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Abstract

The goal of this article is to analyze the observability properties for
a space semi-discrete approximation scheme derived from a mixeed finite
element method of the 1d wave equation on nonuniform meshes. More
precisely, we prove that observability properties hold uniformly with re-
spect to the mesh-size under some assumptions, which, roughly, mea-
sures the lack of uniformity of the meshes, thus extending the work [4] to
nonuniform meshes. Our results are based on a precise description of the
spectrum of the discrete approximation schemes on nonuniform meshes,
and the use of Ingham’s inequality. We also mention applications to the
boundary null controllability of the 1d wave equation, and to stabilization
properties for the 1d wave equation.

1 Introduction
The goal of this article is to address the observability properties for a semi-

discrete 1d wave equation.
We consider the following 1d wave equation ∂2

ttu− ∂2
xxu = 0, (x, t) ∈ (0, 1)× lR,

u(0, t) = u(1, t) = 0, t ∈ lR,
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ (0, 1),

(1.1)

where u0 ∈ H1
0 (0, 1) and u1(x) ∈ L2(0, 1). The energy of solutions of (1.1),

given by

E(t) =
1
2

∫ 1

0

|∂tu(t, x)|2 + |∂xu(t, x)|2 dx, (1.2)

is constant.
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It is well-known (see [15]) that for all T > 0, there exists a constant KT such
that the admissibility inequality∫ T

0

|∂xu(0, t)|2 dt ≤ KTE(0) (1.3)

holds for any solution of (1.1) with (u0, u1) ∈ H1
0 (0, 1)× L2(0, 1).

Besides, for any time T > 2, there exists a positive constant kT such that
the boundary observability inequality

kTE(0) ≤
∫ T

0

|∂xu(0, t)|2 dt (1.4)

holds for any solution of (1.1) with (u0, u1) ∈ H1
0 (0, 1)× L2(0, 1).

Inequalities (1.3)-(1.4) arise naturally when dealing with boundary control-
lability properties of the 1d wave equation, see [15]. Indeed, the observability
and controllability properties are dual notions. We will make these links clearer
in Section 3.

Let us also present another relevant observability inequality, which is useful
when dealing with distributed controls or stabilization properties of damped
wave equations (see [11, 15]). If (a, b) denotes a non empty subinterval of
(0, 1), the following distributed observability property holds: for any time T >
2 max{a, 1− b}, there exists a constant C1 such that any solution of (1.1) with
(u0, u1) ∈ H1

0 (0, 1)× L2(0, 1) satisfies

E(0) ≤ C1

∫ T

0

∫ b

a

|∂tu(x, t)|2 dx dt. (1.5)

In the sequel, we will consider observability properties for the 1d space semi-
discrete wave equation derived from a mixed finite element method on a nonuni-
form mesh.

For any integer n ∈ lN∗, let us consider a mesh Sn given by n+ 2 points{
0 = x0,n < x1,n < · · · < xn,n < xn+1,n = 1,
hj+1/2,n = xj+1,n − xj,n, j ∈ {0, · · · , n}. (1.6)

On Sn, the mixed finite element approximation scheme for system (1.1) reads
as (see [5], [10] or [4])

hj−1/2,n

4
(u′′j−1,n + u′′j,n) +

hj+1/2,n

4
(u′′j,n + u′′j+1,n)

=
uj+1,n − uj,n
hj+1/2,n

− uj,n − uj−1,n

hj−1/2,n
, j = 1, · · ·n, t ∈ lR,

u0,n(t) = un+1,n(t) = 0, t ∈ lR,
uj(0) = u0

j,n, u′j(0) = u1
j,n, j = 1, · · · , n.

(1.7)

The notations we use are the standard ones: A prime denotes differentiation
with respect to time, and uj,n(t) is an approximation of the solution u of (1.1)
at the point xj,n at time t.
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System (1.7) is conservative. The energy of solutions u of (1.7), given by

En(t) =
1
2

n∑
j=0

hj+1/2,n

(
uj+1,n(t)− uj,n(t)

hj+1/2,n

)2

+
1
2

n∑
j=0

hj+1/2,n

(
u′j+1,n(t) + u′j,n(t)

2

)2

, t ∈ lR, (1.8)

is constant.
In this semi-discrete setting, we will investigate the observability properties

corresponding to (1.4) and (1.5), and especially under which assumptions on the
meshes Sn we can guarantee discrete observability inequalities to be uniform
with respect to n.

For this purpose, we introduce the notion of regularity of a mesh:

Definition 1.1. For a mesh Sn given by n+ 2 points as in (1.6), we define the
regularity of the mesh Sn by

Reg(Sn) =
maxj{hj+1/2,n}
minj{hj+1/2,n}

. (1.9)

Given M ≥ 1, we say that a mesh Sn given by n + 2 points as in (1.6) is
M -regular if

Reg(Sn) =
maxj{hj+1/2,n}
minj{hj+1/2,n}

≤M. (1.10)

Obviously, a 1-regular mesh is uniform. In other words, the regularity of the
mesh Reg(Sn) measures the lack of uniformity of the mesh.

Within this class, we will prove the following observability properties:

Theorem 1.2. Let M be a real number greater than one, and consider a se-
quence (Sn)n of M -regular meshes.

Then for any time T > 2, there exist positive constants kT and KT such that
for all integer n, any solution un of (1.7) satisfies

kTEn(0) ≤
∫ T

0

(∣∣∣u1,n(t)
h1/2,n

∣∣∣2 + |u′1,n(t)|2
)
dt ≤ KTEn(0). (1.11)

Besides, if J = (a, b) ⊂ (0, 1) denotes a subinterval of (0, 1), then for any time
T > 2 max{a, 1− b}, there exists a constant C1 such that for all integer n, any
solution un of (1.7) satisfies

En(0) ≤ C1

∫ T

0

∑
xj,n∈J

hj+1/2,n

(u′j,n(t) + u′j+1,n(t)
2

)2

dt. (1.12)

Obviously, these properties are discrete versions of inequalities (1.3)-(1.4)
and (1.5). Also note that the right hand-side inequality in (1.11) holds, as (1.3),
for all time T > 0, taking KT = K3 for T ≤ 2.
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Theorem 1.2 is based on an explicit spectral analysis of (1.7) ăin the discrete
setting, that allows us to prove the existence of a gap between the eigenvalues
of the space discrete operator in (1.7). Thanks to Ingham’s inequality [13],
this reduces the analysis to the study of the observability properties of the
eigenvectors of (1.7), which will again be deduced from the explicit form of the
spectrum of (1.7).

Besides, we emphasize that Theorem 1.2 provides uniform (with respect to
n) observability results. Therefore, using precisely the same duality as in the
continuous setting, Theorem 1.2 has several applications to controllability and
stabilization properties for the space semi-discrete 1d wave equations (1.7). In
Section 3, similarly as in [4], we present an application to the boundary null
controllability of the space semi-discrete approximation scheme of the 1d wave
equation. Later, in Section 4, following [1], we study the decay properties of the
energy for semi-discrete approximation schemes of 1d damped wave equations.

Let us briefly comment some relative works. Similar problems have been
extensively studied in the last decade for various space semi-discrete approx-
imation schemes of the 1d wave equation, see for instance the review article
[26]. The numerical schemes on uniform meshes provided by finite difference
and finite element approximation schemes do not have uniform observability
properties, whatever the time T is ([12]). This is due to high frequency waves
that do not propagate, see [23, 16]. In other words, these numerical schemes
create some spurious high-frequency wave solutions that are localized.

However some remedies exist. The most natural one consists in filtering
the initial data and removing these spurious waves, as in [12, 25]. Another
way to filter is to use the bi-grid method as introduced and developed in [9] and
analyzed in [19]. A new approach was proposed recently in [18] based on wavelet
filtering. Let us also mention the results [22, 21, 20, 8] that amounts to adding an
extra term in (1.12) which is non-negligible only for the high frequencies. A last
possible cure was proposed in [1, 10] and later analyzed in [4]: a 1d semi-discrete
scheme derived from a mixed finite element method was proposed, which has
the property that the group velocity of the waves is bounded from below.

To the best of our knowledge there is no result at all for the space semi-
discrete wave equation on nonuniform meshes, although most of the domains
used in practice are recovered by non periodic triangulations. A first step in this
direction can be found in [20], in which a study of a non homogeneous string
equation on a uniform mesh was proposed. This can indeed be seen, up to a
change of variable, almost as a discretization of a wave equation with constant
velocity on a nonuniform mesh.

Let us also mention that some results are available in the context of the heat
equation for space semi-discrete approximation schemes on nonuniform meshes
in [14], even in dimension greater than 1.

The outline of this paper is as follows. In Section 2, we precisely describe the
spectrum of the space semi-discrete operator and prove Theorem 1.2. Section
3 and 4 respectively aim at presenting precise applications of Theorem 1.2 to
controllability and stabilization properties.
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2 Spectral Theory
In this Section, we first study the spectrum of the space semi-discrete oper-

ator in (1.7) on a general mesh Sn given by n + 2 points as in (1.6). Second,
we derive more precise estimates on the spectrum when Sn is an M -regular
mesh. Third, we derive Theorem 1.2 from our analysis. Finally, we discuss
the assumption of M -regularity of the meshes, and show that, in some sense,
this assumption is sharp with respect to the observability properties given in
Theorem 1.2.

Given a mesh Sn of n+ 2 points as in (1.6), since the system (1.7) is conser-
vative, the spectral problem for (1.7) reads as: Find λn ∈ lR and a non-trivial
solution φn such that

−λ
2
n

4
(hj−1/2,n(φj,n + φj−1,n) + hj+1/2,n(φj,n + φj+1,n))

=
φj+1,n − φj,n
hj+1/2,n

− φj,n − φj−1,n

hj−1/2,n
, j = 1, · · · , n,

φ0,n = φn+1,n = 0.

(2.1)

2.1 Computations of the eigenvalues for a general mesh
In this Subsection, we consider a general mesh Sn given by n+ 2 points as

in (1.6).

Theorem 2.1. The spectrum of system (1.7) is precisely the set of ±λkn with
k ∈ {1, · · · , n}, where λkn is defined by the implicit formula

n∑
j=0

arctan
(λknhj+1/2,n

2

)
= k

π

2
. (2.2)

The gap between two eigenvalues is bounded from below:

min
k∈{1,··· ,n−1}

{λk+1
n − λkn} ≥ π. (2.3)

Besides, for each k ∈ {1, · · · , n}, the following estimate holds:

λkn ≥ λk∗n = 2(n+ 1) tan
( k

n+ 1
π

2

)
≥ kπ. (2.4)

Remark 2.2. Note that λk∗n coincides with the k-th eigenvalue of system (1.7)
for a uniform mesh constituted by n + 2 points. Also note that kπ is the k-
th eigenvalue of system (1.1). In other words, inequality (2.4) implies that
the dispersion diagrams corresponding to the spectrum of (1.7) for a general
nonuniform mesh, for a uniform mesh, and for the continuous system (1.1) are
sorted.
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Proof. To simplify notation, we drop the unnecessary subscript n.
Let us introduce functions p and q corresponding to ∂xφ and iλφ in the

continuous case: 
pj+1/2 =

φj+1 − φj
hj+1/2

.,

qj+1/2 =
iλ

2
(φj + φj+1).

(2.5)

The spectral system (2.1) then becomes :
iλ

2
(hj−1/2,nqj−1/2 + hj+1/2,nqj+1/2) = pj+1/2 − pj−1/2, j = 1, · · · , n,

iλ

2
(hj−1/2,npj−1/2 + hj+1/2,npj+1/2) = qj+1/2 − qj−1/2, j = 1, · · · , n,

(2.6)
with boundary conditions

iλhn+1/2

2
pn+1/2 + qn+1/2 = 0,

iλh1/2

2
p1/2 − q1/2 = 0.

Equations (2.6) rewrites, for j ∈ {1, · · · , n}, as:
( iλhj−1/2

2
qj−1/2 + pj−1/2

)
+
( iλhj+1/2

2
qj+1/2 − pj+1/2

)
= 0,( iλhj−1/2

2
pj−1/2 + qj−1/2

)
+
( iλhj+1/2

2
pj+1/2 − qj+1/2

)
= 0,

(2.7)

For j ∈ {1, · · · , n}, this leads to:(
1 +

iλhj−1/2

2

)
(pj−1/2 + qj−1/2) =

(
1−

iλhj+1/2

2

)
(pj+1/2 + qj+1/2)(

1−
iλhj−1/2

2

)
(pj−1/2 − qj−1/2) =

(
1 +

iλhj+1/2

2

)
(pj+1/2 − qj+1/2).

These two equations can be seen as propagation formulas, each term correspond-
ing to ∂tw ± ∂xw. Especially, they imply:

pj+1/2 + qj+1/2 = (p1/2 + q1/2)
( 2 + iλh1/2

2− iλhj+1/2

) j−1∏
k=1

2 + iλhk+1/2

2− iλhk+1/2
, (2.8)

pj+1/2 − qj+1/2 = (p1/2 − q1/2)
( 2− iλh1/2

2 + iλhj+1/2

) j−1∏
k=1

2− iλhk+1/2

2 + iλhk+1/2
. (2.9)

We remark that each term in the product has modulus 1, and therefore there
exists αj+1/2 ∈ (−π, π], given by tan(αj+1/2/2) = λhj+1/2/2, such that :

2 + iλhj+1/2

2− iλhj+1/2
= exp(iαj+1/2).
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We also denote by βj the coefficient

βj =
2 + iλh1/2

2− iλhj+1/2
,

which satisfies
βj
β̄j

= exp(iαj+1/2) exp(iα1/2).

Combined with the boundary conditions, identities (2.8)-(2.9) give:

pn+1/2

(
1−

iλhn+1/2

2

)
= βn exp

(
i

n−1∑
k=1

αk+1/2

)
p1/2

(
1 +

iλh1/2

2

)
pn+1/2

(
1 +

iλhn+1/2

2

)
= β̄n exp

(
− i

n−1∑
k=1

αk+1/2

)
p1/2

(
1−

iλh1/2

2

)
.

Then, if λ is an eigenvalue, λ satisfies:(βn
β̄n

)2

exp
(

2i
n−1∑
k=1

αk+1/2

)
= exp

(
2i

n∑
k=0

αk+1/2

)
= 1.

To simplify notation, we define:

f(λ) = 4
n∑
k=0

arctan
(λhk+1/2

2

)
.

Then, if λ is an eigenvalue, there exists an integer k such that:

f(λ) = 2kπ.

The image of f is exactly (−2(n+ 1)π, 2(n+ 1)π), and therefore k must belong
to {−n, · · · , n}.

Conversely, if λ is a solution of f(λ) = 2kπ for an integer k ∈ {−n, · · · , n},
then λ is an eigenvalue, except if k = 0, which corresponds to pj+1/2 = qj+1/2 =
0 for all j ∈ {0, · · · , n}. This gives us exactly 2n eigenvalues λ±k, k ∈ {1, · · · , n}.
Since f is odd, we easily get λk = −λ−k.

Moreover, the derivative of f is explicit:

f ′(λ) = 8
n∑
k=0

1
4 + (λhk+1/2)2

hk+1/2.

It follows that

0 ≤ f ′(λ) ≤ 2
n∑
k=0

hk+1/2,n = 2.

Since all the eigenvalues are simple and f(λk+1) − f(λk) = 2π for all k ∈
{1, · · · , n}, this implies that the gap between the eigenvalues is bounded from
below by π, and therefore (2.3) holds.
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Using the concavity of arctan gives the following estimate:

arctan
( λkn

2(n+ 1)

)
= arctan

( 1
2(n+ 1)

n∑
j=0

λknhj+1/2

)
≥ 1
n+ 1

n∑
j=0

arctan
(λknhj+1/2

2

)
=

k

n+ 1
π

2
.

In other words,

λkn ≥ 2(n+ 1) tan
( k

n+ 1
π

2

)
,

and (2.4) follows.

We illustrate this result on Figures 1-2 by computing dispersion diagrams for
various nonuniform meshes Sn, that we characterize by their regularity Reg(Sn),
as defined in (1.9).

Let us briefly explain the two ways we have chosen for generating them.

• Method 1. In Figure 1, we create a random vector h of length n + 1
whose values are chosen according to a uniform law on (0, 1). This vector
is then normalized such that the sum of its components is one, so that h
corresponds to the vector (h1/2,n, · · · , hn+1/2,n), which describes the mesh
in a unique way.

• Method 2. In Figure 2, we create a random vector x of length n whose
components are chosen according to a uniform law on (0, 1). Then we sort
its components in an increasing way to obtain a vector (x1,n, · · · , xn,n),
which represents the mesh points.

In both cases, the diagrams look the same. It is particularly striking that the
shape of the dispersion diagrams does not seem to depend significantly on the
meshes.

2.2 Spectral properties on M-regular meshes
This subsection is devoted to prove more properties for the spectrum of (1.7)

when the mesh Sn is M -regular for some M ≥ 1.

Theorem 2.3. Let M ≥ 1.
Then, for any M -regular mesh Sn, the eigenvalue λnn of (2.1) on Sn satisfies

λnn ≤
4M
π

(n+ 1)2. (2.10)

Besides, for anyM -regular mesh Sn, if φkn denotes the eigenvector corresponding
to λkn in (2.1), then its energy

Ekn =
1
2

n∑
j=0

hj+1/2,n

(∣∣∣φkj+1,n − φkj,n
hj+1/2,n

∣∣∣2 + |λkn|2
∣∣∣φkj,n + φkj+1,n

2

∣∣∣2) (2.11)
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Figure 1: Dispersion diagrams for various meshes constituted by 400 points
generated by Method 1 for different values of Reg.
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Figure 2: Dispersion diagrams for various meshes constituted by 400 points
generated by Method 2 for different values of Reg.

satisfies

1
1 +M2

(∣∣∣ φk1,n
h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λknφk1,n
h1/2,n

∣∣∣2) ≤ Ekn
≤ (1 +M2)

(∣∣∣ φk1,n
h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λknφk1,n
h1/2,n

∣∣∣2), (2.12)

Moreover, if ω = (a, b) is some subinterval of (0, 1), then the energy of the k-th
eigenvector φkn in ω, defined by

Ekω,n =
1
2

∑
xj,n∈ω

hj+1/2,n

(∣∣∣φkj+1,n − φkj,n
hj+1/2,n

∣∣∣2 + |λkn|2
∣∣∣φkj,n + φkj+1,n

2

∣∣∣2), (2.13)
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satisfies

Ekn ≤
M2

|ω|
EkJ,n. (2.14)

Remark 2.4. These inequalities roughly says that the eigenvectors cannot con-
centrate in some part of an M -regular mesh. These properties are indeed the
one needed for control and stabilization purposes, as we will see in next Sections.

Remark 2.5. Note that Theorem 2.1 gives the estimate

λnn ≥ 2(n+ 1) tan
((

1− 1
n+ 1

)π
2

)
'

n→∞

4
π

(n+ 1)2.

and therefore estimate (2.10) implies that λnn really grows as n2 when n→∞.

Proof. Along the proof, we fix an integer n, a real number M ≥ 1 and an
M -regular mesh Sn, so that we can remove the index n without confusion.

Inequality (2.10) is a consequence of (2.2). Indeed, if we set h = min{hj+1/2}
and H = max{hj+1/2}, then we have

1 ≤ (n+ 1)H ≤ (n+ 1)Mh. (2.15)

Using (2.2), we get

n∑
j=0

arctan
(λnhj+1/2

2

)
=
nπ

2
≥ (n+ 1) arctan

(λnh
2

)
,

which provides

λn

(n+ 1)2
≤ 2
h(n+ 1)2

tan
(π

2

(
1− 1

n+ 1

))
≤M sup

η∈[0,1]

{
2η tan

(π
2

(1− η)
)}
,

from which (2.12) can be easily deduced.

To derive the properties (2.12) and (2.14) of the eigenvectors, we use the com-
putations and notations (2.5) introduced in the proof of Theorem 2.1. Namely,
we introduce 

qkj+1/2 =
iλk

2
(φkj + φkj+1),

pkj+1/2 =
φkj+1 − φkj
hj+1/2

.
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Then the previous computations, and in particular identities (2.8)-(2.9), give

Ek =
1
2

n∑
j=0

hj+1/2

(
|pkj+1/2|

2 + |qkj+1/2|
2
)

=
1
4

n∑
j=0

hj+1/2

(
|pkj+1/2 − q

k
j+1/2|

2 + |pkj+1/2 + qkj+1/2|
2
)

=
1
4

n∑
j=0

hj+1/2

(
|β̄j |2|pk1/2 − q

k
1/2|

2 + |βj |2|pk1/2 + qk1/2|
2
)

=
1
4

n∑
j=0

hj+1/2

4 + (λh1/2)2

4 + (λhj+1/2)2
(
|pk1/2 − q

k
1/2|

2 + |pk1/2 + qk1/2|
2
)
.

Using the definition (2.5) of (pk1/2, q
k
1/2), this leads to

Ek =
1
2

(
n∑
j=0

hj+1/2

4 + (λkhj+1/2)2

)(
4 + (λkh1/2)2

)(∣∣∣ φk1
h1/2

∣∣∣2 +
h2

1/2

4

∣∣∣λkφk1
h1/2

∣∣∣2).
(2.16)

Given an interval ω, the same computations give for Ekω :

Ekω =
1
2

( ∑
xj∈ω

hj+1/2

4 + (λkhj+1/2)2

)(
4 + (λkh1/2)2

)(∣∣∣ φk1
h1/2

∣∣∣2 +
h2

1/2

4

∣∣∣λkφk1
h1/2

∣∣∣2).
(2.17)

Inequalities (2.12) and (2.14) easily follow from (2.16)-(2.17) and theM -regularity
assumption.

2.3 Proof of Theorem 1.2
Our strategy is based on Ingham’s Lemma on non-harmonic Fourier series,

which we recall hereafter (see [13, 24]):

Lemma 2.6. Ingham’s Lemma [13] Let (λk)k∈N be a sequence of real numbers
and γ > 0 be such that

λk+1 − λk ≥ γ > 0, ∀k ∈ N. (2.18)

For any T > 2π/γ, there exist two positive constants c = c(T, γ) > 0 and
C = C(T, γ) > 0 such that, for any sequence (ak)k∈N,

c
∑
k∈N
|ak|2 ≤

∫ T

0

∣∣∣∑
k∈N

ake
iλkt
∣∣∣2 dt ≤ C∑

k∈N
|ak|2. (2.19)

Proof of Theorem 1.2. Let us consider a sequence (Sn)n of M -regular meshes.
According to Lemma 2.6 and inequalities (2.3)-(2.4), we only need to prove

the observability inequalities (1.11)-(1.12) for the stationnary solutions

ukn(t) = exp(iλknt)φ
k
n
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of (1.7) corresponding to the eigenvectors φkn of system (2.1) on Sn.
Since each mesh Sn is M -regular, we can apply Theorem 2.3. Especially,

inequality (2.12) holds, and therefore Ingham’s inequality (2.19) implies (1.11).

To prove (1.12), we fix J = (a, b) ⊂ (0, 1) a subinterval of (0, 1). According to
Ingham’s Lemma and (2.3), it is sufficient to prove that there exists a constant
C independent of n such that for any eigenvector φkn solution of (2.1) on Sn
corresponding to the eigenvalue λkn, the quantity

IkJ,n =
∑

xj,n∈J
hj+1/2,n|λkn|2

(φkj,n + φkj+1,n

2

)2

(2.20)

satisfies
Ekn ≤ CIkJ,n. (2.21)

We thus investigate inequality (2.21) on a mesh Sn by using a multiplier
technique.

Let ω be a strict subinterval of J and let us denote by η a function of x ∈ [0, 1]
such that: 

η(x) = 0, ∀x ∈ (0, 1)\J,
η(x) = 1, ∀x ∈ ω,
‖η‖∞ ≤ 1,
‖η′‖∞ ≤ CJ,ω.

(2.22)

To simplify notation, we drop the exponent k and the index n hereafter. Below,
we denote by ηj the value of η in the mesh point xj .

We consider system (2.1) and multiply each equation by η2
jφj . Discrete

integration by parts leads:

λ2
n∑
j=0

hj+1/2

(φj + φj+1

2

)(η2
jφj + η2

j+1φj+1

2

)
=

n∑
j=0

hj+1/2

(φj+1 − φj
hj+1/2

)(η2
j+1φj+1 − η2

jφj

hj+1/2

)
.

Then,

λ2
n∑
j=0

hj+1/2

(η2
j + η2

j+1

2

)(φj + φj+1

2

)2

−
n∑
j=0

hj+1/2

(η2
j + η2

j+1

2

)(φj+1 − φj
hj+1/2

)2

= A1 +A2, (2.23)

12



where A1 and A2 are defined by

A1 = −λ
2

2

n∑
j=0

h3
j+1/2

(φj + φj+1

2

)(φj+1 − φj
hj+1/2

)(ηj+1 − ηj
hj+1/2

)(ηj + ηj+1

2

)
,

A2 = 2
n∑
j=0

hj+1/2

(φj + φj+1

2

)(φj+1 − φj
hj+1/2

)(ηj+1 − ηj
hj+1/2

)(ηj + ηj+1

2

)
.

Then, for any choices of positive parameters δ1 and δ2, we get:

|A1| ≤
1

4δ1

n∑
j=0

hj+1/2λ
2
(φj + φj+1

2

)2(ηj+1 − ηj
hj+1/2

)2

+
δ1
4

n∑
j=0

hj+1/2(λ2h4
j+1/2)

(φj+1 − φj
hj+1/2

)2(ηj + ηj+1

2

)2

|A2| ≤
1
δ2

n∑
j=0

hj+1/2

(φj + φj+1

2

)2(ηj+1 − ηj
hj+1/2

)2

+ δ2

n∑
j=0

hj+1/2

(φj+1 − φj
hj+1/2

)2(ηj + ηj+1

2

)2

.

From estimates (2.10) and (2.15), we get

λ2h4
j+1/2 ≤

(4M
π

(n+ 1)2
)2( M

(n+ 1)

)4

≤
( 4
π

)2

M4.

Therefore, if we set

δ1 =
π2

16M4
; δ2 =

1
4
,

using the classical inequality(ηj + ηj+1

2

)2

≤
η2
j + η2

j+1

2
.

we deduce from (2.23) the existence of two constants independent of k and n
such that

1
2

n∑
j=0

hj+1/2

(η2
j + η2

j+1

2

)(φj+1 − φj
hj+1/2

)2

≤ λ2
n∑
j=0

hj+1/2

(η2
j + η2

j+1

2

)(φj + φj+1

2

)2

+ C1

n∑
j=0

hj+1/2λ
2
(φj + φj+1

2

)2(ηj+1 − ηj
hj+1/2

)2

+ C2

n∑
j=0

hj+1/2

(φj + φj+1

2

)2(ηj+1 − ηj
hj+1/2

)2

.
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But |λ| is also uniformly bounded from below (see (2.4)), which implies that

n∑
j=0

hj+1/2

(η2
j + η2

j+1

2

)(φj+1 − φj
hj+1/2

)2

≤ λ2
n∑
j=0

hj+1/2

(η2
j + η2

j+1

2

)(φj + φj+1

2

)2

+ C

n∑
j=0

hj+1/2λ
2
(φj + φj+1

2

)2(ηj+1 − ηj
hj+1/2

)2

.

Using the properties (2.22) of the function η leads us to the following result:

Ekω,n ≤ CIkJ,n.

Therefore inequality (2.21) can be deduced from inequality (2.14) applied to
ω.

2.4 The regularity assumption
Let us discuss the assumption on the regularity on the meshes.

2.4.1 Concentration effects without the M-regularity assumption

Here, we construct a sequence of meshes Sn such that:

• The sequence Reg(Sn) goes to infinity arbitrarily slowly when n→∞.

• There exists an interval J = [a, b] for which there is no constant C such
that for all n, for all eigenvectors φkn of (2.1) on Sn,

Ekn ≤ CEkJ,n, (2.24)

where Ekn and EkJ,n are, respectively, as in (2.11) and (2.13).

Choose a strict non-empty closed subinterval J of (0, 1), and a sequence Kn

going to infinity when n→∞.
Introduce a sequence of meshes (Sn), each one constituted by n + 2 points

such that

x0,n = 0, xn+1,n = 1,
{
xj+1,n − xj,n = Hn, if [xj,n, xj+1,n] ⊂ J,
xj+1,n − xj,n = hn, if [xj,n, xj+1,n] ⊂ [0, 1]\J,

where Hn = Knhn. Remark that the mesh Sn is then totally described by the
quantity Kn. Thus, from identities (2.16)-(2.17), we get:

Ekn
EkJ,n

= 1 +
Ek(0,1)\J,n

EkJ,n
= 1 +

1− |J |
|J |

4 + (λknHn)2

4 + (λknhn)2
.

But
|J |
Hn

+
1− |J |
hn

= n+ 1,
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and so (n+ 1)hn = (1− |J |) + |J |/Kn converges to 1− |J |. But inequality (2.4)
gives

λnnhn
2
≥ (n+ 1)hn tan

( n

n+ 1
π

2

)
,

and then (λnnhn)n goes to infinity when n→∞. Especially, this implies that

Enn
EnJ,n

' 1− |J |
|J |

H2
n

h2
n

=
1− |J |
|J |

K2
n →∞,

and therefore there is no constant such that (2.24) holds uniformly with respect
to n ∈ lN and k ∈ {1, · · · , n}.

2.4.2 Partial regularity assumptions

Without the M -regularity assumption, one can derive partial results, due to
the explicit form (2.16) of the energy.

For instance, identity (2.16) on the energy of the k-th eigenvector φkn on Sn
gives:

Ekn ≤
4 + (λknh1/2,n)2

4 + inf
j

(λknhj+1/2,n)2
(∣∣∣ φk1,n
h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λknφk1,n
h1/2,n

∣∣∣2).
In particular, if there exists a constant M1 > 0 such that for all n,

h1/2,n ≤M1 inf
j
hj+1/2,n, (2.25)

then for all n and k,

Ekn ≤ (1 +M2
1 )
(∣∣∣ φk1,n
h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λknφk1,n
h1/2,n

∣∣∣2).
Now, consider the reverse equality. From (2.16), we get

Ekn ≥
4 + (λknh1/2,n)2

4 + sup
j

(λknhj+1/2,n)2
(∣∣∣ φk1,n
h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λknφk1,n
h1/2,n

∣∣∣2).
In particular, if there exists a constant M2 > 0 such that for all n,

sup
j
hj+1/2,n ≤M2h1/2,n, (2.26)

then, for all n and k, we get

Ekn ≥
1

1 +M2
2

(∣∣∣ φk1,n
h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λknφk1,n
h1/2,n

∣∣∣2).
Besides, as in Subsubsection 2.4.1, for each integer n, we can consider se-

quences of meshes Snn given as in (1.6) defined by

x1,n − x0,n = h1/2,n, xj+1,n − xj,n = hn, ∀j ∈ {1, · · · , n},
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where h1/2,n and hn are two sequences going to zero. It is then easy to check
that if condition (2.26) is not satisfied, that is if hn/h1/2,n →∞ when n→∞,
then there is no positive constant c such that

Ekn ≥ c
(∣∣∣ φk1,n
h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λknφk1,n
h1/2,n

∣∣∣2)
uniformly in k and n.

On the contrary, if hn/h1/2,n → 0 when n → ∞, then there is no constant
C such that

Ekn ≤ C
(∣∣∣ φk1,n
h1/2,n

∣∣∣2 +
h2

1/2,n

4

∣∣∣λknφk1,n
h1/2,n

∣∣∣2)
uniformly in k and n.

Therefore, if we consider a sequence of meshes Sn such that Reg(Sn) is
unbounded, we cannot have both observability and admissibility properties as
in (1.11) uniformly with respect to n.

Remark 2.7. If we are interested in the observability inequality (1.12) for a
particular subinterval (a, b) ⊂ (0, 1), the situation is more intricate. As above,
due to the explicit description of the energies (2.16) and (2.17), one easily check
that if there exists a constant M3 such that for all n ∈ lN,

sup
xj,n∈(a,b)

{hj+1/2,n} ≤M3 inf
xj,n /∈(a,b)

{hj+1/2,n}, (2.27)

then for all n ∈ lN and for all k ∈ {1, · · · , n},

Ek(a,b),n ≤
M2

3

(b− a)
Ekn.

However, under the only condition (2.27), the estimates (2.10) on the eigenvalues
might be false, and therefore the proof presented above of inequality (2.21) (with
J = (a, b)) fails. We do not know if assumption (2.27) suffices to guarantee (2.21)
to hold uniformly with respect to n ∈ lN and k ∈ {1, · · · , n}.

Also remark that if assumption (2.27) holds for a sequence of meshes Sn for
any subinterval (a, b) ⊂ (0, 1), then there exists a real number M such that all
the meshes Sn are M -regular.

3 Application to the null controllability of the
wave equation

3.1 The continuous setting
Let us first present the problem. It is well-known that for any time T > 2,

given any initial data (y0, y1) ∈ L2(0, 1) × H−1(0, 1), we can find a control

16



function v(t) ∈ L2(0, T ) such that the solution of ∂2
tty − ∂2

xxy = 0, (x, t) ∈ (0, 1)× (0, T ),
y(0, t) = v(t), y(1, t) = 0, t ∈ (0, T ),
y(x, 0) = y0(x), ∂ty(x, 0) = y1(x), x ∈ (0, 1),

(3.1)

satisfies
y(T ) = 0, ∂ty(T ) = 0. (3.2)

By duality (namely the Hilbert Uniqueness Method, or HUM in short), this
property is equivalent to the observability inequality (1.4), see [15].

Note that there might be several controls v ∈ L2(0, T ) such that (3.2) holds
for solutions of (3.1). In the sequel, we will say that such a v is an admissible
control for (3.1).

Besides, there is an explicit method to compute the so-called HUM control
vHUM , which is the one of minimal L2(0, T ) norm among all admissible controls
for (3.1). Indeed, consider the functional

J : H1
0 (0, 1)× L2(0, 1)→ R

J (z0, z1) =
1
2

∫ T

0

(∂xz)2(0, t) dt−
∫ 1

0

y0(x)∂tz(x, 0) dx

+ < y1, z(., 0) >H−1×H1
0
,

(3.3)

where z is the solution of the backward conservative wave equation ∂2
ttz − ∂2

xxz = 0, (x, t) ∈ (0, 1)× (0, T ),
z(0, t) = z(1, t) = 0, t ∈ (0, T ),
z(x, T ) = z0(x), ∂tz(x, T ) = z1(x), x ∈ (0, 1).

(3.4)

Then J is strictly convex, coercive (see (1.4)), and therefore has a minimizer
(Z0, Z1) ∈ H1

0 (0, 1) × L2(0, 1). The HUM control is then given by vHUM(t) =
∂xZ(0, t), where Z is the solution of (3.4) with initial data (Z0, Z1).

Note also that the HUM control is the only admissible control v for (3.1)
that can be written as v(t) = ∂xz(0, t) for some z solution of (3.4) with initial
data in H1

0 (0, 1)× L2(0, 1).
It is then natural to try to construct this control numerically. This will be

investigate in the sequel.

3.2 The semi-discrete setting
This part is inspired by [4] where similar results were derived for uniform

meshes.
We consider a mesh Sn as in (1.6) and derive an approximation scheme for

(3.1) from a mixed finite element method. The problem reads as follows: given
y0
n and y1

n defined on Sn, find a discrete control vn ∈ L2(0, T ) such that the
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solution yn of

hj−1/2,n

4
(y′′j−1,n + y′′j,n) +

hj+1/2,n

4
(y′′j,n + y′′j+1,n)

=
yj+1,n − yj,n
hj+1/2,n

− yj,n − yj−1,n

hj−1/2,n
, j = 1, · · · , n, t ∈ [0, T ],

y0,n(t) = vn(t), yn+1,n(t) = 0, t ∈ (0, T ),
yj,n(0) = y0

j,n y′j,n(0) = y1
j,n, j = 1, · · · , n,

(3.5)

satisfies
yj,n(T ) = 0, y′j,n(T ) = 0, j = 1, · · · , n. (3.6)

Again, the study of this problem is based on a duality principle. Given any
T > 2, we choose ε > 0 such that T − 4ε > 2 and a smooth function ρ satisfying ρ(t) = 1, if t ∈ [2ε, T − 2ε],

ρ(t) = 0, if t ∈ [0, ε] ∪ [T − ε, T ],
0 ≤ ρ(t) ≤ 1, ∀t.

(3.7)

We then introduce the following functional Jn as:

Jn(z0
n, z

1
n) =

1
8

∫ T

0

ρ(t)|z′1,n|2(t) dt+
1
2

∫ T

0

(z1,n(t)
h1/2,n

)2

dt

+

(
h1/2,n

4
y1
1,nz1,n(0) +

n∑
j=1

hj+1/2,n

4
(y1
j,n + y1

j+1,n)(zj,n(0) + zj+1,n(0))

)

−

(
h1/2,n

4
y0
1,nz

′
1,n(0) +

n∑
j=1

hj+1/2,n

4
(y0
j,n + y0

j+1,n)(z′j,n(0) + z′j+1,n(0))

)
,

(3.8)

where zn is the solution of

hj−1/2,n

4
(z′′j−1,n + z′′j,n) +

hj+1/2,n

4
(z′′j,n + z′′j+1,n)

=
zj+1,n − zj,n
hj+1/2,n

− zj,n − zj−1,n

hj−1/2,n
, j = 1, · · · , n, t ∈ [0, T ],

z0,n(t) = zn+1,n(t) = 0, t ∈ (0, T ),
zj,n(T ) = z0

j,n, z′j,n(T ) = z1
j,n, j = 1, · · · , n.

(3.9)
Then the following Lemma holds:

Lemma 3.1. For any integer n, the functional Jn is strictly convex and coer-
cive, and then has a unique minimizer (Z0

n, Z
1
n). Besides, for all n, if vn is the

solution of −
h1/2,n

4
v′′n +

1
h1/2,n

vn = −1
4

(ρZ ′1,n)′ +
1

h2
1/2,n

Z1,n, t ∈ [0, T ],

v′n(0) = v′n(T ) = 0,
(3.10)
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where Zn is the solution of (3.9) with initial data (Z0
n, Z

1
n), then vn(t) is a

control of (3.5) in time T .

The proof of Lemma 3.1 is the same as in [4]. For completeness, we will give
a sketch of the proof hereafter.

For convenience, we introduce the operators PSn
, QSn

and RSn
which map

discrete data a = (aj)j∈{1,··· ,n} given on a mesh Sn as in (1.6) to functions
defined on (0, 1) by :

PSna(x) = aj + (aj+1 − aj)
(x− xj,n
hj+1/2,n

)
,

QSna(x) =
aj + aj+1

2
,

RSna(x) =
hj+1/2,n

4
(aj + aj+1) +

n∑
k=j+1

hk+1/2,n

(ak + ak+1

2

)
,

on [xj,n, xj+1,n],

with the convention a0 = an+1 = 0. With these definitions, PSn
and QSn

are
extension operators and RSn

can be seen as an approximation of the discrete
integral x 7→

∫ 1

x
a(s) ds.

Let us rewrite all discrete computations in terms of the operators PSn
,QSn

,RSn
.

First, for any solution zn of (3.9), the energy (1.8) writes

En(t) =
1
2
‖QSn

zn(t)‖2L2(0,1) +
1
2
‖∂x(PSn

zn(t))‖2L2(0,1) . (3.11)

Second, the functional Jn reads as

Jn(z0
n, z

1
n) =

1
8

∫ T

0

ρ(t)|z′1,n|2(t) dt+
1
2

∫ T

0

(z1,n(t)
h1/2,n

)2

dt

+
∫ 1

0

(RSny
1
n)(∂xPSnzn(0)) dx−

∫ 1

0

(QSny
0
n)(QSnz

′
n(0)) dx. (3.12)

We are now in position to sketch the proof of Lemma 3.1.

Sketch of the proof of Lemma 3.1. Fix an integer n ∈ lN. The functional Jn is
strictly convex, and its coercivity is obvious since we are working in a finite
dimensional setting. It follows that Jn has a unique minimizer (Z0

n, Z
1
n).

Let us compute the Fréchet derivative of Jn in the minimizer (Z0
n, Z

1
n): For

any (z0
n, z

1
n), the solution zn of (3.9) on Sn satisfies

0 =
∫ T

0

(
− 1

4
(ρ(t)Z ′1,n(t))′ +

1
h2

1/2,n

Z1,n(t)
)
z1,n(t) dt

+
∫ 1

0

(RSn
y1
n)(∂xPSn

zn(0)) dx−
∫ 1

0

(QSn
y0
n)(QSn

z′n(0)) dx,
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which rewrites in terms of vn defined in (3.10)ăas

0 =
1
4

∫ T

0

h1/2,nv
′
nz
′
1,n dt+

∫ T

0

vn
z1,n
h1/2,n

dt

+
∫ 1

0

(RSn
y1
n)(∂xPSn

zn(0)) dx−
∫ 1

0

(QSn
y0
n)(QSn

z′n(0)) dx. (3.13)

Now, consider yn the solution of (3.5) with boundary control vn. Multiplying
(3.5) by zn solution of (3.9) with initial data (z0

n, z
1
n), we get, after tedious

computations that are left to the reader, that

0 =
1
4

∫ T

0

h1/2,nv
′
nz
′
1,n dt+

∫ T

0

vn
z1,n
h1/2,n

dt

+
∫ 1

0

(RSny
1
n)(∂xPSnzn(0)) dx−

∫ 1

0

(QSny
0
n)(QSnz

′
n(0)) dx

−
∫ 1

0

(RSny
′
n(T ))(∂xPSnz

0
n) dx+

∫ 1

0

(QSnyn(T ))(QSnz
1
n) dx. (3.14)

Combined with (3.13), this yields that the solution yn of (3.5) satisfies the
following property: For any (z0

n, z
1
n),

−
∫ 1

0

(RSn
y′n(T ))(∂xPSn

z0
n) dx+

∫ 1

0

(QSn
yn(T ))(QSn

z1
n) dx = 0.

This obviously implies (3.6).

It is natural to ask if the discrete controls vn constructed in Lemma 3.1
converge to an admissible control for (3.1) under some assumptions on the con-
vergence of (y0

n, y
1
n). We will prove that this is indeed the case.

Given a sequence of meshes (Sn)n, we say that the sequence of discrete data
(an, bn)n defined on the meshes Sn strongly converges to (a, b) in L2(0, 1) ×
H−1(0, 1) if:

QSn
an → a in L2(0, 1),

RSnbn → (x 7→
∫ 1

x
b(s) ds) in L2(0, 1).

(3.15)

Theorem 3.2. Let (y0, y1) ∈ L2(0, 1)×H−1(0, 1) and T > 2.
Given M ≥ 1, we consider a sequence (Sn) of M -regular meshes, and a

sequence of initial data (y0
n, y

1
n) which strongly converges to (y0, y1) in L2(0, 1)×

H−1(0, 1) in the sense of (3.15).
Then the sequence of discrete controls (vn)n given by Lemma 3.1 strongly

converges in L2(0, T ) to the HUM control vHUM for (3.1) with initial data
(y0, y1).

First of all, let us mention that given (y0, y1) ∈ L2(0, 1) × H−1(0, 1), it is
possible to find a sequence of initial data (y0

n, y
1
n) which strongly converges to

(y0, y1) in L2(0, 1)×H−1(0, 1) in the sense of (3.15).
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The proof of Theorem 3.2 is mainly based on inequality (1.11), that implies
that the discrete controls vn are bounded in L2(0, T ). Once this is proved, the
result can be deduced from classical convergence properties of the scheme.

Proof. The proof is divided into several steps. First, we prove uniform bounds
on the sequence vn. Second, we prove that any weak limit of vn is a control of
(3.1). Third, we prove that there is only one weak limit, which coincides with
the HUM-control vHUM of (3.1). We finally prove the strong convergence of
the controls vn in L2(0, T ).

Uniform bounds. Since Jn(Z0
n, Z

1
n) ≤ Jn(0, 0) = 0, we have that

1
8

∫ T

0

ρ(t)|Z ′1,n|2(t) dt+
1
2

∫ T

0

(Z1,n(t)
h1/2,n

)2

dt

≤
√

2En∗ (0)
√
‖RSn

y1
n‖

2
L2(0,1) + ‖QSn

y0
n‖

2
L2(0,1),

where En∗ (t) denotes the energy of Zn(t), which is constant. In view of the defi-
nition of ρ, since we assume that the meshes Sn areM -regular, inequality (1.11)
holds. This, combined with the fact that (QSn

y0
n) and (RSn

y1
n) are convergent

in L2(0, 1) and therefore bounded, leads us to

kTE
n
∗ (T ) ≤ 1

8

∫ T

0

ρ(t)|Z ′1,n|2(t) dt+
1
2

∫ T

0

(Z1,n(t)
h1/2,n

)2

dt ≤ C. (3.16)

Besides, multiplying (3.10) by h1/2,nvn and integrating in time gives∫ T

0

h2
1/2,n

4
|v′n(t)|2+|vn(t)|2 dt =

∫ T

0

(h1/2,n

4
ρ(t)Z ′1,n(t)v′n(t)+

Z1,n(t)
h1/2,n

vn(t)
)
dt

≤
(∫ T

0

h2
1/2,n

4
|v′n(t)|2 + |vn(t)|2 dt

)1/2

(∫ T

0

ρ(t)
8
|Z ′1,n|2(t) dt+

1
2

∫ T

0

(Z1,n(t)
h1/2,n

)2

dt
)1/2

, (3.17)

and therefore we obtain∫ T

0

h2
1/2,n

4
|v′n(t)|2 + |vn(t)|2 dt ≤ C. (3.18)

We have thus proved, using the M -regularity assumption, that the sequence of
discrete controls vn is bounded in L2(0, T ), and therefore there exists a function
v ∈ L2(0, T ) such that

vn ⇀ v, in L2(0, T ) weak, h1/2,nv
′
n ⇀ 0, in L2(0, T ) weak. (3.19)

The second statement in (3.19) comes from the continuity of the derivation in
the sense of distributions.
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The function v is an admissible control for (3.1). We need the following
classical Lemma on the convergence of the numerical schemes (which can be
found for instance in [5]):

Lemma 3.3. Consider two smooth functions (u0, u1) on (0, 1) such that u0(0) =
u0(1) = 0 and u(x, t) the solution of the conservative system (1.1) with initial
data (u0, u1).

Given a sequence (Sn)n of M -regular meshes, for all n ∈ lN, we denote by
uj,n(t) the solution of the conservative semi-discrete scheme (1.7) with initial
data

u0
j,n = u0(xj,n), u1

j,n = u1(xj,n)), j ∈ {1, · · · , n}.
Then (PSn

uj,n,QSn
u′j,n) strongly converges to (u, u′) in C([0, T ];H1

0 (0, 1)×
L2(0, 1)) and

u1,n(t)
h1/2,n

→ ∂xu(0, t) in L2(0, T ), u′1,n(t)→ 0 in L2(0, T ). (3.20)

This result is of course still true for the backward system (3.4) and its semi-
discrete approximations (3.9).

Now, if we consider two smooth functions (z0, z1) as in Lemma 3.3 for the
backward wave equation (3.4) and its semi-discrete approximations (3.9), using
(3.19), we can pass to the limit in (3.13) and obtain that the solution z of (3.4)
satisfies:

0 =
∫ T

0

v(t)∂xz(0, t) dt+ < y1, z(., 0) >H−1(0,1)×H1
0 (0,1)

−
∫ 1

0

y0(x)∂tz(x, 0) dx. (3.21)

By a density argument, this equation can be extended to any (z0, z1) ∈ H1
0 (0, 1)×

L2(0, T ).
Besides, for any (z0, z1) ∈ H1

0 (0, 1) × L2(0, 1), as in (3.14), multiplying the
solution of (3.1) with boundary condition y(0, t) = v(t) and initial data (y0, y1)
by z solution of (3.4) with initial data (z0, z1), we obtain that

0 =
∫ T

0

v(t)∂xz(0, t) dt+ + < y1, z(., 0) >H−1(0,1)×H1
0 (0,1)

−
∫ 1

0

y0(x)∂tz(x, 0) dx− < ∂ty(T ), z0 >H−1(0,1)×H1
0 (0,1) +

∫ 1

0

y(T, x)z1(x) dx.

Hence we deduce from (3.21) that

< ∂ty(T ), z0 >H−1(0,1)×H1
0 (0,1) −

∫ 1

0

y(T, x)z1(x) dx = 0.

Therefore y satisfies (3.2). This precisely means that v is an admissible control
for (3.1).

22



The limit v is the HUM control vHUM . It is sufficient to prove that v(t)
coincides with some ∂xz(t, 0), where z is the solution of (3.4) for some initial
data (z0, z1) ∈ H1

0 (0, 1)× L2(0, 1), see for instance [15].
From (3.16), there exist two functions Z0 ∈ H1

0 (0, 1) and Z1 ∈ L2(0, 1) such
that

PSn
Z0
n ⇀ Z0, H1

0 (0, 1) weak, QSn
Z1
n ⇀ Z1, L2(0, 1) weak.

Using the weak formulations of (3.9) and the conservation of the energy, we can
prove (the proof can be adapted in a standard way from the arguments in [5])
that, for all t ∈ [0, T ],

∀t, (PSnZn(t),QSnZn(t)) ⇀ (Z(t), Z ′(t)) in H1
0 (0, 1)× L2(0, 1) weak,

(PSn
Zn,QSn

Zn) ⇀ (Z,Z ′) in L∞(0, T ;H1
0 (0, 1)× L2(0, 1)) ∗ weak,

(3.22)
where Z is the solution of (3.4) with initial data (Z0, Z1). Besides, one easily
shows that

Z1,n

h1/2,n
−
h1/2,n

4
Z ′′1,n ⇀ ∂xZ(0, t), in D′(0, T ). (3.23)

But Z1,n/h1/2,n is bounded in L2(0, T ) from (3.16), and therefore h1/2,nZ
′′
1,n ⇀ 0

in D′(0, T ). This also gives that
Z1,n

h1/2,n
⇀ ∂xZ,

Z1,n ⇀ 0,
h1/2,n(ρZ ′1,n)′ ⇀ 0,

in D′(0, T ). (3.24)

Combined with the definition of vn in Lemma 3.1, it follows that

−
h2

1/2,n

4
v′′n + vn ⇀ ∂xZ(0, t), in D′(0, T ).

But, since vn is bounded in L2(0, T ) by (3.18),

h2
1/2,nv

′′
n ⇀ 0 in D′(0, T ),

and therefore v(t) = ∂xZ(0, t) in D′(0, T ).
Since we have already proved that v is an admissible control for (1.1), this

proves that v is the HUM control vHUM .

Strong convergence Since the weak convergence is already proven, it is suf-
ficient to prove the convergence of the L2(0, T ) norms.
Since v(t) = ∂xZ(0, t) where Z is the solution of (3.4) with initial data (Z0, Z1),
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we get from (3.21) that :

0 =
∫ T

0

(∂xZ(0, t))2 dt− < y1, Z(., 0) >H−1(0,1)×H1
0 (0,1)

−
∫ 1

0

y0(x)∂tZ(x, 0) dx. (3.25)

But (3.13) gives:

0 =
1
4

∫ T

0

ρ(t)|Z ′1,n(t)|2 dt+
∫ T

0

∣∣∣Z1,n(t)
h2

1/2,n

∣∣∣2 dt
+
∫ 1

0

(RSn
y1
n)(x)∂x(PSn

Zn)(x, 0) dx−
∫ 1

0

(QSn
y0
n)(x)(QSn

z′∗,n)(x, 0) dx.

Convergences (3.22) and (3.15) imply that we can pass to the limit in the linear
term, and therefore, by (3.25), we get:

1
4

∫ T

0

ρ(t)|Z ′1,n(t)|2 dt+
∫ T

0

∣∣∣Z1,n(t)
h2

1/2,n

∣∣∣2 dt→ ∫ T

0

|∂xZ(0, t)|2 dt.

Combined with the weak convergences (3.24), this proves the following strong
convergences: 

√
ρZ ′1,n → 0,
Z1,n

h1/2,n
(t)→ ∂xZ(0, t),

in L2(0, T ).

But, from the definition (3.10) of vn, the convergence (3.19) implies that:

∫ T

0

h2
1/2,n

4
|v′n(t)|2 + |vn(t)|2 dt =

∫ T

0

h1/2,n

4
ρ(t)Z ′1,n(t)v′n(t)+

Z1,n(t)
h1/2,n

vn(t) dt

→
∫ T

0

∂xZ(0, t)v(t) dt =
∫ T

0

v(t)2 dt.

Hence we deduce from (3.19) that:{
h1/2,nv

′
n → 0

vn → v = vHUM

in L2(0, T ),

which concludes the proof of Theorem 3.2.

Remark 3.4. The proof of Theorem 3.2 slightly differs from the one in [4], which
presented an approach based on the spectral decomposition of the solutions.
This technique, in our context, seems more technically involved than the one
presented above, since the spectrum is not as explicit as in the case of a uniform
mesh.
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4 Application to the damped wave equation

4.1 The continuous setting
We consider the continuous damped wave equation on the interval (0, 1): ∂2

ttw − ∂2
xxw + 2σ∂tw = 0, (x, t) ∈ (0, 1)× (0,∞),

w(0, t) = w(1, t) = 0, t ∈ (0,∞),
w(x, 0) = w0(x), ∂tw(x, 0) = w1(x), x ∈ (0, 1),

(4.1)

with w0 ∈ H1
0 (0, 1) and w1 ∈ L2(0, 1).

We assume that the damping function σ = σ(x) is bounded, non-negative
and bounded from below by a positive number on a subinterval J , that is there
exists α > 0, such that

σ(x) ≥ α, ∀x ∈ J, ‖σ‖∞ = K. (4.2)

Then the energy, defined by (1.2), satisfies the dissipation law

dE

dt
(t) = −2

∫ 1

0

σ(x)|∂tw(t, x)|2 dx. (4.3)

It is well-known that, under the assumption (4.2), the energy is exponentially
decaying: There exist positive constants C and µ such that

E(t) ≤ C E(0) exp(−µt), t ∈ lR. (4.4)

Using classical arguments in stabilization theory (see [11]), the energy of (4.1)
is exponentially decaying if and only if the observability inequality (1.5) holds
for solutions of the conservative system (1.1).

4.2 The semi-discrete setting
We consider a mesh Sn as in (1.6), and discretize equation (4.1) according

to the mixed finite element method:

hj−1/2,n

4
(w′′j−1,n + w′′j,n) +

hj+1/2,n

4
(w′′j,n + w′′j+1,n) =

−
hj−1/2,nσj−1/2,n

2
(w′j−1,n + w′j,n)−

hj+1/2,nσj+1/2,n

2
(w′j,n + w′j+1,n)

+
wj+1,n − wj,n
hj+1/2,n

− wj,n − wj−1,n

hj−1/2,n
, j = 1, · · · , n, t ∈ [0,∞),

w0(t) = wn+1(t) = 0, t ∈ [0,∞),
wj(0) = w0

j,n, w′j(0) = w1
j,n, j = 1, · · · , n,

(4.5)
where σj+1/2,n is an approximation on [xj,n, xj+1,n] of the damping function σ
in (4.1) which is bounded, non-negative and satisfies

σj+1/2,n ≥ α, ∀[xj,n, xj+1,n] ⊂ J, σj+1/2,n ≤ K, j = 0, · · · , n, (4.6)
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where α and K are as in (4.2).

The energy (1.8) of solutions of (4.5) satisfies

dE − n
dt

(t) = −2
n∑
j=0

hj+1/2,nσj+1/2,n

(
w′j,n(t) + w′j+1,n(t)

2

)2

. (4.7)

Obviously, this dissipation law corresponds to a discrete version of (4.3).
The question we investigate is the following: Given a sequence (Sn)n of

meshes, can we find positive constants C and µ independent of n such that

En(t) ≤ C En(0) exp(−µt), t ∈ (0,∞), (4.8)

for any solution of (4.5) on Sn?

Similarly as in the continuous setting, this property is equivalent to the
uniform observability inequality (1.12) for solutions of the conservative system
(1.7) (see for instance [22]). Therefore Theorem 1.2 leads to the following result:

Theorem 4.1. LetM ≥ 1, and consider a sequence (Sn)n ofM -regular meshes.
Then there exist positive constants C and µ such that for all n, inequality

(4.8) holds for any solution of (4.5) on Sn.

The proof of Theorem 4.1, which can be adapted in a standard way from
[11] or [22], is left to the reader.

Remark 4.2. Note that this method yields an estimate on the decay rate µ
appearing in (4.8), which is far from being optimal in general. This is a drawback
of the method, which is based on a perturbation argument of the conservative
system. Even in the continuous setting, the decay rate parameter obtained
through this method is not in general the sharp one, which is known to coincide
(at least in the one dimensional case) with the spectral abscissa (see [6]).

5 Further comments
In this paper, we have given a space semi-discrete scheme derived from a

mixed finite element method for a 1d wave equation, which has a good behavior
with respect to both stabilization and controllability properties on a large class
of nonuniform meshes.

1. The key point of our analysis is the description of the spectrum of the
discrete operator given in Theorem 2.1 on any mesh in a surprisingly explicit
formulation. This description does not seem available for other classical schemes
as the ones provided by finite difference or finite element methods. To our
knowledge, in these cases, only asymptotic distributions of the eigenvalues are
available, see for instance [3] and the literature therein.

2. It would be interesting to estimate the (asymptotic) decay rate for the
semi-discrete damped equation as in [6]. To our knowledge, this is still an
open problem even in the case of uniform meshes. Some partial results in this
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direction are given in [8] in the context of the Perfectly Matched Layer (PML
in short) equations (see [2]), which is a kind of damped wave equation.

3. There exist different methods to prove observability inequalities: Another
one might be given via multiplier techniques. However, it seems difficult to find
a good multiplier on a nonuniform mesh.

4. It would be particularly challenging to understand the behavior of the
discrete waves in higher dimension on nonuniform meshes. To our knowledge,
this question has not been addressed so far. We expect this question to be
difficult to address with the tools used until now, which require either a good
knowledge on the eigenvalues (see [12, 19, 17, 20, 18, 25] and our own approach)
or the existence of multipliers that behave well (see [22, 21, 8]) on the discrete
systems.

5. Let us mention the recent work [7], which studied observability proper-
ties for time-discrete approximation schemes of linear conservative systems in
a very general abstract setting. The approach developed in [7] allows to derive
uniform observability inequalities for time-discrete approximation schemes in a
systematic way. One of the interesting features of this technique is that it can be
applied to fully discrete schemes as soon as the space semi-discrete approxima-
tion schemes satisfy uniform observability properties (see [7, Section 5]). Note
that the study presented here fits in this abstract setting. Therefore, combin-
ing Theorem 1.2 and the results in [7], one can derive uniform (with respect
to the time and space discretization parameters) observability properties for
time-discrete approximation schemes of the space semi-discrete approximation
scheme (1.7).
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