆x
≤ C ‖z‖∆x , ∀z ∈ C1/ε(A∆x),

√
ε
∥∥∥(√−Vε)z∥∥∥

∆x
≥ c ‖z‖∆x , ∀z ∈ C1/ε(A∆x)⊥,

uniformly with respect to ε > 0.

Then the solutions of
z̃k+1 − zk

4t
= A∆x

(zk + z̃k+1

2

)
−B∗∆xB∆x

(zk + z̃k+1

2

)
, k ∈ lN,

zk+1 − z̃k+1

4t
= εVεzk+1, k ∈ lN,

z0 = z0.
(3.12)

are exponentially uniformly decaying in the sense of (3.2).

Sketch of the proof. The proof can be done similarly as the one of Theorems
1.1-2.7. The main difference in the proof is that the low and high-frequency
components are separated by the frequency 1/ε instead of 1/4t.

As explained in [12], the observability inequalities (3.11) in the filtered spaces
Cη/(∆x)σ (A∆x) imply observability inequalities (2.5) for solutions of (1.18) with
initial data lying in Cη/(∆x)σ (A∆x) ∩ C1/4t(A∆x) = C1/ε(A∆x). The proof of
this fact simply consists in the following remark: the uniform observability
inequalities (3.11) in the filtered spaces Cη/(∆x)σ (A∆x) imply uniform resolvent
estimates (2.4) for data in Cη/(∆x)σ (A∆x), and Theorem 2.1, due to the explicit
dependence of the constants in (2.5) on the constants m and M appearing in
(2.4), yields the result.

Second, we replace system (1.15) by

ũk+1 − uk

4t
= A∆x

(uk + ũk+1

2

)
, k ∈ lN,

uk+1 − ũk+1

4t
= εVεuk+1, k ∈ lN,

u0 = u0,

(3.13)

and consider ul and uh defined by

ul = π1/εu, uh = (I − π1/ε)u,

instead of (2.12).
The rest of the proof follows line to line that of Lemma 2.4 and is left to the

reader.
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Theorem 3.7 also yields an interesting corollary for time-continuous systems:

Corollary 3.8. Let (A∆x, B∆x)∆x>0 be a family of operators defined on Hilbert
spaces X∆x endowed with the norms ‖·‖∆x.

Assume that there exists a constant KB such that for all ∆x > 0, the operator
norm ‖B∆x‖L(X∆x,Y∆x) is bounded by KB.

Assume that there exist positive constants η, σ, T and kT such that for all
initial data y0 ∈ Cη/(∆x)σ (A∆x), the solution y of (3.10) satisfies (3.11).

Consider a viscosity operator V∆x such that:

1. V∆x defines a self-adjoint negative definite operator.

2. The operators πη/(∆x)σ and V∆x commute.

3. There exist two positive constants c > 0 and C > 0 such that

(∆x)σ/2
∥∥∥(√−V∆x

)
z
∥∥∥

∆x
≤ C ‖z‖∆x , ∀z ∈ Cη/(∆x)σ (A∆x),

(∆x)σ/2
∥∥∥(√−V∆x

)
z
∥∥∥

∆x
≥ c ‖z‖∆x , ∀z ∈ Cη/(∆x)σ (A∆x)⊥,

uniformly with respect to ∆x > 0.

Then the solutions of{
ż = A∆xz −B∗∆xB∆xz + (∆x)σV∆xz, t ∈ lR+,
z(0) = z0.

(3.14)

are exponentially uniformly decaying in the sense of (1.4).

Indeed, this can be deduced from Theorem 3.7 by letting 4t→ 0.
Corollay 3.8 can be seen as a generalization of [14], where similar results

have been derived for viscous approximations of (1.1). In [14], the same result
is obtained but the assumptions differ in one essential point: The observability
inequality (1.16) for solutions of (1.14) is assumed to hold for any initial data,
and not only in a filtered space as in Corollaray 3.8. Thus, in [14], no assumption
is required on the viscosity parameter.

Though, the proof in [14] can be easily adapted to prove Corollay 3.8 directly
for time continuous systems.

Also remark that some instances of applications of variants of Corollary
3.8 can be found in several different articles dealing with space semi-discrete
damped systems [27, 25, 23, 13].

In Subsection 4.3.1, we will indicate without proof how one can deduce the
results in [27, 23] from the results in [18] and the methods developped in [14]
and here.

Remark 3.9. Corollary 3.8 yields optimal results in the following sense: If system
(3.14) is exponentially decaying for V∆x = −|A∆x|, which always satisfies the
assumptions of Corollary 3.8, uniformly with respect to the space discretization
parameter, then there exists ε > 0 such that any solution y of (3.10) with initial
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data in Cε/(∆x)σ (A∆x) satisfies (3.11). Indeed, in this case, following the proof
of Lemma 2.3, one can prove that there exist a time T > 0 and a constant
kT > 0 such that, for any ∆x > 0, any solution y of (3.10) satisfies

kT ‖y0‖2∆x ≤
∫ T

0

‖B∆xy(t)‖2Y∆x
dt+

∫ T

0

(∆x)σ
∥∥∥(√|A∆x|

)
y(t)

∥∥∥2

∆x
dt.

In particular, if the initial data lies in Cε/(∆x)σ (A∆x), we have that

kT ‖y0‖2∆x ≤
∫ T

0

‖B∆xy(t)‖2Y∆x
dt+ εT ‖y0‖2∆x ,

and then, taking ε = kT /2T , we recover (3.11).

4 Applications
The goal of this section is to present several applications of Theorems 1.1-3.3

to the damped wave equation. Of course, the Schrödinger and plate equations,
and the system of elasticity, among others, enter in this frame too, but the
applications to these other models will be presented elsewhere.

4.1 The time-discrete damped wave equation
Consider a smooth non-empty open bounded domain Ω ⊂ lRd.
We consider the following initial boundary value problem:
utt −∆xu+ σ(x)2ut = 0, x ∈ Ω, t ≥ 0,
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,
u(x, 0) = u0 ∈ H1

0 (Ω), ut(x, 0) = v0 ∈ L2(Ω), x ∈ Ω,
(4.1)

where σ : Ω→ lR+ is a non-negative bounded function which is strictly positive
in some open non-empty subset ω ⊂ Ω: There exists α > 0 such that

σ2(x) ≥ α, ∀x ∈ ω. (4.2)

The energy of (4.1)

E(t) =
1
2

∫
Ω

[
|∂tu(t, x)|2 + |∇u(t, x)|2

]
dx, (4.3)

satisfies the dissipation law

dE

dt
(t) = −

∫
ω

σ(x)2|∂tu(t, x)|2 dx, ∀ t ∈ [0, T ]. (4.4)

It is well-known that the energy of (4.3) decays exponentially if the set ω
satisfies a geometric condition, namely the so-called Geometric Control Condi-
tion, introduced in [2, 3]: there exists a time T > 0 such that all the rays of
Geometric Optics in Ω enter the set ω in a time smaller than T .
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To show that system (4.1) enters in the abstract setting of this paper, let us
recall that it is equivalent to

Ż = AZ −B∗BZ, with Z =
(
u
v

)
, A =

(
0 Id

∆x 0

)
, B =

(
0 σ

)
.

(4.5)
In this setting, A is a skew-adjoint unbounded operator on the Hilbert space
X = H1

0 (Ω) × L2(Ω), with domain D(A) = H2 ∩ H1
0 (Ω) × H1

0 (Ω). From the
assumptions (4.2) on σ, the operator B is obviously continuous on X.

Besides, the energy (4.3) of (4.1) reads as ‖Z(t)‖2X /2.
Then, we introduce the following time semi-discrete approximation scheme:

Z̃k+1 − Zk

4t
=
(

0 Id
∆x 0

)(Zk + Z̃k+1

2

)
−
(

0 0
0 σ2

)(Zk + Z̃k+1

2

)
, k ∈ lN∗,

Zk+1 − Z̃k+1

4t
= (4t)2

(
∆x 0
0 ∆x

)
Zk+1, k ∈ lN∗,

Z0 =

(
u0

v0

)
.

(4.6)

We then define the energy as in (1.6).
According to Theorem 1.1, we get:

Theorem 4.1. Assume that the damping function σ satisfies (4.2) for a non-
empty open set ω ⊂ Ω, that satisfies the Geometric Control Condition.

Then there exist positive constants ν0 and µ0 such that any solution of (4.6)
satisfies (1.8) uniformly with respect to the discretization parameter 4t > 0.

4.2 A fully discrete damped wave equation: The mixed
finite element method

Here we present an application to a fully discrete approximation scheme. To
present our results properly, we first need to recall some properties of the space
semi-discrete wave equation.

We now consider the damped wave equation (4.1) in 1d, that is with Ω =
(0, 1). We still assume that the damping function σ is non-negative, bounded,
and satisfies (4.2). Note that in this case the Geometric Control Condition is
automatically satisfied, and therefore the decay of the energy of (4.1) is expo-
nential.

When semi-discretizing equation (4.1) in space, it may happen that the space
semi-discrete approximations are not exponentially stable uniformly with re-
spect to the space discretization parameter. This has been observed in many
cases, for instance in [15, 18, 21, 13]. We refer to the review article [32] for more
references.
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A possible cure has been proposed in [1] and analyzed in [5, 6, 11] based on
a mixed finite element method, on which we will focus now.

Let N be a nonnegative integer. Set ∆x = 1/(N + 1) and consider the
subdivision of (0, 1) given by

0 = x0 < x1 < · · · < xj = j∆x < · · ·xN+1 = 1.

Let us present the space semi-discrete approximation scheme of (4.1) in 1d,
on (0, 1), derived from the mixed finite element method (see [1, 5, 6, 11])



üj−1 + 2üj + üj+1

4
− uj+1 − 2uj + uj−1

(∆x)2
+

1
4

(
σ2
j−1/2(u̇j−1 + u̇j)

+σ2
j+1/2(u̇j + u̇j+1)

)
= 0, (t, j) ∈ lR+ × {1, · · · , N},

u0(t) = uN+1(t) = 0, t ∈ lR+,
uj(0) = uj,0, u̇j(0) = vj,0, j ∈ {1, · · · , N},

(4.7)

where σ2
j+1/2 is an approximation of σ2 on [j∆x, (j + 1)∆x].

The energy of solutions of (4.7) is defined by

E∆x(t) =
∆x
2

N∑
j=0

(∣∣∣ u̇j + u̇j+1

2

∣∣∣2 +
∣∣∣uj+1 − uj

∆x

∣∣∣2). (4.8)

Following [1, 5, 6, 11], one can prove that the energy E∆x is exponentially stable,
uniformly with respect to ∆x > 0, when σ satisfies (4.2).

Let us check that system (4.7) is a particular instance of the abstract setting
we provided.

Define the N ×N matrix M∆x by

M∆x(i, j) =

 1/2 if i = j,
1/4 if |i− j| = 1,
0 else,

which is invertible, self-adjoint and positive definite.
The space semi-discrete approximation scheme (4.7) can be written as

M∆xÜ∆x +A0,∆xU∆x + C1,∆xU̇∆x = 0, t ∈ lR+,

where A0,∆x is a positive definite matrix N ×N , which represents the Laplace
discrete operator, and C1,∆x is the N ×N matrix

C1,∆x(i, j) =


(σ2
j+1/2 + σ2

j−1/2)/4 if i = j,

σ2
i+1/2/4 if i+ 1 = j,

σ2
i−1/2/4 if i− 1 = j,

0 else.
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System (4.7) can be rewritten as

Ż∆x = A∆xZ∆x − C∆xZ∆x, t ∈ lR+, (4.9)

where Z∆x, A∆x and C∆x denote

Z∆x =
(
U∆x

V∆x

)
, A∆x =

(
0 Id

−M−1
∆xA0,∆x 0

)
,

C∆x =
(

0 0
0 M−1

∆xC1,∆x

)
.

(4.10)

Remark that the matrix A∆x is skew-adjoint on the energy space X∆x =
lR2N endowed with the norm∥∥∥∥( U∆x

V∆x

)∥∥∥∥2

∆x

= ∆x
N∑
j=0

(∣∣∣V∆x,j + V∆x,j+1

2

∣∣∣2 +
∣∣∣U∆x,j+1 − U∆x,j

∆x

∣∣∣2)
= < M∆xV∆x, V∆x >∗∆x + < A0,∆xU∆x, U∆x >∗∆x,

where the scalar product < ·, · >∗∆x is the classical discrete L2 scalar product,
corresponding to the discrete L2 norm

‖V∆x‖2∗∆x = ∆x
N∑
j=1

|V∆x,j |2. (4.11)

Note that, in this setting, the energy (4.8) of solutions of (4.7) coincides
with the energy ‖Z∆x(t)‖2∆x /2 of solutions of (4.9).

Let us check that C∆x has the form B∗∆xB∆x for some N ×N matrix B∆x.
According to Choleski’s decomposition, we only have to check that C∆x is a
selfadjoint positive matrix on X∆x. For generic vectors Z1∆x and Z2∆x as in
(4.10), we have:

< C∆xZ1∆x, Z2∆x >∆x = < M∆xM
−1
∆xC1∆xV1∆x, V2∆x >∗∆x

= < C1∆xV1∆x, V2∆x >∗∆x

= ∆x
N∑
j=0

σ2
j+1/2

(V1∆x,j + V1∆x,j+1

2

)(V2∆x,j + V2∆x,j+1

2

)
.(4.12)

This last expression shows that C∆x is a selfadjoint positive operator on X∆x.
Therefore there exists B∆x such that B∗∆xB∆x = C∆x. Besides, classical linear
algebra implies that

‖C∆x‖L(X∆x,X∆x) = ‖B∆x‖2L(X∆x,X∆x) .

From the computations above, and especially (4.12), we have

‖C∆x‖L(X∆x,X∆x) = sup
‖Z1∆x‖∆x ≤ 1,
‖Z2∆x‖∆x ≤ 1

{< C∆xZ1∆x, Z2∆x >∆x} ≤
∥∥σ2

∥∥
L∞

.

(4.13)
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We are then in the abstract setting given in Section 3: Hypothesis (A1) and
(A2) of Definition 3.1 have been checked above, and (A3) has been proved in
[5] (see [1, 6, 11] for related results).

4.2.1 Method I: Adding a numerical viscosity term in time

We add a numerical viscosity term to the scheme above, corresponding to
(1.9). In this case, the fully discrete approximation scheme reads:

ũk+1
j − ukj
4t

=
vkj + ṽk+1

j

2
,

1
44t

((
ṽk+1
j−1 + 2ṽk+1

j + ṽk+1
j+1

)
−
(
vkj−1 + 2vkj −+vkj+1

))
=

1
2(∆x)2

(
ũk+1
j+1 + ukj+1 − 2ũk+1

j − 2ukj + ũk+1
j−1 + ukj−1

)
−1

8
σ2
j+1/2

(
(vkj + vkj+1) + (ṽk+1

j + ṽk+1
j+1 )

)
−1

8
σ2
j−1/2

(
(vkj−1 + vkj ) + (ṽk+1

j−1 + ṽk+1
j )

)
,

1
44t

((
uk+1
j−1 + 2uk+1

j + uk+1
j+1

)
−
(
ũk+1
j−1 + 2ũk+1

j + ũk+1
j+1

))
=
(4t

∆x

)2(
uk+1
j+1 − 2uk+1

j + uk+1
j−1

)
,

1
44t

((
vk+1
j−1 + 2vk+1

j + vk+1
j+1

)
−
(
ṽk+1
j−1 + 2ṽk+1

j + ṽk+1
j+1

))
=
(4t

∆x

)2(
vk+1
j+1 − 2vk+1

j + vk+1
j−1

)
,

(4.14)

which holds for (k, j) ∈ lN× {1, · · · , N}, with the boundary conditions

uk0 = ukN+1 = vk0 = vkN+1 = 0, ∀k ∈ lN, (4.15)

and the initial data

u0
j = uj,0, v0

j = vj,0, ∀j ∈ {1, · · · , N}. (4.16)

Here ukj and vkj respectively denote approximations of the functions u and u̇ in
xj = j∆x at time k4t.

As an application of Theorem 1.1, we get:

Theorem 4.2. The energy

Ek∆x =
∆x
2

N∑
j=0

(∣∣∣vkj + vkj+1

2

∣∣∣2 +
∣∣∣ukj+1 − ukj

∆x

∣∣∣2), k ∈ lN,

of solutions of (4.14) is exponentially decaying, uniformly with respect to 4t > 0
and ∆x > 0, in the sense of (3.2).
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4.2.2 Method II: Imposing a CFL condition

Here we want to use Theorem 3.3 to derive uniform properties on the fol-
lowing fully discrete system, obtained by discretizing in time system (4.9) using
(3.1): 

uk+1
j − ukj
4t

=
vkj + vk+1

j

2
,

1
44t

((
vk+1
j−1 + 2vk+1

j + vk+1
j+1

)
−
(
vkj−1 + 2vkj + vkj+1

))
=

1
2(∆x)2

(
uk+1
j+1 + ukj+1 − 2uk+1

j − 2ukj + uk+1
j−1 + ukj−1

)
−1

8
σ2
j+1/2

(
(vkj + vkj+1) + (vk+1

j + vk+1
j+1 )

)
−1

8
σ2
j−1/2

(
(vkj−1 + vkj ) + (vk+1

j−1 + vk+1
j )

)
,

(4.17)

which holds for (k, j) ∈ lN × {1, · · · , N}, with the boundary conditions (4.15)
and initial data (4.16).

To apply Theorem 3.3, we need to estimate the norm of the matrix A∆x

defined in (4.10). Actually, its spectrum is given in [5]: The eigenvalues of A∆x

are
λ±l,∆x = ± 2i

∆x
tan

(
l∆x

π

2

)
, l ∈ {1, · · · , N}.

Since A∆x is skew-adjoint on X∆x, its operator norm is given by its highest
eigenvalue:

‖A∆x‖L(X∆x,X∆x) =
2

∆x
tan

(
(1−∆x)

π

2

)
'

∆x→0

4
π(∆x)2

.

As a consequence of Theorem 3.3, we get:

Theorem 4.3. The energy

Ek∆x =
∆x
2

N∑
j=0

(∣∣∣vkj + vkj+1

2

∣∣∣2 +
∣∣∣ukj+1 − ukj

∆x

∣∣∣2), k ∈ lN,

of solutions of (4.17) is exponentially decaying, uniformly with respect to 4t > 0
and ∆x > 0, in the sense of (3.2) provided there exists a constant η such that

4t ≤ η(∆x)2. (4.18)

Remark 4.4. In this case, the CFL condition (4.18) is very restrictive for prac-
tical computations. Therefore, in practice, the fully discrete scheme (4.14) that
involves a numerical viscosity term, for which no CFL condition is needed, seems
preferable.
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4.3 A fully discrete damped wave equation: A viscous
finite difference approximation

We now describe how our results may be combined with those of [27, 23],
which add numerical viscosity in the discretization with respect to the space-
variable, to derive a uniformly exponentially stable fully discrete scheme.

The finite difference space semi-discrete approximation scheme of system
(4.1) is as follows

üj −
uj+1 − 2uj + uj−1

(∆x)2
+ σ2

j u̇j = 0, t ∈ lR+, j ∈ {1, · · · , N},

u0(t) = uN+1(t) = 0, t ∈ lR+,
uj(0) = uj,0, u̇j(0) = vj,0, j ∈ {1, · · · , N},

(4.19)

where σj , uj,0, vj,0 and uj are, respectively, approximations of the functions σ,
u0, v0 at the point xj .

The energy of system (4.19), given by

E∆x(t) =
∆x
2

N∑
j=0

(
|u̇j(t)|2 +

∣∣∣uj+1(t)− uj(t)
∆x

∣∣∣2), (4.20)

is dissipated according to the law

dE∆x

dt
(t) = −∆x

N∑
j=1

σ2
j |u̇j(t)|2.

However, due to spurious high frequency solutions that are created by the nu-
merical scheme, the energies E∆x do not decay exponentially uniformly with re-
spect to ∆x (see [18, 27]), except in the particular case ω = (0, 1): If ω 6= (0, 1),
there are no positive constants µ and ν such that the inequality

E∆x(t) ≤ µE∆x(0) exp(−νt), t ≥ 0, (4.21)

holds for any ∆x > 0 and for any solution of (4.19).
Therefore, to get a uniform decay rate of the energies E∆x (with respect to

∆x > 0), an extra numerical viscosity term was added in [27]:

üj −
uj+1 − 2uj + uj−1

(∆x)2
+ σ2

j∂tuj

−(∆x)2
( u̇j+1 − 2u̇j + u̇j−1

(∆x)2

)
= 0, t ∈ lR+, j ∈ {1, · · · , N},

u0(t) = uN+1(t) = 0, t ∈ lR+,
uj(0) = uj,0, u′j(0) = vj,0, j ∈ {1, · · · , N}.

(4.22)
For this system, the energy, still defined by (4.20), is now dissipated accord-

ing to the law:

dE∆x

dt
(t) = −∆x

N∑
j=1

σ2
j |u̇j(t)|2 − (∆x)3

N∑
j=0

(uj+1(t)− uj(t)
∆x

)2

.
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It was proved in [27] that, if σ satisfies (4.2), the energy of the solutions of
(4.22) is exponentially stable uniformly with respect to the mesh size ∆x > 0,
in the sense that there exist positive constants µ and ν such that (4.21) holds
for any ∆x > 0 and for any solution of (4.22).

Besides, one can check that system (4.22) can be written as

Ü∆x +A0,∆xU∆x +B∗0,∆xB0,∆xU̇∆x + (∆x)2A0,∆xU̇∆x = 0, t ∈ lR+, (4.23)

where U∆x = (u1, · · · , uj , · · · , uN )∗, A0,∆x is a positive definite matrix, which
represents the discrete Laplace operator, and B0,∆x is the N×N matrix defined
by:

B0,∆x =
(

diag(σj)
)
.

4.3.1 Exponential decay for the time continuous system (4.23)

In this Subsection, we indicate how one can prove the uniform exponential
decay result for solutions of (4.23) using the combination of the results in [18]
and the methods introduced in [14] and further developed in Corollary 3.8.

Let us first recall the results in [14]. Let H be a Hilbert space endowed with
the norm ‖·‖H . Let A0 : D(A0) → H be a self-adjoint positive operator with
compact resolvent and C ∈ L(H,Y ).

We then consider the initial value problem{
ü+A0u+ εA0u̇+B∗Bu̇ = 0, t ≥ 0,

u(0) = u0 ∈ D(A1/2
0 ), u̇(0) = u1 ∈ H.

(4.24)

The energy of solutions of (4.24) is given by

E(t) =
1
2
‖u̇(t)‖2H +

1
2

∥∥∥A1/2
0 u(t)

∥∥∥2

H
, (4.25)

and satisfies
dE

dt
(t) = −‖Bu̇(t)‖2Y − ε

∥∥∥A1/2
0 u̇(t)

∥∥∥2

H
. (4.26)

Theorem 4.5. Assume that system (4.24) with ε = 0 is exponentially stable
and satisfies (1.4) for some positive constants µ and ν, and that B ∈ L(H,Y ).

Then there exist two positive constants µ0 and ν0 depending only on ‖B‖L(H,Y ),
ν and µ such that any solution of (4.24) satisfies (1.4) with constants µ0 and
ν0 uniformly with respect to the viscosity parameter ε ∈ [0, 1].

We now introduce the spectrum of A0. Since A0 is self-adjoint positive
definite with compact resolvent, its spectrum is discrete and σ(A0) = {λ2

j :
j ∈ lN}, where λj is an increasing sequence of real positive numbers such that
λj →∞ when j →∞. Set (Ψj)j∈lN an orthonormal basis of eigenvectors of A0

associated to the eigenvalues (λ2
j )j∈lN.

For convenience, similarly as in (2.2), we define

Cs = span {Ψj : the corresponding λj satisfies |λj | ≤ s}. (4.27)
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We claim that the proof of Theorem 4.5 in [14] also proves the following
Theorem:

Theorem 4.6. Let ε ∈ (0, 1]. Assume that system

ü+A0u = 0, t ≥ 0, u(0) = u0 ∈ D(A1/2
0 ), u̇(0) = u1 ∈ H. (4.28)

is exactly observable within the class C1/
√
ε in the following sense: there exist a

time T ∗ > 0 and a positive constant k∗ > 0 such that any solution u of (4.28)
with initial data (u0, u1) ∈ C2

1/
√
ε
satisfies

k∗

(∥∥∥A1/2
0 u0

∥∥∥2

H
+ ‖u1‖2H

)
≤
∫ T∗

0

‖Bu̇(t)‖2Y dt.

Then there exist two positive constants µ and ν depending only on ‖B‖L(H,Y ),
T ∗ and k∗ such that any solution of (4.24) satisfies (1.4).

In [18], it has been proved that there exist positive constants T ∗ and k∗ such
that for all ∆x > 0, the solution of

Ü∆x +A0,∆xU∆x = 0, t ≥ 0, (4.29)

with initial data (U0,∆x, U1,∆x) ∈ C1/∆x(A∆x)2 satisfies

k∗

(∥∥∥A1/2
0,∆xU0,∆x

∥∥∥2

∗∆x
+ ‖U1,∆x‖2∗∆x

)
≤
∫ T∗

0

∥∥∥B∆xU̇∆x(t)
∥∥∥2

∗∆x
dt.

Setting X∗∆x = lRN endowed with the norm ‖·‖∗∆x, one easily checks that
‖B∆x‖L(X∗∆x,X∗∆x) is bounded uniformly in ∆x > 0.

Theorem 4.6 then applies, and proves that systems (4.23) are exponentially
stable uniformly with respect to ∆x > 0.

Remark 4.7. Note that this method also applies in higher dimension, using for
instance the results in [31] which state uniform observability properties for finite
difference approximation schemes of a 2d wave equation. Doing this, we recover
the results in [27] in 2d.

We now go on analyzing (4.22). We rewrite system (4.22) as

Ż∆x = A∆xZ∆x −B∗∆xB∆xZ∆x, t ∈ lR+, (4.30)

where
Z∆x =

(
U∆x

V∆x

)
, A∆x =

(
0 Id

−A0,∆x 0

)
,

B∆x =
(

0
√
B0,∆x + (∆x)2A0,∆x

)
.

(4.31)
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One can check that the operator A∆x is skew-adjoint on the vector space X∆x =
lR2N endowed with the norm ‖·‖∆x:∥∥∥∥( U∆x

V∆x

)∥∥∥∥2

∆x

= ∆x
N∑
j=0

(
|vj |2 +

∣∣∣uj+1 − uj
∆x

∣∣∣2), (4.32)

where U∆x = (u1, · · · , uj , · · · , uN )∗ and V∆x = (v1, · · · , vj , · · · , vN )∗, with the
convention u0 = uN+1 = 0.

Note that the original energy (4.20) of system (4.22) coincides with the
quantity ‖Z∆x‖2∆x /2 of solutions of (4.30), with the notation above.

We then need to check that the operator B∆x is a bounded map from X∆x

to X2
∗∆x = lR2N , where X∗∆x = lRN is endowed with the classical discrete L2

norm ‖·‖∗∆x given in (4.11). Since σ is assumed to be in L∞(0, 1), we obviously
have

‖diag(σj)V∆x‖∗∆x ≤ ‖σ‖L∞ ‖V∆x‖∗∆x .

Besides, using a standard interpolation property,∥∥∥(∆x)A1/2
0,∆xV∆x

∥∥∥2

∗∆x
≤ ‖V∆x‖∗∆x

∥∥(∆x)2A0,∆xV∆x

∥∥
∗∆x ≤ 4 ‖V∆x‖2∗∆x ,

since

(∆x)2A0,∆xV∆x = W∆x, with wj = vj+1 − 2vj + vj−1, ∀j ∈ {1, · · · , N}.

Combining these last inequalities, we get the uniform bound

‖B∆x‖L(X∆x,X2
∗∆x) ≤ 2 + ‖σ‖L∞ .

We are therefore in the setting of Section 3: We checked hypothesis (A1)
and (A2) of Definition 3.1 for the operators A∆x and B∆x, and (A3) comes from
the results of [27].

We now present the applications of the abstract methods in Section 3 to this
particular setting.
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4.3.2 Method I: Adding a numerical viscosity term in time

We introduce the fully discrete approximation scheme, corresponding to
(1.9), given by

ũk+1
j − ukj
4t

=
vkj + ṽk+1

j

2
,

ṽk+1
j − vkj
4t

=
1

2(∆x)2

(
ũk+1
j+1 + ukj+1 − 2ũk+1

j − 2ukj + ũk+1
j−1 + ukj−1

)
−1

2
σ2
j (vkj + ṽk+1

j ) +
1
2
(
ṽk+1
j+1 + vkj+1 − 2ṽk+1

j − 2vkj + ṽk+1
j−1 + vkj−1

)
,

uk+1
j − ũk+1

j

4t
=
(4t

∆x

)2(
uk+1
j+1 − 2uk+1

j + uk+1
j−1

)
,

vk+1
j − ṽk+1

j

4t
=
(4t

∆x

)2(
vk+1
j+1 − 2vk+1

j + vk+1
j−1

)
,

(4.33)
which holds for (k, j) ∈ lN×{1, · · · , N}, with the boundary conditions (4.15) and
the initial data (4.16). Here again, ukj and vkj respectively denote approximations
of the functions u and u̇ in xj = j∆x at time k4t.

This fully discrete approximation scheme coincides with the system (1.9)
with A = A∆x and B = B∆x.

Applying Theorem 1.1, we get:

Theorem 4.8. The energy

Ek∆x =
∆x
2

N∑
j=0

(
|vkj |2 +

∣∣∣ukj+1 − ukj
∆x

∣∣∣2) (4.34)

of solutions of system (4.33) is exponentially decaying, uniformly with respect
to both parameters ∆x > 0 and 4t > 0. To be more precise, there exist positive
constants ν0 and µ0 such that the energies of solutions (4.33) satisfy (3.2).

Note that in Theorem 4.8, no CFL condition is required.

4.3.3 Method II: Imposing a CFL condition

Again, we consider the space semi-discrete approximation (4.22) (or equiva-
lently (4.30)) of (4.1), that we now discretize in time using the midpoint scheme
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(1.5): For all (k, j) ∈ lN× {1, · · · , N},

uk+1
j − ukj
4t

=
vkj + vk+1

j

2
,

vk+1
j − vkj
4t

=
1

2(∆x)2

(
uk+1
j+1 + ukj+1 − 2uk+1

j − 2ukj + uk+1
j−1 + ukj−1

)
−1

2
σ2
j (vkj + vk+1

j ) +
1
2
(
vk+1
j+1 + vkj+1 − 2vk+1

j − 2vkj + vk+1
j−1 + vkj−1

)
,

(4.35)
with the boundary conditions (4.15), and initial data (4.16).

The discrete energies are defined by (4.34) as before. Note that this scheme
is simpler than (4.33), since it does not contain numerical viscosity terms in
time.

To use Theorem 3.3, we need to estimate the norm ‖A∆x‖L(X∆x,X∆x).
Actually, if

Z1∆x =
(
U1∆x

V1∆x

)
, Z2∆x =

(
U2∆x

V2∆x

)
,

then

< Z1∆x, A∆xZ∆x2 >∆x= ∆x
N∑
j=0

(u1∆x,j+1 − u1∆x,j

∆x

)(v2∆x,j+1 − v2∆x,j

∆x

)

−∆x
N∑
j=1

v1∆x,j

(u2∆x,j+1 − 2u2∆x,j + u2∆x,j−1

(∆x)2

)
.

In particular,

(∆x)2
∣∣∣ < Z1∆x, A∆xZ∆x2 >∆x

∣∣∣2
≤
(

∆x
N∑
j=0

(u1∆x,j+1 − u1∆x,j

∆x

)2)(
∆x

N∑
j=0

(
v2∆x,j+1 − v2∆x,j

)2)

+
(

∆x
N∑
j=1

|v1∆x,j |2
)(

∆x
N∑
j=0

(u2∆x,j+1 − u2∆x,j

∆x
− u2∆x,j − u2∆x,j−1

∆x

)2)
,

that gives ∣∣∣ < Z1∆x, A∆xZ∆x2 >∆x

∣∣∣ ≤ 2
∆x
‖Z1∆x‖∆x ‖Z2∆x‖∆x .

This proves that ‖A∆x‖L(X∆x,X∆x) ≤ 2/∆x. Actually, in this case, we know the
eigenvalues and eigenvectors explicitly (see for instance [18]), and therefore this
norm can be computed explicitly to be 2 sin((1−∆x)π/2)/∆x.

As a corollary of Theorem 3.3, we get:
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Theorem 4.9. Given η > 0, if we impose the CFL type condition

4t ≤ η∆x, (4.36)

then there exist positive constants νη and µη such that the energy of solutions
of (4.35) satisfies (3.2), uniformly with respect to the discretization parameters
∆x > 0 and 4t > 0.

Remark 4.10. Here it seems more natural to use the discretization (4.35) than
(4.33) since the CFL condition (4.36) is not very restrictive.

Note that the results we presented here for the 1d wave equation can be
adapted to deal with 2d wave equations in a square as in [27] or more general
domains as in [23].

4.3.4 Method III: Discretizing with only one viscosity term

We are in the setting of Theorem 3.7, and therefore we can use only one
viscosity term: Set ε = max{4t,∆x} and consider

ũk+1
j − ukj
4t

=
vkj + ṽk+1

j

2
,

ṽk+1
j − vkj
4t

=
1

2(∆x)2

(
ũk+1
j+1 + ukj+1 − 2ũk+1

j − 2ukj + ũk+1
j−1 + ukj−1

)
−1

2
σ2
j (vkj + ṽk+1

j ),

uk+1
j − ũk+1

j

4t
=
( ε

∆x

)2(
uk+1
j+1 − 2uk+1

j + uk+1
j−1

)
,

vk+1
j − ṽk+1

j

4t
=
( ε

∆x

)2(
vk+1
j+1 − 2vk+1

j + vk+1
j−1

)
,

(4.37)

which holds for (k, j) ∈ lN × {1, · · · , N}, with the boundary conditions (4.15)
and initial data (4.16).

Theorem 4.11. Setting ε = max{4t,∆x}, the energy Ek∆x defined in (4.34)
of solutions of system (4.37) is exponentially decaying, uniformly with respect
to both parameters ∆x > 0 and 4t > 0. To be more precise, there exist positive
constants ν0 and µ0 such that the energy of solutions (4.33) satisfies (3.2).

Remark 4.12. The main advantage of (4.37) over (4.33) is the presence of only
one viscosity operator. In other words, (4.33) dissipates too much.

The advantage of (4.37) over (4.35) consists in the absence of CFL condition,
which makes (4.37) more robust in practice.
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5 Further comments
1. As we mentioned in the introduction, our methods and results re-

quire the assumption that the damping operator B is bounded. This is due to
the method we employ, which is based on the equivalence between the expo-
nential decay of the energy and the observability properties of the conservative
system, that requires the damping operator to be bounded. That is the case,
even in the continuous setting. However, in several relevant applications, as for
instance when dealing with the problem of boundary stabilization of the wave
equation (see [20]), the feedback law is unbounded, and our method does not
apply. This issue requires further work.

2. Another drawback of our method is that it provides an explicit estimate
of the exponential decay rate of the energy of the time semi-discrete approxi-
mation systems, which is far from sharp in general. Again, this also happens in
the continuous case, since we deduce stabilization properties from the study of
the observability properties of the corresponding conservative systems. In the
continuous case, the computation of the decay rate of the energy is technically
involved and requires to work directly on the damped system. We refer to the
works [7, 8, 19] that deal with these questions for damped wave equations.

In our context, it would be also relevant to ask if one can choose the numerical
viscosity term such that the time-discrete damped systems are exponentially
stable, uniformly with respect to the time discretization parameter, and such
that the decay rate of the energy of these time discrete systems coincides with
the one of the continuous system. To our knowledge, this issue is still open.
Let us mention the work [13], which gives a partial answer to this question for
space semi-discrete approximation schemes of the 1d Perfectly Matched Layers
equations, which correspond to a particular instance of damped wave equations.

3. In this article, we assumed exponential decay properties for the continu-
ous damped systems under consideration. However, there are several important
models of vibrations where the energy decay rate is polynomial or even logarith-
mic within the class of solutions with initial data in D(A) instead of X. That
is the case for instance for networks of vibrating strings [9] or damped wave
equations, when the damping operator is effective on a subdomain where the
Geometric Control Condition is not fulfilled [2, 19]. One could ask if there is a
systematic discretization method for these systems that preserves these decay
properties. To our knowledge, this issue is widely open. The time semi-discrete
schemes provided here are good candidates to preserve these decay properties.

4. The same questions arise when discretizing in time semilinear wave equa-
tions. For instance, in [10] (see also [29, 30]), the exponential decay property
of solutions of semilinear wave equations in lR3 with a damping term which is
effective on the exterior of a ball are analyzed. Under suitable properties of the
nonlinearity, it is proved that the exponential decay of the energy holds locally
uniformly for finite energy solutions. It would be interesting to analyze whether
the same exponential decay property holds, uniformly with respect to the time-
step, for the numerical schemes analyzed in this article in this semilinear setting.
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