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Abstract

The goal of this article is to derive new estimates for the cost of observ-
ability of heat equations. We develop a new method allowing to show that,
when the corresponding wave equation is observable, the heat equation is
also observable. This method allows to describe the explicit dependence of
the observability constant on the geometry of the problem (the domain in
which the heat process evolves and the observation subdomain). We show
that our estimate is sharp in some cases, and in particular in one space di-
mension and in the multi-dimensional radially symmetric case. Our result
extends the ones in [12] to the multi-dimensional setting and improves the
ones available in the literature, namely those by Miller [28, 30, 31] and
Tenenbaum and Tucsnak [39].

Our approach is based on an explicit representation formula of some
solutions of the wave equation in terms of those of the heat equation,
contrarily to the standard application of transmutation methods, which
uses a reverse representation of the heat solution in terms of the wave one.

We shall also explain how our approach applies and yields some new
estimates on the cost of observability in the particular case of the unit
square observed from one side. We will also comment the applications of
our techniques to controllability properties of heat-type equations.
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1 Introduction

1.1 Setting

The goal of this article is to study the problem of the cost of observability for
heat type equations. To fix the ideas, we will mainly consider the classical
constant coefficient heat equation although our methods and results apply to a
large class of parabolic abstract problems.

Let Ω be a bounded domain and consider the heat equation with state z,
solution of  ∂tz −∆xz = 0, (t, x) ∈ R∗+ × Ω,

z(t, x) = 0, (t, x) ∈ R∗+ × ∂Ω,
z(0, x) = z0(x), x ∈ Ω.

(1.1)

We analyze the problem of observability, which is dual to the controllability
one, as we shall explain in Section 3 (see also [23]), and that consists in getting
global estimates on the solutions in terms of the energy concentrated on some
subdomain of the domain Ω where the equation evolves.

There is an extensive literature on the subject. In particular, using Carleman
inequalities as in [15], one can prove that for any subdomain ω ⊂ Ω, there exist
constants C, γ > 0 and γ̃ > 0 such that any solution z of the heat equation
(1.1) satisfies∫ ∞

0

∫
Ω

exp
(
−γ
t

)
|z(t, x)|2 dtdx ≤ C

∫ ∞
0

∫
ω

|z(t, x)|2 dtdx, (1.2)

and for all T > 0,∫
Ω

|z(T, x)|2 dtdx ≤ C exp

(
γ̃

T

)∫ T

0

∫
ω

|z(t, x)|2 dtdx. (1.3)

These are so called observability inequalities that assert that the energy of solu-
tions concentrated in ω yields an upper bound of the energy everywhere in Ω.
For that to happen, because of the strong irreversibility of the heat semigroup,
an exponentially vanishing weight is needed at t = 0 in (1.2) and, similarly, the
constant in (1.3) grows exponentially as T → 0.

The constants C, γ and γ̃ on the observability inequality (1.2) depend on
the geometric properties of ω and Ω.

This paper is mainly devoted to the analysis of the constant γ. Our goal is
to prove a new upper bound on the best constant γ in (1.2) that, all along this
article, will be referred to as being the exponential observability cost. Moreover,
this bound will be shown to be sharp in some geometric configurations and in
particular in 1-d, a fact that was unknown until now. As we shall explain later
in Section 2.4, this constant γ characterizes the reachability set for (1.1).

The constant γ̃ is called the finite-time exponential observability cost. Es-
timates like (1.3) are particularly relevant in small time T ∼ 0. Note that,
according to Lions [23], estimate (1.3) is equivalent to estimating the cost of
null-controllability in time t = T , i.e. the norm of the map that, to an initial
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data z0 ∈ L2(Ω), associates the control u of minimal L2((0, T )× ω)-norm such
that the solution of ∂tz −∆xz = u(t, x)χω(x), (t, x) ∈ R∗+ × Ω,

z(t, x) = 0, (t, x) ∈ R∗+ × ∂Ω,
z(0, x) = z0(x), x ∈ Ω.

(1.4)

satisfies z(T ) = 0.
There are several previous results on this subject yielding various lower and

upper bounds on γ and γ̃ that we briefly present below. The first remark is
that, obviously,

γ ≤ γ̃. (1.5)

Lower bounds: The following lower bound on the constant γ̃ fulfilling (1.2)
was obtained by comparison with the Green function of the heat equation (see
[28]):

γ̃ ≥ d̃2

2
, with d̃ = sup

x0∈Ω
d(x0, ω). (1.6)

Indeed, the Green function centered at a point x0 in Ω\ω at a geodesic distance
d(x0, ω) of the observation region ω, which decays as Ct−N/2 exp(−|x−x0|2/4t)
away from ω, shows that, necessarily, γ̃ ≥ d(x0, ω)2/2 is needed for all x0 ∈ Ω
in order to ensure (1.3).

On the other hand, in [13, 42], using the functions

zρ(t, x) =
1

(4πt)n/2
sin

(
ρ|x|
2t

)
exp

(
1

4t
(ρ2 − |x|2)

)
, ρ > 0, (1.7)

solutions of the heat equation in RN , it is shown that

γ ≥ d2

2
, with d = sup{ρ, such that B(x0, ρ) ⊂ Ω\ω}. (1.8)

Note that, always, d ≤ d̃, but in some geometrical situations, d = d̃. This is
the case in particular when Ω\ω is a ball and ω is a neighborhood of ∂Ω.

Upper bounds: On the other hand, as mentioned above, Carleman inequali-
ties guarantee that (1.3) holds with a finite constant γ̃ > 0, hence also (1.2) for
some constant γ. But this technique does not provide any explicit expression
on how the exponential observability constants γ, γ̃ depend on the geometry of
the problem under consideration.

The existing upper bounds refer mainly to the case where the Geometric
Control Condition (GCC) is satisfied. GCC asserts that all the rays of Geometric
Optics in Ω, reflected according to Descartes’ law on the boundary, enter the
domain ω in some finite uniform time 2S (see [4] for a more precise description of
the GCC). This imposes, of course, important constraints on the geometry of the
control subdomain ω. This condition is sharp in the context of the observability
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of the wave equation but, as mentioned above, is not needed to establish the
observability inequality for the heat equation.

According to [4, 5], the GCC is equivalent to the following observability
property for the corresponding wave equation: There exists C > 0 such that
any solution y of the wave system{

∂ssy −∆xy = 0, (s, x) ∈ R× Ω,
y = 0, (s, x) ∈ R× ∂Ω,

(1.9)

satisfies∫
Ω

|y(0, x)|2 dx+ ‖ys(0, ·)‖2H−1(Ω) ≤ C
∫ S

−S

∫
ω

|y(s, x)|2 dsdx. (1.10)

In (1.9), s stands for the time variable of the wave equation, since it is convenient
to distinguish it from the time t for the heat process.

The time 2S needed for the GCC to hold, in view of the finite velocity
of propagation of waves (≡ 1 in the present model), is necessarily such that
S ≥ d̃. This is so since, roughly, in time 2d̃ one can only guarantee that the
ray along the geodesic path reaches the observation set, after evolving along a
back and forth trajectory, while the GCC requires the same to hold for all the
rays. However, there are many cases in which S >> d̃ or even S is infinite. This
is precisely the case when ω fails to satisfy the GCC in any finite time. This
happens, for instance, when Ω is the unit ball and ω is a ball centered at the
origin and of radius r < 1. However, there are non-trivial situations in which
we can guarantee that S = d̃ = d, and in particular in the 1-d setting, as we
will explain in Section 4.

Under the GCC, it has been shown that the observability inequality (1.3)
holds for the heat equation for all

γ̃ > γ∗S
2/2, (1.11)

with γ∗ = 8(36/37)2 in [28, 30]. This upper bound on γ̃ was later improved to
γ∗ = 3 in [39].

As a consequence of this, according to (1.5), the observability inequality
(1.2) holds for any γ satisfying

γ > 3S2/2. (1.12)

But, even when S = d, this upper bound (1.12) on the best observability con-
stant is larger (by a multiplicative factor 3) than the lower bound (1.8).

A sharp result on γ in 1-d. The results in [12] imply that, for one-dimensional
parabolic equations on an interval of length L controlled from one of the points
on the boundary, γ in (1.2) can be chosen to be any constant strictly larger than
L2/2, whereas (1.2) does not hold if γ < L2/2.

This is the unique existing result in the literature on the optimality of γ in
(1.2) as far as we know.
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Note that the results in [12] are stated from the point of view of the reach-
ability set of the heat equation but this set is fully determined by the constant
γ in (1.2), see Section 2.4.

The techniques used in [12] are based on a precise study of the biorthog-
onal family of (exp(−n2π2t))n≥0 in L2(0, T ), which is not available in higher
dimensions.

Also note that this seems to indicate that the lower bound (1.8) for γ should
be d̃2/2 instead of d2/2. So far, this is only a conjecture.

As we have said, the fact that the observability property of waves implies the
observability of the heat equation is well-known. But this has not been proved
directly so far, but rather in the context of the dual equivalent controllability
problem. To be more precise, Russell in his pioneer work [37] observed that the
exact controllability property of the wave equation implies the null controllabil-
ity of the corresponding heat process. This, by duality, allows also showing the
link between the observability properties of these two models.

The original approach of Russell was based on the method of moments ([37]),
and has been more recently modified and replaced by the so-called transmuta-
tion method ([28, 30, 31]), that has been employed to give the quantitative
results on the exponential observability cost mentioned above. Transmutation
is easier to apply: it is inspired in Kannai’s transform, which allows writing the
solutions of the controlled abstract heat equation in terms of the corresponding
controlled solutions of the wave model. This approach has been also recently
used in [33] to derive an efficient method for numerically computing the control
for heat equations.

The main result of this paper ensures that, under the GCC, the observability
inequality (1.2) holds for γ = S2/2 (or very close variants; see Section 4 for more
details). This significantly improves the known estimates (1.12).

According to the lower bound (1.8), we conclude that our result is sharp
when S = d. The later is true, as we mentioned above, in one space dimension
and in some simple multidimensional geometries: for instance, for any domain
Ω when the control set ω is a neighborhood of its boundary such that Ω \ ω is
a ball, see Section 4.

Note that even in the 1 dimensional case, it also improves the results in [12]
up to the critical case γ = L2/2.

Our approach is also based on a transmutation method, but applied directly
on the observability context rather than from the control point of view. The
main novelty is that we write solutions of the wave equation as a function of that
of the heat equation, in the opposite sense to the classical Kannai transform.
This might seem counterintuitive since solutions of the heat equation propagate
at an infinite speed, and this could be an obstruction to get the solutions of
the wave equation, with a finite velocity of propagation. But, in fact, this may
be done since our transform maps solutions of the heat equation into a class of
analytic solutions of the wave one. Once solutions of the wave equation have
been written in terms of those of the heat equation, applying the well known
observability properties of the wave equation under the GCC, one recovers ob-
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servability inequalities for the heat equation with sharp exponential observation
cost.

This method will be formulated and presented in an abstract setting con-
taining the heat equation but also other parabolic problems as, for instance, the
fourth order diffusion operator.

1.2 The main result

Let X be a Hilbert space and A be a self-adjoint positive definite unbounded
operator on X with dense domain D(A) and compact resolvent.

We then introduce the following abstract heat equation:{
∂tz +Az = 0, t ∈ R+,
z(0) = z0,

(1.13)

and its corresponding wave equation:{
∂ssy +Ay = 0, s ∈ R,
y(0) = y0, ∂sy(0) = y1.

(1.14)

The observation is done through an operator B ∈ L(D(A), U), where U is a
Hilbert space.

As we mentioned above, our approach applies under the assumption that
the observability property holds for this abstract wave equation as made precise
below.

Assumption 1.1. There exist a time S > 0 and a constant Cw = Cwave such
that any solution y of the wave equation (1.14) with initial data (y0, y1) ∈
D(A)×D(A1/2) satisfies∥∥∥A1/2y0

∥∥∥2

X
+ ‖y1‖2X ≤ Cw

∫ S

−S
‖By(s)‖2U ds. (1.15)

Our main result is the following one:

Theorem 1.2. Let A be a self-adjoint unbounded positive definite operator with
dense domain and compact resolvent and B be an observation operator B ∈
L(D(A), U) such that Assumption 1.1 holds.

Then there exists C > 0 such that for any z solution of (1.13) with initial
data z0 ∈ D(A), the following estimate holds∫ ∞

0

exp

(
−S

2

2t

)
‖z(t)‖2X dt ≤ C

∫ ∞
0

‖Bz(t)‖2U dt. (1.16)

Besides, for all T > 0 there exists C(T ) > 0 such that for any z solution of
(1.13) with initial data z0 ∈ D(A), the following is satisfied:∫ ∞

0

exp

(
−S

2

2t

)
‖z(t)‖2X dt ≤ C(T )

∫ T

0

‖Bz(t)‖2U dt. (1.17)
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The following comments are in order:
• In view of this result, one can take any γ > S2/2 in (1.2) when the GCC

is satisfied, see Section 4 for more details, and even the critical case γ = S2/2
provided the norm in the left-hand side of (1.2) is weakened.
• The finite time estimate (1.17) should be made precise further in the sense

that it would be interesting to get explicit bounds on how the constant C(T )
grows as T tends to zero. This issue is discussed in Section 3.2 and in Section 5.
• If B is assumed to be in L(D(A1/2), U), since A is positive definite, the

right hand side of (1.16) is finite for any solution of (1.13) with initial data in
X. This is so because solutions z of (1.13) with initial data in X belong to
L2(R+, exp(νt)dt;D(A1/2)), for some ν > 0 smaller than the first eigenvalue of
A. Accordingly, when B ∈ L(D(A1/2), U), by density, estimate (1.16) can be
extended to any z0 ∈ X.

If B does not belong to L(D(A1/2), U) but only to L(D(A), U), one cannot
guarantee a priori that the integrals in (1.16) are finite for any initial data
z0 ∈ X but the inequalities (1.16)–(1.17) make sense for initial data in D(A).

In Section 3, we will explain how our transmutation technique developed
for Theorem 1.2 can be applied directly in a finite-time horizon, using different
transmutation kernels that are compactly supported in time t ∈ (0, T ).

In particular, our transmutation method can be used to get a bound on the
cost of controllability γ̃ in (1.3) (see Section 3.2), though the bound we obtain
is worst than the ones in [28, 39] when T ∼ 0. We shall explain why our method
fails to improve the bounds in [39].

Our method also identifies an observed quantity for which not only the
observability inequality holds but the reverse is also true (see Section 3.3). In
other words, we will give an explicit norm on the initial data which is equivalent
to some norm of the observation. Note for instance that, although (1.2) holds,
the reverse is not true. This issue is of course of particular interest with respect
to the control problem, as we explain in Section 3.4. In particular, this can be
used to determine a Hilbert Uniqueness Method algorithm to compute smooth
controls. This partially explains why transmutation allows to avoid the ill-
posedness of the problem of numerically computing the controls (see [33]).

We also list a number of examples in which our approach applies. In partic-
ular, we focus on the 1-dimensional heat equation. We then consider the case
Ω = (0, 1)2, the unit square, with observation on the boundary, first when GCC
holds, and then when the observation is done only on one side of the unit square.
In that later case, though GCC does not hold, transmutation can be applied
and also yields in that particular case estimates on the exponential observability
cost.

The outline of the article is as follows. First, in Section 2, we prove Theorem
1.2. We also briefly comment in Section 3 how the techniques we have developed
for Theorem 1.2 can be adapted to deal with a finite time horizon, and comment
their control theoretical consequences. In Section 4, we discuss applications of
Theorem 1.2 on some examples. Finally, in Section 5, we give some further
comments and open problems.
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2 Proof of the main result

We proceed in several steps that will be presented in different paragraphs.

2.1 Transmutation : from heat processes to waves

As we have explained above, transmutation has been so far used to transform
results on the control of the wave equation into results on the control of the heat
one. For that to be done one has to write the solutions of the heat equation
in terms of those of the wave equation in the spirit of the classical Kannai
transform (see, for instance, [28]).

But here we apply the transmutation method at the level of the observability
property. More precisely, we want to derive observability inequalities for the heat
equation as a consequence of the existing observability inequalities for the wave
equation. For this to be done one has to write the solutions of the wave equation
in terms of those of the heat equation. Such transform is rather counterintuitive
since, in view of the finite velocity of propagation underlying the wave operator,
it might seem unnatural to try to express its solutions in terms of the heat kernel
which diffuses at an infinite speed. But this can be done, indeed, for a suitable
class of initial data and this suffices to our purposes.

The key observation of the present article is as follows:

Theorem 2.1. Let z0 ∈ X and z = z(t) be the solution of the abstract heat
equation (1.13) with initial datum z0.

For any finite S > 0, the solution of the abstract wave equation (1.14) with
initial data

y0 ≡ 0, y1 =

∫ ∞
0

S

4
√
πt3/2

exp

(
−S

2

4t

)
z(t) dt, (2.1)

in the time interval −S < s < S can be represented as

y(s) =

∫
R+

1

(4πt)1/2
sin

(
sS

2t

)
exp

(
s2 − S2

4t

)
z(t) dt. (2.2)

Proof of Theorem 2.1. Let us consider z the solution of the abstract heat equa-
tion (1.13) with initial data z0 ∈ X. One can check directly the statement of
Theorem 2.1, showing that y given by (2.2) is a solution of (1.14). However,
for giving a better insight to the reader, we rather explain how we got this
result, linking the trajectory z(t) to one of the solutions of the abstract wave
equation (1.14).

To do this, we look for a solution y of (1.14) in the form

y(s) =

∫
R+

k(t, s)z(t) dt, (2.3)

where k = k(t, s) is a suitable kernel to be made precise below, describing how
the wave and heat semigroups are related.
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In order to identify the kernel k we formally apply the abstract wave operator
to y:

∂ssy(s) +Ay(s) =

∫
R+

∂ssk(t, s)z(t) dt+

∫
R+

k(t, s)Az(t) dt

=

∫
R+

∂ssk(t, s)z(t) dt−
∫
R+

k(t, s)∂tz(t) dt

=

∫
R+

∂ssk(t, s)z(t) dt+

∫
R+

∂tk(t, s)z(t) dt− lim
t→∞

(k(t, s)z(t)) + k(0, s)z0.

This shows that y is a solution of the wave equation (1.14) if k satisfies ∂tk + ∂ssk = 0, t ∈ R+, s ∈ R,
k(0, s) = 0, s ∈ R,
limt→∞ k(t, s) = 0, s ∈ R.

(2.4)

Note that in this system s plays the role of the space variable and that we are
dealing with the adjoint heat equation that can be easily transformed into the
standard forward one by the change of variables t→ −t.

The existence of such non-trivial kernels k is well known (see, e.g., [18]),
even if, of course, problem (2.4) is severely ill-posed. In particular, according to
the uniqueness results in [7], if we assume that, for some constant M ,

|k(t, s)| ≤M exp(Ms2), t ∈ R+, s ∈ R,

then k ≡ 0. Therefore, the solution we are looking for, k, has to violate this
growth condition.

Note that, formally, for any k satisfying (2.4), we automatically get that
y given by (2.3) is a solution of the abstract wave equation (1.14). But for
the estimates we will derive later to obtain Theorem 1.2, we will need precise
estimates on one such non-trivial kernel k.

A key further observation with respect to the constructions in [17, 18] is
that, in the present context, we only need the solution k to be defined for
s ∈ (−S, S). We can then look for k satisfying, instead of (2.4), the following
restricted system: ∂tk(t, s) + ∂ssk(t, s) = 0, t ∈ R+, s ∈ (−S, S),

k(0, s) = 0, s ∈ (−S, S),
limt→∞ |k(t, s)| = 0, s ∈ (−S, S).

(2.5)

Such k satisfying (2.5) can be given explicitly:

k(t, s) =
1

(4πt)1/2
sin

(
sS

2t

)
exp

(
s2 − S2

4t

)
. (2.6)

Furthermore, k satisfies the following identities:

k(t, 0) = 0, t ∈ R+, ∂sk(t, 0) =
S

4
√
πt3/2

exp

(
−S

2

4t

)
, t ∈ R+.
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Summarizing, if z is the solution of the abstract heat equation (1.13), then
the function y given by (2.3) with this kernel k is precisely a solution of the
wave equation (1.14) for s ∈ (−S, S) with initial data (y0, y1) as in (2.1). This
concludes the proof of Theorem 2.1.

Remark 2.2. Observe also that the function k in (2.6) can be obtained from
the Appell transform (see [40]) out of the separated variable solution v(t, s) =
sin(Ss/2) exp(S2t/4) of the adjoint heat equation ∂tv + ∂ssv = 0.

Also note that this is the same kernel as the one constructed in [13, 42] (see
(1.7)) but with t replaced by −t to switch from the heat operator to the present
adjoint one. There, it was used to prove estimates from below for γ.

2.2 Observability by transmutation

Using the transmutation formula of the previous paragraph we can derive a
first observability inequality for the heat equation as a consequence of the cor-
responding one for the wave equation.

The following holds:

Theorem 2.3. Let B be an observation operator B ∈ L(D(A), U).
If Assumption 1.1 holds and A is self-adjoint, positive definite and with

compact resolvent, for any z solution of (1.13) with initial data z0 ∈ D(A),

∥∥∥∥∫ ∞
0

S

4
√
πt3/2

exp

(
−S

2

4t

)
z(t) dt

∥∥∥∥2

X

≤ Cw
∫ S

−S

∥∥∥∥∫ ∞
0

1

(4πt)1/2
sin

(
sS

2t

)
exp

(
s2 − S2

4t

)
Bz(t) dt

∥∥∥∥2

U

ds, (2.7)

where Cw is the constant in (1.15).

Proof of Theorem 2.3. Let z0 ∈ D(A) and consider z(t) the corresponding so-
lution to the abstract heat equation (1.13).

Then Theorem 2.1 yields a solution y of the wave equation on (−S, S),
explicitly given through identity (2.2). Using (1.15), we immediately obtain

∥∥∥A1/2y0

∥∥∥2

X
+ ‖y1‖2X ≤ Cw

∫ S

−S

∥∥∥∥∥
∫
R+

k(t, s)Bz(t)dt

∥∥∥∥∥
2

U

ds, (2.8)

for those initial data (y0, y1) given by (2.1). This is exactly (2.7).

Note that, in (2.7), the left hand-side term constitutes a norm on z0 whereas
the right hand-side one should be estimated in terms of the norm of the obser-
vation Bz(t). This will be done in the next paragraph.
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2.3 Further estimates

In view of the estimate (2.7) in Theorem 2.3, in order to get the main result in
Theorem 1.2 it is sufficient to estimate the integrals on both sides of (2.7).

For this to be done, it will be convenient to use the spectral decomposition
of the functional space X on the basis of the eigenfunctions of A : Since A
is a self-adjoint positive definite operator with compact resolvent, its spectrum
consists in a sequence of positive eigenvalues 0 < µ0 ≤ · · · ≤ µj ≤ µj+1 → ∞
and an orthonormal (in X) basis of corresponding eigenvectors Φj satisfying
AΦj = µjΦj .

We now prove classical estimates from below for the left hand side of (2.7)
and from above for its right hand side.

Estimates on the left hand side of (2.7).

Lemma 2.4. There exists a constant C > 0 such that∫ ∞
0

exp

(
−S

2

2t

)
‖z(t)‖2X dt ≤ C

∥∥∥∥∫ ∞
0

1

t3/2
exp

(
−S

2

4t

)
z(t) dt

∥∥∥∥2

X

. (2.9)

To be more precise, if z0 =
∑
ajΦj, solutions z of (1.13) with initial data z0

satisfy:

∑
j

|aj |2
exp(−2S

√
µj)

(1 + µj)1/2
≤ C

∥∥∥∥∫ ∞
0

1

t3/2
exp

(
−S

2

4t

)
z(t) dt

∥∥∥∥2

X

, (2.10)

∫ ∞
0

exp

(
−S

2

2t

)
‖z(t)‖2X dt ≤ C

∑
j

|aj |2
exp(−2S

√
µj)

(1 + µj)1/2
. (2.11)

Proof of Lemma 2.4. Expanding z0 on the basis (Φj) as z0 =
∑
j ajΦj , the

corresponding solution z of (1.13) is

z(t) =
∑
j

ajΦj exp(−µjt). (2.12)

This implies in particular that∥∥∥∥∫ ∞
0

1

t3/2
e−

S2

4t z(t) dt

∥∥∥∥2

X

=
∑
j

|aj |2
(∫ ∞

0

1

t3/2
e−

S2

4t −µjt dt

)2

. (2.13)

We need to determine a lower bound for

F (µ) =

∫ ∞
0

1

t3/2
exp

(
−S

2

4t
− µt

)
dt.

11



For this, set Tµ = S/(2
√
µ), and remark that

F (µ) ≥
∫ ∞
Tµ

1

t3/2
exp

(
−S

2

4t
− µt

)
dt

≥ exp

(
−
S
√
µ

2

)∫ ∞
Tµ

1

t3/2
exp (−µt) dt

≥ exp

(
−
S
√
µ

2

)
µ1/2

∫ ∞
µTµ

1

t3/2
exp (−t) dt.

But, for α ∈ [2,∞),∫ ∞
α

1

t3/2
exp(−t) dt =

1

α3/2
exp(−α)− 3

2

∫ ∞
α

1

t5/2
exp(−t) dt

and ∣∣∣∣32
∫ ∞
α

1

t5/2
exp(−t) dt

∣∣∣∣ ≤ 3

2

1

α5/2

∫ ∞
α

exp(−t) dt ≤ 3

4

1

α3/2
exp(−α),

which implies in particular, for α ≥ 2, that∫ ∞
α

1

t3/2
exp(−t) dt ≥ 1

4

1

α3/2
exp(−α).

Hence, for µ ≥ 16/S2,

F (µ) ≥
exp(−S√µ)

S
√

2Sµ1/4
≥

exp(−S√µ)

S
√

2S(1 + µ)1/4
.

For µ ∈ [0, 16/S2], one easily checks that F is continuous and does not vanish.
Thus it is bounded from below by some positive constant. We conclude that
there exists c > 0 such that for all µ ∈ R+,

F (µ) ≥ c
exp(−S√µ)

(1 + µ)1/4
, (2.14)

which implies (2.10) by (2.13).
Now, using the same notations as in (2.12), let us remark that∫ ∞

0

exp

(
−S

2

2t

)
‖z(t)‖2X dt =

∑
j

|aj |2
∫ ∞

0

exp

(
−S

2

2t
− 2µjt

)
dt. (2.15)

Estimate (2.11) then follows from the following one: for µ ≥ µ0 > 0, (recall that

12



µ0 is the smallest eigenvalue of A)∫ ∞
0

exp

(
−S

2

2t
− 2µt

)
dt =

S

2
√
µ

∫ ∞
0

exp

(
−S√µ

(
t+

1

t

))
dt

≤ S

2
√
µ

∫ 3

0

exp (−2S
√
µ) dt+

S

2
√
µ

∫ ∞
3

exp (−S√µt) dt

≤ S

2
√
µ

(
3 exp (−2S

√
µ) +

1

S
√
µ

exp (−3S
√
µ)

)
≤ C

exp(−2S
√
µ)

√
µ

≤ C
exp(−2S

√
µ)

√
1 + µ

. (2.16)

Hence, from (2.15)-(2.16), there exists a constant C such that (2.11) holds.
Estimate (2.9) immediately follows from (2.10)-(2.11). This concludes the

proof of Lemma 2.4.

Estimates on the right hand side of (2.7).

Lemma 2.5. For all T > 0, there exists a constant C0(T ) such that∫ S

−S

∥∥∥∥∫ ∞
T

k(t, s)Bz(t) dt

∥∥∥∥2

U

ds ≤ C0(T )

∥∥∥∥∫ ∞
0

1

t3/2
e−

S2

4t z(t) dt

∥∥∥∥2

X

. (2.17)

Moreover,
lim
T→∞

C0(T ) = 0. (2.18)

Proof of Lemma 2.5. Let T > 0.
Using that, for some constant C independent of T > 0,∫ ∞

T

dt

t log2(t+ 2)
≤

∫ ∞
1

dt

t log2(t+ 2)
dt+

∫ 1

min{T,1}

dt

t log2(t+ 2)

≤ C

(
T + 1

T

)
,

for each s ∈ (−S, S), we get∥∥∥∥∫ ∞
T

k(t, s)Bz(t)dt

∥∥∥∥2

U

≤
(∫ ∞

T

|k(t, s)|2 ‖Bz(t)‖2U t log2(t+ 2) dt

)∫ ∞
T

dt

t log2(t+ 2)

≤ C

(
T + 1

T

)∫ ∞
T

1

4πt
sin2

(
sS

2t

)
e
s2−S2

2t ‖Bz(t)‖2U t log2(t+ 2) dt

≤ C

(
T + 1

T

)∫ ∞
T

log2(t+ 2) ‖Bz(t)‖2U dt. (2.19)

13



But B belongs to L(D(A), U). Thus,∫ ∞
T

log2(t+ 2) ‖Bz(t)‖2U dt ≤ C
∫ ∞
T

(1 + t)2 ‖z(t)‖2D(A) dt. (2.20)

Using the same expansion of the heat solutions as in (2.12), we obtain∫ ∞
T

(1 + t)2 ‖z(t)‖2D(A) dt ≤
∑
j

|aj |2
∫ ∞
T

(1 + t)2µ4
j exp(−2tµj) dt

≤ C
∑
j

|aj |2 exp(−2µjT )µ3
j (1 + T )2. (2.21)

This shows that, for some C > 0 independent of T ,∫ S

−S

∥∥∥∥∫ ∞
T

k(t, s)Bz(t) dt

∥∥∥∥2

U

ds ≤ C (1 + T )3

T

∑
j

|aj |2 exp(−2µjT )µ3
j . (2.22)

Thus, for all T > 0, setting

C̃0(T ) = sup
µ≥µ0

{
exp(−2µT + 2S

√
µ)(1 + µ)1/2µ3 (1 + T )3

T

}
,

we have∑
j

|aj |2 exp(−2µjT )µ3
j

(1 + T )3

T
≤ C̃0(T )

∑
j

|aj |2
exp(−2S

√
µj)

(1 + µj)1/2
, (2.23)

and, obviously, limT→∞ C̃0(T ) = 0 because µ0, the smallest eigenvalue of A, is
strictly positive.

Estimate (2.17) and the limit (2.18) then follow immediately from estimates
(2.10),(2.22) and (2.23).

Lemma 2.6. For all T > 0, there exists a constant C(T ) such that∫ S

−S

∥∥∥∥∥
∫ T

0

k(t, s)Bz(t) dt

∥∥∥∥∥
2

U

ds ≤ C
∫ T

0

‖Bz(t)‖2U dt. (2.24)

Proof of Lemma 2.6. For each s ∈ (−S, S),∥∥∥∥∥
∫ T

0

k(t, s)Bz(t)dt

∥∥∥∥∥
2

U

≤
∫ T

0

|k(t, s)|2 ‖Bz(t)‖2U
√
t dt

∫ T

0

dt√
t

≤ C

∫ T

0

1

4πt
sin2

(
sS

2t

)
exp

(
s2 − S2

2t

)
‖Bz(t)‖2U

√
t dt

≤ C

∫ T

0

1√
t
‖Bz(t)‖2U exp

(
s2 − S2

2t

)
dt. (2.25)
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Besides, for t ∈ (0, S2),∫ S

−S
exp

(
s2 − S2

2t

)
ds = 2

∫ S

0

exp

(
s2 − S2

2t

)
ds

= 2

∫ S−
√
t

0

exp

(
s2 − S2

2t

)
ds+ 2

∫ S

S−
√
t

exp

(
s2 − S2

2t

)
ds

≤ 2S exp

(
− S√

t
+

1

2

)
+ 2
√
t ≤ C

√
t,

and, obviously, whatever t > 0 is,∫ S

−S
exp

(
s2 − S2

2t

)
ds ≤ 2S.

Combining these two estimates, we deduce that for all t > 0,∫ S

−S
exp

(
s2 − S2

2t

)
ds ≤ min{2S,C

√
t}.

Thus, integrating (2.25) in s ∈ (−S, S), we obtain the desired estimate
(2.24).

We are now in position to prove Theorem 1.2.

Proof of Theorem 1.2. Combining Theorem 2.3, Lemmas 2.5 and 2.6, we obtain∥∥∥∥∫ ∞
0

1

t3/2
exp

(
−S

2

4t

)
z(t) dt

∥∥∥∥2

X

≤ C
∫ T0

0

‖Bz(t)‖2U dt

+ CC0(T0)

∥∥∥∥∫ ∞
0

1

t3/2
exp

(
−S

2

4t

)
z(t) dt

∥∥∥∥2

X

. (2.26)

Taking T0 large enough so that

CC0(T0) ≤ 1/2, (2.27)

which can be done by Lemma 2.5, we obtain∥∥∥∥∫ ∞
0

1

t3/2
exp

(
−S

2

4t

)
z(t) dt

∥∥∥∥2

X

≤ C
∫ T0

0

‖Bz(t)‖2U dt. (2.28)

This implies (1.17) for T0 from (2.9). Estimates (1.17) for T ≥ T0 and (1.16)
are then straightforward.

To prove (1.17) in any time T > 0 (and smaller than T0), we use a compact-
ness argument to show that for all T > 0, there exists a constant C such that
for any z solution of (1.13) with initial data z0 =

∑
ajΦj ∈ D(A),∥∥∥∥∫ ∞

0

1

t3/2
exp

(
−S

2

4t

)
z(t) dt

∥∥∥∥2

X

≤ C
∫ T

0

‖Bz(t)‖2U dt. (2.29)

15



We argue by contradiction.
Fix T ∈ (0, T0) and assume that there is no constant C such that (2.29)

holds. It would then exist a sequence zn of solutions of (1.13) with initial data
z0,n =

∑
j aj,nΦj ∈ D(A) such that∥∥∥∥∫ ∞

0

1

t3/2
exp

(
−S

2

4t

)
zn(t) dt

∥∥∥∥2

X

= 1, lim
n→∞

∫ T

0

‖Bzn(t)‖2U = 0. (2.30)

Note that, using the expansion of z on the basis (Φj), for all n ∈ N,∥∥∥∥∫ ∞
0

1

t3/2
exp

(
−S

2

4t

)
zn(t) dt

∥∥∥∥2

X

=
∑
j

|aj,n|2β2
j ,

whereβj =

∫ ∞
0

1

t3/2
exp

(
−S

2

4t
− µjt

)
dt, (2.31)

and that, according to estimate (2.14), for some C > 0,

βj ≥ C
exp(−S√µj)
(1 + µj)1/4

. (2.32)

Thus, (aj,nβj) is bounded in `2(N) and, extracting a sequence if necessary,
(aj,nβj) weakly converges to some sequence (bjβj) in `2(N).

But, due to (2.32), for all ε > 0, there exists a constant cε such that for all
(aj) ∈ `2(N), ∥∥∥∥∥∥t 7→

∑
j

|aj |2 exp(−2µjt)

∥∥∥∥∥∥
L∞(ε,∞)

≤ cε
∑
j

|aj |2β2
j .

This implies in particular that, setting z̃(t) =
∑
j bj exp(−µjt)Φj for all t > ε,

zn weakly converges to z̃ in L∞(ε,∞;X) weak-∗. Due to the regularizing effects
of the abstract heat equation under consideration, this implies that zn strongly
converges to z̃ in L2(2ε,∞;D(A)) and zn(2ε) strongly converges to z̃(2ε) in
D(A).

Therefore, choosing ε < T/3, z̃(· + 2ε) solves (1.13) with initial data z̃(2ε)
and, due to (2.30) and the strong convergence of zn to z̃ in L2(2ε,∞;D(A)),
Bz̃(t) = 0 for t ∈ (2ε, T ). But solutions of (1.13) are analytic in positive time
with values in D(A). Hence Bz̃(t) = 0 for all t > 2ε and in particular on
(2ε, T0 + 2ε). Applying (1.17) with T0 to z̃(·+ 2ε), we deduce that z̃(t) ≡ 0 for
all t > 2ε. Hence the limit sequence (bj) is identically zero.

But zn strongly converges to z̃ ≡ 0 in L2(T, T0;D(A)). SinceB ∈ L(D(A);U),
we deduce that Bzn strongly converges to Bz̃ ≡ 0 in L2(T, T0;U). Conse-
quently, due to (2.30), Bzn strongly converges to zero in L2(0, T0;U). But
then, according to (2.28), (aj,nβj) strongly converges to zero in `2(N), which is
in contradiction with (2.30).

Hence we have proved (2.29) for any positive time T > 0.
Estimate (2.9) then yields (1.17) in any time T > 0 and concludes the proof

of Theorem 1.2.
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Remark 2.7. The regularizing effect of the abstract heat semigroup allows also
showing that for all p > 0 and γ > S2/2, any solution z of (1.13) satisfies∫ ∞

0

exp
(
−γ
t

)
‖z(t)‖2D(Ap) dt ≤ C(γ, p)

∫ ∞
0

‖Bz(t)‖2U dt (2.33)

with a constant C = C(γ, p) > 0. Indeed, writing z(t) =
∑
j ajΦj exp(−µjt)

and using (2.16), we get∫ ∞
0

exp
(
−γ
t

)
‖z(t)‖2D(Ap) dt ≤ C

∑
j

|aj |2µ2p
j

exp(−2
√

2γ
√
µj)

(1 + µj)1/2
, (2.34)

which easily yields the claimed result (2.33) by (2.38) and the estimates (2.32).

Remark 2.8. For convenience, we have assumed that B is bounded from D(A) to
U , but our arguments apply similarly when the operator B is unbounded from
D(Ap) to U , whatever p ∈ N is. The proofs are the same, except for Lemma
2.5 and the compactness argument used in the proof of (2.29), where straight-
forward modifications need to be applied. This allows to deal with weaker
observability properties, such as pointwise observations, as we will explain in
Section 4.

Remark 2.9. It would be interesting to know if the following observability in-
equality holds: For all T > 0, there exists a constant C(T ) such that solutions
z of (1.13) satisfy∥∥∥∥∫ ∞

0

1

t3/2
exp

(
−S

2

4t

)
z(t) dt

∥∥∥∥2

X

≤ C(T )

∫ S

−S

∥∥∥∥∥
∫ T

0

k(t, s)Bz(t) dt

∥∥∥∥∥
2

U

ds,

(2.35)
where k is the function given by (2.6).

Using Theorem 2.3 and Lemma 2.5, we immediately get that this is true for
T > T1 for T1 large enough.

However, for T > 0, the compactness argument used in the proof of Theo-
rem 1.2 cannot be applied directly and requires the following unique continua-
tion property: If z denotes a solution of the abstract heat equation (1.13),(

∀s ∈ (−S, S),

∫ T

0

k(t, s)Bz(t) dt = 0

)
=⇒ ∀t ∈ (0, T ), Bz(t) = 0. (2.36)

Whether or not this unique continuation property holds for any time T > 0 is
an open problem.

Of course, using that k solves (2.5), this is equivalent to prove that solutions
y of

∂ssy +Ay = −k(T, s)z(T ), s ∈ (−S, S) (2.37)

with initial data as in (2.1) satisfying By(s) = 0 for all s ∈ (−S, S) vanishes
identically. Of course, the source term in (2.37) makes the classical unique
continuation results of no use for that particular problem.
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2.4 A first application to control

Let us remark that, under the assumptions of Theorem 1.2, the proof of Theo-
rem 1.2 yields (2.29). Hence, for any time T > 0, there exists a constant C such
that for all z solution of (1.13) with initial data z0 =

∑
ajΦj ,∑

j

|aj |2β2
j ≤ C

∫ T

0

‖Bz(t)‖2U dt, (2.38)

with βj as in (2.31).
This can be used to show that the reachability space RT , which is the set of

all functions that can be obtained as z(T ) for z solution of the abstract control
system

z′ +Az = B∗u(t), t ≥ 0, z(0) = 0, (2.39)

with u ∈ L2(0, T ;U), contains the set of all data zT =
∑
j ajΦj satisfying∑

j

|aj |2
1

β2
j

<∞. (2.40)

Of course, from the estimates (2.32), this is implied by∑
j

|aj |2(1 + µj)
1/2 exp(2S

√
µj) <∞. (2.41)

In a more concise form, this means that A−1/4 exp(−S
√
A)X ⊂ RT .

Indeed, following [23, 30], let us introduce the functional J defined for ϕT ∈
X by

J(ϕT ) =
1

2

∫ T

0

‖Bϕ(t)‖2U dt− 〈ϕT , zT 〉X ,

where ϕ is the solution of the adjoint heat equation

−∂tϕ+Aϕ = 0, t ∈ (0, T ), ϕ(T ) = ϕT .

Then define the completion X̄T of {ϕT ∈ X} with respect to the norm

‖ϕT ‖2obs =

∫ T

0

‖Bϕ(t)‖2U dt.

Due to estimate (2.38), if zT =
∑
ajΦj satisfies (2.40), the functional J is

well-defined, continuous, convex and coercive in X̄T . It therefore has a unique
minimizer ψT ∈ X̄T which defines a control function u(t) = Bψ(t) (or, more
precisely, u(t) = BψT , where B is the unique continuous extension of the map
ϕT 7→ Bϕ(t) on X̄T ). As one can check by writing the Euler-Lagrange equation
satisfied by ψT , the corresponding solution z of (2.39) satisfies z(T ) = zT .

Note that, in [38] (see also [30]), it is proved that the reachability set is
independent of T > 0, which is consistent with the fact that the subspace of the
reachability set we have found does not depend on time.
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Remark also that our results improve the ones in [12], where it was proved
using biorthogonals that exp(−(S+ ε)

√
A)X ⊂ RT for any T > 0 and ε > 0 for

the case of 1d heat equation observed from one boundary.
Indeed, using the estimates in Section 2.3, one can rewrite the results in [12]

as follows: one can take any γ > S2/2 in (1.2) in 1-d when controlling from
one boundary. However, the techniques used in [12] are restricted to the 1-d
case controlled from one boundary, in which case the control problem can be
formulated explicitly as a moment problem.

Therefore other situations (distributed controls in 1-d or any case in higher
dimension) do not seem to be handled by the techniques in [12].

Our result also improves some other existing ones in higher dimension, as
for instance those in [31, Appendix A], stating that exp(−α

√
A)X ⊂ RT for

any T > 0 for any α > 4
√

2(36/37)S.

3 Observability and Controllability in finite time

So far our approach has been presented in an infinite time horizon, in the sense
that the transmutation kernel k in (2.6) is not compactly supported in time
t ∈ R+. Below, we explain that there are many possible choices of transmutation
kernels, and among them, many that are compactly supported in time t ∈ (0, T ).
However, as we shall explain below, they are less explicit as before and therefore
the estimates we obtain that way are worst than the ones in the literature.
Despite of this, the use of these finite time horizon kernels yields new results for
a broad class of abstract heat equations.

3.1 Transmutation in finite time horizon

Here, our goal is to show that there are many kernel functions k(t, s), vanishing
after some time T > 0, that can be used to transmute from heat to waves.

Following the proof of Theorem 2.1, given T > 0, one should then construct
a nontrivial solution kT of ∂tkT (t, s) + ∂sskT (t, s) = 0, t ∈ (0, T ), s ∈ (−S, S),

kT (0, s) = 0, s ∈ (−S, S),
kT (T, s) = 0, s ∈ (−S, S).

(3.1)

Such kT can be constructed following the classical method of Tychonoff (see
[17, p.211] and [18]). The idea is to look for a solution kT as a power series
expansion in s of the form

kT (t, s) =
∑
n

sn

n!
gn(t), (3.2)

where the functions gn are smooth and supported on [0, T ].
A necessary condition for such expansion to solve (3.1) is to have

g2n = (−1)ng
(n)
0 , g2n+1 = (−1)ng

(n)
1 , n ∈ N. (3.3)
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Such a function kT can be constructed by taking g0(t) ≡ 0 and g1(t) of the
form

g1(t) =

 exp

(
−α

(
1

t
+

1

T − t

))
, t ∈ (0, T ),

0 t ∈ R \ (0, T ),
(3.4)

where α > 0 is some positive parameter.
It is well-known that g1 is a smooth function, but to guarantee the conver-

gence of the power series expansion (3.2), we need more precise estimates, that
can be derived using Cauchy’s formula (see [17, Pb.3 p.73]):

Lemma 3.1. For each δ ∈ (0, 1), for all n ∈ N and t ∈ (0, T ),

|g(n)
1 (t)| ≤ n!

(δmin{t, T − t})n
exp

(
− α

(1 + δ) min{t, T − t}

)
. (3.5)

Proof of Lemma 3.1. Note that, due to the fact that g1 is symmetric in T/2,
we can restrict ourselves to prove (3.5) only for t ∈ (0, T/2).

Fix t ∈ (0, T/2). Note that g1 is real analytic in a neighborhood of t and
can then be extended to an holomorphic function in a neighborhood of t, for
instance in the ball B(t, δt) of center t and radius δt, δ ∈ (0, 1). Thus, the
Cauchy formula yields

g1(t) =
1

2iπ

∫
Γ(t,δt)

g1(τ)

τ − t
dτ, (3.6)

where Γ(t, δt) denotes the circle of center t and radius δt.
We then obtain that

g
(n)
1 (t) =

n!

2iπ

∫
Γ(t,δt)

g1(τ)

(τ − t)n+1
dτ. (3.7)

Now, explicit computations easily yields that, for t ∈ (0, T/2) and τ ∈ Γ(t, δt)

|g1(τ)| = exp

(
−αRe

(
1

τ
+

1

T − τ

))
≤ exp

(
− α

t(1 + δ)

)
,

where Re(τ) denotes the real part of τ ∈ C and estimate (3.5) follows immedi-
ately.

Lemma 3.1 allows to prove the convergence of the series (3.2) and to obtain
the estimate (similarly as in [17, p.212])

|kT (t, s)| ≤ |s| exp

(
1

min{t, T − t}

(
s2

δ
− α

(1 + δ)

))
. (3.8)

For (3.8) to be well-defined on (−S, S) for t → 0 and t → T and for kT to
solve the time boundary conditions in (3.1), we need that, for some δ ∈ (0, 1),
α ≥ S2(1 + 1/δ), that is α > 2S2.

We thus have the following:
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Proposition 3.2. For any finite S > 0, for any α > 2S2, there exists a function
kT satisfying (3.1) with kT (t, 0) = 0 and ∂skT (t, 0) = g1(t) given by (3.4) such
that for any δ ∈ (0, 1) satisfying α > S2(1+1/δ), for any (t, s) ∈ (0, T )×(−S, S),
estimate (3.8) holds and, for all p ∈ N,

|∂pt kT (t, s)| ≤ p! |s|
(δmin{t, T − t})p

exp

(
1

min{t, T − t}

(
s2

δ
− α

(1 + δ)

))
. (3.9)

Only (3.9) has not been proved, but it follows from Lemma 3.1 and identity
(3.2) immediately. Details are left to the reader.

Of course, such kT can be used for transmutation, similarly as in Theo-
rem 2.1.

To be more precise, if z0 ∈ X and z = z(t) is the solution of the abstract
heat equation (1.13) with initial datum z0, the function y = y(s) given by

y(s) =

∫ T

0

kT (t, s)z(t) dt, s ∈ (−S, S), (3.10)

is a solution of the abstract wave equation (1.14) on (−S, S) with initial data

y0 ≡ 0, y1 =

∫ T

0

exp

(
−α

(
1

t
+

1

T − t

))
z(t) dt. (3.11)

Let us finally emphasize that any kernel kT solution of (3.1) can be used for
transmutation, which illustrates the flexibility of this approach.

3.2 Exponential observability cost in finite time

As we recalled in the introduction, estimates on the cost γ̃ of controllability in
small time in (1.3) for heat like equations are available in the literature (see
[30, 39]).

The goal of this paragraph is to explain that our approach also applies to
that particular issue, using for instance the function kT given by Proposition 3.2
but, so far, yields a weaker result (but with an easier proof) than the ones in the
articles [28, 39]. More precisely, we claim that for all solutions of the abstract
heat equation (1.13), the finite time observability inequality (1.3) holds with
γ̃ > 16S2 for all T > 0 with a constant C independent of T > 0.

This of course follows from the estimate (3.8) and similar estimates as the
ones in Section 2.3. The proof is left to the reader.

Let us now explain why this result is so far from the bounds obtained in
[30, 39].

This is due to the fact that we have very rough estimates on the function
kT , which is expected to be highly oscillatory, similarly as k in (2.6).

In particular, one could look for a solution kα of (2.5) of the form (3.2) with
g0(t) = 0 and

g1(t) =


√
α√

4πt3/2
exp

(
−α
t

)
, t > 0,

0, t ≤ 0,

α > 0.
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Though such function kα corresponds to the explicit solution

kα(t, s) =
1√
4πt

exp

(
s2/4− α

t

)
sin

(
s
√
α

t

)
, (3.12)

estimates on g1(t) and its derivatives will only yield that, for all δ ∈ (0, 1),

|kα(t, s)| ≤ |s| exp

(
1

t

(
s2

δ
− α

1 + δ

))
. (3.13)

Of course, estimate (3.13) only guarantees the existence of kα for t ∈ R+ and
s ∈ (−

√
α/2,

√
α/2) whereas on the explicit formula (3.12), one immediately

sees that kα is well-defined on (t, s) ∈ R+ × (−2
√
α, 2
√
α).

This indicates that the above estimates do not take into account in a satisfac-
tory way the strong oscillating behavior of the function kα and the conjectured
ones of the functions kT . This also explains why our technique fails to provide
sharp estimates on the finite time exponential observability cost γ̃ in (1.3).

3.3 Two-sided inequalities

When dealing with the wave equation, one often obtains two sided inequalities
of the following form: There exist some strictly positive constants cw, Cw, such
that any y solution of (1.14) satisfies

cw

∫ S

−S
‖By(s)‖2U ds ≤

∥∥∥A1/2y0

∥∥∥2

X
+ ‖y1‖2X ≤ Cw

∫ S

−S
‖By(s)‖2U ds. (3.14)

This states, in addition to (1.15), an admissibility result, always true when
B ∈ L(D(A1/2), U), but consequence of a more subtle hidden regularity property
when this is not the case (and in particular when considering boundary obser-
vation through the normal derivative of solutions for the Dirichlet Laplacian),
see e.g. [23].

Inequality (3.14) can be combined with any kernel kT solution of (3.1) (such
kernel exists, see Proposition 3.2) to obtain a two-sided observability inequality
for the heat equation. To simplify the presentation, we further assume that kT
is odd in the variable s. (Otherwise, replace kT by kT (t, s)− kT (t,−s).)

Then the transmutation technique applies and yields:

cw

∫ S

−S

∥∥∥∥∥
∫ T

0

kT (t, s)Bz(t) dt

∥∥∥∥∥
2

U

ds

≤

∥∥∥∥∥
∫ T

0

∂skT (t, 0)z(t) dt

∥∥∥∥∥
2

X

≤ Cw
∫ S

−S

∥∥∥∥∥
∫ T

0

kT (t, s)Bz(t) dt

∥∥∥∥∥
2

U

ds. (3.15)

Concerning the observed quantity on the initial datum, observe that for
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z0 =
∑
j ajΦj , we have

∥∥∥∥∥
∫ T

0

∂skT (t, 0)z(t) dt

∥∥∥∥∥
2

X

=
∑
j

|aj |2(βj(kT ))2,

where βj(kT ) =

∫ T

0

∂skT (t, 0) exp(−µjt) dt. (3.16)

We thus define the set of observable states with kT as the Hilbert space given
by

O(kT ) =

z =
∑
j

ajΦj , ‖z‖2O(kT ) =
∑
j

|aj |2(βj(kT ))2 <∞

 . (3.17)

Let us emphasize that this space depends on the kernel transmutation function
kT .

Rewriting (3.15) using this norm, we deduce that there exist two strictly
positive constants c1, c2 such that

c1 ‖z0‖2O(kT ) ≤
∫ S

−S

∥∥∥∥∥
∫ T

0

kT (t, s)Bz(t) dt

∥∥∥∥∥
2

U

ds ≤ c2 ‖z0‖2O(kT ) . (3.18)

Remark 3.3. The same can be done with the kernel k as in (2.6), βj as in (2.31)
and O(k) as

O(k) =

z =
∑
j

ajΦj , ‖z‖2O(k) =
∑
j

|aj |2β2
j <∞

 , (3.19)

if T is large enough.
Indeed, according to Remark 2.9 and Lemma 2.5, for T1 large enough, for

any T ≥ T1, for any z solution of the abstract heat equation (1.13), it holds

c1 ‖z0‖2O(k) ≤
∫ S

−S

∥∥∥∥∥
∫ T

0

k(t, s)Bz(t) dt

∥∥∥∥∥
2

U

ds ≤ c2 ‖z0‖2O(k) . (3.20)

Note that in (3.19), the space O(k) is independent of the time T > 0.
But whether or not estimate (3.20) holds in arbitrarily small values of T > 0

is an open problem, see Remark 2.9.

Remark 3.4. Let us remark that this is not the first time that one derives such
equivalence of norms between an observation and the solutions. Indeed, the
by-now classical Fursikov-Imanuvilov’s Carleman estimate derived in [15] also
yields, for some weights η = η(t, x) (whose definition is given in an intricate
way that reflects the geometrical setting, see [15] for the detailed definition of
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η), that, given T > 0, Ω and ω, there exists a constant C such all solutions z of
(1.1) satisfies∫ T

0

∫
Ω

η(t, x)2|z(t, x)|2 dt dx ≤ C
∫ T

0

∫
ω

η(t, x)2|z(t, x)|2 dtdx, (3.21)

and of course, the reverse inequality also holds true.

3.4 Application to control

In the sequel, we assume that (3.14) holds for the abstract wave equation, a fact
that is well known to be true in many relevant situations. For the solutions of
the corresponding heat equation it then follows that the two-sided inequalities
(3.18) are true. These inequalities can be used to deal precisely with the dual
control problem.

A technical assumption. For what follows, it is interesting to further assume
that there exists a constant C such that for any z solution of the abstract heat
equation (1.13),

‖z(T )‖X ≤ C ‖z0‖O(kT ) . (3.22)

This is automatically fulfilled in most applications because of the strong regu-
larizing effect of heat-like equations.

Estimate (3.22) means that the map z0 7→ z(T ) is continuous from the set
of observable states with kT to X. In particular, (3.22) and (3.18) imply

‖z(T )‖2X ≤ C
∫ S

−S

∥∥∥∥∥
∫ T

0

kT (t, s)Bz(t) dt

∥∥∥∥∥
2

U

ds.

Writing (3.22) on the basis of eigenfunctions of A and recalling the definition
(3.17) of the space O(kT ) and of the coefficients βj(kT ), one easily checks that
(3.22) holds if and only if there exists a constant C such that for all µ > 0,

exp(−µT ) ≤ C
∫ T

0

∂skT (t, 0) exp(−µt) dt. (3.23)

Note that the kernel function kT given in Proposition 3.2 satisfies (3.23) (or
equivalently (3.22) or (3.25) below): Indeed, when t ∈ (0, T ) 7→ ∂skT (t, 0) is
non-trivial and non-negative∫ T

0

∂skT (t, 0)e−µt dt ≥ e−µT
∫ T

0

∂skT (t, 0) dt,

and then C in (3.23) can be taken as C = 1/
∫ T

0
∂skT (t, 0) dt.

We emphasize that many of the non-trivial kernels kT solutions of (3.1)
satisfy assumption (3.22). This is the case for instance for the kernels kT given
by Proposition 3.2. Namely, for any non-trivial non-negative g1 such that the
expansion (3.2) converges, (3.22) holds using the same arguments as above.

In the following, the transmutation kernel kT solution of (3.1) is fixed and
assumed to satisfy (3.22).
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The reachability set. Define the reachability set (its name will be justified
hereafter)

R(kT ) =

z =
∑
j

ajΦj , ‖z‖2R(kT ) =
∑
j

|aj |2
1

(βj(kT ))2
<∞

 , (3.24)

which is the dual space of O(kT ).
Note that, using this spectral representation of solutions of the heat equa-

tion (1.13), one immediately sees that estimate (3.22) (equivalently (3.23)) is
equivalent to the existence of a constant C such that for any z solution of the
abstract heat equation (1.13),

‖z(T )‖R(kT ) ≤ C ‖z0‖X . (3.25)

In particular, this implies that, if z0 ∈ X, then z(T ) belongs to the reachability
set R(kT ), meaning that all free trajectories of the heat semigroup belong to
R(kT ).

Let us then consider the following control problem: For z0 ∈ X, zT ∈ R(kT ),
to find a control u so that the solution z of

∂tz +Az = B∗u, t ∈ (0, T ), z(0) = z0, (3.26)

satisfies
z(T ) = zT . (3.27)

To deal with this problem, in view of the previous two-sided observability
inequalities, following the ideas in Subsection 2.4, we introduce the functional
J on O(kT ) as

J(ϕT ) =
1

2

∫ S

−S

∥∥∥∥∥
∫ T

0

kT (T − t, s)Bϕ(t) dt

∥∥∥∥∥
2

U

ds

+ 〈ϕ(0), z0〉X − 〈ϕT , zT 〉O(kT )×R(kT ), (3.28)

where ϕ is the solution of the adjoint heat equation

− ∂tϕ+Aϕ = 0, t ∈ (0, T ), ϕ(T ) = ϕT . (3.29)

For convenience, we introduce the free heat equation

∂tz̃ +Az̃ = 0, t ∈ (0, T ), z̃(0) = z0. (3.30)

Using this function z̃, multiplying (3.30) by ϕ solution of (3.29), we immediately
get

〈z0, ϕ(0)〉X = 〈z̃(T ), ϕT 〉O(kT )×R(kT ). (3.31)

Besides, estimate (3.25) implies that

‖z̃(T )‖R(kT ) ≤ C ‖z0‖X . (3.32)
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Setting
ZT = zT − z̃(T ), (3.33)

the functional J can be rewritten as

J(ϕT ) =
1

2

∫ S

−S

∥∥∥∥∥
∫ T

0

kT (T − t, s)Bϕ(t) dt

∥∥∥∥∥
2

U

ds−〈ϕT , ZT 〉O(kT )×R(kT ). (3.34)

Since ZT ∈ R(kT ) (see (3.32)), using (3.18), we deduce that the functional J is
continuous and coercive in the space O(kT ). Since it is strictly convex, it has a
unique minimum ψT ∈ O(kT ) which satisfies

‖ψT ‖O(kT ) ≤ C ‖ZT ‖R(kT ) ≤ C
(
‖zT ‖R(kT ) + ‖z0‖X

)
. (3.35)

Writing the Euler-Lagrange equation satisfied by ψT , setting, for s ∈ (−S, S),

v(s) =

∫ T

0

kT (T − t, s)Bψ(t) dt = B

(∫ T

0

kT (T − t, s)ψ(t) dt

)
, (3.36)

where ψ is the solution of the abstract heat equation (3.29) corresponding to
ψT , we obtain that for all ϕT ∈ O(kT ),∫ S

−S
〈v(s),

∫ T

0

kT (T − t, s)Bϕ(t) dt〉U ds− 〈ϕT , ZT 〉O(kT )×R(kT ) = 0, (3.37)

or, equivalently,∫ T

0

〈
∫ S

−S
kT (T − t, s)v(s) ds,Bϕ(t)〉U dt

+ 〈ϕ(0), z0〉X − 〈ϕT , zT 〉O(kT )×R(kT ) = 0. (3.38)

This implies that the function

u(t) =

∫ S

−S
kT (T − t, s)v(s) ds, where v is as in (3.36), (3.39)

is an admissible control function for (3.26): Indeed, multiplying (3.26) by ϕ
solution of (3.29), we obtain that, for all ϕT ∈ O(kT ),∫ T

0

〈u(t), Bϕ(t)〉U dt+ 〈ϕ(0), z0〉X − 〈ϕT , z(T )〉O(kT )×R(kT ) = 0,

which, according to (3.38), implies that z(T ) = zT .
This control has to have some added advantages with respect to the standard

ones since it has been derived using a subtle two-sided observability inequality.
In particular, as we describe now, the controls obtained by this method have
added regularity properties.
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Smoothness of controls. Choosing ϕT = ψT in (3.37), we obtain∫ S

−S
‖v(s)‖2U ds = 〈ψT , ZT 〉O(kT )×R(kT ).

Estimates (3.35) and (3.18) then show that

‖v‖L2(−S,S;U) ≤ C ‖ZT ‖R(kT ) ≤ C
(
‖zT ‖R(kT ) + ‖z0‖X

)
. (3.40)

In view of (3.39) and (3.40), estimates on kT and its time derivatives (in t) allow
to recover estimates on the control u in Hk(0, T ;U)-norms.

In particular, according to (3.9), for the functions kT constructed in (3.2),
for all p ∈ N, ∂pt kT ∈ L∞((0, T ) × (−S, S)). Therefore, the control function u
in (3.39) satisfies the following: For all p ∈ N, there exist constants Cp,1, Cp,2
such that

‖u‖Hp(0,T ;U) ≤ Cp,1 ‖v‖L2(−S,S;U)

≤ Cp,2 ‖ZT ‖R(kT ) ≤ Cp,2
(
‖zT ‖R(kT ) + ‖z0‖X

)
. (3.41)

Note that this result is specific to the controls we have constructed using the
kernels kT . Indeed, the recent results in [26] show that the classical controls of
minimal L2(0, T ;U)-norm fail to have such a property.

However, remark that the controls constructed in [15] using a minimization
process of a functional based on the Carleman weights also enjoy nice regularity
properties. We refer to [15] for precise statements in that direction for heat
equations, and to [8, Propositions 2 and 3] for the Stokes equations.

To better understand the nature of the control for the heat equation con-
structed by minimization of the functional J in (3.28), we analyze in more detail
the function v in (3.36).

For ϕT =
∑
j ajΦj , setting y(s) =

∫ S
−S kT (T − t, s)ϕ(t) dt, y(0) = 0 and

∂sy(0) =
∑
j ajΦjβj(kT ), identity (3.37) reads as∫ S

−S
〈v(s), By(s)〉U ds− 〈∂sy(0), Y0〉X = 0, (3.42)

where Y0 is given by

Y0 =
∑
j

zj
βj(kT )

Φj , for ZT =
∑
j

zjΦj . (3.43)

Remark that

‖Y0‖2X = ‖ZT ‖2R(kT ) , ‖∂sy(0)‖2X = ‖ϕT ‖2O(kT ) .

Therefore, the map

ϕT =
∑
j

ajΦj 7→ ∂sy(0) =
∑
j

ajΦjβj(kT )
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is an isomorphism from O(kT ) to X, and (3.42) is satisfied for any y solution
of (1.14) with initial data (y(0), ∂sy(0)) = (y0, y1) ∈ {0} ×X.

Besides, according to (3.36), v can be written as Bỹ, where ỹ(s) is given by

ỹ(s) =

∫ T

0

kT (T − t, s)ψ(t) dt.

Of course, due to the properties of the kernel kT , ỹ is a solution of the abstract
wave equation (1.14) with initial data (0, ∂sỹ(0)) ∈ {0} ×X.

Hence, by (3.42), ỹ1 = ∂sỹ(0) is a critical point of the functional J̃ defined
by

J̃(y1) =
1

2

∫ S

−S
‖By(s)‖2U ds− 〈y1, Y0〉X , (3.44)

for y1 ∈ X, where y is the solution of

∂ssy +Ay = 0, s ∈ (−S, S), (y(0), ∂sy(0)) = (0, y1). (3.45)

Due to (3.14), the functional J̃ is continuous, coercive and strictly convex in X,
and then has a unique minimizer, given by ỹ1.

To sum up, v, extended as an odd function on (−S, S), can be computed on
(0, S) by minimization of a suitable functional J̃ defined entirely on the wave
equation.

Actually, the function v(s) can also be viewed as the control of minimal
L2(0, S;U)-norm such that the solution Y of{

∂ssY +AY = 2B∗v, s ∈ R,
Y (S) = 0, ∂sY (S) = 0

(3.46)

satisfies the control requirement

Y (0) = Y0, where Y0 is given by (3.43). (3.47)

To see that, first remark that, when y0 = 0, solutions y of (1.14) are odd in the
time variable s. Thus, J̃ can be written as

J̃(y1) =

∫ S

0

‖By(s)‖2U − 〈y1, Y0〉X .

Writing the Euler-Lagrange equation satisfied by J̃ at ỹ1, one easily derives that
Y solution of (3.46) with v = Bỹ satisfies (3.47).

Once the control v of the abstract wave equation is characterized in this
manner, the results obtained in [10] can be easily modified to deal with this case
(using in particular that, for any τ > 0, if y is a solution of (1.14) with y0 = 0,
so is yτ (s) = (y(s + τ) − 2y(s) + y(s − τ))/τ2 since y is odd). In particular,
when B belongs to L(D(A1/2), U) and B∗B ∈ ∩p>0L(D(Ap)) (otherwise, a
time-dependent smooth weight function η(s) should be introduced within the
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functional J in (3.28), see [10]), it follows that for all ` ≥ 0, there exists a
constant C` such that

‖v‖H`(−S,S;U) +
∥∥A`ỹ1

∥∥
X
≤ C`

∥∥A`Y0

∥∥
X

= C`
∥∥A`ZT∥∥R(kT )

. (3.48)

We emphasize that (3.48) concerns the regularity properties of v = v(s). The
control u for the heat equation given by (3.39) is always smooth in time provided
the functions ∂pt kT all belong to L∞((0, T ) × (−S, S)), without these extra
regularity assumptions on B (see (3.41)).

Also note that, as explained in [10], the extra time-regularity properties of
v imply extra space regularity properties.

To sum up, we have proved the following:

Theorem 3.5. Let T > 0 and kT ∈ L∞((0, T )× (−S, S)) be a solution of (3.1)
satisfying (3.22). Assume that (3.14) holds for solutions of the abstract wave
equation (1.14). Let z0 ∈ X and zT ∈ R(kT ) (defined in (3.24)).

Construction of the control. The functional J in (3.28) has a unique
minimizer ψT on O(kT ) (defined in (3.17)), which yields a control u solving the
control problem (3.26)-(3.27), given by

u(t) =

∫ S

−S

∫ T

0

kT (T − t, s)kT (T − τ, s)Bψ(τ) dτds, (3.49)

and there exists a constant C such that

‖ψT ‖O(kT ) + ‖u‖L2(0,T ;U) ≤ C
(
‖z0‖X + ‖zT ‖R(kT )

)
. (3.50)

Another way to compute the control u is the following: Find the minimizer
ỹ1 ∈ X of the functional J̃ defined on the waves (with Y0 as in (3.43)-(3.33)),
set v(s) = Bỹ(s). Then the control function u is given by (3.39).

Smoothness properties of the control function.
• For any p ∈ N, if ∂pt kT ∈ L∞((0, T ) × (−S, S)), u belongs to Hp(0, T ;U)

and satisfies (3.41).
• If for some ` ∈ N, A`ZT ∈ R(kT ) and BB∗ ∈ ∩p≤`L(D(Ap)), then A`ỹ1 ∈

X, (3.48) holds and v belongs to the space

V` =
`
∩
p=0

Cp([−S, S];B∗D(A`−p)). (3.51)

This automatically yields the following corollary:

Corollary 3.6. Under the assumptions of Theorem 3.5 and with the same no-
tations, if for all p ∈ N, ∂pt kT ∈ L∞((0, T ) × (−S, S)), BB∗ ∈ ∩p∈NL(D(Ap)),
and for some ` ∈ N, A`ZT ∈ R(kT ), the source term B∗u satisfies

B∗u ∈ C∞([0, T ];D(A`)), (3.52)

and therefore Z = z− z̃, with z solution of the control problem (3.26)-(3.27) and
z̃ as in (3.30), solution of the control problem

Z ′ +AZ = B∗u, t ∈ (0, T ), Z(0) = 0, Z(T ) = ZT , (3.53)
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satisfies
Z ∈ C∞([0, T ];D(A`+1/2)). (3.54)

All the results in this Corollary except for the regularity property (3.54)
have been already explained. This latest statement can be deduced immediately
from the regularity (3.52) of the source term in (3.53) by induction (see also
[10, Corollary 1.5] where similar results are obtained). Details of the proof of
Corollary 3.6 are left to the reader.

Note that the regularity result in (3.54) concerns Z, the solution of (3.53).
To recover the controlled trajectory z solution of (3.26)-(3.27), one has to add
Z and z̃, solution of (3.30), whose regularity depends only on the initial data to
be controlled z0 ∈ X. In particular, if z0 only is in X, z̃ cannot be continuous
on [0, T ] with values in D(A), despite the parabolic regularization effects. That
explains why we need to decouple the regularity properties coming from the
initial data from the ones coming from the control.

The regularity results in Theorem 3.5 indicate that this control u, obtained
through two-sided observability inequalities, and characterized as the minimizer
of the quadratic functional (3.28), could be of use to avoid the numerical ill-
posedness of the effective computation of the controls of the heat equation (see
[33]). This subject needs of further investigation.

Actually the method of transmutation of [30] has been already used in [33]
to derive effective methods for computing the controls of the heat equation.
But there it has been applied in the classical manner, following [30], writing the
controls of the heat equation in terms of those of the wave one, but not as in the
present paper, exploiting the new two-sided observability inequalities we have
derived here.

Let us also emphasize that the controls given by our approach and the ones
provided by the method in [30] are different. Indeed, the transmutation tech-
nique used in [30] consists in writing the trajectories of the heat in terms of the
waves. We are doing the reverse. Hence the conditions on the transmutation
kernels in [30] are different than ours. For instance, in our case, the control
function v needs only to control one component of the wave equation. Also note
that the control given by the transmutation of [30] is based on a null-control for
the wave equation with initial data z0, whereas with our approach, it is based on
a control for the wave equation with the data Y0 (in the sense of (3.46)-(3.47))
given by (3.43), hence constructed using ZT and the kernel kT . Roughly speak-
ing, this explains why our method has more flexibility than the one presented
in [30].

Remark 3.7. Theorem 3.5 and Corollary 3.6 still hold with k as in (2.6) when the
time T is large enough, since the key estimate (3.20) holds for T large enough
(see Remark 3.3), and k obviously satisfies (3.22).

However, whether or not Theorem 3.5 with k as in (2.6) holds in any finite
time T > 0 is an open problem, see Remark 2.9.
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4 Examples

4.1 The 1-dimensional case

Internal observation. Let Ω = (0, 1) and ω = (α1, α2) be a non-empty
subinterval. Define X = H−1(Ω) = H−1(0, 1), A = −∆ with domain D(A) =
H1

0 (Ω) = H1
0 (0, 1), and B = χω, where χω is the characteristic function of the

set ω. Then B is continuous from D(A1/2) = L2(Ω) = L2(0, 1) to U = L2(ω).
In this case, it is classical that the wave equation is observable in any time

2S with S > d̃ = max{α1, 1− α2}, see for instance [23].
Applying Theorem 1.2, for any S > d̃ = max{α1, 1− α2}, we automatically

get that any solution z of the heat equation (1.1) with initial data z0 ∈ H−1(0, 1)
satisfies ∫ ∞

0

exp

(
−S

2

2t

)
‖z(t)‖2H−1(0,1) dt ≤ C

∫ ∞
0

∫
ω

|z(t)|2 dtdx, (4.1)

for some C > 0 independent of the initial data z0.
Of course, this is not exactly (1.2) since the norm in the left hand-side is the

H−1(0, 1)-norm instead of the L2(0, 1)-one.
Using Remark 2.7 with p = 1/2, we immediately get (1.2) for any γ > d̃2/2 =

max{α1, 1− α2}2/2.
There is no evidence so far that this result is sharp since the lower bound

(1.8) yields only γ ≥ d2/2 = d̃2/8.
However, when ω = (0, α1) ∪ (α2, 1), our results applies and yields (4.1) for

any S > d = d̃ = (α2−α1)/2, which is sharp from the lower bound (1.8) on the
observability constant in (1.2).

Boundary observation. Again, let Ω = (0, 1). Define X = L2(Ω), A = −∆
with domain D(A) = H2 ∩H1

0 (Ω) = H2 ∩H1
0 (0, 1), and B from D(A) to U = R

given by Bz = ∂xz(x = 1).
In this context the classical results on the observability of the wave equation

(see, e.g., [23]) show that the corresponding wave equation is observable in time
2S = 2.

Applying Theorem 1.2, we immediately get that any solution z of the heat
equation (1.1) with initial data z0 ∈ H1(0, 1) satisfies∫ ∞

0

∫ 1

0

exp

(
− 1

2t

)
|z(t, x)|2 dtdx ≤ C

∫ ∞
0

|∂xz(t, 1)|2 dt. (4.2)

Due to [12], estimate (4.2) is sharp.

4.2 The multi-dimensional case

Optimality of the results. The 1-dimensional examples above can be easily
extended to the multi-dimensional setting. Indeed, given any domain Ω, if ω
is a neighborhood of its boundary such that Ω \ ω is a ball of radius R, the
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GCC (in time 2S) holds for any S > R (again, see, for instance, [23]), whereas
d = d̃ = R.

Applying Theorem 1.2, the lower bound (1.8) on the observability constant
in (1.2) is shown to be sharp in this case. We conclude that the observability
constant γ in (1.2) can be taken to be any constant larger than d2/2 = d̃2/2.

Non optimal results. Note that it is easy to build multi-dimensional exam-
ples in which GCC holds but S > d̃ > d, or in which simply GCC does not hold.

The unit square observed from two consecutive sides. Let Ω = (0, 1)2

be the unit square and observe the normal derivative of the solution on two
consecutive sides of its boundary, see Figure 1, left. In that case, GCC holds,
and S can be taken to be any constant larger than

√
2 but d̃ = 1 and d = 1/2.

Thus, the bounds we get on the observability constant in (1.2) are of the form

1

8
=
d2

2
≤ γ ≤ S2

2
= 1+, whereas

d̃2

2
=

1

2
. (4.3)

Although this improves the previously existing results, it does not produce a
complete identification of the best observability constant.

This example shows that, even if the GCC holds, the direct application of the
approach of this paper, using the transformation from waves to heat equations,
cannot yield in general a sharp upper bound.

Figure 1: Squares with and without GCC: In bold, the observation region. Left,
GCC holds in time 2S = 2

√
2. Right, GCC does not hold.

The unit square observed from only one side. Here, we consider the heat
equation in the unit square Ω = (0, 1)2, observed from one side of the boundary
Γ = {0} × (0, 1), see Figure 1 right.
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In that case, the wave equation is not observable, since any vertical line
corresponds to a trapped ray that does not meet the control region Γ.

Though, as we will see next, in this very precise situation, our approach can
be slightly modified to yield some estimates on the exponential observability
cost.

4.3 Some further examples

Theoretical remarks. The transmutation technique developed in Section 2
also applies in the context of very weak observability properties.

To be more precise, one could replace Assumption 1.1 by the following one:
There exists a norm ‖·‖∗ and a time S̃ > 0 such that the following weak ob-
servability inequality is satisfied: there exists a constant C such that for any
solution y of (1.14) with initial data (y0, y1) ∈ {0} ×R(k),

‖y1‖2∗ ≤ C
∫ S̃

−S̃
‖By(s)‖2U ds. (4.4)

Indeed, in that case, if z0 =
∑
j ajΦj ∈ X, using the transmutation technique

of Theorem 2.1 with S replaced by S̃, we obtain a solution y of the wave (1.14)
which initial data y0 = 0 and

∂sy(0) =

∫ ∞
0

∂sk(t, 0)z(t) dt =
S̃

4
√
π

∑
ajΦj

∫ ∞
0

1

t3/2
exp

(
− S̃

2

4
− µjt

)
dt.

Applying (4.4), we immediately get, similarly as in Theorem 2.3,∥∥∥∥∥∥
∑
j

ajΦjβj

∥∥∥∥∥∥
2

∗

≤ C
∫ S̃

−S̃

∥∥∥∥∫ ∞
0

k(t, s)Bz(t) dt

∥∥∥∥2

U

ds, (4.5)

where z is the solution of (1.13) with initial data z0 =
∑
ajΦj ∈ X.

Using estimate (2.19) and Lemma 2.6 with T = 1, one can even get∥∥∥∥∥∥
∑
j

ajΦjβj

∥∥∥∥∥∥
2

∗

≤ C
∫ ∞

0

log2(t+ 2) ‖Bz(t)‖2U dt. (4.6)

However, getting rid of the logarithm in the right hand side of (4.6) requires
more information on the norm ‖·‖∗. In particular, if the norm ‖·‖∗ is determined
by a sequence ωj by ∥∥∥∥∥∥

∑
j

ajΦjβj

∥∥∥∥∥∥
2

∗

=
∑
j

|aj |2β2
jω

2
j , (4.7)
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and β2
jω

2
j ≥ exp(−2µjT0) for all j ∈ N, for some T0 large enough, then the

logarithm in (4.6) can be removed easily. Actually, in this case, similarly as in
Lemma 2.5, for some time T1 one can prove that∥∥∥∥∥∥

∑
j

ajΦjβj

∥∥∥∥∥∥
2

∗

≤ C
∫ T1

0

‖Bz(t)‖2U dt.

An important remark is that, for (4.6) to be useful in practice, one should
have a good understanding of the norm ‖·‖∗ on the spectral components, sim-
ilarly as in (4.7) above. We will present such case below. But we should also
emphasize that getting a norm ‖·‖∗ as in (4.7) for the observability property
(4.4) of the waves would imply the spectral controllability of waves, a fact which
is not known to hold in general, see Section 5.

Also note that if one wants to derive finite-time horizon estimates or esti-
mates on the cost of controllability, one can also use the kernels kT solutions of
(3.1) used in Section 3 and easily derive∥∥∥∥∥∥

∑
j

ajΦjβj(kT )

∥∥∥∥∥∥
2

∗

≤ C
∫ S̃

−S̃

∥∥∥∥∥
∫ T

0

kT (t, s)Bz(t) dt

∥∥∥∥∥
2

U

ds. (4.8)

Pointwise observation in dimension 1. Let Ω = (0, 1), X = H−1(Ω),
A = −∆ with domain D(A) = H1

0 (0, 1).
Now, let x0 ∈ (0, 1) be such that x0 /∈ Q.
Define B by Bz = z(x = x0). As one can check, B is continuous from

D(A3/4+ε) to R for any ε > 0.
Solutions y of the 1-d wave equation with y0 = 0 can be written as

y(s, x) =

∞∑
j=1

aj sin(jπx)
1

jπ
sin(jπs).

Hence, using Parseval’s identity,∫ 1

−1

|By(s)|2 ds = 2

∞∑
j=1

|aj |2
sin2(jπx0)

j2π2
.

Thus, since x0 /∈ Q, (4.4) holds with∥∥∥∥∥∥
∞∑
j=1

aj sin(jπx)

∥∥∥∥∥∥
2

∗

=

∞∑
j=1

|aj |2
sin2(jπx0)

j2π2
. (4.9)

Therefore, one can conclude that, if z solves the 1d heat equation on (0, 1)
with initial data z0(x) =

∑∞
j=1 zj sin(jπx),

∞∑
j=1

|zj |2β2
j

sin2(jπx0)

j2π2
≤ C

∫ ∞
0

|z(t, x0)|2 log2(t+ 2) dt, (4.10)
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where the coefficients βj are given by (2.31).
Using (2.32), this yields

∞∑
j=1

|zj |2 exp(−2πj)
sin2(jπx0)

j3π3
≤ C

∫ ∞
0

|z(t, x0)|2 log2(t+ 2) dt, (4.11)

Whether or not this result is sharp is an open problem. A priori, with no
further assumption, whether or not the logarithmic dependence of time in the
right hand-side is needed is not clear.

Note that, when x0 is so that there exists C > 0 such that for all k ∈ N,

inf
p∈Z
{|kx0 − p|} ≥

C

k
, (4.12)

(according to [19, p.124], the set of such x0 is uncountable, thus non-empty)
then

sin2(jπx0) ≥ C

j2
, j ∈ N\{0}.

One can then go further than (4.11), and prove, similarly as in Theorem 1.2,
that for all T > 0, there exists C(T ) such that

∞∑
j=1

|zj |2 exp(−2πj)
sin2(jπx0)

j3π3
≤ C

∫ T

0

|z(t, x0)|2 dt. (4.13)

Using Remark 2.7 and especially equation (2.34), one can reformulate that
estimate into the following form: for any γ > 1/2, solutions of the 1-d heat
equation satisfy∫ ∞

0

∫ 1

0

exp
(
−γ
t

)
|z(t, x)|2 dtdx ≤ C

∫ T

0

|z(t, x0)|2 dt. (4.14)

Remark 4.1. Note that here the constant γ does not seem to depend significantly
on the position of x0 on (0, 1). This is due to the fact that the technique used
to prove (4.5) with the norm ‖·‖∗ in (4.9) is based on Fourier techniques. This
is well-known, for instance, that direct applications of Ingham inequalities yield
only observability in time 2 for the wave equation on (0, 1), even when observing
from (1/4, 3/4), though such case is observable in any time larger than 1/2.

The unit square observed from only one side. Here, we come back to
the heat equation in the unit square Ω = (0, 1)2, observed from one side of the
boundary Γ = {0} × (0, 1), see Figure 1 right.

In that case, the wave equation is not observable, since any vertical line cor-
responds to a trapped ray that does not meet the control region Γ. However, the
solutions y of the wave equation (1.9) satisfy the following unique continuation
property (Holmgren Uniqueness Theorem): For any S > 1,

∂1y(s, 0, x2) = 0, (s, x2) ∈ (−S, S)× (−1, 1) ⇒ y ≡ 0. (4.15)
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Here, and in what follows, we have denoted by ∂1 the derivative with respect to
x1 to simplify the notations.

This unique continuation property indicates that the L2(−S, S;L2(0, 1))-
norm of ∂1y(s, 0, x2) is a norm on the solutions y of the waves for S > 1.
Of course, this does not provide any further information if we are not able to
describe more precisely this norm, or any non-trivial weaker one ‖·‖∗ as in (4.4).

It turns out that in this geometric configuration Ω = (0, 1)2, Γ = {0}×(0, 1),
a norm ‖·‖∗ satisfying (4.4) can be derived explicitly (see [16]). For that to be
done, write the solutions y of (1.9) as

y(s, x1, x2) =
√

2

∞∑
j=1

yj(s, x1) sin(jπx2). (4.16)

This can be done of course since the functions (x 7→ sin(jπx))j∈N form a basis
of L2(0, 1).

Then one immediately gets that∫ S

−S

∫ 1

0

|∂1y(s, 0, x2)|2 dx2ds =

∞∑
j=1

∫ S

−S
|∂1yj(s, 0)|2 ds (4.17)

and that

∂ssyj − ∂11yj + j2π2yj = 0, s ∈ R, j ∈ N, yj(s, 0) = yj(s, 1) = 0. (4.18)

In other words, using this decomposition, we decouple the contributions of each
yj .

Note that equation (4.18) is a simple 1d wave equation with a potential.
Hence, to prove its observability, we use the classical technique of lateral propa-
gation of the energy (widely used in the context of 1d semilinear wave equation,
see e.g. [41]). In our case, this reads as follows: For smooth solutions of (4.18),
introduce the quantity

Fj(x1) =

∫ S−x1

x1−S

(
|∂syj(s, x1)|2 + |∂1yj(s, x1)|2 + j2π2|yj(s, x1)|2

)
ds,

and differentiate it. After straightforward computations, we get

∂1Fj(x1)≤2

∫ S−x1

x1−S
∂1yj(s, x1)

(
−∂ssyj(s, x1) + ∂11yj(s, x1) + j2π2yj(s, x1)

)
ds

≤4j2π2

∫ S−x1

x1−S
∂1yj(s, x1)yj(s, x1) ds ≤ 2jπFj(x1).

Hence we obtain, for any S > 1, that Fj(x1) ≤ exp(2jπx1)Fj(0) for all x1 ∈
(0, 1). Integrating, we obtain∫ 1

0

Fj(x1) dx1 ≤
exp(2jπ)

2jπ
Fj(0) =

exp(2jπ)

2jπ

∫ S

−S
|∂1yj(s, 0)|2 ds. (4.19)
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But of course, the energy

Ej(s) =
1

2

∫ 1

0

(
|∂syj(s, x1)|2 + |∂1yj(s, x1)|2 + j2π2|yj(s, x1)|2

)
dx1

of yj solution of (4.18) is constant in time. Therefore, due to (4.19), solutions
yj of (4.18) satisfy, for any S > 1,

4jπ(S − 1)Ej(0) exp(−2jπ) ≤
∫ S

−S
|∂1yj(s, 0)|2 ds. (4.20)

Using (4.16), (4.17), and estimates (4.20) for solutions of (4.18), we obtain
(4.4) for any time S > 1 with the norm ‖·‖∗ given by∥∥∥∥∥∥√2

∞∑
j=1

yj(x1) sin(jπx2)

∥∥∥∥∥∥
2

∗

=

∞∑
j=1

j exp(−2πj)

∫ 1

0

|yj(x1)|2 dx1. (4.21)

Indeed, if y is a solution of the wave (1.9) with initial data y0 = 0, y1 =√
2
∑
j y1,j(x1) sin(jπx2), the corresponding yj in (4.16) satisfy yj(s = 0) =

0, ∂syj(s = 0) = y1,j , and the energy Ej(0) respectively reduces to the L2(0, 1)-
norm of y1,j .

The norm ‖·‖∗ can then be easily written for functions expanded on the basis
of the Dirichlet Laplace operator:∥∥∥∥∥∥2

∞∑
j,`=1

a`,j sin(`πx1) sin(jπx2)

∥∥∥∥∥∥
2

∗

=

∞∑
j=1

∞∑
`=1

j exp(−2πj)|a`,j |2. (4.22)

Due to the explicit form (4.22) of ‖·‖∗, we obtain that solutions z of the heat
equation with initial data

z0(x1, x2) = 2
∑
`,j

aj,` sin(`πx1) sin(jπx2)

satisfy

∞∑
j=1

∞∑
`=1

j exp(−2πj)|a`,j |2β2
`,j

≤ C
∫ ∞

0

∫ 1

0

log2(t+ 2)|∂xz(t, 0, x2)|2 dx2ds, (4.23)

where

β`,j =

∫ ∞
0

1

t3/2
exp

(
−S

2

4t
− π2(`2 + j2)t

)
dt,

which, according to (2.14), satisfy

β`,j ≥ C
exp(−Sπ

√
`2 + j2)

(1 + π
√
`2 + j2)1/4

.
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Using (4.23), we deduce

∞∑
j=1

∞∑
`=1

|a`,j |2
exp(−2(S + 1)π

√
`2 + j2)

(1 + π
√
`2 + j2)1/2

≤ C
∫ ∞

0

∫ 1

0

log2(t+ 2)|∂1z(t, 0, x2)|2 dx2dt, (4.24)

Of course, in (4.24), the norm in the left hand side is very similar to the one in
the left hand-side of (2.10). Hence all the estimates done in Section 2.3 apply.
In particular, for any S > 1, we can get that, for any time T > 0, there exists
a constant C(T ) such that all the solutions z of the heat equation (1.1) in the
square (0, 1)2 satisfy:∫ ∞

0

exp

(
− (S + 1)2

2t

)
‖z(t)‖2L2((0,1)2 dt ≤ C

∫ T

0

∫ 1

0

|∂xz(t, 0, x2)|2 dx2dt.

(4.25)
Note that estimate (4.25) yields an upper bound on γ in (1.2) of the form

γ ≤ (S+ 1)2/2 = 2+. This is still far away from the lower bound in (1.6)–(1.8),
which yield here γ̃ ≥ 1/2 and γ ≥ 1/8.

Note that, using [29, Lemma 2.2] and [39], one can prove that inequality
(1.3) holds in the square with γ̃ = 3+. This, as we said, implies in particular
that γ ≤ 3+ in (1.2) in this geometric configuration.

Though, our approach is developed directly on the weakly observable wave
equation. To our knowledge, this is the first time that such case is addressed
directly using a transmutation technique.

Note also that there should be some links with the estimates on the class of
analyticity of functions that are controllable in time T that have been derived
in [3]. We also point out the recent work [24] which studies the observability
problem in the square using biorthogonals.

Other examples. Let us also emphasize that our assumptions (4.4) are
also satisfied in other non-trivial cases, and in particular on cylinders ([2, 3])
and on networks of strings, for which under suitable assumptions (on the length
of the strings and the pattern of the network) one can derive norms of the form
(4.7) for which (4.4) holds, see [9].

4.4 Arbitrary geometry

Despite the previous examples, the arguments developed here do not seem to
yield any explicit observability estimates for the heat equation out of the existing
unique continuation results for the wave equation in general, except in some
special geometries as the ones above, where a non-trivial norm ‖·‖∗ satisfying
(4.4) can be made explicit.

In particular, situations in which the norm ‖·‖∗ has the form in (4.7) are
particularly interesting. But this would imply (actually, these are equivalent)
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spectral controllability for the wave equation, a property which, to our knowl-
edge, is not known so far in general geometries.

Also note that, when GCC fails, the existing unique continuation results on
the wave equation refer to estimates in classes of analytic solutions (see [20]) or
yield observability estimates depending on the frequency function of the solution
(see [36, 34]).

Let us also point out that, so far, there is no evidence of multi-dimensional
situation in which the best observability constant γ needs to be different from
d̃2/2. The results of this paper show that in some cases, namely when S = d̃ = d,
this constant is sharp, but do not give any hint on those possible pathological
situations.

5 Further comments and open problems

•The singular heat kernel. The equation (2.5) on k is ill-posed. However,
we have managed to find out an explicit solution. As mentioned in Section 3.1,
in finite time horizons, such kernels kT solving (3.1) can be obtained using the
classical construction by Tychonoff on non-standard heat kernels, see e.g. the
textbook by F. John [17], and some other related ones as those in [18] and [13].
However, the estimates we have derived on the kernels functions kT solution
of (3.1) do not seem to be optimal, thus explaining why our approach fails to
provide sharp bounds on the finite time observability exponential cost.
• Lower bound for γ. In view of the results in [12], the lower bound (1.8)

on γ does not seem to be sharp. An interesting open question would be to
improve this lower bound on γ. As we have seen, a reasonable conjecture would
be γ ≥ sup{d(x0, ω)2/2, x0 ∈ Ω}, but this is still an open problem so far.

Of course, that would in particular imply that the results given in Theo-
rem 1.2 are sharp when S = d̃.
• Exponential observability and control cost for T ∼ 0. The problem

of characterizing the best constant C(T ) such that∫ T

0

exp

(
−S

2

2t

)
‖z(t)‖2X dt ≤ C(T )

∫ T

0

‖Bz(t)‖2U dt (5.1)

holds is open. The constant C(T ) in (5.1) is obviously bounded by the one
obtained in (1.17), but the later is not explicit either when T ∼ 0 since it has
been deduced from a compactness argument. However, for times T ≥ T0 for T0

large enough (see (2.27)), the constant C(T ) in (1.17) and hence in (5.1) can
be chosen to be C(T0), which can be made explicit, following the details of the
proof of (2.28).

One could expect the constant C(T ) in (5.1) not to blow up exponentially
when T goes to zero. If this were true, according to [31], we would obtain (1.3)
with the optimal constant γ̃ = (S2/2)+ but this is a widely open subject, as we
have explained in Section 3.2. So far, the best constant in (1.3) is γ̃ = (3S2/2)+,
as obtained in [39] (Note that [12] does not yield any estimate on γ̃, but only on
γ in (1.2) when considering the 1-d heat equation observed from one boundary).
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Observe also that, as pointed out in [43] and recently further developed
in [27], these estimates and their optimality are intimately related with the
spectral estimates by Lebeau and Robbiano [22] on the observability of packets
of eigenfunctions.
• 1-d heat equations with rough coefficients. Our results apply

for abstract heat and wave equations. Accordingly they can be used in the
context of heat equations with variable coefficients as well. For instance, in
one space dimension, as observed in [14], taking into account that sidewise
energy estimates provide explicit observability constants for 1-d wave equations
with BV variable coefficients in an optimal characteristic time, one can obtain
explicit observability estimates of the form (1.2) for the heat equation with
BV coefficients too. Note however that the 1-d heat equation is known to be
observable for bounded measurable coefficients ([1]). But that case cannot be
treated by transmutation since the optimal assumption for the wave equation
being observable is the BV -regularity of the coefficients ([6]). Therefore it needs
to be treated directly. As far as we know, the obtention of sharp estimates on
the observability constant is widely open in that case.
• On the GCC condition.
1. Our result applies and yields a sharp observability constant under the

GCC and when S can be taken to be arbitrarily close to d. However, there are
cases in which GCC holds but in a time S much larger than d and others in
which GCC simply does not hold. Whether the lower bound (1.8) is sharp in
those cases is an interesting open problem.

2. In the absence of GCC the wave equation satisfies a unique continuation
property (Holmgren’s uniqueness theorem) stating that the observation mea-
sures some very weak norm on the data. For instance, observability may hold
within the class of solutions generated by a finite number of eigenfunctions
but with an observability constant that depends exponentially on the frequency
function (see [21, 36, 35, 34]).

In that case, using the recent results in [34], our transmutation technique
and the iteration argument developed in [27] (see also [22] for the origin of this
idea), one can derive observability estimates for the heat equation. This will be
published in [11].

However, the weak observability estimates developed in [34] are given with
constants that are not given explicitly in term of the geometry, thus yielding an-
other question: Can we estimate precisely the constants coming into play within
the quantification of the unique continuation property for the wave equation
without GCC?

Another important question in that context is to understand whether or not
spectral controllability for the wave equation holds for the wave equation in
general geometry. To our knowledge, this is still an open problem, see [36, 34]
for some partial results in that direction.
• Higher order parabolic equations. Our results also apply to the case

40



of higher order parabolic equations. For instance, the plate equation, given by{
∂ssy + ∆2y = 0, (s, x) ∈ R× Ω,
y = ∆y = 0, (s, x) ∈ R× ∂Ω,

(5.2)

is known to be observable through ω in any time 2S > 0 when GCC holds in
some time S0 > 0 (see, e.g., [23]).

Thus, in view of the results of the present paper, assuming that (ω,Ω,S0)
satisfies the GCC for some finite S0, for any γ > 0, there exists a constant Cγ
such that solutions z of{

∂tz + ∆2z = 0, (t, x) ∈ R+ × Ω,
z = ∆z = 0, (t, x) ∈ R× ∂Ω

(5.3)

satisfy ∫ ∞
0

exp
(
−γ
t

)
‖z(t)‖2X dt ≤ Cγ

∫ ∞
0

‖Bz(t)‖2U dt. (5.4)

The fact that γ can be chosen arbitrarily small reflects that, very likely, in this
case, the observability inequality can be obtained with a less degenerate weight
function. Note that in the case of the heat equation the weights of the form
exp (−γ/t) are optimal because of the scaling of the heat kernel.

This also shows the impossibility of getting observability properties for the
heat equation out of those on the Schrödinger equation by the methods in this
paper. Indeed, the observability of the Schrödinger equation is equivalent to
that of the plate equation (see [21]) and the later, as mentioned above, leads to
the observability of the fourth order parabolic equation but not to the heat one.
• Fractional order parabolic equations. One could try to apply the

same method to fractional order parabolic equations of the form:{
∂tz + (−∆)αz = 0, (t, x) ∈ R× Ω,
z = 0, (t, x) ∈ R× ∂Ω,

(5.5)

with 0 < α < 1. This equation is well known to be null controllable for α > 1/2
and the control property to fail for α ≤ 1/2 ([25, 32]).

But our transmutation method does not apply in this case in the sense
that, even if one can write the solutions of this system in terms of those of the
corresponding wave-like equation{

∂ssy + (−∆)αy = 0, (s, x) ∈ R× Ω,
y = 0, (s, x) ∈ R× ∂Ω,

(5.6)

the later fails to be controllable for α < 1. This can be easily seen in one space
dimension by analyzing the spectrum of the fractional power of the Laplacian
that shows a growth of order λ(n) ∼ Cn2α as n → ∞ so that the classical
uniform gap condition for

√
λ(n) ∼ C1/2nα, which is sharp for the control of

1-d wave models of this form by means of Ingham type inequalities, fails.
This is a further example of the fact that there are control results in the

parabolic context that cannot be obtained from the hyperbolic one by means of
transmutation.
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[9] R. Dáger and E. Zuazua. Wave propagation, observation and control in
1-d flexible multi-structures, volume 50 of Mathématiques & Applications
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