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Abstract. We consider a class of viscous damped vibrating systems. We prove
that, under the assumption that the damping term ensures the exponential
decay for the corresponding inviscid system, then the exponential decay rate
is uniform for the viscous one, regardless what the value of the viscosity pa-
rameter is. Our method is mainly based on a decoupling argument of low and
high frequencies. Low frequencies can be dealt with because of the effective-
ness of the damping term in the inviscid case while the dissipativity of the
viscous term guarantees the decay of the high frequency components. This
method is inspired in previous work by the authors on time-discretization
schemes for damped systems in which a numerical viscosity term needs to be
added to ensure the uniform exponential decay with respect to the time-step
parameter.

1. Introduction

LetX and Y be Hilbert spaces endowed with the norms ‖·‖X and ‖·‖Y respectively.
Let A : D(A) ⊂ X → X be a skew-adjoint operator with compact resolvent and
B ∈ L(X,Y ).

We consider the system described by

ż = Az + εA2z −B∗Bz, t ≥ 0, z(0) = z0 ∈ X. (1.1)

Here and henceforth, a dot (˙) denotes differentiation with respect to time t. The
element z0 ∈ X is the initial state, and z(t) is the state of the system. Most of
the linear equations modeling the damped viscous vibrations of elastic structures
(strings, beams, plates,...) can be written in the form (1.1) or some variants that
we shall also discuss, in which the viscosity term has a more general form, namely,

ż = Az + εVεz −B∗Bz, t ≥ 0, z(0) = z0 ∈ X, (1.2)
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for a suitable viscosity operator Vε, which might depend on ε.
We define the energy of the solutions of system (1.1) by

E(t) =
1
2
‖z(t)‖2X , t ≥ 0, (1.3)

which satisfies
dE

dt
(t) = −‖Bz(t)‖2Y − ε||Az||

2
X , t ≥ 0. (1.4)

In this paper, we assume that system (1.1) is exponentially stable when ε = 0.
For the sake of completeness and clarity we distinguish the case in which the
viscosity parameter vanishes

ż = Az −B∗Bz, t ≥ 0, z(0) = z0 ∈ X. (1.5)

This model corresponds to a conservative system in which a bounded damping
term has been added. The damped wave and Schrödinger equations enter in this
class, for instance.

Thus, we assume that there exist positive constants µ and ν such that any
solution of (1.5) satisfies

E(t) ≤ µ E(0) exp(−νt), t ≥ 0. (1.6)

Our goal is to prove that the exponential decay property (1.6) for (1.5) implies
the uniform exponential decay of solutions of (1.1) with respect to the viscosity
parameter ε > 0.

This result might seem immediate a priori since the viscous term that (1.1)
adds to (1.5) should in principle increase the decay rate of the solutions of the later.
But, this is far from being trivial because of the possible presence of overdamping
phenomena. Indeed, in the context of the damped wave equation, for instance,
it is well known that the decay rate does not necessarily behave monotonically
with respect to the size of the damping operator (see, for instance, [6, 7, 15]). In
our case, however, the viscous damping operator is such that the decay rate is
kept uniformly on ε. This is so because it adds dissipativity to the high frequency
components, while it does not deteriorate the low frequency damping that the
bounded feedback operator −B∗B introduces.

The main result of this paper is that system (1.1) enjoys a uniform stabiliza-
tion property. It reads as follows:

Theorem 1.1. Assume that system (1.5) is exponentially stable and satisfies (1.6)
for some positive constants µ and ν, and that B ∈ L(X,Y ).

Then there exist two positive constants µ0 and ν0 depending only on ‖B‖L(X,Y ),
ν and µ such that any solution of (1.1) satisfies (1.6) with constants µ0 and ν0

uniformly with respect to the viscosity parameter ε > 0.

Our strategy is based on the fact that the uniform exponential decay prop-
erties of the energy for systems (1.5) and (1.1), respectively, are equivalent to
observability properties for the conservative system

ẏ = Ay, t ∈ lR, y(0) = y0 ∈ X, (1.7)
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and its viscous counterpart

u̇ = Au+ εA2u, t ∈ lR, u(0) = u0 ∈ X. (1.8)

For (1.7) the observability property consists in the existence of a time T ∗ > 0
and a positive constant k∗ > 0 such that

k∗ ‖y0‖2X ≤
∫ T∗

0

‖By(t)‖2Y dt, (1.9)

for every solution of (1.7) (see [11]).
A similar argument can be applied to the viscous system (1.8). In this case

the relevant inequality is the following: There exist a time T > 0 and a constant
kT > 0 such that any solution of (1.8) satisfies

kT ‖u0‖2X ≤
∫ T

0

‖Bu(t)‖2Y dt+ ε

∫ T

0

‖Au(t)‖2X dt. (1.10)

Note however that, for the uniform exponential decay property of the solutions of
(1.1) to be independent of ε, we also need the time T and the observability constant
kT in (1.10) to be uniform. Actually we will prove the observability property (1.10)
for the time T = T ∗ given in (1.9).

The observability inequality (1.10) can not be obtained directly from (1.9)
since the viscosity operator εA2 is an unbounded perturbation of the dynamics
associated to the conservative system (1.7). Therefore, we decompose the solution
u of (1.8) into its low and high frequency parts, that we handle separately. We first
use the observability of (1.7) to prove (1.10), uniformly on ε, for the low frequency
components. Second, we use the dissipativity of (1.8) to obtain a similar estimate
for the high-frequency components.

In this way, we derive observability properties of the low and high frequency
components separately, that, together, yield the needed observability property
(1.10) leading to the uniform exponential decay result.

Our arguments do not apply when the damping operator B is not bounded,
as it happens when the damping is concentrated on the boundary for the wave
equation, see for instance [7]. Dealing with unbounded damping operators B needs
further work.

As we mentioned above, the results in this paper are related with the litera-
ture on the uniform stabilization of numerical approximation schemes for damped
equations of the form (1.5) and in particular with [21, 20, 18, 19, 9]. Similar
techniques have also been employed to obtain uniform dispersive estimates for
numerical approximation schemes to Schrödinger equations in [12].

The recent work [8] is also worth mentioning. There, observability issues were
discussed for time and fully discrete approximation schemes of (1.7) and was one
of the sources of motivation for this work.

The outline of this paper is as follows.
In Section 2, we recall the results of [8] and prove Theorem 1.1. In Section 3,
we present a generalization of Theorem 1.1 to other viscosity operators. We also
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specify an application of our technique for viscous second order in time evolution
equations which fit (1.2). In Section 4, we present some applications to viscous
approximations of damped Schrödinger and wave equations. Finally, some further
comments and open problems are collected in Section 5.

2. Proof of Theorem 1.1

We first need to introduce some notations.
Since A is a skew-adjoint operator with compact resolvent, its spectrum is

discrete and σ(A) = {iµj : j ∈ lN}, where (µj)j∈lN is a sequence of real numbers
such that |µj | → ∞ when j →∞. Set (Φj)j∈lN an orthonormal basis of eigenvectors
of A associated to the eigenvalues (iµj)j∈lN, that is

AΦj = iµjΦj . (2.1)

Moreover, define

Cs = span {Φj : the corresponding iµj satisfies |µj | ≤ s}. (2.2)

In the sequel, we assume that system (1.5) is exponentially stable and that
B ∈ L(X,Y ), i.e. there exists a constant KB such that

‖Bz‖Y ≤ KB ‖z‖X , ∀z ∈ X. (2.3)

The proof is divided into several steps.

First, we write carefully the energy identity for z solution of (1.1).
Consider z a solution of (1.1). Its energy ‖z(t)‖2X satisfies

‖z(T )‖2X + 2
∫ T

0

‖Bz(t)‖2Y dt+ 2
∫ T

0

ε ‖Az(t)‖2Y dt = ‖z(0)‖2X . (2.4)

Therefore our goal is to prove that, with T ∗ as in (1.9), there exists a constant
c > 0 such that any solution of (1.1) satisfies

c ‖z(0)‖2X ≤
∫ T∗

0

‖Bz(t)‖2Y dt+ ε

∫ T∗

0

‖Az(t)‖2X dt. (2.5)

It is easy to see that, combining (2.4) and (2.5), the semigroup Sε generated
by (1.1) satisfies

‖Sε(T ∗)‖ ≤ γ = 1− c, (2.6)
for a constant 0 < γ < 1 independent of ε > 0. This, by the semigroup property,
yields the uniform exponential decay result.

We also claim that, for (2.5) to hold for the solutions of (1.1), it is sufficient to
show (1.10) for solutions of (1.8). To do that, it is sufficient to follow the argument
in [11] developed in the context of system (1.5).

We decompose z as z = u + w where u is the solution of the system (1.8)
with initial data u(0) = z0 and w satisfies

ẇ = Aw + εA2w −B∗Bz, t ≥ 0, w(0) = 0. (2.7)
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Indeed, multiplying (2.7) by w and integrating in time, we get

‖w(t)‖2X + 2ε
∫ t

0

‖Aw(s)‖2X ds+ 2
∫ t

0

< Bz(s), Bw(s) >Y ds = 0.

Using that B is bounded, this gives

‖w(t)‖2X + 2ε
∫ t

0

‖Aw(s)‖2X ds ≤
∫ t

0

‖Bz(s)‖2Y +K2
B

∫ t

0

‖w(s)‖2X ds. (2.8)

Grönwall’s inequality then gives a constant G, that depends only on KB and T ∗,
such that

sup
t∈[0,T∗]

{
‖w(t)‖2X

}
+ ε

∫ T∗

0

‖Aw(s)‖2X ds ≤ G
∫ T∗

0

‖Bz(s)‖2Y ds. (2.9)

Therefore in the sequel we deal with solutions u of (1.8), for which we prove
(1.10) for T = T ∗.

As said in the introduction, we decompose the solution u of (1.8) into its low
and high frequency parts. To be more precise, we consider

ul = π1/
√
εu, uh = (I − π1/

√
ε)u, (2.10)

where π1/
√
ε is the orthogonal projection on C1/√ε defined in (2.2). Here the no-

tation ul and uh stands for the low and high frequency components, respectively.
Note that both ul and uh are solutions of (1.8) since the projection π1/

√
ε

and the viscosity operator A2 commute.
Besides, uh lies in the space C⊥

1/
√
ε
, in which the following property holds:

√
ε ‖Ay‖X ≥ ‖y‖X , ∀y ∈ C⊥1/√ε. (2.11)

In a first step, we compare ul with yl solution of (1.7) with initial data
yl(0) = ul(0). Now, set wl = ul − yl. From (1.9), which is valid for solutions of
(1.7), we get

k∗ ‖ul(0)‖2X = k∗ ‖yl(0)‖2X ≤ 2
∫ T∗

0

‖Bul(t)‖2Y dt+ 2
∫ T∗

0

‖Bwl(t)‖2Y dt. (2.12)

In the sequel, to simplify the notation, c > 0 will denote a positive constant that
may change from line to line, but which does not depend on ε.

Let us therefore estimate the last term in the right hand side of (2.12). To
this end, we write the equation satisfied by wl, which can be deduced from (1.7)
and (1.8):

ẇl = Awl + εA2ul, t ≥ 0, wl(0) = 0.
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Note that wl ∈ C1/√ε, since ul and yl both belong to C1/√ε. Therefore, the energy
estimate for wl leads, for t ≥ 0, to

‖wl(t)‖2X = −2ε
∫ t

0

< Aul(s), Awl(s) >X ds

≤ ε
∫ t

0

‖Aul(s)‖2X ds+
∫ t

0

‖wl(s)‖2X ds.

Grönwall’s Lemma applies and allows to deduce from (2.12) and the fact that the
operator B is bounded, the existence of a positive c independent of ε, such that

c ‖ul(0)‖2X ≤
∫ T∗

0

‖Bul(t)‖2Y dt+ ε

∫ T∗

0

‖Aul(s)‖2X ds.

Besides, ∫ T∗

0

‖Bul(t)‖2Y dt ≤ 2
∫ T∗

0

‖Bu(t)‖2Y dt+ 2
∫ T∗

0

‖Buh(t)‖2Y dt

and, since uh(t) ∈ C⊥
1/
√
ε

for all t,∫ T∗

0

‖Buh(t)‖2Y dt ≤ K2
B

∫ T∗

0

‖uh(t)‖2X dt ≤ KBε

∫ T∗

0

‖Auh(t)‖2X dt.

It follows that there exists c > 0 independent of ε such that

c ‖ul(0)‖2X ≤
∫ T∗

0

‖Bu(t)‖2Y dt+ ε

∫ T∗

0

‖Au(s)‖2X ds. (2.13)

Let us now consider the high frequency component uh. Since uh(t) is a solu-
tion of (1.8) and belongs to C⊥

1/
√
ε

for all time t ≥ 0, the energy dissipation law for
uh solution of (1.8) reads

‖uh(t)‖2X + 2ε
∫ t

0

‖Auh(s)‖2X ds = ‖uh(0)‖2X , t ≥ 0, (2.14)

and
‖uh(t)‖2X ≤ exp(−2t) ‖uh(0)‖2X , ∀t ≥ 0.

In particular, these two last inequalities imply the existence of a constant c > 0
independent of ε such that any solution uh of (1.8) with initial data uh(0) ∈ C⊥

1/
√
ε

satisfies

c ‖uh(0)‖2X ≤ ε
∫ T∗

0

‖Auh(s)‖2X ds. (2.15)

Combining (2.13) and (2.15) leads to the observability inequality (1.10). This,
combined with the arguments of [11] and (2.9), allows to prove that any solution
z of (1.1) satisfies (2.5), and proves (2.6), from which Theorem 1.1 follows.
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3. Variants of Theorem 1.1

3.1. General viscosity operators

Other viscosity operators could have been chosen. In our approach, we used the
viscosity operator εA2, which is unbounded, but we could have considered the
viscosity operator

εVε =
εA2

I − εA2
, (3.1)

which is well defined, since A2 is a definite negative operator, and commutes with
A. This choice presents the advantage that the viscosity operator now is bounded,
keeping the properties of being small at frequencies of order less than 1/

√
ε and

of order 1 on frequencies of order 1/
√
ε and more. Again, the same proof as the

one presented above works.
The following result constitutes a generalization of Theorem 1.1, which ap-

plies to a wide range of viscosity operators, and, in particular, to (3.1).

Theorem 3.1. Assume that system (1.5) is exponentially stable and satisfies (1.6),
and that B ∈ L(X,Y ).

Consider a viscosity operator Vε such that
1. Vε defines a self-adjoint definite negative operator.
2. The projection π1/

√
ε and the viscosity operator Vε commute.

3. There exist positive constants c and C such that for all ε > 0,
√
ε
∥∥∥(√−Vε)z∥∥∥

X
≤ C ‖z‖X , ∀z ∈ C1/√ε,

√
ε
∥∥∥(√−Vε)z∥∥∥

X
≥ c ‖z‖X , ∀z ∈ C

⊥
1/
√
ε.

Then the solutions of (1.2) are exponentially decaying in the sense of (1.6), uni-
formly with respect to the viscosity parameter ε ≥ 0.

The proof of Theorem 3.1 can be easily deduced from the one of Theorem
1.1 and is left to the reader.

Especially, note that the second item implies that both spaces C1/√ε and
C⊥

1/
√
ε

are left globally invariant by the viscosity operator Vε. Therefore, if ul ∈
C1/√ε and uh ∈ C⊥1/√ε, we have

< Vε(ul + uh), (ul + uh) >X=< Vεul, ul >X + < Vεuh, uh >X .

Also remark that the second item is always satisfied when the operators Vε and A
commute.

3.2. Wave type systems

In this subsection we investigate the exponential decay properties for viscous ap-
proximations of second order in time evolution equation.

Let H be a Hilbert space endowed with the norm ‖·‖H . Let A0 : D(A0)→ H
be a self-adjoint positive operator with compact resolvent and C ∈ L(H,Y ).
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We then consider the initial value problem{
v̈ +A0v + εA0v̇ + C∗Cv̇ = 0, t ≥ 0,

v(0) = v0 ∈ D(A1/2
0 ), v̇(0) = v1 ∈ H.

(3.2)

System (3.2) can be seen as a particular instance of (1.2) modeling wave and
beams equations.

The energy of solutions of (3.2) is given by

E(t) =
1
2
‖v̇(t)‖2H +

1
2

∥∥∥A1/2
0 v(t)

∥∥∥2

H
, (3.3)

and satisfies
dE

dt
(t) = −‖Cv̇(t)‖2Y − ε

∥∥∥A1/2
0 v̇(t)

∥∥∥2

H
. (3.4)

As before, we assume that, for ε = 0, the system

v̈ +A0v + C∗Cv̇ = 0, t ≥ 0, v(0) = v0 ∈ D(A1/2
0 ), v̇(0) = v1 ∈ H, (3.5)

is exponentially stable, i.e. (1.6) holds.
We are indeed in the setting of (1.2), since (3.2) can be written as

Ż = AZ + εVεZ −B∗BZ, (3.6)

with

Z =
(
v
v̇

)
, A =

(
0 I
−A0 0

)
, Vε =

(
0 0
0 −A0

)
, B =

(
0 C

)
. (3.7)

Note that the viscosity operator Vε introduced in (3.7) does not satisfy Condition
1 in Theorem 3.1. Though, we can prove the following theorem:

Theorem 3.2. Assume that system (3.5) is exponentially stable and satisfies (1.6)
for some positive constants µ and ν, and that C ∈ L(H,Y ). Set K <∞.

Then there exist two positive constants µK and νK depending only on ‖C‖L(H,Y ),
K, ν and µ such that any solution of (3.2) satisfies (1.6) with constants µ0 and
ν0 uniformly with respect to the viscosity parameter ε ∈ [0,K].

Before going into the proof, we introduce the spectrum of A0. Since A0 is
self-adjoint positive definite with compact resolvent, its spectrum is discrete and
σ(A0) = {λ2

j : j ∈ lN}, where λj is an increasing sequence of real positive numbers
such that λj →∞ when j →∞. Set (Ψj)j∈lN an orthonormal basis of eigenvectors
of A0 associated to the eigenvalues (λ2

j )j∈lN.
These notations are consistent with the ones introduced in Section 2, by

setting A as in (3.7), and

µ±j = ±λj , Φj =

 1
iµj

Ψj

Ψj

 .

For convenience, similarly as in (2.2), we define

Cs = span {Ψj : the corresponding λj satisfies |λj | ≤ s}, (3.8)
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which satisfies Cs = (Cs)2.

Sketch of the proof. The proof of Theorem 3.2 closely follows the one of Theorem
1.1.

As before, we read the exponential stability of (3.5) into the following ob-
servability inequality: There exist a time T ∗ and a positive constant k∗ such that
any solution of

ÿ +A0y = 0, t ≥ 0, y(0) = y0 ∈ D(A1/2
0 ), ẏ(0) = y1 ∈ H, (3.9)

satisfies

k∗

(
‖y1‖2H +

∥∥∥A1/2
0 y0

∥∥∥2

H

)
≤
∫ T∗

0

‖Cẏ(t)‖2Y dt. (3.10)

Due to (3.4), as in (2.5), the exponential decay of the energy for solutions of
(3.2) is equivalent to the following observability inequality: There exist a time T̃
and a positive constant c such that for any ε ∈ [0,K],

c
(
‖v1‖2H +

∥∥∥A1/2
0 v0

∥∥∥2

H

)
≤
∫ T̃

0

‖Cv̇(t)‖2Y dt+ ε

∫ T̃

0

∥∥∥A1/2
0 v̇(t)

∥∥∥2

H
dt (3.11)

holds for any solution v of (3.2).
Using the same perturbative arguments as in [11] or (2.7)-(2.9), the observ-

ability inequality (3.11) holds if and only if there exist a time T and a positive
constant kT > 0 such that, for any ε ∈ [0,K], the observability inequality

kT

(
‖u1‖2H +

∥∥∥A1/2
0 u0

∥∥∥2

H

)
≤
∫ T

0

‖Cu̇(t)‖2Y dt+ ε

∫ T

0

∥∥∥A1/2
0 u̇(t)

∥∥∥2

H
dt (3.12)

holds for any solution u of

ü+A0u+ εA0u̇ = 0, t ≥ 0, u(0) = u0 ∈ D(A1/2
0 ), u̇(0) = u1 ∈ H. (3.13)

As before, we then focus on the observability inequality (3.12) for solutions
of (3.13). As in the proof of Theorem 1.1, we now decompose the solution of
(3.13) into its low and high frequency parts, that we handle separately. To be
more precise, we consider

ul = P1/
√
εu, uh = (I − P1/

√
ε)u.,

where P1/
√
ε is the orthogonal projection in H on C1/

√
ε as defined in (3.8). Again,

both ul and uh are solutions of (3.13) since P1/
√
ε commute with A0.

Arguing as before, the low frequency component ul can be compared to yl
solution of (3.9) with initial data (y0, y1) = (P1/

√
εu0, P1/

√
εu1), and using (3.10)

for solutions of (3.9), we obtain the existence of a positive constant c1 such that

c1

(∥∥P1/
√
εu1

∥∥2

H
+
∥∥∥A1/2

0 P1/
√
εu0

∥∥∥2

H

)
≤
∫ T∗

0

‖Cu̇(t)‖2Y dt+ ε

∫ T∗

0

∥∥∥A1/2
0 u̇(t)

∥∥∥2

H
dt. (3.14)
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For the high frequency component uh, the situation is slightly more intricate
than in Theorem 1.1. The energy of the solution uh satisfies the dissipation law

1
2
d

dt

(
‖u̇h(t)‖2H +

∥∥∥A1/2
0 uh(t)

∥∥∥2

H

)
= −ε

∥∥∥A1/2
0 u̇h

∥∥∥2

H
≤ −‖u̇h‖2H , (3.15)

where the last inequality comes from u̇h ∈ C⊥
1/
√
ε
.

Setting

Eh(t) =
1
2
‖u̇h(t)‖2H +

1
2

∥∥∥A1/2
0 uh(t)

∥∥∥2

H
,

we thus obtain that

Eh(t) +
∫ t

0

‖u̇h(s)‖2H ds ≤ Eh(0). (3.16)

We now prove the so-called equirepartition of the energy for the solutions u
of (3.13). Multiplying (3.13) by u and integrating by parts between 0 and t, we
obtain

< u̇(t), u(t) >H − < u̇(0), u(0) >H −
∫ t

0

‖u̇(s)‖2H ds+
∫ t

0

∥∥∥A1/2
0 u(s)

∥∥∥2

H
ds

+ ε

∫ t

0

< A
1/2
0 u̇(s), A1/2

0 u(s) >H ds = 0.

In particular,∫ t

0

‖u̇(s)‖2H ds =
∫ t

0

∥∥∥A1/2
0 u(s)

∥∥∥2

H
ds+

ε

2

(∥∥∥A1/2
0 u(t)

∥∥∥2

H
−
∥∥∥A1/2

0 u0

∥∥∥2

H

)
+ < u̇(t), u(t) >H − < u̇(0), u(0) >H . (3.17)

Now, for uh, which is a solution of (3.13), for all t ≥ 0, uh(t) ∈ C⊥
1/
√
ε
. In

particular, for all t ≥ 0, we have∣∣∣ < u̇h(t), uh(t) >H
∣∣∣ ≤ √ε

2
‖u̇h‖2H +

1
2
√
ε
‖uh(t)‖2H ≤

√
εEh(t), (3.18)

where we used that for φ ∈ C⊥
1/
√
ε
,

‖φ‖2H ≤ ε
∥∥∥A1/2

0 φ
∥∥∥2

H
.

Combining (3.18) with identity (3.17) for uh, we obtain∫ t

0

‖u̇h(s)‖2H ds ≥
∫ t

0

∥∥∥A1/2
0 uh(s)

∥∥∥2

H
ds−

(√
ε+ ε

)
(Eh(t) + Eh(0)). (3.19)

This yields∫ t

0

‖u̇h(s)‖2H ds ≥
∫ t

0

Eh(s) ds− 1
2

(√
ε+ ε

)
(Eh(t) + Eh(0)). (3.20)
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Combined with (3.16), we obtain(
1− 1

2
(
√
ε+ ε)

)
Eh(t) +

∫ t

0

Eh(s) ds ≤ Eh(0)
(

1 +
1
2

(
√
ε+ ε)

)
(3.21)

Assuming that K ≥ 1, which can always be assumed, for ε ∈ [0,K], we thus have

(1−K)Eh(t) +
∫ t

0

Eh(s) ds ≤ (1 +K)Eh(0).

The decay of Eh(t), guaranteed by the dissipation law (3.15), then proves that

(t+ 1−K)Eh(t) ≤ (1 +K)Eh(0).

For t = 1 + 3K, we thus have Eh(1 + 3K) ≤ Eh(0)/2. We then deduce from the
dissipation law (3.15) the existence of a positive constant cK such that

cKEh(0) ≤ ε
∫ 1+3K

0

∥∥∥A1/2
0 u̇h(s)

∥∥∥2

H
ds. (3.22)

We finally conclude Theorem 3.2 by combining (3.14) and (3.22) as before.
�

Remark 3.3. One cannot expect the results of Theorem 3.2 to hold uniformly with
respect to ε ∈ [0,∞]. Indeed, an overdamping phenomenon appears when ε→∞.
This can indeed be deduced from the existence of the following solutions of (3.13):

uj(t) = exp(tτεj )Ψj , t ≥ 0, where τεj =
ελ2
j

2

(√
1− 4

(ελj)2
− 1

)
∼

ελj→∞
−1
ε
.

Plugging these solutions in (3.12), one can check that the observability inequality
(3.12) cannot hold uniformly with respect to ε ∈ [0,∞). Finally, using the equiv-
alence between the observability inequality (3.12) for solutions of (3.13) and the
observability inequality (3.11) for solutions of (3.2), this proves that the results of
Theorem 3.2 do not hold uniformly with respect to ε ∈ [0,∞].

Remark 3.4. To avoid the overdamping phenomenon when ε → ∞, one can for
instance add a dispersive term in (3.2), and consider the initial value problem{

v̈ +A0v + εA0v̇ + εA0v + C∗Cv̇ = 0, t ≥ 0,

v(0) = v0 ∈ D(A1/2
0 ), v̇(0) = v1 ∈ H.

(3.23)

The energy of solutions of (3.23) is now given by

Eε(t) =
1
2
‖v̇(t)‖2H +

(1 + ε

2

)∥∥∥A1/2
0 v(t)

∥∥∥2

H
. (3.24)

One can then prove that, if system (3.5) is exponentially stable, then the energy
Eε of solutions of systems (3.23) is exponentially stable, uniformly with respect
to the viscosity parameter ε ∈ [0,∞). The proof can be done similarly as the one
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of Theorem 3.2 and is left to the reader. The main difference that the dispersive
term introduces is that the high frequency solutions uh of

üh +A0uh + εA0u̇h + εA0uh = 0, t ≥ 0, (3.25)

with initial data (uh(0), u̇h(0)) ∈ (C⊥
1/
√
ε
)2 ∩ (D(A1/2

0 )×H) now satisfy, instead of
(3.19), which deteriorates when ε → ∞, the following property of equirepartition
of the energy∣∣∣∣∣

∫ t

0

‖u̇h‖2H ds− (1 + ε)
∫ t

0

∥∥∥A1/2
0 u(s)

∥∥∥2

H
ds

∣∣∣∣∣ ≤ 2Eh,ε(t) + 2Eh,ε(0), (3.26)

where Eh,ε is the energy of the solutions uh of (3.25).

4. Applications

This section is devoted to present some precise examples.

4.1. The viscous Schrödinger equation

Let Ω be a smooth bounded domain of lRN .
Let us now consider the following damped Schrödinger equation: iż + ∆xz + ia(x) z = 0, in Ω× (0,∞),

z = 0, on ∂Ω× (0,∞),
z(0) = z0, in Ω,

(4.1)

where a = a(x) is a nonnegative damping function in L∞(Ω), that we assume to
be positive in some open subdomain ω of Ω, that is there exists a0 > 0 such that

a(x) ≥ a0, ∀x ∈ ω. (4.2)

The energy of solutions of (4.1), given by

E(t) =
1
2
‖z(t)‖2L2(Ω) , (4.3)

satisfies
dE

dt
(t) = −

∫
Ω

a(x)|z(t, x)|2 dx. (4.4)

The stabilization problem for (4.1) has already been studied in the recent
years. Let us briefly present some known results. Some of them concern the problem
of exact controllability but, as explained for instance in [16], it is equivalent to the
observability and the stabilization ones addressed in this article in the case where
the damping operator B is bounded.

For instance, in [14], it is proved that the Geometric Control Condition
(GCC) is sufficient to guarantee the stabilization property (1.6) for the damped
Schrödinger equation (4.1). The GCC can be, roughly, formulated as follows (see
[2] for the precise setting): The subdomain ω of Ω is said to satisfy the GCC if
there exists a time T > 0 such that all rays of Geometric Optics that propagate
inside the domain Ω at velocity one reach the set ω in time less than T . This
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condition is necessary and sufficient for the stabilization property to hold for the
wave equation.

But, in fact, the Schrödinger equation behaves slightly better than a wave
equation from the stabilization point of view because of the infinite velocity of
propagation and, in this case, the GCC is sufficient but not always necessary. For
instance, in [13], it has been proved that when the domain Ω is a square, for
any non-empty bounded open subset ω, the stabilization property (1.6) holds for
system (4.1). Other geometries have been also dealt with: We refer to the articles
[4, 1].

Now, we assume that ω satisfies the GCC and, consequently, that we are in
a situation where the stabilization property (1.6) for (4.1) holds, and we consider
the viscous approximations iż + ∆xz + ia(x) z − i

√
ε∆xz = 0, in Ω× (0,∞),

z = 0, on ∂Ω× (0,∞),
z(0) = z0, in Ω,

(4.5)

where ε ≥ 0.
System (4.1) can be seen as a Ginzburg-Landau type approximation. More

precisely, system (4.1) is the inviscid limit of (4.5). We refer to the works [17, 3]
where inviscid limits were analyzed in a nonlinear context.

For the stabilization problem, Theorem 3.1 applies and provides the following
result:

Theorem 4.1. Assume that system (4.1) is exponentially stable, i.e. it satisfies
(1.6).

Then the solutions of (4.5) are exponentially decaying in the sense of (1.6),
uniformly with respect to the viscosity parameter ε ≥ 0.

Proof. Let us check the hypothesis of Theorem 3.1.
This example enters in the abstract setting given in the introduction: The

operator A = i∆x with the Dirichlet boundary conditions is indeed skew-adjoint in
L2(Ω) with compact resolvent and domain D(A) = H2 ∩H1

0 (Ω) ⊂ L2(Ω). Since a
is a nonnegative function, the damping term in (4.1) takes the form B∗Bz where
B is defined as the multiplication by

√
a(x), which is obviously bounded from

L2(Ω) to L2(Ω).
The viscosity operator is

εVε =
√
ε∆x = −i

√
εA = −

√
ε|A|.

Obviously, this viscosity operator Vε satisfies the assumptions 1, 2 and 3, and
therefore Theorem 3.1 applies. �

4.2. The viscous damped wave equation

Again, let Ω be a smooth bounded domain of lRN .
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We now consider the damped wave equation v̈ −∆xv + a(x) v̇ = 0, in Ω× (0,∞),
v = 0, on ∂Ω× (0,∞),
v(0) = v0, v̇(0) = v1 in Ω,

(4.6)

where a is a nonnegative function as before, and satisfies (4.2) for some non-empty
open subset ω of Ω.

The energy of solutions of (4.6), given by

E(t) =
1
2
‖v̇‖2L2(Ω) +

1
2
‖Ov‖2L2(Ω) , (4.7)

satisfies the dissipation law
dE

dt
(t) = −

∫
Ω

a(x)|v̇|2 dx. (4.8)

We assume that system (4.6) is exponentially stable. From the works [2, 5],
this is the case if and only if ω satisfies the Geometric Control Condition given
above.

We now consider viscous approximations of (4.6) given, for ε > 0, by v̈ −∆xv + a(x)v̇ − ε∆xv̇ = 0, in Ω× (0,∞),
v = 0, on ∂Ω× (0,∞),
v(0) = v0 ∈ H1

0 (Ω), v̇(0) = v1 ∈ L2(Ω).
(4.9)

Setting A0 = −∆x with Dirichlet boundary conditions and C =
√
a(x),

Theorem 3.2 applies:

Theorem 4.2. Assume that ω satisfies the Geometric Control Condition.
Then the solutions of (4.9) decay exponentially, i.e. satisfy (1.6) uniformly

with respect to the viscosity parameter ε ∈ [0, 1]. To be more precise, there exist
positive constants µ0 and ν0 such that for all ε ∈ [0, 1], for any initial data in
H1

0 (Ω)× L2(Ω), the solution of (4.9) satisfies

E(t) ≤ µ0E(0) exp(−ν0t), t ≥ 0. (4.10)

5. Further comments

1. In this article, we have identified a class of damped systems, with added
viscosity term, in which overdamping does not occur. This is to be compared
with the existing literature on the overdamping phenomenon for the damped wave
equation ([6, 7]).

2. As we mentioned in the introduction, our methods and results require the
assumption that the damping operator B is bounded. This is due to the method
we employ, which is based on the equivalence between the exponential decay of the
energy and the observability properties of the conservative system, that requires
the damping operator to be bounded. However, in several relevant applications,
as for instance when dealing with the problem of boundary stabilization of the
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wave equation (see [16]), the feedback law is unbounded, and our method does not
apply. This issue requires further work.

3. The same methods allow obtaining numerical approximation schemes with
uniform decay properties.

The discrete analogue of the viscosity term added above for the stabilization
of the wave equation has already been discussed in the works [21, 20, 18, 9] for space
semi-discrete approximation schemes of damped wave equations. In those articles,
though, the viscosity term is needed due to the presence of high-frequency spurious
solutions that do not propagate and therefore are not efficiently damped by the
damping operator B∗B when it is localized in space as in the examples considered
above.

Following the same ideas as in [21, 20, 18, 9], if observability properties such
as (1.9) hold for fully discrete approximation schemes of the conservative linear
system (1.7) in a filtered space (see [8]), then adding a suitable viscosity term to
the corresponding fully discrete version of the dissipative system (1.5) suffices to
obtain uniform (with respect to space time discretization parameters) stabilization
properties. This issue is currently investigated by the authors and will be published
in [10].
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