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Introduction

Dans cette these, nous nous intéresserons a divers problemes liés a la controlabilité et a la stabi-
lisation de systemes d’évolution continus et discrets. Dans un premier temps, nous allons décrire le
contexte dans lequel se place le présent travail, et pour cela, introduire un formalisme abstrait qui
contient tous les problemes étudiés, et qui sera spécifié par la suite.

De nombreux modeles physiques se mettent sous la forme suivante :

(0.0.1)

2=Az, t>0,
2(0) = 2o,

ou () désigne la dérivée par rapport au temps, et ou A est un opérateur, en général différentiel.
Pour fixer les idées, on suppose que la donnée initiale zy appartient a un espace de Hilbert X, et que
lopérateur A est un opérateur éventuellement non borné sur X.

Dans la suite, nous supposerons également que, si zp est dans X, alors la solution ¢ — z(t) de
existe, est unique, et appartient a l'espace C(]0,T]; X) pour tout temps 7' > 0. Pour étre plus
précis, nous supposons que le probleme de Cauchy associé a est un probleme bien posé au sens
de Hadamard.

Le systeme (/0.0.1]) modélise effectivement de nombreux phénomenes physiques : Citons entre autres
les modeles diffusifs (chaleur), les modeéles issus de la mécanique quantique (équation de Schrédinger),
et de I’étude des systemes oscillants (ondes). Pour plus d’exemples, nous faisons référence a 1’ouvrage
[11].

Observabilité. Le premier probleme que nous étudions est celui de I'observabilité. On se donne un
opérateur B défini sur D(A), a valeurs dans un espace de Hilbert ), et nous supposons que nous
pouvons observer, pendant un certain temps 7, la quantité

y(t) = Bz(t), te(0,T). (0.0.2)

Comme la donnée initiale zy est dans X, la solution t — z(t) de (0.0.1) appartient & C([0,7T]; X), et
on ne peut a priori pas donner un sens précis a (0.0.2) pour B € £(D(A),Y). C’est pourquoi nous

demandons a ce que le systeme ((0.0.1))-(0.0.2)) soit admissible :

Définition 1 (Admissibilité). Le systeme (0.0.1))-(0.0.2)) est dit admissible si pour tout 7' > 0, il existe
une constante K telle que toute solution de (0.0.1) avec donnée initiale zg € D(.A) satisfait

T
[ 1B=015 a < Kr (0.03)
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Dans ce cas, lorsque l'opérateur A est de domaine dense, ce qui sera toujours vérifié par la suite,
par densité de D(A) dans X, Popérateur d’observation peut étre étendu en un opérateur continu de
X & valeurs dans L?(0,7;)). En particulier, remarquons que si 'opérateur B appartient & £(X,)),
alors la propriété est automatiquement satisfaite.

La question est alors de savoir si la connaissance de y nous permet de déterminer, ou non, la

fonction z. Si tel est le cas, nous dirons que le systeme ((0.0.1))-(0.0.2]) est observable au sens suivant :

Définition 2 (Observabilité). Le systeme ((0.0.1)-(0.0.2)) est dit observable au temps T > 0 s’il existe
une constante k7 > 0 telle que toute solution de (0.0.1) satisfait

T
k@k@ﬂigﬂ\wdm@dt (0.0.4)

Dans la suite, nous dirons que le systeme (0.0.1])-(0.0.2)) est observable s’il ’est en un certain temps
T >0.

Remarquons que ce probleme est tres pertinent en pratique. En effet, il n’est pas rare que nous ne
puissions avoir acces qu’a des données partielles sur certains systemes complexes. C’est par exemple
le cas en météorologie, ou les seules informations & notre disposition concernent une petite couche
au voisinage de la surface terrestre. Nous faisons référence par exemple a [31] en ce qui concerne ce
probleme d’assimilation de données.

Il est intéressant de constater que les propriétés d’observabilité sont reliées a deux autres questions
tout aussi pertinentes en pratique, celles de la contrélabilité et de la stabilisation.

Controlabilité. Nous nous intéressons désormais au probléme suivant : pour une donnée initiale
29 € X, trouver un contrdle v € L?(0,7T;)) tel que la solution de

2=Az+Cv, te(0,7),
{ 2(0) = 20, (0.0.5)
soit nulle au temps T" > 0 :
z(T) = 0. (0.0.6)

Ici, lopérateur C', qui décrit les possibilités d’actions sur le systeme ((0.0.5)), est un opérateur continu
de Y dans D(A)*.

Remarquons que, en utilisant la linéarité du systeme , le probleme ci-dessus, dit de controlabilité
a zéro, est équivalent au probleme de controlabilité sur les trajectoires. La encore, il s’agit donc d’une
question physiquement pertinente puisqu’il s’agit de décrire 'action que 'on peut exercer sur un
systeme donné.

Il est désormais classique que la contrélabilité a zéro est équivalente a ’observabilité du systeme
adjoint. C’est le contenu de la méthode HUM (Hilbert Uniqueness Method) introduite dans [27].

Considérons le probleme adjoint (rétrograde)

{ w=-A*w, te(0,7).

(T} s € X (0.0.7)

et les propriétés d’admissibilité et d’observabilité suivantes : il existe des constantes k7 > 0 et K > 0
telles que toute solution de ((0.0.7) satisfait

T
b [ (O)]1% < / IC*w(®)]3 db < K Juwr]l%. 0.0.8)

ii
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Supposons que les propriétés d’admissibilité et d’observabilité sont vérifiées. Supposons également
que le systeme satisfait la propriété d’unicité rétrograde suivante, qui sera vérifiée dans tous
les exemples que nous traiterons ci-apres : toute solution w de satisfaisant w(0) = 0 est iden-
tiquement nulle.

Introduisons alors la fonctionnelle J définie pour wp € X par

2

ot w est la solution de ({0.0.7) associée a wr. Cette fonctionnelle est strictement convexe, et, au vu de
la propriété (0.0.8)), est également coercive dans la norme

T
o, = /0 I w(®)] dt.

La fonctionnelle J admet donc un unique minimum w4 dans le complété X de X pour la norme ||| -
Remarquons qu’alors il existe une unique application © continue de X sur L?(0,7;)) qui coincide
avec wy — C*w(t) pour wr € X.

1 T
T(wr) = - / IC W@ dot < w(0), 20 >z, (0.0.9)
0

Le contréle v de (0.0.5)) de norme L?(0,7; ) minimale est alors donné par
v(t) = Owy. (0.0.10)

Remarquons que, lorsque le systéme est conservatif, I’hypothese implique X = X. 1l
s’ensuit que, dans ce cas, Qw}. = C*w*(t), o w* est la solution de associée a wp. De méme,
la méme simplification peut étre faite lorsque X est de dimension finie puisqu’alors toutes les normes
sont équivalentes.

Stabilisation. Pour cette question, nous nous limitons aux cas ou 'opérateur A est antisymétrique,
et ou opérateur B appartient & £(X,)).

Considérons alors le systeme amorti
w=Aw — B*Bw, t>0,
w(0) = wp € X.
Un tel systeme modélise de nombreux systemes physiques comportant un terme de stabilisation de
type feedback, par exemple les ondes amorties.

(0.0.11)

Il s’agit en effet d’un systeme amorti puisque ’énergie des solutions w de (0.0.11)), définie par

1
E(t) = 5 lw ()% (0.0.12)
satisfait la loi de dissipation
dE
(== | Bw(®)|3 - (0.0.13)

Nous nous interrogeons alors sur la possibilité de décroissance exponentielle des solutions. Pour
étre plus précis, nous voulons savoir s’il existe des constantes strictement positives M et v > 0 telles
que toutes les solutions de ((0.0.11]) satisfont

E(t) < M E(0)exp(—vt), t>0. (0.0.14)

Il est désormais bien connu (cf. [27, 22]) que la décroissance exponentielle de I’énergie pour les

solutions de (0.0.11]) au sens de (0.0.14]) est également équivalente a I’observabilité du systeme ((0.0.1))-
(10.0.2)).

iii
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Problématique. 1l existe de nombreuses situations concretes ot I’'on a besoin de considérer non pas
un systéme mais une famille de systemes, pour lesquels on aimerait avoir des propriétés d’observabilité
uniformes, afin d’en déduire divers types de résultats de controlabilité et de stabilisation.

C’est par exemple le cas lorsque 1'on s’intéresse a des systémes discrétisés en espace et/ou en temps.

Pour fixer les idées, considérons un systeme continu ((0.0.1})-(0.0.2)) admissible et observable au sens
de (0.0.3)) et (0.0.4)), et supposons de plus que l'opérateur A est antisymétrique.

Observabilité discrete. Introduisons les opérateurs Ay, et By, correspondants aux discrétisations des
opérateurs A et B sur un maillage de taille h > 0. Le systeme ({0.0.1))-(0.0.2)) est alors approché par

2= Apzn, t20,

t) = Bpzp(t), te (0,7). 0.0.15

{ oo L2 o=, te0T) (0.0.15)

Ici, I'espace X, correspond a une approximation de dimension finie de X. L’opérateur B, est a priori
a valeurs dans un certain espace )} qui correspond également & une approximation de ) dans un
sens raisonnable. Pour I'instant, nous restons volontairement imprécis, mais des affirmations précises
seront données plus tard dans le corps du manuscrit. Comme nous avons supposé A antisymétrique,
nous nous intéressons uniquement a des discrétisations qui préservent cette propriété, et supposons
donc que pour tout h > 0, Popérateur A est antisymétrique sur Xp,.

Il est alors naturel de s’interroger sur les propriétés d’admissibilité et d’observabilité des systemes

(10.0.15)). I1 peut arriver que, pour tout h > 0, il existe des solutions z; des systemes ((0.0.15]) telles que
By,zp(t) = 0 pour tout ¢ (cf. contre-exemple d’Otared Kavian, explicité dans [44, p.72]). Dans ce cas,

cette réponse négative a la continuation unique nie les propriétés d’observabilité pour les systéemes

discrets ((0.0.15)).

Cependant, ce n’est pas le seul probleme qui peut intervenir pour 'observabilité des systemes
(0.0.15). En effet, par exemple en dimension un, il est en général facile de montrer que les seules
solutions zj de qui satisfont Bpzp(t) = 0 pour tout ¢ dans un intervalle de temps sont les
solutions nulles. Notamment, on déduit alors dans ce cas que, pour tout h > 0, le systeme
est admissible et observable, et ce en tout temps : pour tout h > 0 et pour tout 7" > 0, il existe des
constantes positives krj, > 0 et K7 > 0 telles que toute solution z;, de satisfait

T
mmmm&é/nm%w&dmewm;. (0.0.16)
0

Nous allons voir ci-dessous que, lorsque la propriété d’observabilité (0.0.16)) n’est pas satisfaite uni-
formément en h > 0, c’est-a-dire lorsque limy,_.g k75 = 0, les procédures de calcul des controles sur les
systemes discrets ((0.0.15) peuvent donner des résultats biaisés, voire faux, pour le systeme continu.

Controles discrets. Sous la condition (0.0.16]), pour tout A > 0, le systeme

{ 2n = Apzn + Biop, te(0,7T). (0.0.17)

2,,(0) = zon € X,

est controlable, c’est-a-dire qu’il existe une fonction vy, dans L2(0, T’; );,) telle que la solution de ((0.0.17)
satisfait

Zh<T) = 0.

En fait, suivant la méthode HUM décrite ci-dessus, on peut méme calculer le controle a zéro v, qui
minimise la norme L2(0,T; V).

v
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Il est alors naturel de penser que, si les données initiales zg;, convergent vers zg, alors les controles
vy, devraient converger vers le controle v de (avec C = B*). Cela est en fait faux en pratique
dans de multiples situations, comme le montrent les simulations numériques concernant I’équation des
ondes unidimensionnelle disponibles dans I'article [44].

Comme souligné dans [44], la norme des controles vy, peut exploser quand h — 0. En effet, les
systemes discrétisés ((0.0.15)) ont une dynamique différente de celle du systéme continu ((0.0.1]), notam-

ment aux hautes fréquences, cf. [3§].

Dans ce cadre, de nombreux travaux récents (cf. [44] et sa bibliographie) ont été consacrés & mettre
au point des techniques permettant de calculer sur les systemes discrétisés des pseudo-controles
vy, pour qui convergent, lorsque les données initiales zg; convergent vers zg, vers un controle
admissible pour le systéme continu (toujours avec C' = B¥).

Ces méthodes consistent essentiellement en des mécanismes de filtrage qui permettent d’éliminer
les hautes fréquences parasites introduites lors de la discrétisation. Afin de prouver la convergence des
controles vy, des systemes discrétisés vers un controle v du systeme continu, la méthode la
plus courante consiste a trouver des classes de données pour lesquelles on peut prouver les inégalités
avec des constantes b, et K7 ) indépendantes de h > 0.

En d’autres termes, il s’agit de déterminer, pour tout A > 0, un sous-espace X, C X, de données,
globalement invariant par I’équation , tel qu’il existe un temps T' > 0 et des constantes positives
kr > 0 et Kr > 0, indépendants de h > 0, tels que toute solution zj de ayant pour donnée
initiale zqp, € X, satisfait

T
br (DI, < [ 1B 1, dt < Kr o, 0018)

Les méthodes utilisées jusqu’a présent pour démontrer les inégalités (0.0.18)) reposent sur des
techniques de multiplicateurs (inspirées de [25] et directement effectuées sur les systeémes discrétisés
(0.0.15))), ou sur des propriétés de séparation spectrale basées sur [24].

Les Chapitres [2] [6] et [7] présentent des études détaillées de ces questions sur divers exemples.

Au Chapitre [2| (correspondant & [12]), nous considérons 1’équation des ondes unidimensionnelle
discrétisée sur des maillages non uniformes en utilisant la méthode des éléments finis mixtes, dont
nous présentons une étude détaillée des propriétés d’observabilité. Cette question avait déja été traitée
dans les travaux [8, 9] dans le cas des maillages uniformes, ce qui permettait d’utiliser des méthodes
de multiplicateurs, ou, en dimension un, des méthodes spectrales. Ici, du au manque d’uniformité du
maillage, le spectre est moins explicite, mais nous arrivons tout de méme a prouver des propriétés de
séparation du spectre, puis d’équirépartition des vecteurs propres, qui permettent de démontrer les
propriétés dans tout I'espace Xj,, uniformément en A > 0. A notre connaissance, c’est I’étude
spectrale la plus précise menée jusqu’a présent pour des systemes discrétisés sur des maillages non
uniformes. Signalons que les questions d’observabilité pour I’équation des ondes unidimensionnelle
discrétisée avec la méthode des éléments finis sur des maillages non uniformes ont été traitées dans
[34], mais la question de l'optimalité de la réponse apportée dans [34] est encore largement ouverte.

Aux Chapitres [0 et [7] (correspondants a [I3| [14]), nous étudions des systémes abstraits généraux
représentant les équations de Schrodinger et des ondes discrétisées selon la méthode des éléments finis.
La méthode que nous utilisons est une méthode spectrale basée sur les travaux [0, 29, B3], que nous
adaptons pour des systemes discrétisés. Cela fournit une approche robuste pour étudier les propriétés
d’observabilité des discrétisations en espaces des systemes admissibles et observables. Notamment, nos
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résultats s’appliquent en n’importe quelle dimension et sans condition sur la structure des maillages, ce
qui généralise grandement les résultats connus jusqu’a présent (cf. [44] et sa bibliographie). Cependant,
comme dans [34], nous ne savons pas si nos résultats sont optimaux. Cette question est largement
ouverte.

Stabilisation discréte. Lorsque les opérateurs B et By, sont bornés sur X et Xj respectivement, on
peut s’interroger sur les propriétés de décroissance de ’énergie des systemes discrétisés

Wy, = Apwy, — By Bywy, t >0,
0.0.19
{ wp,(0) = wop, € X, ( )
ainsi que de leur uniformité.
L’énergie des solutions wy, de (0.0.19)) est donnée par
1 2
Bn(t) = 5 llun(®)3, (0.0.20)

Comme dans le cas ci-dessus, lorsque les inégalités (0.0.16)) sont satisfaites, pour tout h > 0, il existe
des constantes positives M}, et vy, telles que les solutions de ((0.0.19)) satisfont

Eh(t) < Mh Eh(O) exp(—uht), t> 0. (0.0.21)

Mais la décroissance n’est pas, en général, uniforme. On peut notamment avoir des cas ou v, tend
vers 0 quand h — 0.

Il est alors naturel de se demander si 'on peut modifier le systeme ((0.0.19) de facon a obtenir des
systemes discrétisés exponentiellement stables uniformément en h.

A nouveau, nous nous référons a [44] et a sa bibliographie pour divers travaux concernant cette
question. L’idée générale consiste a introduire un terme de viscosité numérique dans ((0.0.19) de facon
a amortir efficacement les hautes fréquences parasites introduites lors de la discrétisation.

Les Chapitres [T} [4 et [§] proposent une étude de ces questions.

Au Chapitre (correspondant a [17]), nous étudions les propriétés spectrales fines des discrétisations
spatiales des équations du modele Perfectly Matched Layers unidimensionnelles, qui constituent une
variante de I’équation des ondes amorties. En particulier, nous mettons en évidence l’existence de
valeurs propres parasites qui correspondent a des vecteurs propres hautes fréquences localisés dans
la zone ou le terme d’amortissement n’est pas actif, ce qui prouve en particulier que la quantité vy,
dans tend vers 0 quand h — 0. Cette description précise du spectre des systemes amortis
discrétisés est, a notre connaissance, la premiere a montrer ce phénomene explicitement. Nous mon-
trons alors, en s’inspirant des travaux [37, 34], qu’en introduisant un terme de viscosité numérique
correctement choisi dans les équations discrétisées, on peut obtenir des systemes discrétisés exponen-
tiellement stables, uniformément en h > 0.

Au Chapitre (correspondant & [I8]), nous exhibons, pour des systémes continus abstraits ,
plusieurs formes d’opérateurs de viscosité pour lesquels les phénomenes d’overdamping n’apparaissent
pas. La méthode que nous utilisons a ’avantage de traiter séparément basses et hautes fréquences,
utilisant aux basses fréquences les propriétés d’observabilité des systemes —, et aux hautes
fréquences les propriétés dissipatives des systémes visqueux sans amortissement. En particulier, cela
fournit des résultats robustes et généraux qui peuvent s’appliquer aussi bien dans le contexte des
équations discrétisées en espace, comme aux Chapitres [I} [f] et [7] que pour les équations discrétisées
en temps, ou méme en temps et en espace, cf. Chapitre |5, généralisant ainsi les résultats de [37) [34]
sur les propriétés de stabilisation des systemes semi-discrétisés en espace.
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Ainsi, au Chapitre |5| (correspondant a [19]), nous donnons une méthode systématique qui permet
de mettre au point, pour des systémes qui ne sont observables qu’aux basses fréquences, des variantes
visqueuses de ([0.0.1) pour lesquelles on peut guarantir des propriétés de stabilisation uniformes en

h > 0.

Des problemes similaires se posent lorsque 'on considere des systemes discrétisés en temps, ou
des solutions parasites hautes fréquences perturbent les propriétés d’observabilité et d’admissibilité
des systemes discrétisés, et, notamment, le bon fonctionnement de la méthode HUM pour calculer
numériquement des controles approchés pour les systemes continus.

Au Chapitre [3| (correspondant & [16]), nous prouvons donc, pour un systéme conservatif (0.0.1))-
admissible et observable, des propriétés d’observabilité uniformes pour les systemes discrétisés
en temps, dans une classe filtrée. La encore, nous utilisons les résultats spectraux de [6, 29] pour obtenir
une méthode robuste, qui s’applique pour de nombreux systemes et de nombreuses discrétisations en
temps. Ainsi, nos résultats s’appliquent également a des familles de systeémes uniformément observables
pour lesquels nous pouvons déduire pour les familles de systémes discrets en temps correspondants
des propriétés d’observabilité uniformes en le parametre de discrétisation en temps. En particulier, si
I’on consideére une famille de systémes discrétisés en espace qui sont uniformément observables en le
parametre de discrétisation en espace, alors les systemes totalement discrétisés correspondants satisfont
des propriétés d’observabilité uniformes en les parametres de discrétisation en espace et en temps. Cet
argument permet ainsi de découpler les problemes liés a la discrétisation en espace de ceux liés a la
discrétisation en temps, permettant par exemple de déduire des résultats des Chapitres [2] [6] et [7] des
propriétés d’observabilité pour les systemes totalement discrétisés correspondants, uniformément en
les parametres de discrétisation en espace et en temps. A notre connaissance, ce résultat est le premier
qui donne, de facon systématique, des résultats d’observabilité pour des systemes discrétisés en temps
a partir des propriétés d’observabilité des systéemes continus en temps correspondants.

Au Chapitre 5| (correspondant a [19]), nous combinons les résultats du Chapitre |3 avec ceux du
Chapitre [l pour obtenir une approche générale et robuste qui fournit, pour des systémes continus
exponentiellement stables, des discrétisations en temps et en espace uniformément exponentiellement
stables. Comme indiqué ci-dessus, la méthode abstraite que nous développons généralise et étend les
résultats obtenus au Chapitre 1| ainsi que dans [37, [34] pour des systémes discrétisés en espace.

Ci-dessous, nous présentons, pour la commodité du lecteur, le plan que nous avons adopté.

Dans la Partie [ nous étudions deux systémes modélisant des équations des ondes unidimension-
nelles, tout d’abord le systeme PML (pour Perfectly Matched Layers) discrétisé sur des grilles uni-
formes, puis un systeme classique d’ondes unidimensionnel, discrétisé selon une méthode d’éléments
finis mixtes, mais sur des maillages non uniformes. Dans ces deux cas, en utilisant conjointement des
méthodes de multiplicateurs et des méthodes spectrales, nous prouvons des résultats qui sont, en un
sens que nous préciserons, optimaux.

Dans la Partie [T, nous considérons des systeémes conservatifs abstraits, que nous supposons admis-
sibles et observables, et prouvons des propriétés d’admissibilité et d’observabilité pour leurs discrétisations
en temps. Notre méthode est basée sur des techniques spectrales. En particulier, nous utilisons de
maniere décisive la caractérisation spectrale de I'observabilité de systémes conservatifs donnée dans
[6, 29]. Nous expliquons aussi comment ces résultats s’interpretent dans le cadre des systeémes amortis.

Dans la Partie [[TT} nous étudions les propriétés d’observabilité de systémes abstraits discrétisés
selon la méthode des éléments finis. Notre méthode, a nouveau basée sur des criteres spectraux, nous
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permet d’obtenir des résultats tres généraux, qui, a notre connaissance, sont les premiers a pouvoir
s’appliquer instantanément en n’importe quelle dimension et pour n’importe quel maillage régulier.

Dans la Partie nous présentons un travail relié a cette thématique correspondant a [15], mais
dans le cadre assez différent d’une équation de la chaleur avec un potentiel singulier —u/|z|?. Cepen-
dant, notre approche est la encore basée sur des considérations d’uniformité des propriétés d’observa-
bilité pour des potentiels réguliers de la forme —u/(|z|? + |€|?). Nos méthodes reposent alors sur une
inégalité de Carleman pour prouver un résultat positif lorsque p < p*(N), ou p*(INV) est la constante
de Hardy en dimension N, et sur des méthodes spectrales afin de prouver un résultat négatif lorsque

> p(N).

Dans la suite de cette introduction, nous présentons plus précisément le contenu de chaque partie
de cette these.

Partie . Etude précise d’équations d’ondes discrétisées en espace

Dans cette partie, nous présentons, pour deux modeles d’équations des ondes, des études exhaus-
tives et optimales des propriétés d’observabilité et de dissipation de systemes discrétisés. En effet, les
deux exemples étudiés sont suffisamment explicites en dimension un d’espace pour mettre en évidence
avec précision les phénomenes parasites qui apparaissent aux hautes fréquences.

Chapitre (1, La méthode Perfectly Matched Layers (PML).

Lorsque ’on résout numériquement un probleme d’équation des ondes en domaine extérieur en
temps grand, il est nécessaire de limiter le domaine de calcul a cause des capacités finies de calcul
numérique. Il est alors nécessaire d’introduire des conditions limites sur la frontiere nouvellement
formée, qui peuvent éventuellement perturber la solution & I'intérieur du domaine de calcul, & cause
de phénomenes de réflexion.

La méthode PML, introduite par Bérenger dans [2] en 1994, consiste & entourer le domaine de
calcul d’une couche dans laquelle les équations sont modifiées afin de dissiper ’énergie qui y entre, de
telle sorte que ’énergie réfléchie est petite, voire nulle. Depuis, cette méthode a démontré son efficacité
dans de nombreux problémes concrets [39].

Nous nous proposons donc d’étudier précisément le modele PML en dimension un d’espace et
d’expliquer son efficacité.

Considérons le systeme du premier ordre suivant, équivalent a I’équation des ondes sur (0,00) :
0P+ 0;V =0 dans (0,00) x (0,00),
0V + 0P =0 dans (0,00) x (0,00), (0.0.22)
P0,1) =0, P(x,0)=Pylx), V(z,0) = Vo(a),
ot Py et Vj sont des fonctions de L?(IR) & support dans (0, 1).

1l est alors bien connu que I’énergie des solutions se propage a vitesse 1. En particulier, la solution
t— (P, V)(t) de (0.0.22)) est nulle dans (0,1) pour tout temps ¢ > 2.

Considérons alors le systeme déduit de (0.0.22) par la méthode PML dans le cas ou la zone de
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calcul (i.e. la zone qui nous intéresse) est (0,1) :

O P+ 0,V + x(u20P =0 dans (0,2) x (0,T),
OV + 0z P + X120V =0 dans (0,2) x (0,T), (0.0.23)
P(0,t) = P(2,t) =0, P(z,0)= Py(z), V(x,0)="Vy(z),

ot1 Py et Vg sont dans L2(0, 2) et & support dans (0, 1), X(1,2) est la fonction caractéristique de I'intervalle
(1,2), et 0 = o(x) est une fonction positive dans L*°(1,2).

Le systeme ([0.0.23]) correspond en fait a un systeme dissipatif, puisque 1’énergie

1 1
Bt) =5 1P()IIZ20,2) + 3 V()22

satisfait
2
== [ (PP +VOPR) do

Au vu de la propriété de propagation de I’énergie pour (0.0.22)), il est naturel de s’attendre a ce que

I’énergie des solutions de ((0.0.23)) décroisse, et nous pouvons voir le taux de décroissance de cette
énergie comme une mesure de lefficacité de la méthode PML.

Dans un premier temps, nous prouvons donc que I’énergie des solutions de est exponen-
tiellement décroissante. Nous présentons deux méthodes pour prouver ce résultat. L’une est basée sur
une décomposition spectrale explicite de 'opérateur spatial dans , et Iautre sur la méthode
des caractéristiques (ce qui est proche de la preuve de la formule de D’Alembert). Par ces méthodes
assez explicites, nous prouvons le théoreme suivant :

Théoréme 3. Les solutions de (0.0.23)) avec donnée initiale dans L*(0,2)? (pas forcément a support
dans (0,1)) satisfont

2
E(t) < E(0) exp ((4 - t)/ a>, t>0.
1
On en déduit alors que la norme L'(1,2) de o mesure l'efficacité de la méthode PML pour le

systeme (0.0.23)), confirmant ainsi les résultats [3] [ [4].

Dans un deuxiéme temps, nous étudions les discrétisations en espace de ((0.0.23]) de type différences
finies. Pour h = 1/N > 0, nous considérons

Vivie = Viciye

o P; + -2 ; +0;P;=0, je{l,...,2N —1},

Pii1— P; . 0.0.24
81&‘/;'-5-1/2 + % +O'j+1/2vj+1/2 =0, j€{0,...,2N —1}, ( )
Py= P,y =0.

Ici, Pj et o sont des approximations de P et x(;2)0 respectivement aux points x; = jh, et Vi /o et
0jt1/2 de Vet o aux points x40 = (j +1/2)h.

Pour ce systéme, nous prouvons que I'énergie des solutions (P, V') de (0.0.24), donnée par

2N-1
h

Ey(t) = 5 Z (PO + [Vi120)1%), (0.0.25)
=0

n’est pas exponentiellement décroissante uniformément en A > 0 :
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Théoreme 4. Il n’existe pas de constantes strictement positives M et v telles que, pour tout h > 0,
les solutions de (0.0.24) satisfont

Ep(t) < M Ej(0) exp(—vt), t>0. (0.0.26)

Pour cela, nous construisons des solutions de (|0.0.24)) localisées en dehors de la zone ol ’amortisse-
ment est actif, et dont ’énergie ne peut donc pas décroitre exponentiellement vite. Cette construction
est basée sur celles des ondes gaussiennes [32].

Dans le cas ol o est constant sur (1,2), nous fournissons également une description spectrale
détaillée de I’opérateur spatial intervenant dans . Ainsi, nous prouvons que les fonctions propres
basses fréquences sont équiréparties dans les zones (0,1) et (1,2), tandis que les fonctions propres
hautes fréquences sont concentrées, soit dans (0,1), soit dans (1,2). En particulier, I'existence de
fonctions propres hautes fréquences concentrées dans (0, 1) nie également la décroissance exponentielle
de I'énergie uniformément en h > 0, puisque les solutions associées ne rentrent pas dans la zone ou
I’amortissement est effectif.

Dans un troisietme et dernier temps, nous étudions une variante de (0.0.24), inspirée de [37), [36]
dans laquelle un terme de viscosité numérique a été ajouté :

Viers— Vi
atPj + J+1/2 3 J-1/2 -f-O'jf)j — h2(AhP)j =0,
jell,... 2N},
Pji1— P 0.0.27
O Vjt1/2 + % +0j1/2Vir1/2 = B2(ARV) 4172 = 0, ( )
j€{0,...,2N — 1},
Po=Pony =0, V_i;2=Visa, Von_1/2=Vony1/2-

ou Ay, correspond a 'opérateur Laplacien discrétisé

1
(ApA); = ﬁ(AjJrl + Aj_1 —24)).

Dans ce cas, par une méthode des multiplicateurs, nous prouvons que 1’énergie des solutions de
(10.0.27)) décroit exponentiellement, uniformément en h > 0 :

Théoréme 5. Il existe des constantes strictement positives M et v telles que, pour tout h > 0, les

solutions de ((0.0.27) satisfont (0.0.26)).

De plus, ce résultat est optimal, dans la mesure ot ’on ne peut pas espérer des résultats similaires
avec un terme visqueux plus petit, a cause de 'existence de vecteurs propres pour (|0.0.24)) localisés
dans (0,1).

Nous étudions également la possibilité de rétablir le taux de décroissance de ’énergie du systeme
continu ((0.0.23|) en augmentant le terme de viscosité numérique, et donnons un résultat partiel dans
cette direction. En effet, nous démontrons, sous certaines hypotheses qui seront précisées au cours
du Chapitre [1} qu’il est possible de choisir le terme de viscosité numérique de fagon a ce que, pour
tout h > 0, il existe une constante M), telle que I’énergie Ej(t) des solutions de , définie par

(10.0.25)), satisfait
2
En(t) < My, Ep(0) exp ( - (/ o — oh_,0(1)>t>, t>0.
1
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Chapitre [2} La méthode des éléments finis mixtes sur des maillages non uniformes

Ce chapitre propose 1’étude des propriétés d’observabilité de I’équation des ondes unidimension-
nelle, discrétisée par la méthode des éléments finis mixtes, mais sur des maillages non uniformes. A
notre connaissance, c’est a ce jour le seul exemple ou la théorie a pu étre effectuée a ce niveau de
détail pour des maillages non uniformes.

Considérons 1’équation des ondes unidimensionnelle

OZu— 0%,u=0, (z,t) € (0,1) x R,
u(0,t) = u(1,t) =0, t € R, (0.0.28)
u(z,0) = u¥(z), dwu(z,0) =ul(z), =€ (0,1),

avec (u%,ul) € H}(0,1) x L*(0,1).

L’énergie des solutions de ((0.0.28)), donnée par

1 2 1 2
E(t) = B 10eu(®) || T2(0,1) + B 102wl 72(0,1) -
est constante.
De plus, il est bien connu (cf. [27, 25]) que pour tout temps 7" > 2, il existe des constantes
strictement positives kp et K telles que les solutions de ((0.0.28|) satisfont

T
mﬂ@g/ﬁm@ﬁﬁ&gmﬂ@.
0

Discrétisons ((0.0.28)) sur un maillage non uniforme &,, donné par n + 2 points
0= Zon < T1in < e < Tnn < Tn+ln = 1, hj+1/2,n =Tj+1n — Tjn, j € {0, v ,n}. (0.0.29)
La méthode des éléments finis mixtes donne alors le systéeme

( h. h.
“1/2.n .. . +1/2n .. .
jT/n(ujfl,n + dijn) + JT/n(“j,n + il 11,n)

- uj+17n B uj7n ’U’jvn B uj—l,n

) .j:l:"'nateRa

hjt1/2.n hj—1/2.n (0.0.30)
U (t) = Uny1n(t) =0, tER,
u;(0) = u?yn, 4;(0) = u}’n, j=1,-,n.

L’énergie des solutions u,, de (0.0.30)), donnée par

1 uisin(t) = uin(®)\? | 1o g1 (t) + @ (t)
En(t) — 5 Z hj+1/2,n< J h, J + 5 Z hj+1/2,n J 2 J 5 (0031)

est alors constante.

D’apres les travaux [8, O], pour des maillages uniformes, en tout temps 7" > 2, on peut trouver
des constantes strictement positives kp et Kp telles que les solutions de ((0.0.30) (toujours sur des
maillages uniformes) satisfont

T

uln(t)
b B (0 g/ unlt)
7En(0) 0 <‘h1/2,n

2

+ |u1,n(t)|2) dt < K En(0). (0.0.32)
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Nous démontrons que ce résultat s’étend en fait pour une large classe de maillages non uniformes.
Introduisons la notion de régularité d’un maillage :

Définition 6. Soit un maillage S,, donné par n + 2 points comme dans . La régularité de S,
est définie par

max;{h;1/2.n}
min; {12}

Pour M > 1, on dira qu’un maillage S,, est de régularité M si Reg(S,,) < M.

Reg(S,) = (0.0.33)

Nous démontrons alors le résultat suivant :

Théoréme 7. Soit M > 1 et (S,,) une suite de maillages de régularité M.
Alors, pour tout temps T > 2, il existe des constantes strictement positives kr et Krp telles que les
solutions de (0.0.30) satisfont, uniformément en n, les estimées (0.0.32]).

De fagon similaire, nous prouvons le méme type de résultat en ce qui concerne une observation
distribuée sur un sous-intervalle w C (0, 1).

La preuve du Théoreme [7| est basée sur 1’étude spectrale de ((0.0.30)), qui se trouve étre parti-
culierement explicite. Notamment, il est possible de démontrer que les valeurs propres /\fl de I'opérateur
en ([0.0.30]) satisfont, pour n’importe quel maillage, la propriété suivante, dite de séparation spectrale,
ou de spectral gap :

~ k+1 2
min AT =0 >
ke{l,-~~,n—1}{ " nt =z
En particulier, le Lemme d’Ingham (cf. [24]) sur les séries trigonométriques montre qu’il suffit alors
de prouver des propriétés uniformes d’observabilité sur les fonctions propres. En utilisant ’expression
explicite des fonctions propres, nous arrivons alors a montrer ((0.0.32)), & condition que les maillages
soient M réguliers.

De plus, nous montrons aussi que la condition de M régularité sur les maillages est, en un certain
sens, optimale pour les propriétés d’admissibilité et d’observabilité discretes.

Enfin, nous exhibons les applications du Théoréme [7] pour des problémes de controlabilité et de
stabilisation, basées sur la dualité HUM et sur les résultats [22] 27] présentés ci-dessus.

Partie [I. Discrétisation en temps de systémes conservatifs

Dans cette partie, nous considérons un couple d’opérateurs (A, B), et étudions les discrétisations

en temps de (0.0.1)-(0.0.2).
Nous supposons, dans toute cette partie, que le systeme ((0.0.1)-(0.0.2|) est admissible et observable.

Dans toute cette partie, nous supposons également que 'opérateur A est anti-adjoint, et a résolvente
compacte. Il s’ensuit que le spectre de A est constitué uniquement de valeurs propres ij;, avec u; € R.

De plus, les vecteurs propres ®; correspondants peuvent étre choisis de facon a former une base
orthonormale de X.

Notre but est de formuler, de la fagon la plus générale possible, des propriétés d’observabilité et
d’admissibilité uniformes en le parametre de discrétisation en temps.
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Chapitre [3] Propriétés d’observabilité

Pour fixer les idées, considérons la discrétisation standard de (0.0.1))-(0.0.2) :

E+1 _ Lk k+1 k
S A(ﬂ), dans X, k € Z,
2 yk = BzF, kAt >0. (0.0.34)
ZO = 20,
Remarquons que 'énergie des solutions de ((0.0.34]), définie par
1 2
=5
2 1% llx
est constante.

Introduisons alors, pour s > 0, les classes filtrées

Cs(A) = vect{®; tels que les valeurs propres correspondantes iy, vérifient || < s}. (0.0.35)

Pour le systeme ([0.0.34]), nous prouvons le théoreme suivant :

Théoréeme 8. Supposons que B € £(D(A),Y). Fizons § > 0.
Alors il existe un temps Ts > 0, et des constantes strictement positives ks et Kg telles que, pour tout
At >0, les solutions z de (0.0.34) avec donnée initiale 2o € C5/n4(A) satisfont :

ksllzolly < Ot > < Ks |20/ - (0.0.36)

2
Zk + Zk+1> H
kAte[0,Ts) Y

#(

Le résultat d’observabilité uniforme ((0.0.36)) est optimal au vu de [43]. En effet, il est prouvé dans
[43] que, pour I’équation des ondes, on ne peut pas espérer de résultat d’observabilité uniforme en At
dans des classes filtrées Cy a1+ (A) avec € > 0.

La preuve du Théorémeest basée sur une méthode spectrale introduite dans [6, 29]. Dans [6, 29], il
est en effet prouvé que 1'observabilité de ((0.0.1)-(0.0.2)) est équivalente & l’existence de deux constantes
positives m et M telles que

M?|[(A—iw)z|3 + m?||B2|} > ||zll3, V2 € D(A), Yw e R. (0.0.37)

La démonstration de I'inégalité d’observabilité dans ((0.0.36)) suit essentiellement celle donnée dans
[6, 29] pour montrer que l'estimée de la résolvante (0.0.37) implique I'observabilité de ({0.0.1))-(0.0.2)).

Pour prouver I'inégalité d’admissibilité dans ((0.0.36]), nous introduisons un nouveau critere spectral
équivalent a ’admissibilité de (0.0.1)-(0.0.2)). A nouveau, en suivant la preuve du cas continu ([0.0.1))-
(10.0.2), nous démontrons 'inégalité d’admissibilité dans ((0.0.36]).

La méthode que nous développons pour prouver le Théoreme |8 présente de nombreux intéréts.

Notre méthode s’applique en effet a de nombreux schémas numériques, et pas seulement a des
systemes discrétisés selon ((0.0.34)). Pour étre plus précis, nous prouvons que, pour une large gamme
de méthodes de discrétisation en temps incluant entre autres la méthode de Newmark et la méthode
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de Gauss d’ordre quatre, des propriétés d’observabilité et d’admissibilité sont vérifiées uniformément
en At > 0.

Grace aux estimées explicites sur les constantes intervenant dans le Théoreme [§ nous pouvons
également considérer les propriétés d’admissibilité et d’observabilité des discrétisations en temps de
familles de systéemes uniformément admissibles et observables. Notamment, si les systemes ({0.0.15]
sont admissibles et observables au sens de uniformément en h > 0 dans la classe ih, alors,
pour tout d > 0, il existe un temps Ts > 0, et des constantes strictement positives ks et K; tels que,
pour tout h, At > 0, les solutions zp de

k+1 k k+1 k
- +

%zAh(Zh 5 Zh), dans X, k € Z,

2) = Zon,
avec zon € Cs/ne(An) N X, satisfont

) Skt 2 ,

ks llzonll%, <2t Y ||Ba %) < Ks |lzonll%, - (0.0.38)
kAte[0,T;s) Yh

Ce résultat permet de déduire instantanément des propriétés d’admissibilité et d’observabilité
uniformes pour des systemes totalement discrétisés & partir de ’étude des systemes semi-discrétisés
en espace (et donc continus en temps) correspondants.

A notre connaissance, il n’existait auparavant que trés peu de références bibliographiques sur
les propriétés d’observabilité de systémes conservatifs discrétisés en temps avant notre travail, sinon
Particle [30] qui étudie 1’équation des ondes totalement discrétisée en dimension un, et article [43]
qui étudie équation des ondes dans un domaine borné Q C R¢ semi-discrétisée en temps, mais avec
une méthodologie qui ne permet pas d’envisager facilement des extensions aux cas completement
discrétisés.

Chapitre 4. Limites visqueuses de systémes exponentiellement stables

Ici, nous délaissons temporairement les problemes introduits par les méthodes de discrétisation,
afin de nous concentrer sur ’étude des différents termes de viscosité que nous pouvons introduire dans
(10.0.11]) de fagon & préserver les propriétés dissipatives des systemes ainsi obtenus.

Les méthodes que nous développons dans ce chapitre sont en fait des versions simplifiées de celles
utilisées au Chapitre 5| pour des systemes discrétisés en temps. Leur principal intérét est qu’elles
permettent de prouver des résultats de stabilisation y compris pour des systemes dont le
systeme conservatif associé — est seulement observable aux basses fréquences.

Ici, ainsi qu’au Chapitre |5, nous supposons que B appartient a £(X,)). Rappelons que 'opérateur
A est supposé anti-adjoint.

Rappelons aussi que, dans ce cas, le systeme (0.0.1)-(0.0.2) est observable si et seulement si le
systeme ([0.0.11)) est exponentiellement stable.

Le but de ces deux chapitres est donc de fournir des méthodes de discrétisation en temps de ((0.0.11])
de facon & conserver la décroissance exponentielle de I’énergie des systemes discrétisés uniformément
en le pas de temps.
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Pour cela, il est nécessaire de réinterpréter les résultats du Chapitre [3| en termes de stabilisation.
Formellement, le Théorémeindique que les basses fréquences (jusqu’a 'ordre 1/At) sont efficacement
amorties par I'opérateur B*B. Nous allons donc introduire dans les équations un terme visqueux qui
aura pour but de dissiper efficacement les hautes fréquences, de la méme maniére qu’au Chapitre [I}

Il faut alors éviter des phénomenes d’overdamping, qui peuvent apparaitre pour ces équations
dissipatives (cf. [I0]), et qui pourraient empécher des propriétés de stabilisation uniformes. Nous nous
intéressons donc, dans un premier temps sur des modeles continus, aux divers types de viscosité V qui
n’introduisent pas d’effet d’overdamping.

Nous introduisons donc, pour € > 0, les systemes
2=Az+¢eV.z— B*Bz, t>0, 2(0) = 29 € X, (0.0.39)

ou V. est un terme de viscosité qui peut dépendre de ¢, et que nous préciserons plus tard.

L’énergie des solutions z de (0.0.39)), définie par

B) = 3 213

satisfait la loi de décroissance

dE
—(t) = — B,22+8<V52,z>3g, t>0.
dt Y

Rappelons que, sous nos hypotheéses, quand ¢ = 0, le systeme (0.0.39)), qui correspond alors au
systeme sans terme visqueux ([0.0.11]), est exponentiellement stable.

Pour énoncer notre résultat, nous introduisons la projection orthogonale m , = dans X sur C; ; z(A).

Nous prouvons alors que, pour une large classe de termes de viscosité, le systeme ([0.0.39)) est
exponentiellement stable uniformément en ¢ :
Théoréme 9. Supposons que les opérateurs de viscosité V. satisfont

1. V. est un opérateur auto-adjoint défini négatif.

2. La projection Ty €t Uopérateur V. commutent.

3. 1l existe des constantes strictement positives ¢ et C telles que pour tout € > 0,

Ve[ (V9R)e] < Oleles v e el et Ve[| (V)] 2 elele, vz €ty

Alors lénergie des solutions de (0.0.39)) est exponentiellement décroissante au sens de (0.0.14)), uni-
formément en le paramétre de viscosité € > 0.

Des exemples d’opérateurs visqueux satisfaisant les hypotheses du Théoréme [J] sont

e A2

2
eV =eA*, eV, = T o2’

76V€ = \/‘g‘A‘7

La preuve du Théoreme |§| est basée sur celle de [22], qui lie les propriétés de décroissance exponentielle

de ’énergie des solutions de ((0.0.11]) & 'observabilité du systeme (0.0.1])-(0.0.2]). Dans notre cas cepen-

dant, a cause du caractere éventuellement non borné de 'opérateur de viscosité V., nous ne pouvons

pas nous ramener a 'inégalité d’observabilité (0.0.4)) pour (0.0.1})-(0.0.2)).
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Adaptant [22], nous étudions plutot le systeme visqueux suivant
= Au+¢eV.u, tekR, u(0) = ug € X, (0.0.40)

et démontrons alors qu’il existe un temps 1" > 0 et une constante strictement positive k7 indépendants
de ¢ tels que les solutions u de ((0.0.40|) satisfont
i

ool < [ 1Bat ave [ (V)] ac (0.0.41)

Cette inégalité d’observabilité est en effet équivalente & la propriété de stabilisation uniforme pour les

systemes ((0.0.39)).

Pour démontrer (0.0.41]), nous utilisons un argument de découplage des solutions du systeme
(10.0.40)) en basses et hautes fréquences.

Aux basses fréquences, en utilisant la méthode de [22], comme V. se comporte comme un opérateur

borné, nous démontrons (0.0.41)) & partir des propriétés d’observabilité du systeme (0.0.1))-(0.0.2)).

Pour les hautes fréquences, nous utilisons la dissipation induite par le terme de viscosité dans

(10.0.40)) pour obtenir I'inégalité (0.0.41)).

Chapitre |5, Approximations uniformément exponentiellement stables de systemes
dissipatifs

Il s’agit ici d’essayer d’appliquer les résultats du Chapitre [3| pour mettre au point des schémas
numériques semi-discrets en temps pour lesquels nous pouvons garantir la décroissance exponentielle
de I’énergie, uniformément en le parameétre de discrétisation en temps At.

La méthode que nous avons mise au point au Chapitre [4] sert de base & cette partie. En effet,
au Chapitre [4], nous n’utilisons les propriétés d’observabilité du systeme (0.0.1)-(0.0.2)) qu’aux basses

fréquences, les hautes fréquences étant traitées via I'introduction d’un terme de viscosité.

Pour la discrétisation en temps introduite en (0.0.34]), nous avons précisément démontré que les
propriétés d’observabilité de (0.0.34) sont satisfaites aux basses fréquences Cy/a¢(A).

En conséquence, nous allons introduire dans les schémas numériques que nous allons considérer un
terme de viscosité numérique qui amortit efficacement les fréquences qui sont de l'ordre de 1/At et
plus, sans changer la dynamique du systéme aux basses fréquences. Ainsi, nous allons étre amenés a
considérer des discrétisations formelles de

3= Az — B*Bz 4 (At)2 A%z, (0.0.42)

menant par exemple au schéma numérique

sk+1 k k ~k-+1
T 2"+ Z
S ZFrz 1
k+1 Atk 1 A< 2 >’ =
+1 _ skt
% = —DB*BzRtl 4 (A1)2A2R41 ke N, (0.0.43)
ZO = 20-

Remarquons que pour obtenir le systeme discrétisé (0.0.43)), nous avons décomposé 'opérateur
A — B*B + (At)%2A? en une partie « conservative » A et une partie « dissipative » —B*B + (At)2A?
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que nous avons discrétisées différemment. En effet, le schéma du point milieu est approprié pour la
discrétisation de systeémes conservatifs puisqu’il préserve la propriété de conservation de 1’énergie.
Cependant, ce schéma numérique n’est pas adapté a la discrétisation de systemes dissipatifs, car il ne
préserve pas les propriétés de dissipation des hautes fréquences. C’est pourquoi nous préférons utiliser
une méthode d’Euler implicite pour discrétiser 'opérateur de dissipation —B*B + (At)2A2.

Nous pouvons alors démontrer, en raffinant ’argument utilisé au Chapitre (4], le théoréme suivant :

Théoréme 10. [l existe des constantes strictement positives p > 0 et v > 0 telles que pour tout
At > 0, les solutions z de (0.0.43)) satisfont

szHi <pu Honiexp(—VkAt), ke N.

De méme qu’au Chapitre [4) nous obtenons des résultats similaires pour des termes de viscosité
plus généraux, ainsi que pour certaines autres formes de discrétisations de ((0.0.42)).

De méme qu’au Chapitre [3] nos résultats s’appliquent également pour des familles d’opérateurs
(Ap, By) uniformément observables (en h > 0) au sens de dans une classe X, = C, /ho (Ap) pour
1 et o des constantes strictement positives indépendantes de h > 0, et telles que supy, || Bpl| g(x, y,) <
00. Sous ces hypothéses en effet, en posant e = min{(At)%, h27}, il existe des constantes strictement
positives u > 0 et v > 0 indépendantes de h > 0 telles que, pour tout h, /At > 0 les solutions zj de

sh+1 k k. sk+1
Zh o _ (Zh + 2, ) ke N
> An 2 o Pe
+1 _ zk+1
z —Z 0.0.44
Zh “h 7 h = —BiBpHt +edly ™, keN, ( )
22 = 2on € Xp-

Dans ce cas, le terme de viscosité numérique est ajusté de fagon a amortir efficacement les fréquences
de lordre de 1/4/¢ et plus, & partir desquelles les propriétés d’observabilité du systéme conservatif
correspondants ne sont plus assurées.

Nous présentons également quelques applications précises de nos résultats, notamment pour des
équations des ondes amorties.

Partie [ITIl. Discrétisation en espace de systémes conservatifs

Dans cette partie, nous considérons deux modeles abstraits conservatifs discrétisés selon la méthode
des éléments finis, correspondants & des équations de type Schrodinger et ondes, que nous écrivons de
fagon générique sous les formes

iZ2=Apz, t=>0,
= > . .
{ 2(0) = zo, y(t) = Bz(t), t =0, (0.0.45)
et, respectivement,
i+ Apu=0, t>0, )
= > . .
{ w(0) = ug, @(0) = uy y(t) = Bu(t), t=0, (0.0.46)
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Dans les deux cas, Ag est un opérateur auto-adjoint défini positif sur un espace de Hilbert H, et
l'opérateur B est supposé appartenir a £(D(Af),Y), avec k < 1/2, Y étant un espace de Hilbert.

Pour décrire la méthode des éléments finis, pour tout h > 0, nous nous donnons un espace vec-
toriel V}, de dimension finie nj et une application linéaire injective 7, : Vj, — H. Pour tout A > 0,
I’application 75, induit alors un produit scalaire naturel < -,- >p=< 7y, T+ > sur Vh2.

Nous supposons que, pour tout h > 0, 7,(Vy) C D(A(l)/ 2). Nous définissons alors 1'opérateur
Agp, : Vi, — Vj, correspondant a la discrétisation de 'opérateur Ag par

< Aon®n, n >p=< Aé/zﬂh¢h7A(l)/2Fh¢h >, V(o n) € Vi, (0.0.47)
ce qui est équivalent a poser Aoy, = 77 Ao7p,.

Nous sommes alors amenés a étudier les propriétés d’observabilité des systemes discrétisés suivants,

discrétisations respectives de (0.0.45)) et de (0.0.46) :

iZp = Aonzn, t >0,
= > . .
{ zn(0) = zon € Vh, Yn(t) = Brpzn(t), ¢ 20, (0.0.48)
et
iy, + Aopup, =0, t >0, ‘
' t) = Bryin(t), =0, 0.0.49
{ uh(0> = UQh, Uh(O) = U1p- yh( ) Th h( ) = ( )

La convergence des schémas numériques ((0.0.48) et (0.0.49) se déduit alors des propriétés de mp,
(cf. [35]) : Notamment, on suppose qu'il existe des constantes positives Cj et 8 > 0 telles que

sl < e oo
(0.0.50)
HA&”(WW;; _ I)quH < ol || Aot Vb € D(Ao).

En pratique, 8 = 1 quand Ay est 'opérateur de Laplace avec conditions aux limites de Dirichlet pour
des éléments finis P1 sur des triangulations régulieres.

Comme Agp, défini par (0.0.47) est un opérateur auto-adjoint défini positif, son spectre est formé
d’une suite de valeurs propres
0<Af <A< <Al (0.0.51)

et de vecteurs propres (\I’?)lgjgnh que nous pouvons prendre normalisés dans Vj. On introduit alors,
pour s > 0, I’espace filtré

Fn(s) = Vect{\If? tels que les valeurs propres correspondantes satisfont \)\?| < 3}.

Chapitre @. Equations de type Schrodinger

Pour les équations de type Schrodinger (0.0.45), nous obtenons les résultats suivants concernant
les propriétés d’admissibilité et d’observabilité de (0.0.48)) :

Théoreme 11. Posons 5
o = O min {2(1 — %K), g}’ (0.0.52)
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Admissibilité : Supposons que le systeme (0.0.45)) est admissible.
Alors, quels que soient 1 > 0 et T > 0, il existe une constante positive Kr, > 0 telle que pour tout
h > 0, toute solution de (0.0.48) avec donnée initiale

20n € fh(n/ho) (0.0.53)

satisfait

T
| 1Bman @ de < Ky ool (0.0.54)
0

Observabilité : Supposons que le systéme (0.0.45)) est admissible et observable.
Alors il existe une constante € > 0, un temps T et une constante strictement positive k, > 0 tels que
pour tout h > 0, toute solution de (0.0.48)) avec donnée initiale

20n € fh(ﬁ/hg) (0.0.55)

satisfait

T*
b llanlly < [ IBmaol de (0.0.56)
0

La preuve du Théoréme[IT]est basée sur des caractérisations spectrales. La propriété d’admissibilité
(10.0.54) est déduite du critere spectral introduit au Chapitre [3| que nous reformulons sous la forme
d’une estimée de résolvante puis d’une inégalité d’interpolation. La propriété d’observabilité ,
quant a elle, est déduite d’une relecture des inégalités de résolvantes introduites dans [6l, 29]
en termes d’inégalités d’interpolation.

L’intérét majeur de ce résultat est qu’il ne fait intervenir ni la structure du maillage ni la dimension,
et donc fournit une méthode robuste pour traiter les questions d’admissibilité et d’observabilité des
systemes discrétisés. Il est toutefois a noter que ce résultat n’est probablement pas optimal, mais cette
question reste, pour l'instant, largement ouverte.

Nous détaillons aussi quelques exemples d’applications du Théoreme que nous combinons avec
les résultats démontrés précédemment aux Chapitres [3] et

Notamment, nous déduisons du Théoréme [I1] et des résultats du Chapitre [3] des propriétés d’ad-
missibilité et d’observabilité uniformes en les parametres de discrétisation en espace et en temps pour
des discrétisations en temps déduites de ((0.0.48]).

Nous montrons aussi comment ce théoréeme s’applique en théorie du contrdle, en proposant deux
procédés permettant de calculer numériquement des approximations des controles HUM du systeme
continu. Ces procédés sont tout deux basés sur des mécanismes de filtrage, I'un impliquant de connaitre
une méthode efficace de filtrage au niveau discret, 'autre via une méthode de régularisation de Ty-
chonoff basée sur les travaux [21], 44].

Enfin, nous combinons les résultats du Chapitre [5| avec le Théoreme [11| pour fournir, lorsque B est
dans £(H,Y), des systémes discrétisés déduits de

12 =Apz —iB*Bz, t>0,
dont I’énergie est exponentiellement décroissante, uniformément en les parametres de discrétisation.
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Chapitre Equations de type ondes

Pour les équations de type ondes (|0.0.46)), nous obtenons les résultats suivants concernant les
propriétés d’admissibilité et d’observabilité de (0.0.49)) :

Théoréme 12. Posons 5
¢ = O min {2(1 —2K), g} (0.0.57)

Admissibilité : Supposons que le systéeme (0.0.46)) est admissible.
Alors, quels que soient 1 > 0 et T' > 0, il existe une constante positive Kt, > 0 telle que pour tout
h > 0, toute solution de (0.0.49)) avec donnée initiale

(uon, u1n) € Fn(n/h*)? (0.0.58)
satisfait

T 2
/ |Bryin(@®)]I% dt < KT,,]( HAé{quhHh + Hulhui). (0.0.59)
0

Observabilité : Supposons que le systéme (0.0.46]) est admissible et observable.
Alors il existe une constante € > 0, un temps T et une constante strictement positive k. > 0 tels que

pour tout h > 0, toute solution de (0.0.49)) avec donnée initiale
(uon, u1p) € Fr(e/he)? (0.0.60)
satisfait

2 ™
([ Adf2uon]|) + el ) < / | Bryin(£)]3 dt. (0.0.61)
0

La encore, notre preuve est basée sur des criteres spectraux, que nous écrivons sous la forme
d’inégalités d’interpolation. Cette fois-ci cependant, la méthode spectrale que nous utilisons pour
démontrer la propriété d’observabilité est basée sur une version précisée des résultats [28,
33, 40]. A nouveau, ce résultat présente 'intérét de s’appliquer dans un grand nombre de situations
concretes, mais son optimalité n’est pas garantie.

Nous donnons également quelques applications du Théoreme comme précédemment. En utili-
sant les résultats du Chapitre [3] nous déduisons des propriétés d’observabilité pour des discrétisations
en espace et en temps de . De méme qu’au Chapitre |§|, nous donnons aussi des applications du
Théoréme [12] pour ce qui concerne des problémes de contrdle et de stabilisation.

Enfin, nous déduisons du Théoréme [12| une amélioration du Théoreme (11| dans le cas ou le systeme
(10.0.46|) est admissible et observable. Pour cela, nous utilisons, au niveau discret, une variante des
résultats de [29] qui prouvent, notamment, que si le systeme ((0.0.46)) est observable, alors le systéme

(10.0.45) est observable.

Partie IV|: Chapitre . Etude d’une équation de la chaleur avec po-
tentiel singulier

Dans cette partie, nous considérons un probleme assez différent de ceux considérés jusqu’a présent,
puisque nous allons étudier une équation continue de type parabolique. Cela dit, les thématiques
centrales de contrdle, de stabilisation et d’observabilité restent les mémes.
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Fixons un domaine régulier @ C RY avec N > 3 tel que 0 € §, et un sous ouvert non-vide w C Q.
Nous nous proposons d’étudier les propriétés de controle et de stabilisation de 1’équation

O — Agu — #u =f, (x,t) € Q x (0,7T),

u(z,t) =0, (z,t) € O x (0,T), (0.0.62)
u(z,0) = up(z), €,

ot up € L%(Q). La fonction f € L%(0,T; H~'(Q)) est le controle, que nous supposons & support dans
w (au sens des distributions).

Avant d’aller plus loin, il est nécessaire de préciser que la définition méme d’une solution de
(10.0.62) n’est pas claire, le caractere bien posé du probleme étant 1lié a la valeur du parametre pu.
Quand g < p*(N) = (N — 2)?/4, en utilisant 'inégalité de Hardy

u € HA(Q), u*(N)/ e dx</ |72 ds, (0.0.63)
x

on peut démontrer que le probleme de Cauchy pour (0.0.62) est bien posé (cf. [1l [42]). Au contraire,

pour p > p*(N), 'équation (0.0.62)) n’admet pas de solution si les données ug et f sont positives,

méme localement en temps [1}, [7].

Dans un premier temps, nous étudions le cas p < p*(N). Dans ce cas, nous prouvons que le systéme
(0.0.62) peut étre contrélé & zéro avec un controle f € L2(0,T; L?(w)).

Théoréme 13. Soit u un nombre réel tel que p < p*(N).

Pour tout sous-ouvert w C § non-vide, pour tout T > 0 et ug € L*(Q), il existe un contréle f €
L?((0,T) x w) tel que la solution u de (0.0.62)) satisfait u(T) = 0. De plus, il existe une constante Cr
telle que

HfHLZ’((o,T)Xw) <Cr HUOHLQ(Q) . (0.0.64)

Le méme résultat a déja été prouvé dans [4I] dans le cas ou l'ouvert w encercle la singularité,
condition géométrique non triviale dont nous montrons ici qu’elle n’est pas nécessaire. Remarquons
aussi que ce résultat est connu pour I’équation de la chaleur sans potentiel (i.e. 4 = 0 dans )
[20}, 26], ou lorsque le potentiel est dans L2N/3(Q), cf. [23]. Ici, le potentiel 1/|2|> que nous considérons
n’est pas dans LY/ 2(Q), et ces résultats ne s’appliquent donc pas.

Pour démontrer le Théoreme nous prouvons des propriétés d’observabilité sur le systeme adjoint
a I’aide d’inégalités de Carleman. Les inégalités de Carleman que nous démontrons sont inspirées des
travaux précédents [41] et [20].

Pour étre plus précis, nous montrons qu’il est possible de choisir une fonction poids ¢ qui coincide
au voisinage de la singularité avec celle introduite dans [41], tandis que nous la choisissons comme dans
[20] loin de la singularité. Ce choix nous permet de contourner la condition géométrique nécessaire dans
[41] : dans [41], la preuve est basée sur une décomposition des solutions en harmoniques sphériques,
qui permet de se ramener ainsi a I’étude d’équations radiales unidimensionnelles.

Dans un second temps, nous considérons le cas u > p*(N). Rappelons que dans ce cas, le probléme
de Cauchy est mal posé, puisqu’il y a explosion compléte instantanée des solutions de (0.0.62)) pour
ug > 0 et f =0, cf. [1]. Cependant, cela ne répond pas & la question suivante : étant donné ug € L2(1),
peut-on trouver une fonction f € L2((0,T); H~(Q)) & support dans @ telle qu'il existe une solution
u € L?(0,T; H} () ?
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Nous allons répondre a cette question par la négative. Pour cela, nous considérons, pour £ > 0, les
systemes approchés

8tU—A$U_|x|2%U:f7 (Qj"t) EQX (07T)’
u(z,t) =0, (z,t) € 90 x (0,T), (0.0.65)
u(aj,O) = UO(l‘)a z € Q.

Pour € > 0, le probleme de Cauchy dans ((0.0.65)) est bien posé. Nous nous proposons alors d’étudier
les fonctionnelles

T
1 1
)= [[ 0P axaer 5 1501 (0.0.66)
) 0

Qx(0,T

définies pour f € L?((0,7); H~'(Q)) a support dans @, et olt u est la solution correspondante de

(0-0.65).

Nous démontrons alors le résultat suivant :

Théoréme 14. Soit pu > p*(N). Supposons que 0 ¢ w.
Alors il n’existe pas de constante C telle que pour tout e > 0 et pour tout ug € L*(Q),

7 g =¢ : ’ 0.0.67
e 12(0. 1) 5 @) w0 (f) = Cluollzz gy ( )
f a support dans @

La preuve de ce théoreme est basée sur une étude spectrale des opérateurs

7

[F= A, — M
T z|? g2

sur ) avec conditions aux limites de Dirichlet. En particulier, nous étudions la premiere valeur propre

§, dont nous montrons qu’elle tend vers —oo. Nous étudions alors le vecteur propre correspondant
¢, dont nous montrons qu’il est de plus en plus localisé au voisinage de 0 quand ¢ — 0. Nous en
déduisons alors que

inf Joe (f) — 400,
re Ty T80 2
f & support dans @

ce qui suffit & conclure la preuve du Théoréme

Notes : Chaque chapitre présenté ci-apres correspond a un article effectué dans le cadre de ma
these. En conséquence, chaque chapitre introduit ses propres notations et peut étre lu indépendamment
des autres. Il peut arriver que certaines notations aient des significations différentes dans différents
chapitres.

Dans l'introduction, nous avons cherché a donner une vision globale de I’ensemble de la these. 11
s’ensuit que certaines notations utilisées dans les différents chapitres qui suivent ont été modifiées.
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Chapter 1

Perfectly Matched Layers in 1-d :
Energy decay for continuous and
semi-discrete waves

Joint work with Enrique Zuazua.

Abstract: In this paper we investigate the efficiency of the method of Perfectly Matched Layers
(PML) for the 1-d wave equation. The PML method furnishes a way to compute solutions of the wave
equation for exterior problems in a finite computational domain by adding a damping term on the
matched layer. In view of the properties of solutions in the whole free space, one expects the energy
of solutions obtained by the PML method to tend to zero as t — oo, and the rate of decay can be
understood as a measure of the efficiency of the method. We prove, indeed, that the exponential decay
holds and characterize the exponential decay rate in terms of the parameters and damping potentials
entering in the implementation of the PML method. We also consider a space semi-discrete numerical
approximation scheme and we prove that, due to the high frequency spurious numerical solutions, the
decay rate fails to be uniform as the mesh size parameter h tends to zero. We show however that
adding a numerical viscosity term allows us to recover the property of exponential decay of the energy
uniformly on h. Although our analysis is restricted to finite differences in 1-d, most of the methods
and results apply to finite elements on regular meshes and to multi-dimensional problems.

1.1 Introduction

When numerically solving wave propagation problems in unbounded domains, because of the finite
computational possibilities, one has to truncate the computational domain. This makes it necessary
to choose boundary conditions at the newly formed exterior boundary. These boundary conditions
are relevant, for example in problems arising in acoustics and electrodynamics, since they may have a
significant impact on the whole solution due to reflections.

In order to avoid those spurious reflections a natural method, introduced by Engquist and Majda in
[21], is based on the use of the so-called transparent boundary conditions. The transparent boundary
conditions are often of non-local nature, depend on the geometry of the domain, etc. However, in
spite of the simple implementation of lowest order absorbing boundary conditions, good accuracy is
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only achieved for higher order ones [6]. For the state of the art, we refer to the survey article [35].
An alternate approach, proposed by Bérenger in [10] in 1994, is the so-called method of the Perfectly
Matched Layers (PML). The idea consists in surrounding the computational domain by a layer and
extending the equation to it adding damping terms designed to dissipate the energy entering in it, such
that no spurious reflection waves are created. This method, first introduced to deal with Maxwell’s
equations, has been successfully adapted to many other wave models, see the survey article [31].

This article aims to develop a complete rigorous analysis in 1-d for the PML model associated to the
scalar wave equation. Our work is inspired by the existing literature on the control and stabilization
of waves.

More precisely, the object of this paper is twofold. First, we analyze the continuous 1-d wave equation
to accurately describe the efficiency of the PML method in terms of the various parameters entering in
it and second, we consider semi-discrete numerical approximation schemes. The study of this system
has first been developed by a plane wave analysis (see for instance [13]), where explicit formulas were
given for the amplitudes of the reflected and transmitted waves around the interface. Latter, Fourier
and energy techniques were also used in [11, (17, 26] [36] for analyzing the PML method for the Helmholtz
equation. Very few papers [8, 9, 4] deal with the stability of the time-dependent PML system.

To be more precise, we consider the wave equation in an unbounded domain of the form (0, co) with
homogeneous Neumann boundary conditions at z = 0 and initial data in L?(0,00) with compact
support:

{8,52tu—8§xu:0,a:>0,t>0, (L1.1)

8,u(0,1) = 0.

In the hyperbolic form, considering the physical variables P = —9,u and V = d;u, the system under
consideration can be written as follows

0P +,V =0 in (0,00) x (0,T),
0V +8,P =0 in (0,00) x (0, T),
P0.) =0, (1.1.2)

Its solution can be computed explicitly by the method of characteristics (which gives D’Alembert’s
formula). Since we assume the initial data (Pp, Vp) to be compactly supported, for instance in (0, a)
for some a > 0, it follows that the solutions (P, V) will vanish in (0, a) for ¢ > 2a, which is the time
needed for waves to go from x = a to = 0 and back to x = a after reflection. The fact that P
and V reach the zero state in time ¢ = 2a in (0,a) can be seen on u, that stabilizes to the constant
Jo Vo(z) d for t > 2a on the interval (0,a).

The goal of the PML method, when applied to this 1-d model, is to reproduce this very property of
P,V but by solving a problem in a bounded domain. For convenience, we translate the domain (0, c0)
where waves propagate to (—1,00) and focus on the restriction of solutions on the compact domain
(—=1,0). This can be done, by scaling, without loss of generality. Then, solutions (P, V) with initial
data compactly supported in (—1,0) vanish on (—1,0) for ¢ > 2 and we expect that the approximate
solutions, obtained by the PML method in a bounded domain, will reproduce this property. A way of
measuring how small is the restriction of the approximate solutions to (—1,0) is analyzing the time
decay properties of its energy as t — oo.

The PML method is designed to give an accurate approximation of the solutions of in (—1,0),
by solving the following system on the domain (—1, 1), in which the space-layer (0, 1) has been added:

6
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8tP+8mV+x(071)JP =0 in (—1,1)
0V + 0, P + X(O,l)UV =0 in (—1 1
P(-1,t) = P(1,t) =0,

P(z,0) = Py(x), V(z,0)=Vy(x),

(1.1.3)

where (P, Vp) € L?(—1,0)? have been extended by 0 in (0, 1).

Here o is a positive function defined on (0, 1), which is assumed to be in L'(0,1). Note that within
the added layer (0, 1) the equations in have been modified by adding the terms involving the
dissipative potential o. Throughout the paper the function o is extended on (—1, 1) by zero in (—1, 0).
Actually, one can recover most of the results presented here in the case where the added space-layer is
(0,7) by a scaling argument, which maps (—1,r) to (—1,1) and by considering functions o in
vanishing in (—1,2/(1 + r)).

We analyze for all initial data though, as we have said, the relevant ones in the context of
the PML method are those with compact support in (—1,0). Recall that the true solution (P, V') of
(1.1.2)) vanishes in (—1,0) for ¢ > 2 when the initial data have support in (—1,0). So we expect the
energy of the PML solutions localized in (—1,0) to be small when ¢ > 2. Then the exponential decay
rate of the restriction of solutions of to (—1,0) is a way of measuring the efficiency of the PML
method and the chosen damping potential o. Actually, as we shall see, it coincides with the decay
rate of the total energy of solutions. Thus, most of the paper will be devoted to analyze the latter.
System is well-posed, and the total energy of solutions

E(t) = E(P(t), V(t)) = ;/_1 (1P(t,2) + |V(t,2)]?) do (1.1.4)

is dissipated according to the following law

1
%f(t) - _/0 o(@)(|P(t,2)]* + |V (t,2)]%) da. (1.1.5)

This last equation shows the well-posedness of the 1-d PML equations in the space

(P,V) € C(]0,00); L*(—1,1)%).

As far as we know, the problem of the exponential decay of the energy for the PML method has
not been addressed in detail so far. In [8, 9] it was stated that a first order energy of solutions for
Maxwell’s PML model with a constant o decays, but no decay rate was given.

In our analysis we will follow the techniques of [19], which, actually, in the present setting, can be
applied more simply. Note that system and its dissipative properties are similar to those of
the classical damped wave equation:

02w — 02, w + 2a(x)w =0 in (—1,1) x (0,7),
(1.1.6)
w(—1,t) =w(l,t) =0.
In this case, the energy dissipation law reads :
25 /1 (190w + 19u?) de) = —2/1 o(2)|Ow]? dz (1.1.7)
at\2 . 't o . 't . .

For system ((1.1.6)), it is well-known that the energy decays exponentially as ¢ — oo provided a > 0 is
strictly positive on some subinterval. Moreover, in [19] the exponential decay rate was characterized

7
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as the spectral abscissa, for a € BV (—1,1).
Actually, in the special case where o is constant, the PML equations (1.1.3) in (0,1) read as follows:

Oiu — 02 u+ 200+ c*u =0 in (0,1) x (0,T), (1.1.8)

which is a dispersive variant of system (1.1.6]), since (1.1.8) contains the extra term o?u. As we shall
see, the presence of this added dispersive term simplifies the spectral analysis of the system.

We define the exponential decay rate of solutions of as a function of o, by
w(o) = sup{w: 3C, Y(Py, Vo) € (L*(—1,1))2, Vt, E(t) < CE(Py, Vp) exp(—wt)}. (1.1.9)
For each w < w(o), we define C'(w) as the best constant such that
Y(Py, Vo) € (L*(—1,1))%, Vt, E(t) < C(w)E(Py, Vy) exp(—wt). (1.1.10)

Note that this actually measures the decay rate of the energy of solutions of in the whole domain,
not only in (—1,0). However, we will prove that the decay rates of the energy of the restriction of
solutions of to (—1,0) and in the whole domain coincide.

Let us also define the space operator L by

L(P,V) = (0zV + x(0,1y0 P, 0= P + X (0,1)0 V),

D(L) = H}(—1,1) x H'(-1,1). (1.1.11)

This unbounded operator on L?(—1,1) is the generator of a semi-group of contractions solving the
equations ([1.1.3). We prove that the decay rate w(o) satisfies w(o) = 25(0), where S(o) is the spectral
abscissa, defined in terms of A(L), the spectrum of the operator L, as follows:

S(o) =sup{Re(\) |A € A(L)}. (1.1.12)

This is done by means of a complete description of the spectrum of L, that also shows that w(o)
coincides with

1
I= / o(x) dz, (1.1.13)
0
which is a measure of the total damping entering in the system.
This result confirms the ones in [IT], I3 (4] about the efficiency of taking a singular damping o ¢ L!

for the PML method for the Helmholtz equation. Our characterization (|1.1.13]) of the decay rate as
the integral of ¢ confirms that, when taking o singular, the decay rate may be made arbitrarily large.

In the second part of this article, we investigate the decay of the energy for the following semi-discrete
finite-difference approximation scheme for PML:

Vive = Vi

8tPj—|— 3 +o0;P; =0, je{-N+1,...,N -1},

P —P; . 1.1.14
OVjt1y2 + % +0i112Vjr12 =0, jE€{-N,...,N -1}, ( )
P_ny=Py=0.

The notations we employ are the classical ones for finite differences: h = 1/N, for some N € N, is the
mesh size, z; = jh, j = —N,--- , N constitute the mesh points and P; and V;/, are approximations
of P on z; and of V on (z;+x;41)/2. We approximate the function o by a piecewise constant function

8
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taking the value 0;/o on each (7;,7;41) and denote by o; the mean value of 0;_; /5 and 715
The energy Ej(t) of the semi-discrete system ((1.1.14]) is given by

N-1

)= 2 3 (PR + Wi a)P), (11.15)
j=—N

and can be interpreted as a discretization of the continuous energy F in . It decays exponen-
tially as ¢ — oco. But, as we shall see, the decay rate is not uniform on h. This is due to the spurious
high frequency numerical oscillations whose group velocity is close to zero. The effect of these spu-
rious oscillations has already been noticed in a number of articles in connection with the qualitative
properties of numerical waves since [34] and further developed in the survey article [39]. We give a
precise analysis of the spectrum in terms of h and o, when o is a constant on (0, 1), that will further
clarify this lack of uniform (on h) exponential decay.

Inspired by [33], in order to remedy this lack of uniform decay, we consider the following viscous
scheme, which is again convergent of order 2:

;

Vit = Vit

atPj—F A +o0;P; —hQ(AhP)j =0,
jE{N+1,...,N—1},
Pjt1—F; 1.1.16
O Vji12 + % +0j11/2Vj4172 — h2(AhV)j+1/2 =0, ( )
jeE{-N,...,N -1},
P N=Pnv=0, Voy_10=V_Nny1/2, VN_1/2=VNi1)2:

Here and in the sequel A}, denotes the classical discretization of the Laplace operator:

1
5 (Aji+ Aj1 — 24;).

(And)j = 25

The energy of this modified system is further dissipated by the added numerical viscosity terms:

dE N N-1
h
— () =—h Y PP =h > ojaplVil

j=—N+1 j=—N
3 Ni:l <<Pj+1h* Pj>2 n (Vj+1/2 ; VJW>2>, (1.1.17)
j=—N

In particular, the viscosity terms provide an efficient dissipation on the high frequency waves and,
accordingly, as we shall see in Theorem the decay rate is uniform on h.

Furthermore, we prove in Theorem that the decay rate of the energy of the semi-discrete approx-
imation schemes (|1.1.16|) coincides with the continuous one, that is I, under an appropriate choice of
the viscosity parameter. In other words, we can recover the dynamical properties of the continuous
PML at the semi-discrete level.

This numerical technique of adding numerical viscosity provides a way to keep the PML method accu-
rate at the semi-discrete level. Inspired on previous work on the control of waves ([39]), we may expect
that other remedies will also allow preserving the uniform (on h) decay properties of the energy, for
instance a mixed-finite element method as in [5], [16] or a multi-grid scheme as in [22 [24].

Actually, most of the results presented here at the semi-discrete level have a very wide range of valid-
ity, and can be extended to different approximation schemes, for instance using finite elements, and
even in higher dimension. In particular, the construction in subsection works and proves that in

9



Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

general the discrete energy cannot be uniformly exponentially decaying, if a numerical viscosity is not
added everywhere in the domain, including the part where the PML is not effective.

Here is a brief overview on the PML method and its possible applications. The mathematical analysis
of the continuous model was done in [26] [I7, [36], where it was proved that the solution of the con-
tinuous PML for the Helmholtz equation with an infinite layer corresponds exactly to the unbounded
solution in the computational domain. Moreover, it was also stated that, if the layer is bounded but
large enough, solutions provide a good approximation in the computational domain. Moreover, it was
proved in [14] 1T} [13] that when the layer is bounded, the PML method for the Helmholtz equation re-
covers the exact solution in the computational domain if we choose a radial damping potential o ¢ L!.
Unfortunately, it was proved in [I] that the PML method is only weakly well-posed for Maxwell’s
equations in the sense that the functions involved in the splitting induced by the PML method do
not stay in the same functional space as the initial data, thus requiring smoother initial data. This
also implies that instabilities may arise under small perturbations. A number of articles has been
devoted to gain a better comprehension of these problems on well-posedness and instabilities in the
continuous case ([8, [7, 28, 37]). New absorbing layers were also proposed in the continuous case for
Maxwell’s equations and advective acoustics, in particular, in [2] B, BT, @, [4] for which well-posedness
and stability have been successfully proved. Note however that this phenomenon does not appear
in 1-d, as follows from . On the semi-discrete level, very few results are available. We refer
however to [32] for a study of the accuracy of the discretized Helmholtz-PML equations and to [15]
for an analysis of the convergence of the finite element PML approximations towards the continuous
PML system in the case of the time-harmonic electromagnetic scattering problem.

The structure of the present paper is the following. In section 1.2, we carefully analyze the spectral
properties of the space operator L, by using a shooting method. This will allow us to give an explicit
formula for its spectrum in Theorem [1.2.1l In section 1.3, we prove that the quantities I, S, and
w(o) above coincide. We will also prove that the inequality holds for w = w(o) and give some
estimates on the best constant C'(w(o)) in this inequality. We also give an explicit representation for-
mula for the solutions of the continuous PML equations and deduce the optimality of our estimates.
In section 1.4, we address the same issues for the space semi-discrete system. We show that the high
frequency spurious numerical solutions are responsible for a lack of uniform exponential decay of the
energy and, in the special case where o is constant, we give an asymptotic description of the spectrum
of the discretized operator. Finally, in section 1.5, we consider the viscous scheme and prove
the exponential decay of the energy, uniformly in A.

1.2 Analysis of the space operator L

The aim of this section is to give a complete description of the spectral properties of L defined as in

([T.1.11).

Theorem 1.2.1. Let o € L*(0,1) be a non-trivial and non-negative function. Then:

1. The operator L has a compact inverse.
2. The spectrum of the operator L coincides with the set of the eigenvalues

1

A = 2(/010(@«) dx+ik7r), ke (1.2.1)

10



1.2. Analysis of the space operator L

3. The eigenvectors (P, V3,) form a Riesz basis of L*(—1,1)2.

Let us first remark that the first statement implies that the spectrum is discrete. The interest
of the second statement is that it provides an explicit description of the eigenvalues. The last claim
allows characterizing the decay rate in terms of the spectral abscissa. The following subsections will
be devoted to the proof of each of these three statements.

1.2.1 Inverse of the operator L

Consider the system
(P,V)eD(L) ; LPV)=(fg)

where f and g are two given functions in L?(—1,1).

To solve this problem, we consider @ = P+ V and R =V — P that satisfy
0,Q +o(2)Q(x) = f(z) + g(x), R — o(2)R(z) = f(z) - g(x). (1.2.2)
Introducing the boundary conditions P = 0 at x = £1, this yields
Q=R, z==I. (1.2.3)

Then straightforward computations show that equations (|1.2.2))-(1.2.3)) have a unique solution if and
only if I # 0, which is true since o is a non-trivial non-negative function.
By (1.2.2)) and (1.2.3) we deduce that L=! defines a bounded operator

L7V L3(-1,1)? = HY}(~1,1) x H'(-1,1),

which turns out to be compact as an operator from L?(—1,1)? into itself.

1.2.2 Analysis of the spectrum : Eigenvalues of L

The system characterizing the spectrum is as follows:

0,V +0P =P, 0,P+cV =)V, x € (-1,1),
P(-1)=P(1)=0.

Using the functions @ and R as in the previous section gives
Q(z) = Q(—1)e  JH1 0@V d=  ppy = R(—1)e/ 5107 dz
The boundary conditions yield (1.2.3). Then A is an eigenvalue if and only if

1

exp ( - /ll(a(z) ~\) dz) — exp (/1(0(2) ~ ) dz). (1.2.4)
Hence the result .

Remark 1.2.2. Note that the eigenvalues are totally explicit for all damping potentials . This is not
the case for the damped wave equation , which, when written as a first order system, corresponds
to adding the damping potential only in one of the equations of the system. In that case, only
holds asymptotically for high frequencies and this under the assumption that o € BV(—1,1) (see

[19]).
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Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

1.2.3 Analysis of the spectrum : Eigenvectors

Define the function 6 by
0(z) — / (o) - g) dz. (1.2.5)

This function can be seen as a measure of the difference between the dissipative term o and the average
dissipation I/2. Note also that §(—1) = 6(1) = 0.

We remark that for all eigenvectors Py, Vi, the functions Qg, Rr as in the previous section satisfy
(taking Q(—1) = R(—1) =1) :

ikm

Qr(z)exp(f(x)) =e 2

@) Ry (w) exp(—6(z)) = e = @D,

Our purpose now is to check that the family (P, V4) constitutes a Riesz basis in L?(—1,1)? (see [38] for
an introduction to that subject). This means in particular that any pair of functions (f, g) € L?(—1,1)?
can be written in an unique way as follows:

(f,9) = ax(Pe, Vi), (1.2.6)
with

> lawl* ~ [I(£.9)I - (1.2.7)
To prove this, we observe that ((1.2.6)) is equivalent to:

(f + 9)(@)e?@ = 3" apQp(x)e?®) = Zake%ﬁ(mfl)
(9 — H@)e?® = T apRy(x)e @ = T age™ 5 @),

Then, the coefficients {ay } of the decomposition ([1.2.6)) of (f, g) on the basis {(Px, Vi) } can be identified
as the Fourier coefficients of the function W defined in (—3,1) by

[ U+ 9@en@), -1<z<l,
Wiw) = { (9— (-2—x)exp(—0(-2—1x)), —-3<z<-1. (1.2.8)

In other words (|1.2.6]) holds if and only if
ik
W(z) = Zk: ap, exp (%(1’ + 1))7 xz e (=3,1). (1.2.9)

Obviously W is in L?(—3,1) if and only if (£, g) is in L?(—1,1)?, and therefore holds.
This construction defines an isomorphism Z, which maps the eigenvectors ¢y, = (Pg, Vi) to the classical
Fourier basis of L?(—3,1):

I(f,g) = W, (1.2.10)

where W is the function given in (1.2.8). Note that this implies that any function v € (L?(—1,1))?
can be expanded as ) apg, where the coefficients ay, satisfies:

”IT/’”%%—?,J) = 42 |ag|*.

Remark 1.2.3. In [19], it was proved (see Theorem 5.5) that the solution ys(z, A) of the Cauchy-

Lipschitz system
—02,u+ Nu+2a(x) u=0, z € (-1,1),
u(=1,A) =0, 0Ozu(—1,)) =1,
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1.3. On the decay of the energy

which naturally arises when dealing with the spectral problem associated to a damped string, satisfies
the following properties:

sinh(§(x) +inm(x +1)/2)
inmT — fil a(z) dx

ya(z, Ap) = 2 + O(1/n?),

Oxy2(x, An) = cosh({(z) +inm(z + 1)/2) + O(1/|n]),
where ), is the n-th root of A — y5(1,\) and ¢ is
T 1
&(x) = /1 a(s) ds — (z + 1)% /1 a(z') dx'.

As indicated in the introduction, the dissipative potential o(z) of the PML method plays the same
role as a(x) in the dissipative wave equation . Obviously, the function £(z) plays the same role
as 0(z) in . We conclude that the eigenvectors of the damped wave equation are asymptotically
close to the ones of the PML system.

1.3 On the decay of the energy

1.3.1 On the decay rate

Theorem 1.3.1. The energy of the continuous PML system (1.1.3)) is exponentially decaying. More
precisely,
AC >0, s.t. ¥Vt >0, E(t) < C Epexp(—w(o)t), (1.3.1)

for all solution of (1.1.3) with w(o) as in (1.1.9). Moreover, w(o) = I = 2S(c), with I and S(o) as
in (1.1.13) and (1.1.12), and the best constant C(w(o)) in (1.3.1) as defined in (1.1.10)) satisfies:

C(w(0)) < exp(4]0]|), (1.3.2)

where 0 = 0(x) is as in (1.2.5).

Proof. Equality I = 25(0) was actually proved in the last section. From the previous section, we also
know that the family of eigenvectors 1, = (P, Vi) constitutes a Riesz basis of L?(—1,1)? and this is
sufficient to characterize the exponential decay rate as the spectral abscissa, i.e. w(o) = 2S5(0).

We now give further estimates on the decay rate in order to obtain , using the explicit isomor-
phism Z given in (|1.2.8]).

Given Uy = (P, Vp) € L?(—1,1)2, we expand Uy in the basis 1, : Uy = >_ arthp. We have :

28y = [|Uol| 72102 = 12172 120007251y = 41172 laxl*.
It is easy to check that
U(t) =) arexp(—Apt)
and then
IZU 725,12 = exp(=t1) Y ax/*.

But
112
2B(t) = |[UB)I72(_1 192 < IZ7 7 IZU D172 5192 -
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Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

Combining these inequalities, we get
12
BE(t) < |IZ|? |27 exp(—tI) Eo. (1.3.3)
On the other hand, obviously, the exponential decay rate I is optimal as one can see by analyzing the

solutions in separated variables.

According to (1.3.3) we have C(w(0)) < k(Z)?, where x(Z) is the conditioning number x(Z) = ||Z]| -
HIil , but we would like to derive a more explicit expression in terms of the damping potential o.
By Parseval’s identity applied to (1.2.9), for f and g in L?(—1,1) we get:

1
IZCF 22y =43 laxl? = / 1) + 9(o)P exp(20(a) d

1
+/ |f(z) — g(z) > exp(—26(z)) dz. (1.3.4)

-1

As a consequence,

) 1
2exp(=2 0]l.0) (/s 91221 1y2 = 2exp(~2ll) / (17 @P + lg()P) da
< | Z(f, 9)“%2(—3,1) < 2exp(2]|0]| ) I(/; 9)”%%—1,1)2 :

Accordingly,

112 < 2exp(2[16]..),  |Z7Y)° < = exp(29]l.0),

and (|1.3.2) holds. O

DO | —

In order to discuss the efficiency of the PML method and, more precisely, that of system ,
we recall that it has been designed to provide an approximation of the solution of in (—1,0)
for initial data with support in (—1,0). Accordingly, we define E; and E, as the energy on the left
and right subdomains respectively:

1 0
B(PV) =5 [ (P@F+ V@P) da.
- (1.3.5)

1
BPV) =5 [ (P@F + V@) de

Theorem 1.3.2. Let Py and Vy be the initial data for the PML equations (1.1.3)) with support in
(—1,0). Then,
Ei(P(t),V(t) < Eo exp(I(2 —t)),

(1.3.6)
EL(P(t), V(1) < Bo exp(I +2 6], — It).

Proof. The result follows from careful upper bounds in the previous proof, using ([1.3.4)), the conditions
on the support of initial data, and the fact that the L>°(—1,0) norm of € is precisely I/2. This leads
us to

Byexp(I) > " laxl? > Ei(P(1), V() exp((t — 1)),

This establishes the first inequality. The second one is left to the reader. ]
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1.3. On the decay of the energy

1.3.2 Comments

As a consequence of (|1.3.6)), if we fix a shape o for the damping potential, and if we define the sequence
of amplified potentials o, (x) = no(x), then the corresponding solutions (P, V;,) to the PML system
with initial data (P, V) supported in (—1,0) damped by o, tend to zero in L?((—1,0))? for t > 2 as
n — o0.

Theorem also confirms the results in [11], 12}, 13| [14], where it was proved by a plane wave analysis
that the reflection coefficient on z = 0 is of order exp(—1I) and that, taking a function o ¢ L'(0, 1),
makes the PML method very efficient. In [I1} I3] numerical computations were done for different
choices of 0 : o1(z) = (1 —2)™' =1, o2(z) = (1 — )2 — 1 and o3(z) = (1 — z)2. Numerical
evidences in [I1] show that the Helmholtz PML system is clearly more accurate for o and o9 than for
o3. A precise proof was also given in [I4] through the analysis of the Dirichlet-to-Neumann operator
associated to the PML. Unfortunately, this kind of proof does not seem to hold anymore at the discrete
level. Our result on the decay rate of the energy also justifies these numerical evidences, since
o1 and o9 do not belong to L! and have infinite average. As we shall see in the sequel, the methods
we present here are more robust and will allow us to study the semi-discrete equations as well.

Let us now analyze the function 6 entering in , which is obviously continuous on (—1,1). It is
easy to see that the L> norm of 6 is exactly /2 on (—1,0). On (0, 1), the situation is more complex:
6 is differentiable on (0, 1), its derivative is 6'(x) = o(z) — I/2, and 6(0) = —I/2, and 6(1) = 0. We
can also remark that ||0]|,, = —inf6 < I.

A natural question is trying to minimize the quantity ||6]|, on the positive potentials o which have a
given integral Iy. Easy considerations indicate that there are many different o which satisfy [|0]|, =
Iy/2, the most natural one being the choice 0 = I. However, in view of , this discussion is
irrelevant if we are only considering the energy E; concentrated in (—1,0).

1.3.3 Optimality of the decay rate

We complete this section with some results on the optimality of the decay rates we observed.

Theorem 1.3.3. The estimates given in (1.3.2) and in Theorem[1.5.9 are sharp.

Proof. We rewrite the system ((1.1.3]) in the following way :

P+ V) + a(P+V) o(P+V)=0 in(—1,1) x (0,T),
O(P — V) — 8,(P )—I—J(P—V):() in (~1,1) x (0,7),
P(=1,t) = P(1,t) =

Using characteristics leads to :
T+t
(P—=V)(z,t) = (Po — Vo)(z + 1) exp<—/ a(y) dy), r<1-—t,

1
(P—V)(:L',t):(P—V)(l,x—l—t—l)exp(—/ a(y)dy), x>1-—t,

(P+V)(a:,t):(P+V)(—1,t—x—1)exp(—/ o—(y)dy>, r<t—1,

-1

(P+V)wt) =P+ Vo)a = ep (= [ o ay), wze-1.
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Using boundary conditions, we easily deduce that :
Vn e N, Vo € (—1,1), (P(z,4n),V(z,4n)) = (Po(x), Vo(z)) exp(—2nl),

which directly provides the good value for the decay rate, namely 1.
To compute the optimal constant in ((1.3.2)), we need to be more precise:

E® = [ (P4 V)@ 0P+ 1P = V) b)f) do

1

< %exp(—2 inf /U(y) dy)/ (I(Po + Vo) (@) * + [(Po — Vo) (2)[?) da

YER: y 1

= exp ( - 2v1€n7£t /7 o(y) dy) Ey,
where R; is the set of characteristic rays of length ¢, that is the set of all continuous broken lines with
slopes £1 in (¢,z) € [0,¢] x [~1,1]. Besides, by these formulas it is easy to see that this estimate is
sharp since we can concentrate waves around these rays (see subsection where this analysis is
carried out on the semi-discrete model).

Then, the best constant C'(w(0)) in is precisely

C(w(o)) = igg {Eg exp([t)} = igg exp (It - 27217& /7 o(y) dy).

It is then enough to compute

I
M = sup sup / (f — U(y)) dy.
>0 veRt Jy

Then, looking at rays 7., starting at a € [—1,1] and traveling toward the left we get

I
M > supsup/ (f—a(y)) dy
t>0 a Jyt \2

a t—2—a
= e ([ Gow) e [ (o) @)

b

an ([ (5= otm) ) o { [ (3 -otw) )

> —2inff(a) =20 -
a
This implies that C(w(0)) > exp(4]|0]|,,).- The optimality of (1.3.2) follows.
The method of proof carries over to the other two estimates given in Theorem The details are
left to the reader. O

v

Note that all the results on the continuous model could have been obtained using this explicit
representation formula along characteristics without using spectral analysis.

1.4 On the semi-discrete PML equations

In this section, we analyze the space semi-discrete PML system (|1.1.14]). For this purpose, we need to
define a discrete space operator Ly, the discretization of L, defined in (1.1.11)).

System (|1.1.14]) can be written as
at(P’ V) + Lh(Pv V) = 0’
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where Ly, is the discretization of L derived from (|1.1.14)). If we use a matrix representation, writing
(P, V) as the vector

(V—N+1/25 P_Ni1, V—N+3/27 w0, Py, VN—1/2)7
Ly, is the matrix defined by

Li(4,7) = 0jjo—n, Vie€{l,...,4N — 1},
1
Lh(]?j—i_l):E? VJ€{1,74N—2},
1 (1.4.1)
Lh(]+17.7):_ﬁ7 VjE{l,"-,4N—2},
If Uj—1/2 =05 = j+1/2 = Oj+1, then both ]:)J and ‘/j+1/2 satisfy
1
8t2tUj — E(Uj+1 + Ujfl — 2Uj) + QUjatUj + 0']2~Uj =0, (1.4.2)
which is a discretization of ([1.1.8)).
The energy Ep in (|1.1.15)) of the semi-discrete PML satisfies the dissipation law:
N-1
dEp
W(t) =—h Z (‘7J'|Pj|2 + Uj+1/2|Vj+1/2’2)- (1.4.3)

Jj=—N

It is then natural to investigate the decay rate of this discrete energy Ej when h — 0. Our first result
is of negative nature and states the lack of uniform exponential decay due to high frequency spurious
oscillations:

Theorem 1.4.1. There are no positive constants C' and p such that for all h small enough
En(t) < C Ep(0)exp(—put), (1.4.4)

for all solutions of (1.1.14)).

One could have expected this behavior: indeed, it is well known since [34] that the group velocity

for numerical schemes differs from the continuous case, because of the numerical dispersion relations.
This indeed produces wave packets captured in the undamped subinterval (—1,0) and it is natural to
expect them to have a very low exponential decay.
We will propose two proofs in the sequel. The first one is based on a very general construction of waves
concentrated along the rays of Geometric Optics for system . More precisely, we construct non
propagating waves concentrated in (—1,0), whose exponential decay rate tends to zero as h — 0. In
the second approach, we do a precise description of the spectrum of the operator Lj in in the
particular case where o is constant. In particular, we prove that the real part of the high frequency
eigenvalues can be small of order o(1), which provides another proof of Theorem m

1.4.1 Construction of non propagating waves

We only sketch this construction, whose details can be done similarly as in [29, [30]. To simplify the
presentation, we immediately focus on the behavior of the waves in (—1,0), that is in the domain
where the damping is not effective. According to (1.4.2)), system ([1.1.14]) reduces to the conservative

space semi-discrete 1-d wave equation.
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Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

Let us therefore consider the semi-discrete 1-d wave equation in an infinite lattice hZ, where h is the
mesh size:

O2u; — Apu; =0, (t,5) € (0,00) x Z,
{ tt U hltj (t,7) € ( ) (1.4.5)

u;(0) = ug-), du;(0) = u*(0).

We claim that this is sufficient to exhibit non propagating waves for system to prove Theorem
Indeed, the system coincides with system for j < 0, t € [0,7], up to the
boundary conditions, which can be easily handled. Namely, we will construct waves for system ,
whose energy is concentrated, for instance in [—3/4,—1/4], in the sense that the energy outside
[—3/4,—1/4] is arbitrary small on (0,7"). Therefore, to obtain a true solution of , one needs
to add arbitrary small corrections and hence the energy of , which satisfies the law ,
cannot decay exponentially.

To properly define the rays of Geometric Optics, we need to use the space discrete Fourier transform
defined for £h € (—m, ] by:

P(&) = hZ@ exp(—i&jh), &h € (—m, ),
’ (1.4.6)

~

N h w/h

e =5 [ B explige) de, v e R
T J—n/h

Note that the inverse Fourier transform provides a natural extension of ¢; as a continuous function,

denoted ¢" in the sequel.
The symbol of the operator ([1.4.5)) is given by

2 . /th

o€, wn(©) = sin (%), (47)

Thus, taking (y € (—m, 7], the rays of Geometric Optics for frequencies 58 = (p/h are the trajectories
(139]):
Xio 2 (xo,t) — xo £ tcos((p/2). (1.4.8)

We then look for solutions concentrated along the trajectory t — XiO(O,t). Note that we can take
xo = 0 without loss of generality because of the translation invariance of system ((1.4.5]).

For we consider initial data of the form

ud™ = (jh) exp(iCog), ;" = iwn(&h)d(jh) exp(iCoj), (1.4.9)

where ¢ is a smooth positive function of compact support in (—a,a). Then, from the smoothness
assumption on ¢, one can prove that @4 and @(¢) are concentrated in the region &h € [(o — €g, (o + €0),
where ¢p is a small parameter:

0,h 7& ~0 . C
)u () 2 |§—§h|<eo/hu (&) exp(itw) dg‘ = wh(€0/h)?
v P T o e eicn del < o0 TeR(ERD) (1410
)U (t,x) — o e—ehi<co/h u(t, &) exp(iéx) f‘ = W-
On the other hand,
(t,€) = @ (€)  cos(twn(€)) + itwn(€h)sine(twn(€)) ) (1.4.11)
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where sinc(y) = sin(y)/y. But, for ¢ such that |€ — 8| < eo/h, it is easy to see that this behaves as
@°(€) exp(itwp(€)), and then the analysis of the oscillating integral in (1.4.10)) gives that, when h — 0,

lu(t, z + t cos(Co/2))| — |u0(m)|’ < Cep. (1.4.12)

Choosing (p = 7 gives a sequence of solutions of of unit energy such that the energy outside
{(t,z) € (0,T) x R,z € X, (t,[—a,a])} tends to zero.

Note that the construction given above proves that the lack of uniform exponential decay of the energy
actually takes its origin from the discretization scheme employed rather than from the PML method
in itself.

1.4.2 Spectral analysis for constant o

From now, we make the assumption that the damping function o is a piecewise constant function
vanishing in (—1,0) and taking the value o in (0,1). This leads to set 0; = 0;_1/9 = o if j > 1,
0j =0j1172 =0 for j < —1and og = 0/2.

In the sequel, as we did for the operator L, we perform a spectral analysis of the operator Lj. As we
shall see, some numerical pathologies appear at high frequencies. More precisely, for frequencies of

the order 2/h there appear eigenvalues whose real part is close to zero. This makes the exponential
decay rate of the corresponding semigroups not uniform in h.

Accordingly, we analyze the asymptotic properties of the spectrum. We fix ¢, and analyze the behavior
of the eigenvalues of L; when h goes to zero.

Proposition 1.4.2. For o > 0, we consider the spectral problem :

Viiro— Vi
J+1/2 - j—1/2 +oxj>1 Py =P, je{-N+1,--- N —1}\{0},
P'+1 —P y
% +0oxji=1Vi12 = AVjgrye, J €{=N,---, N =1}, (1.4.13)
Vip=Vop o
= T2 4 " Py=)\P,
N + 5 0 = AP,
( P_y =Py =0.

The following properties hold :

e For any eigenvalue \, its conjugate X is also an eigenvalue.
o All the eigenvalues are simple.

o All the eigenvalues satisfy 0 < Re(\) < o and |Zm(\)| < 2/h.

e If X is an eigenvalue, 0 — X is also an eigenvalue.

Proof. The first statement is obvious since the coefficients of system (|1.4.13]) are real. The second
one is classical and follows from easy algebraic considerations. The third one is a consequence of the

energy dissipation law ([1.4.3]):

dE
0> d—th(t) > —20E)(t).
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Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

To analyze the imaginary part of the eigenvalues, we use the matrix representation of L; given in
(L.4.3)): if [Zm(X)| > 2/h, then the matrix Lj, — Al is invertible, since it is diagonally dominant.

The last statement follows from this remark: If (P, V) is an eigenvector corresponding to A, then
(]5, V) defined by 15]- = P_; and V] = V_j11 is an eigenvector for the eigenvalue o — A. O

From the previous proposition, we can assume that A has a positive imaginary part, since the other
eigenvalues can be obtained by reflection. Setting u = A — o, P satisfies

Pji1+ Py —2P;

h2 :)‘QPJ’ J= -1
Pjt1+ Pj1 —2F; .
P_ny=Py=0.

As for the classical discrete Laplace operator, we define o and 3, two complex numbers with imaginary
parts in (—m/h, /h] and satisfying the numerical dispersion relations :

sinh (%h) = % ;  sinh (%) = %h (1.4.14)

Then, we can express P for j < —1 and for j > 1 as
P; = Asinh(a(jh + 1)), j < -1, P;= Bsinh(8(jh—1)), j > 1.
These two quantities have to coincide at j = 0 and therefore:
Asinh(a) = —Bsinh(f).
We can then compute the corresponding value for V:

Vi—1j2 = Acosh(a((j — 1/2)h +1)), j <
Vi—12 = Beosh(B((j —1/2)h = 1)), j = 1.

The transmission conditions are given by the equation on Fy:
. Bh . ah
Vijs —sinh (5 ) Po = V- b ()R-
WAL 1/2 T s 5 )10
Then if A is an eigenvalue, there exists a non trivial solution (A, B) to the system:

0 = Asinh(a) 4+ Bsinh(3)

0 = Acosh(a) cosh <%h) — B cosh(/3) cosh (%),

where (a, 3) are given by (1.4.14)), u being A — o. It is well-known that this system has non trivial
solutions if and only if its determinant vanishes, that is to say:

h h
sinh(a) cosh(3) cosh (%) + cosh(a) sinh(3) cosh (%) =0. (1.4.15)
This equation actually is a polynomial in A. Indeed, using Tchebychev polynomials Ps; and Qo
defined by
Va € C, sinh(2ka) = cosh(a) Py, (sinh(a)), cosh(2ka) = Q2 (sinh(a)),
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1.4. On the semi-discrete PML equations

the condition (|1.4.15) is equivalent to

o (2 i (2) s 2 e (2)
+ PQN(sinh (%))QQN(Sinh (%h») —0. (1.4.16)

This equation has two particular solutions corresponding to ah = iw and Bh = imw. Nevertheless,
although these two solutions allow a non-trivial choice (A, B), the corresponding solutions are identi-
cally zero, and therefore they do not correspond to eigenvalues. Since the degree of this polynomial

in (1.4.16) is exactly 4N — 1 and since all the eigenvalues are simple, the roots of (1.4.15)) are exactly
the eigenvalues of the problem, except the special solutions A = 2i/h and A = o + 2i/h.

Our interest now is to compute the eigenvalues, or at least to give their asymptotic form. We present
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Figure 1.1: Eigenvalues for N = 200 and various values of o : ¢ = 0.01 on the upper left, ¢ = 1 on
the upper right, ¢ = 5 on the bottom left, ¢ = 50 on the bottom right.

in Figure numerical computations of the distribution of eigenvalues for different values of o.
Three different cases occur. When o is very small (of order h or less), then the real parts of the
eigenvalues are very close to o/2 at all frequencies. When o is such that h << ¢ << 1/h, two
branches appear at the high frequencies, their abscissa having two accumulation points, namely 0 and
o. Finally, Figure illustrates the well-known fact ([I7]) that, on the numerical approximation of
PML equations, taking ¢ too large deteriorates the decay rate, in opposition to the continuous case.
In the sequel, we will prove that these numerical evidences are indeed true.

To study the asymptotic behavior of the spectrum, we will need a number of notations.
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Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

We rewrite (1.4.15)) as f(«, 3, h) =0, where f is defined by

f(a, B,h) := sinh(a + ﬁ)(cosh (%h) + cosh (%))
+sinh(a — ﬁ)(COSh (%) — cosh (%)) (1.4.17)

In the sequel, we use the function Argsh defined as the inverse function of sinh, which coincides with
log(z++v/1 + 22), which is holomorphic on the set Q@ = C\{z : Re(z) =0, |Zm(z)| > 1} and continuous
at the points z = +i:

Vz € Q, sinh(Argsh(z)) = 2
Vz € C, st.Im(z) € (—n/2,7/2), Argsh(sinh(z)) = 2.

Then, 8 given by the relation (|1.4.14}) is an holomorphic function of «:
2 h h
Bla,h) = EArgsh(sinh (%) - %) (1.4.18)

Hence the solutions of ([1.4.15)) correspond precisely to the roots a of the holomorphic function g

g(a, h) = cosh <%h) sinh(a + ) + (cosh (%) — cosh (%h» sinh(«) cosh(f), (1.4.19)

where § = B(«) as in (1.4.18). Of course, « given by ([1.4.14) is a holomorphic function of A\ and we

can also define ¢ as a holomorphic function of A\ by

g h) = g(a(A), h).

The analysis of the roots of (1.4.15)) can be carried out using tools from complex analysis, as for
instance Rouché’s theorem.

The low frequencies We choose a number § < 1 and study the eigenvalues A of the operator Ly
such that |[Zm(A\)h| < 26 when h — 0.

Theorem 1.4.3. Assume § < 1. There exists Cs such that for h small enough, the set of the
eigenvalues Al of the operator Ly, such that |Tm(\)h| < 28 is composed by one point in each disk D}

) < 2 . (krh
A=A < Csh, A= sin (L) + 2, (1.4.20)

h 4
sin (@)’ <.

Let us first remark that these disks DZ are disconnected for h small enough since the distance
between two consecutive eigenvalues A" and )\? is bounded from below by cos(arcsin(d)) = v1 — 6% > 0.
This implies that for A small enough, the number of eigenvalues in the range |[Zm(A)h| < 24 is exactly

S arcsin(6)] (|-] denotes the integer part).
Moreover, their real part being essentially ¢ /2, the energy of the solutions exp(—At)(P®" VFh),
where (P%" VED) is an eigenvector associated to Ay, is decreasing exponentially, the decay rate being
o+ o(h).

k being an integer satisfying
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1.4. On the semi-discrete PML equations

Proof. The proof is divided into two steps. First we derive some basic estimates on the parameters
entering in (1.4.19)). Second we approximate the function g by another holomorphic function § in
order to apply Rouché’s theorem.

We first need to derive some basic estimates on a(\) given in (1.4.14)), mainly by using the previous
theorem. In the strip |Zm(z)| < 0 and |Re(z)| < oh, if z = a + ib, we have that

z+ 1+z2:a+\/1—b2—|—7jb<1+

ﬂa_ibz) +O(h).

Then, we can check that the (complex) logarithm of that quantity satisfies:

4]
|Re(Argsh(z))| < Ch ; |tan(Zm(Argsh(z)))| < N

where the constant C' depends on §. Then, using (|1.4.14]), we obtain the following estimates :

+0o(1),

|Re(a)| < C 3 |Im(a)| < = arctan ( (1.4.21)

5
V1= 62 )
Using ([1.4.18]) and the Taylor’s formula applied to the function Argsh in sinh(ah/2), we get that

5= (o=

_ )} < Ch. (1.4.22)

cosh(%*)

Again using the estimates (|1.4.21f), we get

ah ah o
ahy . _ ahy . __ NM<ccn
cosh ( 5 ) sinh(a + 3) — cosh ( 5 ) sinh (2@ — (ah)> < Ch
2
The well-known formula cosh?(z) = 1 + sinh?(x) and the estimates (1.4.21)), (1.4.22) give
h h
‘ cosh <%) — cosh (%) ‘ < Ch. (1.4.23)
Combining all these inequalities and ([1.4.19)), we get that
lg(ev, h) — g(ev, h)| < Chh, (1.4.24)
where ¢ is the function defined by :
. ahy . o
g(a, h) = cosh (—) sinh <2a - > : (1.4.25)
2 cosh (%)

The roots of § satisfy

1
ah = <2k7r+0hh)
2 cosh (%)

From the estimate (1.4.21]) on «, we can give the following approximation

1
ap — =\ ikr + ———
2 cos (LT)

< Ch.
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Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

For each h, we define Kj, = |- arcsin(d)]. We consider the rectangle R delimited by the lines
|Re(a)| = M and |2Zm(a)| = n((Kp — 1) 4+ €), where € < 1 is a positive number. On its boundary, we
can check that

|g(a, h)| > | sin(me)| — Ch.

Using (|1.4.24), there exists hg such that for all h < hg, on the boundary of Ry,
|g(0¢, h) - g(aa h)’ < |g(0&, h)|

Then for all h < hg, the number of roots in R, is precisely 2K, — 1.
We can go further in the description of the zeros of g(., h). We define

1
ah =\ ikr+ —7 .
2 cos (—kzh)

Now we fix the rectangle R} by |2Zm(a — a})| = me; and |Re(a — )| = e2. On the boundary of RY,
again we can check that
|g(cv, h)| > inf{]| sin(meq1 )], | sinh(ez)|} — Ch.

Then it exists a constant C independent of k such that the conditions |e1| > Coh and |ea| > Coh are
enough to prove that the following inequality holds on the boundary RZ :

|g(a, h) - Q(Oé, h)’ < |§(Oé, h)|
By Rouché’s theorem, this establishes that g(., k) has only one root aZ in RZ satisfying
laf —all| < Ch. (1.4.26)

Back in the variable A, it gives that for h small enough, each eigenvalue A such that |[Zm(\)h| < 26 is
in one of the disks defined by

A=A < Ch, M= sin(—

The high frequencies Here we will deal with the limit case § = 1.

Theorem 1.4.4. For any ¢ > 0, there exists he such that for all h < h., the set of eigenvalues
satisfying |hIm(\p) — 2| < € is non empty. The set of accumulation points of the abscissa Re(Ap) for
sequences \p, satisfying Aph — 2i when h — 0 is exactly {0,0}.

Proof. The first point comes from the fact that a set of accumulation points is closed. Indeed, from
the previous theorem, taking ¢ > 0 and setting § = 1 — €/4, there exists a sequence of eigenvalues A,
such that Zm(Ap)h — 20 > 2 —e.

Now we assume we have a sequence of eigenvalues )\, for the operator L, such that A\ph — 2¢, and
we analyze the behavior of their real parts a;. For that purpose, we need to know precisely how Aph
is converging to 2¢. We assume that

Im(Ap)h

T =1—ch) (1.4.27)
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1.4. On the semi-discrete PML equations

with e(h) a positive function of A continuous at zero, such that ¢(0) = 0. To simplify notations, we

will skip the index h in the sequel.

Remark that the difficulty comes from the fact that Ah/2 — 4, which is precisely a point where Argsh

is not holomorphic anymore. However, from the explicit form of Argsh, we may derive some estimates

on « and (. Indeed, recall that:

Argsh(z) =log(z+ vV1+22) ; cosh(z) =+/1+ sinh(z)2.
Actually, it is sufficient to estimate these functions. Since

1+ (%)2 — 2¢(h) — e(h)? + (%)2 il e(h))%,

we will need to distinguish several cases depending on which is the dominant term.

The case h = o(e(h)): In that case, we get that

h
cosh (%) = /2¢(h) + o(y/e(h)).
This also implies that

Re(%h) = %log ‘z+ V1+ z2‘2 = e(h) + o(e(h)).

And the same estimates hold true for 5.

It follows that f(«a, 3, h) defined in (|1.4.17)) cannot vanish. Indeed, our estimates imply that the real

parts of both « and 8 blow up, which implies that

| sinh(a + §)| = exp (46(:) + 0(6(5)>),
e(h)

|sinh(a — )] < exp <O<T>>,
) cosh (%h> + cosh (%)’ =/2¢(h) + 0( e(h)),

e () s (2] < o).

The case €(h) = o(h): Under this assumption, we get

cosh (%) = \/@—i— o(Vh), cosh (%) = _i(a—Qa)h +o(Vh).

Besides, using the explicit formula of the function Argsh, we obtain :

Re(%h) - \/;Th +o(Vh), Re(%) - —("2_Q)h +o(Vh).

But these estimates lead to
’ cosh (%) + cosh (%) ’ = Voh+o(Vh),
’ cosh (%) — cosh (%) ’ = Voh +o(Vh)
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Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

and

|sinh(a + )] ~ exp f\\/ — /(o0 —a)h|),
| sinh(a — )] ~ exp(ivah + /(o —a)h).
Thus, if f(ca,3,h) = 0, f being as in (1.4.17)), we need that | [\/o —a — v/a| — (Vo —a + /a)| — 0,

which implies ¢ — 0 or a — o.
The case where ¢(h) = Kh follows from similar considerations and is left to the reader.

Summarizing, we deduce the existence of a sequence of eigenvalues such that Ah — 2i, and hence
whose real part is converging to zero or o. To finish the analysis, we only have to prove that both
0 and o are accumulation points. This assertion is obvious since the spectrum is symmetric around
o/2. O

Theorems [1.4.3| and |1.4.4] fully explain Figure for h << o << 1/h, since they state, roughly
speaking, that the eigenvalues A are close to the line Re(\) = 0/2 except when their imaginary part
is close to +2/h, in which case, their real parts tend to 0 or o.

To describe the behavior of the eigenvectors, we define the energies in the left and right intervals
(—1,0) and (0, 1), respectively :

h h &
Ej, = Z|P0’2 +t3 Z(‘PjP +Vj_10l),
= (1.4.28)
h h
E, = Z|P0’2 t3 Z (IVjg1p2® + [P ).
j=—N

Proposition 1.4.5 (Distribution of the energy). Let (/\Z)h be a sequence of eigenvectors of Ly such
that hIm(A\) — 2, and that af = Re(\}) converges to a. Then

Er(PPVI) a

— : (1.4.29)
E!L (PP V) h—0 0 —a

In particular, there exists a sequence of high frequency eigenvectors whose energy is concentrated on
the left interval (—1,0).

Proof. In view of ({1.4.3)), the solution exp(—)\Zt)(P,?, th) corresponding to the eigenvector (P,?, th)

satisfies
dEy,
dt

The result follows. O

(t) = —2Re(AME)(t) = —20EL(t).

Remark 1.4.6. According to this result we have a new evidence of the lack of uniform exponential
decay, as stated in Theorem There this was proved by means of a gaussian beam construction,
whereas here we have built concentrated eigenvectors.
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1.5. A semi-discrete viscous PML

1.4.3 Connections with the theory of stabilization

In this subsection, we discuss the links between our analysis and the existing controllability and
stabilization theory and reread our results in this context.

Let us consider the 1-d damped wave equation on (—1,1). The decay rate of the solutions
of this damped wave equation has been analyzed in several articles: see [19, [I8] 20] and [27] for the
multi-dimensional case. The exponential decay rate was characterized as the minimum of the spectral
abscissa and the minimal value of the damping potential along the rays of geometric optics (In 1-d,
these two quantities coincide as shown in [19]). One of the main features of system is that
an overdamping phenomenon occurs, in the sense that increasing the damping potential does not
necessarily increase the decay rate. This is not the case for the PML system since, as observed in
Theorem |1.2.1| and |1.3.1| the decay rate is I = fol o(x) dx, and this is precisely what makes PML so
efficient.

We may now investigate the same questions in the semi-discrete 1-d case on a regular mesh of size
h =1/N. Then the finite difference approximation of (1.1.6)) gives :

{ Ohu; — Apuj +2a;0u; =0, je{-N+1,....,N -1}, (1.4.30)

u_N:uN:O.

It was proved in [25, 30, B3] that the energy of solutions of does not decay exponentially
uniformly with respect to the mesh size h. Actually, this lack of uniform exponential decay can
be deduced from the construction given in Subsection As pointed out in [23], this has also
interesting consequences when analyzing the optimal choice of dampers in which one observes also a
different behavior from the continuous to the discrete case.

We claim that this lack of uniform exponential decay can also be seen at the level of the spectrum. If
we set v; = u};, the system takes the form:

d

%(U—N+17 S UN—1,V—N41- 5, ON—1)" + A(u—Nt1,- -, on—1)" =0,

where A is the following matrix:

A ( 0 —Ion—1 )
—Ap 2diag (a—n+41,--- ,an—1) )

We have performed the spectral computation of this matrix for piecewise constant damping potentials
vanishing in (—1,0) and taking a constant value a on (0,1). The spectrum exhibits a behavior which
is very close to the one we have observed for the PML system (see Figure , except at the low
frequencies, where we observe the so-called overdamping phenomenon, which is reminiscent of the
continuous system.

1.5 A semi-discrete viscous PML

The goal of this section is to propose a remedy to the defect of exponential decay proved in the pre-
vious section (see Theorem for the semi-discrete approximation of the PML system.
Along this section, we assume that o € L*°(—1,1) is a positive function strictly positive on a subin-
terval (ri,72) of (0,1). To be more precise :

0<o(x) <M, zae € (-1,1), o(x)>m>0, zae € (r,r). (1.5.1)
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Figure 1.2: Eigenvalues of the semi-discrete damped wave equation (|1.4.30) for NV = 200 and various
values of the damping potentials a : a = 0.01 in the upper left, a = 1 in the upper right, a = 5 on the
bottom left, a = 50 on the bottom right.

For each h, we define 0? as an approximation of ¢ in the points x; = jh satisfying

0< ol <M, Vj, of >m, Vjst jhe(r,r). (1.5.2)

To simplify the notations, we will write o; in the sequel, the dependence in h being clear within the
context.

We propose to analyze system (|1.1.16|), which is a variant of the semi-discrete scheme ([1.1.14]), where
a numerical viscosity term damping out the high frequencies has been added. Recall that, for system

(1.1.16[), the energy dissipation law ((1.1.17]) holds. In this way, the new semi-discrete problem satisfies
the required property of uniform exponential decay:

Theorem 1.5.1. Under the hypothesis (1.5.2)), there exist two positive constants C and pu such that
for all h > 0, for all initial data (P}, V'), the energy of the solution (P,V) of (.1.16)) satisfies

En(t) < C Ep(0)exp(—ut), t > 0. (1.5.3)

Furthermore, we will see in Theorem that one can choose the numerical viscosity such that
this decay rate coincides with the continuous one I.

Proof. The method of proof we will use is classical in the theory of stabilization.
We claim that the energy of this viscous numerical approximation scheme ((1.1.16)) is exponentially
decaying, uniformly in A, if and only if the following observability inequality holds for some time T°
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1.5. A semi-discrete viscous PML

and a constant C' uniformly in A for all the solutions of ([1.1.16)):
) < C<h2/ (051P; 1 + 05112l Vig12l?) dt
2 Viiyse—Viq/on2
+h32/ ”1 ) (2 — 2)] dt>. (1.5.4)

Indeed, according to the energy dissipation law , we easily deduce that the two statements are
equivalent.

On the other hand, to prove for solutions of , it is sufficient to prove the existence of a
time 7" and a constant C' such that for all A > 0, any solution (p, v) of the conservative system
with o = 0 satisfies

<C<h Z / m(|p;|? +|U]+1/2|)

jhe(ri,r2)
N h3§j:/0T [(w)z + (%ﬂhﬂﬂ dt). (1.5.5)

Indeed, since the two systems and with o = 0 coincide up to a term which can be
bounded by the right hand-side quantity in , it can be shown that inequality follows
from inequality (1.5.5)). The details of this process are classical and can be found for instance in [33].
From now, we focus on the observability inequality for the conservative system , that
we prove using a multiplier method. Given K > sup{l+ 71, 1 — 9}, where r; and ro are given by

(15.1) and (1.5.2)), we define a discrete function n” satisfying the following properties:

h h
M1 — M5 _ ; el
=1, Vst jhe[-1L1\(r,m), (1.5.6)
h h
) By
h T ro—ry

Actually, we can choose nh as a discrete approximation of a continuous piecewise affine function 7.
In the sequel we therefore write 7 instead of 7" to simplify the notations. For convenience, we also
denote (nj +1j+1)/2 by nj41/2-

Multiplying the first line of the conservative system by 1;(vj—1/2 +vj4+1/2) and the second by
Mj+1/2 (pj + pj+1), after tedious computations mainly involving discrete integration by parts, we get :

h szl [vﬂl/?(T) ("jpj(T) +"j+1pf+1(T)> = vj11/2(0) (ijj(o) +77j+1pj+1(0)>]

j=—N
7’ + 77 77 j+1/2 17 1/2
h E / Mg+l — g ’/Uj 1/2| dt — h g / j+1/ J— /)| ]’2 It

=—N+1
T N-1

3 atvjﬂ/z("j“h_ ”j) (pj“h_ pj) dt = 0. (1.5.7)

h3
2 Jo

29



Chapter 1. Perfectly Matched Layers in 1-d : Energy decay for continuous and semi-discrete waves

The conservation of the energy allows us to bound the time boundary term by 4K Fj(0) thanks to
the following inequality:

K
‘Uj+1/2(77jpj + 77j+lpj+1)‘ < K| + §(|Pj‘2 + [pj1l?).

The only term in which numerical viscosity is needed is the last one:

T N-1

/ Z atv]+1/2(nj+1h m)(pmh pg> gt

Since (p,v) is a solution of the conservative system ((1.1.14)), we get

3 T N—1

bj+1 — pj) dt
ro—11 2 Z ( '

On the other hand, due to the assumptions ([1.5.6)) on 7, we have

IN

77 77 77 12—77 1/2
h Z / ]+1 ¥l "U]+1/2’ dt+h Z / j+1/ J— /)’ J‘Q dt

=—N+1

> 2T E(0) - (1+
o —T1

any P> [ it el a
he(r1,r2)

Combining these inequalities we get

(2T—4K)Eh(0)§l(1+ 5 )/ he Yo mllps + [0/ dt

m ro — T
3 T S (PP 2

T2 —" ;

jhe(ry,re)

This completes the proof of Theorem [I.5.1] Note that, by this method, we find that the observability
inequality (1.5.5)) actually holds for any 7' > 2sup{l+r1, 1 —ra} (r; and r3 as in (1.5.1]) and (1.5.2))),
which corresponds precisely to the optimal characteristic time in the continuous setting. ]

Remark 1.5.2. We emphasize that Theorem is false if we do not add viscosity everywhere in
the domain. Indeed, the construction given in Subsection proves that if the viscosity is not
everywhere in the domain, there exist non-propagating waves which are not damped.

Also note that the proof above actually yields a stronger result than the one stated in Theorem [1.5.1
Indeed, following the previous proof, inequality shows that this is actually enough to add the
viscosity into only one of the two equations (|1.1.16) to obtain a uniform exponential decay of the
energy.
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Figure 1.3: Eigenvalues of the viscous scheme ([1.1.16|) for N = 100 and various values of 6: ¢ =1 on
the upper left, 0 = 3 on the upper right, ¢ = 5 on the bottom left and ¢ = 50 on the bottom right.

Unfortunately, the method of proof of Theorem does not give a good estimate on the decay
rate in terms of the parameters entering in the system. Since the system under consideration is finite
dimensional, the decay rate of the energy is obviously given by the spectral abscissa. Therefore we
have computed the eigenvalues of the system in Figure for damping potentials vanishing
in (—1,0) and taking the value o in (0,1). We observe that, first, at low frequencies, the numerical
viscosity does not seem to change the spectrum, as one can check by comparing the figures with
the ones obtained without the viscosity term (see Figure . This indicates that, as expected, the
numerical viscosity does not modify the system at low frequencies. Second, at intermediate and high
frequencies, one can see that the spectrum has a parabolic shape. Actually, one can easily check that,
when o = 0, the spectrum of is exactly a parabolic curve C. It is surprising to check that the
spectrum given in Figure fits quite well with the curve o/2+C. Third, looking more closely at the
high frequencies, the same phenomenon as before occurs, that is, two branches appear, corresponding
to eigenvectors concentrated either in (—1,0), either in (0,1). But, thanks to the numerical viscosity,
which efficiently damps them out, these two branches are away from zero. Moreover, it appears that
the abscissa of the lowest branch is always 4. This precisely corresponds to the abscissa of the high
frequency eigenvectors when ¢ = 0 in . In other words, this corresponds to waves concentrated
in the undamped part (—1,0), which are only dissipated by the additional viscosity.

In view of these spectral properties and with the purpose of recovering at the semi-discrete level
the properties of the continuous PML system, it is natural to ask whether one can choose numerical
viscosity coefficients « such that the decay rate up of (1.1.16)) as h — 0 converges to I.
In the sequel, we address this issue. System (|1.1.16)) can be read as:

0:(P,V) + (An + Bn)(P,V) = ah® A3 (P, V), (1.5.9)
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where Ay, + By, = Ly, and

Vitijp = Vi—12 Pjp1— P
(AP V) = (FRP R ),

(Bi(P,V)); = (0] Pj, 00y 5Visny2)-

We need the following assumption:
There exists § > 0, such that for A small enough, the eigenvalues A\, = ay, + iby, of L;, = Ay + By, with
|br| < &/h satisfy

ap > I/2+Oh_>0(1). (1.5.10)

Note that in the particular case where o is constant, (1.5.10)) holds for any 6 < 2 (see Theorem |1.4.3)).
We expect this property to hold for non constant o as well, but this issue will be addressed elsewhere.

Theorem 1.5.3. Fiz a« = a5 = I/ in (1.5.9), with § as in (1.5.10). Then, for all h small enough,
there exists Cy, such that the solutions (P,V') of (1.5.9) satisfy:

Ep(t) < ChER(0) exp(—(I — opo(1))t), t > 0. (1.5.11)

Note that the constant C}, in ((1.5.11)) depends on h. In particular, we cannot guarantee C}, to be
bounded.

Proof. Let us first consider the following modification of ((1.5.9):
O(P,V) + (A, + By)(P,V) = ah*(Ay + Bp)*(P,V), (1.5.12)

It is straightforward to show that the eigenvalues p(a) of system ((1.5.12)) can be expressed in terms
of 1(0), which coincide with the eigenvalues A = a + ib of system ((1.4.13):

p(a) =X —ah?X\?, Re(u(a)) = a+ ah?(b? — a?).
Under assumption ([1.5.10]), with the choice o = a5, each eigenvalue p(ay) satisfies
Re(u(as)) > 1/2 — op—o(1). (1.5.13)

Then, since the system is finite dimensional, there exists a constant C}, such that the solutions (P, V)

of (|1.5.12)) satisfy
Ep(t) < CrER(0) exp(—(I — op—o(1))t), t > 0.

Now, we estimate the norm of the matrix Dj, = (A, + Bp)? — A3:

V'+12_V'712 V'+12+V',12 Ojt1/2 — 0j—1/2
Dh(P,V)j:<20'j<] /h J />+szjgj+<3 /2 J /)(J /h J /)7

Py + P\ [0js1 — 051 0j+ 041\ (Pi1 — P
( j ; J)( j+ . J >+0]2-+1/2Vj+1/2+<0j+1/2+ J 2]+)< J+h J))

Note that systems (1.5.9) and (1.5.12)) differ precisely by the term associated with ah?Dj,. Then, since

|ah?> D] 2 jon < Ch, (1.5.14)
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where L>" denotes the discrete L?(—1,1) norm, a simple perturbation argument gives the result.
Indeed, setting Ly (o) = Ly, — ah®L3, the solution ¢ = (P, V) of (L.5.9) is given by

exp(tLy(as))w(t) = (0) — /Ot exp(sLy(as))ash?Dpi(s) ds.

Setting
f(t) = exp(tI/2) [[¥(8)]],

this gives the equation
¢
£ < 5O+ Ch [ 1) ds,
0

and then Gronwall’s lemma gives the result. O

1.6 Discussion and remarks

In this paper we have presented a complete analysis of the decay of the energy of the 1-d PML system
both at the continuous and semi-discrete settings.

1. Analyzing the continuous system, we have shown that the two relevant parameters to describe the
dissipation of the energy are I = fol o(z) dz and ||0||, as in (1.2.5). The exponential decay rate is
exactly I while 6 enters in the estimate of the multiplicative constant C(w(c)) (see Theorem [1.3.1)).
This also confirms the interest in taking singular o ¢ L' as in [T}, (I3} 14].

2. An interesting question would be to investigate the decay of the energy in higher dimensions and
to make precise which are the relevant parameters entering in it. According to [27], one could expect
that the abscissa of the high frequency eigenvalues is related to the mean value of the damping along
the rays of Geometric Optics. But the analysis of the low frequencies could be more complex, because
of the possible overdamping phenomena, that could arise in the multi-dimensional case, although they
have been excluded in 1-d.

3. At the semi-discrete level, we have studied in detail 1-d finite-difference approximation schemes.
However, our analysis holds in a much more general setting. For instance, the same results holds for
a finite element method. Besides, the construction we did in subsection [T.4.1] can also be done for
semi-discrete multi-dimensional problems. Especially, the discrete energy will not decay uniformly on
the mesh size, and a numerical viscosity will be needed to recover the property of exponential decay
of the energy.

4. To the best of our knowledge, Theorem [1.5.3] is the first one where the uniform decay rate of the
energy for an approximation scheme is proved to coincide with the decay rate of the energy of the
continuous equation. This subject requires further investigation, for instance in the context of the
damped wave equation. Moreover, this could be of significant importance in optimal design problems
(see [23]), the goal being to design numerical schemes for which the optimal dampers converge to
those of the continuous model. In view of Theorem [1.5.3] it is very likely that for a suitable viscous
semi-discretization of the damped wave equation this convergence property will hold.
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Chapter 2

Observability properties of a
semi-discrete 1d wave equation derived
from a mixed finite element method on
nonuniform meshes

Abstract:  The goal of this article is to analyze the observability properties for a space semi-
discrete approximation scheme derived from a mixed finite element method of the 1d wave equation
on nonuniform meshes. More precisely, we prove that observability properties hold uniformly with
respect to the mesh-size under some assumptions, which, roughly, measures the lack of uniformity of
the meshes, thus extending the work [5] to nonuniform meshes. Our results are based on a precise
description of the spectrum of the discrete approximation schemes on nonuniform meshes, and the use
of Ingham’s inequality. We also mention applications to the boundary null controllability of the 1d
wave equation, and to stabilization properties for the 1d wave equation.

2.1 Introduction

The goal of this article is to address the observability properties for a semi-discrete 1d wave equation.

We consider the following 1d wave equation:

OZu — 02,u =0, (z,t) € (0,1) xR,
u(0,t) = u(1,t) =0, teR, (2.1.1)
u(z,0) = u’(z), du(z,0) =ul(z), =€ (0,1),

where u’ € H}(0,1) and u'(x) € L?(0,1). The energy of solutions of (2.1.1)), given by

1 1
B(t) = 2/ Ou(t, 2)2 + |Dwult, 2)? da, (2.1.2)
0
is constant.
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It is well-known (see [21]) that for all 7' > 0, there exists a constant K7 such that the admissibility
inequality

/T 10,u(0,1)|* dt < KpE(0) (2.1.3)
0

holds for any solution of (2.1.1)) with (u®,u!) € H}(0,1) x L*(0,1).

Besides, for any time T' > 2, there exists a positive constant k7 such that the boundary observability
inequality

krE(0) < /O " 0,u(0, )2 (2.1.4)

holds for any solution of (2.1.1)) with (u®,u!) € H}(0,1) x L?(0,1).

Inequalities (2.1.3)-(2.1.4]) arise naturally when dealing with boundary controllability properties
of the 1d wave equation, see [2I]. Indeed, the observability and controllability properties are dual
notions. We will clarify this relation in Section [2.3

Let us also present another relevant observability inequality, which is useful when dealing with
distributed controls or stabilization properties of damped wave equations (see [16, 21]). If (a,b)
denotes a non empty subinterval of (0,1), the following distributed observability property holds: for
any time 7' > 2max{a, 1 — b}, there exists a constant C such that any solution of with initial
data (u®, ul) € H}(0,1) x L%(0,1) satisfies:

E(0) <y /OT /b |Opu(z, t)|? do dt. (2.1.5)

In the sequel, we will consider observability properties for the 1d space semi-discrete wave equation
derived from a mixed finite element method on a nonuniform mesh.

For any integer n € N*, let us consider a mesh &, given by n + 2 points as:
0= Ton < T1in <--- < Tnn < Tp4ln = ]., hj+1/2,n = Tj+1n — Ljn, ] € {O, ce ,’I’l}. (216)
On S,,, the mixed finite element approximation scheme for system ([2.1.1)) reads as (see [7], [15] or [5]):

( hj—l/Qm( "

h.
j+1/2,n
U‘jfl,n + u;/,n) + 7(

" 1
W+ Ujiq )

4
= — j:l,n’teR,
hjti/2.n hj—1/2.n (2.1.7)
U (t) = Uns1n(t) =0, tER,
wi(0)=ul,,  WO0)=ul,, j=1-,n

The notations we use are the standard ones: A prime denotes differentiation with respect to time, and
ujn(t) is an approximation of the solution w of (2.1.1]) at the point x;,, at time ¢.

System ([2.1.7)) is conservative. The energy of solutions u, of (2.1.7)), given by

_1Ig Ujrin(t) = win(t)\? | 1 ¢ W g (t) + 0, (1)) 2
En(t) = 5 Z h]’+1/27n< hj+1/2,n + 5 ]Ez% hj+1/2,n 5 , teR, (2.1.8)

j=0

i1s constant.
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2.1. Introduction

In this semi-discrete setting, we will investigate the observability properties corresponding to (2.1.4])
and (2.1.5), and especially under which assumptions on the meshes S, we can guarantee discrete
observability inequalities to be uniform with respect to n.

For this purpose, we introduce the notion of regularity of a mesh:

Definition 2.1.1. For a mesh S, given by n + 2 points as in (2.1.6]), we define the regularity of the
mesh S, by
max; {h;j1/2n}

Reg(S,) = — . (2.1.9)
(5 minj{h; 120}
Given M > 1, we say that a mesh S,, given by n + 2 points as in (2.1.6)) is M-regular if
max;{h;
Reg(S,) = ihs1/2m) < M. (2.1.10)

min;thj1/2.n}
Obviously, a 1-regular mesh is uniform. In other words, the regularity of the mesh Reg(S,)
measures the lack of uniformity of the mesh.
Within this class, we will prove the following observability properties:

Theorem 2.1.2. Let M be a real number greater than one, and consider a sequence (Sy,), of M-regular
meshes.

Then for any time T' > 2, there exist positive constants kr and Kt such that for all integer n, any

solution uy, of (2.1.7) satisfies

T
uy p(t) |2
krFE, (0 S/ —
’ ( ) 0 <’ h1/2,n

+ |u'17n(t)|2>dt < K7E,(0). (2.1.11)

Besides, if J = (a,b) C (0,1) denotes a subinterval of (0,1), then, for any time T > 2, there exists a
constant C1 such that for all integer n, any solution u, of (2.1.7)) satisfies

4 () + ()2
E,(0) gcl/o 3 hjﬂ/m( e Jt+l, ) dt. (2.1.12)
wj’nEJ

Obviously, these properties are discrete versions of inequalities (2.1.3]),(2.1.4]) and (2.1.5)). Also note
that the right hand-side inequality in (2.1.11]) holds, as (2.1.3)), for all time T' > 0, taking K7 = K3
for T < 3.

Theorem is based on an explicit spectral analysis of in the discrete setting, that proves
the existence of a gap between the eigenvalues of the space discrete operator in . Thanks to
Ingham'’s inequality [18], this reduces the analysis to the study of the observability properties of the
eigenvectors of , which will again be deduced from the explicit form of the spectrum of .

Besides, we emphasize that Theorem provides uniform (with respect to n) observability re-
sults. Therefore, as in the continuous setting, Theorem [2.1.2] has several applications to controllability
and stabilization properties for the space semi-discrete 1d wave equations (2.1.7). In Section
similarly as in [5], using precisely the same duality as in the continuous case, we present an applica-
tion to the boundary null controllability of the space semi-discrete approximation scheme of the 1d
wave equation. Later, in Section following [1], we study the decay properties of the energy for
semi-discrete approximation schemes of 1d damped wave equations.
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Let us briefly comment some relative works. Similar problems have been extensively studied in
the last decade for various space semi-discrete approximation schemes of the 1d wave equation, see for
instance the review article [32]. The numerical schemes on uniform meshes provided by finite difference
and finite element methods do not have uniform observability properties, whatever the time T is (see
[17]). This is due to high frequency waves that do not propagate, see [29, 22]. To be more precise,
these numerical schemes create some spurious high-frequency wave solutions that are localized.

However some remedies exist. The most natural one consists in filtering the initial data and thus
removing these spurious waves, as in [I7, BI]. Another way to filter is to use the bi-grid method as
introduced and developed in [14] and analyzed in [25]. A new approach was proposed recently in [24]
based on wavelet filtering. Let us also mention the results [28] 27, 26, [11] that amounts to adding an
extra term in which is non-negligible only for the high frequencies. A last possible cure was
proposed in [I], [I5] and later analyzed in [5]: a 1d semi-discrete scheme derived from a mixed finite
element method was proposed, which has the property that the group velocity of the waves is bounded
from below. Also note that an extension of [5] to the 2d case in the square was proposed in [0].

To the best of our knowledge, there is no result at all for the space semi-discrete wave equation
on nonuniform meshes, although most of the domains used in practice are recovered by non periodic
triangulations. A first step in this direction can be found in [26], in which a study of a non homogeneous
string equation on a uniform mesh was proposed. This can indeed be seen, up to a change of variable,
as a discretization of a wave equation with constant velocity on a slightly nonuniform mesh.

Let us also mention that some results are available in the context of the heat equation for space
semi-discrete approximation schemes on nonuniform meshes in [19], even in dimension greater than 1.

The outline of this paper is as follows. In Section we precisely describe the spectrum of
the space semi-discrete operator and prove Theorem Sections [2.3] and respectively aim at
presenting precise applications of Theorem to controllability and stabilization properties.

2.2 Spectral Theory

In this Section, we first study the spectrum of the space semi-discrete operator in on a general
mesh §,, given by n+ 2 points as in . Second, we derive more precise estimates on the spectrum
when S, is an M-regular mesh. Third, we derive Theorem from our analysis. Finally, we discuss
the assumption on the regularity of the meshes, and show that, in some sense, the M-regularity
assumption is sharp with respect to the observability properties given in Theorem [2.1.2

Given a mesh S, of n+ 2 points as in (2.1.6)), since the system (2.1.7)) is conservative, the spectral
problem for (2.1.7) reads as: Find A, € R and a non-trivial solution ¢,, such that

A
_Z(hj—l/zn(gbj,n + ¢j—10) + hjr1/2.0(Pjn + Pjrin))
_ @itin = Pjin _ Pjn — bj-1n
hit1/2.n hi—1ijom

(2.2.1)

j = ]-a RN (2
¢O,n = ¢n+1,n =0.
2.2.1 Computations of the eigenvalues for a general mesh

In this Subsection, we consider a general mesh S, given by n + 2 points as in (2.1.6)).
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2.2. Spectral Theory

Theorem 2.2.1. The spectrum of system (2.1.7) is precisely the set of £\ with k € {1,--- ,n},
where \E is defined by the implicit formula

. Nihji1/2 km
_— | = —. 2.2.2
Z arctan ( 5 ) > ( )
J=0
The gap between two eigenvalues is bounded from below:
i AL NEY > 2.2.3
peptin np = (2.2.3)
Besides, for each k € {1,--- ,n}, the following estimate holds:
A >k —2(n+1)tan( k f)>lm (2.2.4)
n = xn — n+12/) = . /N

Remark 2.2.2. Note that \¥ coincides with the k-th eigenvalue of system for a uniform mesh
constituted by n+ 2 points. Also note that kx is the k-th eigenvalue of system . In other words,
inequality implies that the dispersion diagrams corresponding to the spectrum of for a
general nonuniform mesh, for a uniform mesh, and for the continuous system are sorted.

Proof. To simplify notation, we drop the subscript n.

Let us introduce functions p and ¢ corresponding to d,¢ and i\¢ in the continuous case:

1 — i .
Djt+1/2 = M’ djt+1/2 = 5(%’ + ¢jr1), j€{0,---,n}. (2.2.5)
j+1/2

The spectral system (2.2.1)) then becomes :

i\ .
5(%‘—1/2 Gj—1/2 + Pjr1/24541/2) = Pjr1j2 —Pj—1j2, J =1, 1, (2.2.6)
i\ . -
E(hj—l/Q Pj—1/2 + hj+1/2pj+1/2) =Qjy1/2 — U172, J =1, .n,
with boundary conditions
i)\hn+1 2 l)\hl 2
T/pn+1/2 + Gny1/2 =0, 5 / P12 — q172 = 0.
Equations (2.2.6)) rewrite, for j € {1,--- ,n}, as:
i1 i
]7/%'—1/2 +Pj-1/2) + L/Qj—&-l/Q —Ppjr12) =0,
2 2 (2.2.7)
iDL 2 iND 1 o
(ijfl/Q + ijl/Z) + (ij+1/2 - Qj+1/2) =0,

For j € {1,--- ,n}, this leads to:

iAh;_ iAh;
(1 + JTW)(pj—lm +qj—12) = (1 - ]THﬂ) (Pjt1/2 + @jt1/2)

i)\h'_l 9 I 1/2
(1 - ]T/> (Pj—1/2 — 4j-1/2) (1 + ]TJF/) (Pj41/2 = djt1/2)-
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These two equations can be seen as propagation formulas, each term corresponding to dyw + J,w.
Especially, they imply:

24+ iMhy g N 2+ Mg
Pj+1/2 t Qj+1/2 = (p1/2 + Ch/g) <2_1)‘h3+1/2) i <2_1)‘hk+1/2>’ (2.2.8)
2 —iMhyjg N\ Ar 72— iMgg o
. — . = — - 7 — 7). 2.2.
Pj+1/2 = 4j+1/2 (P12 — q1/2) <2 n i)\hj+1/2> 1 <2 n i)\hk+1/2> (2.2.9)

We remark that each term in the product has modulus 1, and therefore there exists a1/ € (=7, 7,
given by tan(a;y1/2/2) = AMjy1/2/2, such that :

2+iMhjp1p explia )
5 . — j+1/2)-
2 — Z)\hj+1/2 It /
We also denote by 3; the coefficient
2 + ’L)\hl/2

7T 2 Mk

which satisfies

Bi . .
= eXP(Zaj+1/2) eXP(W1/2)~
j

Combined with the boundary conditions, identities (2.2.8)-(2.2.9) give:

i)\hn+1/2>

Prstso (1 B . z’)\h1/2)

n—1
— Bexp (z > ak+1/2)1’1/2 (1 T

k=1

i/\hn_,_l/Q)

Pn+1/2 (1 t— Mhl/Q).

= [,exp ( — Z'nZlOékJrl/2>p1/2 (1 9
=1

Then, if A is an eigenvalue, A satisfies:

(gn)Qexp (2i§ak+1/2> = exp (2izn:ak+1/2) =1. (2.2.10)
k=1

n k=0

To simplify notation, we define:

f(A) =4 En: arctan ()\hk;uQ).

k=0

Due to (2.2.10)), if A is an eigenvalue, there exists an integer k such that:
f(A) = 2km.
The image of f is exactly (—2(n + 1)m,2(n + 1)), and therefore & must belong to {—n,--- ,n}.

Conversely, if A is a solution of f(A) = 2k for an integer k € {—n,--- ,n}, then X\ is an eigenvalue,
except if k = 0, which corresponds to p;; 1/ = ;412 =0for all j € {0,--- ,n}. This gives us exactly
2n eigenvalues +\¥, k € {1,--- n}.

Moreover, the derivative of f is explicit:
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2.2. Spectral Theory

It follows that "
0< /(N < QthH/z =2.
k=0

Since all the eigenvalues are simple and f(A\+1) — f(\¥) = 27 for all k € {1,--- ,n — 1}, this implies
that the gap between the eigenvalues is bounded from below by 7, and therefore (2.2.3)) holds.

Using the concavity of arctan gives the following estimate:

)\k 1 n i 1 n )\khj+1/2 k m
arctan (2(n n 1)) arctan (2(71 1) j;o A hj+1/2) E jz_;arctan ( 5 ) -

In other words,

k
A L)
2 2(n+1)tan n+12
and (2.2.4)) follows. Indeed, the right hand-side inequality in (2.2.4)) simply follows from the standard
inequality tan(n) > n for n € [0,7/2). O

We illustrate this result on Figures [2.1}2.2] by computing dispersion diagrams for various nonuni-
form meshes S,,, that we characterize by their regularity Reg(S,,), as defined in (2.1.9)).

Let us briefly explain the two ways we have chosen for generating them.

e Method 1. In Figure 2.1 we create a random vector h of length n + 1 whose values are chosen
according to a uniform law on (0,1). This vector is then normalized such that the sum of its
components is one, so that h corresponds to the vector (hy/2,** , hny1/2,,), Which describes
the mesh in a unique way.

e Method 2. In Figure we create a random vector x of length n whose components are
chosen according to a uniform law on (0,1). Then we sort its components in an increasing way
to obtain a vector (21, ,%nn), which represents the mesh points.

In both cases, the dispersion diagrams look the same. It is particularly striking that the shape of the
dispersion diagrams does not seem to depend significantly on the meshes.

4000

T
1
~ - 2158
35001 _ 4 — 149 7
O 12655

3000 — -
2500 -
2000 -
1500 —
1000 - -
500 - —

o e kanal ! ! ! ! | | |

o 20 40 60 80 100 120 140 160 180 200

Figure 2.1: Dispersion diagrams for various meshes constituted by 200 points generated by Method 1
for different values of Reg.
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4000

—»x— 1601
3500 ass
- 6677

3000

2500

2000
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1000

500 —

40 60 80 100 120 140 160 180 200

Figure 2.2: Dispersion diagrams for various meshes constituted by 200 points generated by Method 2
for different values of Reg.

2.2.2 Spectral properties on M-regular meshes

This subsection is devoted to prove additional properties for the spectrum of (2.1.7) when the mesh
Sy, is M-regular for some M > 1.

Theorem 2.2.3. Let M > 1.
Then, for any M -regular mesh Sy, the eigenvalue N of (2.2.1) on S, satisfies

A< %(n +1)2. (2.2.11)
s

Besides, for any M-regular mesh Sy, if ¢F denotes the eigenvector corresponding to \f in ([2.2.1)),
then its energy

k k k k
Oirin = Pin ? | k| Yant Pivin?
%7| n’ 2

_ ;Z;hj“”’”( ) (2.2.12)
pm

hit1/2.n
satisfies

n¢1 N
hl/Q,n

i
h1/2,n

n(bl Ko}
hl/Q,n

1/2 n
4

1/2 n
4

(e
1+ M2 \lhyp,

), (2.2.13)

>§E5§(1+M2)<‘

Moreover, if w = (a,b) is some subinterval of (0,1), then the energy of the k-th eigenvector ¢F in w,
defined by

k k
Pitin — Pin|?

k k
1 0} 2
= > hysagn( + |A’;!2‘¢]’”¢J+l’" ). (2.2.14)
2 T mEW hiv1/2.n 2
satisfies
M?
EF < % Ef . (2.2.15)

Remark 2.2.4. These inequalities roughly say that the eigenvectors cannot concentrate in some part of
an M-regular mesh. These properties are indeed the one needed for control and stabilization purposes,
as we will see in next Sections.
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Remark 2.2.5. Note that Theorem [2.2.1] gives the estimate

AZZQ(nH)tan((l— ! )3> ~ T2

n+1/2/ n—ocom

Combined with estimate (2.2.11]), this indicates that, when considering sequences of M-regular meshes,
the eigenvalues A” really grow as n? when n — oo.

Proof. Along the proof, we fix an integer n, a real number M > 1 and an M-regular mesh S,,, so that
we can remove the index n without confusion.

Inequality (2.2.11) is a consequence of (2.2.2)). Indeed, if we set h = min{h; o} and H =
max{h;1/2}, then we have
1< (n+1)H < (n+1)Mh. (2.2.16)

Besides, using (2.2.2]), we get
- A"h; A"
Zarctan <]7+1/2) =0T (n+ 1) arctan (—),
par 2 2 2
which provides

(n inl)z = h(ni e e (30~ njLr E My {zntan (G0 -m)},

from which (2.2.13]) follows.

To derive the properties (2.2.13)) and (2.2.15)) of the eigenvectors, we use the computations and
notations (2.2.5)) introduced in the proof of Theorem Namely, we introduce:

k 1= 5 o N ek :
Djt12 = Tlﬂ’ Q1172 = 7(@11)] + ¢j+1)7 J € {07 T ,7’L}.

Then the previous computations, and in particular identities (2.2.8)-(2.2.9)), give:
1 n
k k 2 k 2
EY = §Zhj+1/2<\pj+1/2\ + 147410l )
j=0

BN K ko2 ok ko2
- Z Rjr1/2 <|pj+1/2 — dir1yel” P + 4l )
j=0

1 & -
= 7 Z hj+1/2<|ﬁj|2|171f/2 - Qf/z|2 + |5j|2|P]f/2 + qlf/2’2)

4+ >‘h1/2) k E |2 k ko2
= Z J+1/24_|_ Noji1/2)? <|p1/2 q1/2| +|101/2+(11/2| )

Using the definition of (p1/2’ q1/2) this leads to

n ) 2
gk ;(; - (’;sz/jm) > (4 n ()\kh1/2)2) Ohﬁ ‘2 N hZ? ‘ ﬁ‘f ‘2> (2.2.17)
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Given an interval w, the same computations give for E

] 2
Et = ;(;E; - (};\%ﬁﬂP) (4+ () (| hi)i (2 + hf | A}Zi’f D (2.2.18)

Inequalities (2.2.13)) and (2.2.15) easily follow from (2.2.17))-(2.2.18)) and the M-regularity assumption.
O

2.2.3 Proof of Theorem [2.1.2]

Our strategy is based on Ingham’s Lemma on non-harmonic Fourier series, which we recall hereafter
(see [18, 30]):

Lemma 2.2.6 (Ingham’s Lemma). Let (A;)ken be an increasing sequence of real numbers and v > 0
be such that
Mg+l — A >y >0, VEeN. (2.2.19)

Then, for any T > 27/, there exist two positive constants ¢ = c¢(T,v) > 0 and C = C(T,~) > 0 such
that, for any sequence (ay)ken,

Y Jarl < /T ) 3 et < S Jail. (2.2.20)

keN 0 " keN keN

Proof of Theorem [2.1.9, Let us consider a sequence (S,), of M-regular meshes.

According to inequality (2.2.3]), the gap condition (2.2.19) holds with v = 7. Thus, due to Lemma
we only need to prove the observability inequalities (2.1.11])-(2.1.12]) for the stationnary solutions

up(t) = exp(iAit) )

n

of ([2.1.7)) corresponding to the eigenvectors ¢F of system (2.2.1]) on S,,.

Since each mesh §,, is M-regular, we can apply Theorem m Especially, inequality ([2.2.13))
holds, and therefore Ingham’s inequality ([2.2.20]) directly implies (2.1.11]).

To prove (2.1.12)), we fix J = (a,b) C (0,1) a subinterval of (0,1). According to Ingham’s Lemma
and ([2.2.3)), it is sufficient to prove that there exists a constant C' independent of n and k such that,
for any eigenvector ¢¥ solution of (2.2.1]) on S, corresponding to the eigenvalue \*, the quantity

k
k2 Phn + i1a)2
aspp(Lant S

Iin= " hjsijom (2.2.21)

Tjn€J
satisfies
Ef <CIf,. (2.2.22)
We thus investigate inequality (2.2.22)) on a mesh S,, by using a multiplier technique.

Let w be a strict subinterval of J and let us denote by 1 a function of x € [0, 1] such that:

n(x) = 07 Vo € (07 1)\‘]’ H77H < L
o0 2.2.2
{ ) =1, Voeuw, Il < Cro (2:2.23)
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To simplify notation, we drop the exponent k and the index n hereafter. Below, we denote by n; the
value of 7 in the mesh point x;.

We consider system (2.2.1) and multiply each equation by njz-gbj. Discrete integrations by parts
yield:

)2 Zn: By o (¢j + ¢>j+1) (ﬁ?ﬁbj + 77]2'+1¢j+1> Z By (¢]+1 (b]) (77]+1¢>J+1 n; ¢J)

§=0 2 2 =0 h]+1/2 h]+1/2

Then we deduce that

22 Z h]+1/2<773 +277]+1) <¢j + d)j-‘rl) Z hj+1/2< +277]2‘+1> (ij};il_/jJ)z = Ay + Ay, (2.2.24)

where A; and As are defined by

M=y D) (B () (),
A Z Ak (% +2¢]+1> <¢J];;1+1/2¢J) (77]}:;11/sz> <77] +277]+1)

Then, for any choices of positive parameters d; and 9, we get:

Al < L;;lj;)hﬁmk?(% +2¢j+1>2<77j+1 - nj)Q

hji1)2
51w 9,4 Gj+1— OiN\2(nj + 1412
FST R (A2 ( ) ( ) :
4 5=0 s hisay2) hji1)2 2
RS Gj + Gjr1\2 (Mj+1 —1j\2 - Pjt1 — @i \2 (M5 + Mjt1)2
Ayl < — h. (] j (J EAR . (J J)(J j ‘
|As| 52];0 j+1/2 5 ) o ) 232_:0 Sy 5 )
Using that
n+1 .
(7> sup hj+1/2 S (n + 1) inf h’j+1/2 S 1
estimate (2.2.11]) gives

N Wjarps < (%(” + 1)2)2<(n1\—f1)>4 = (é)2M4‘

Therefore, if we set
2

= oA

1
62 - Zv
using the classical inequality
(77j + 77j+1>2 < URalTs
2 - 2
we deduce from the existence of two constants independent of & and n such that

Z h]+1/2<m +2Ug+1> (¢J+1 ¢]) < )2 Z hJH/Q(??J +277J+1) <<z>j +2¢J+1>

h’j+1/2

+G Z VY <¢j +2¢j+1) (779‘+1 ~ nj) + O Z hjtr1/2 <¢j +2¢j+1) (njH — nj)Q.

=0 hjt1/2 =0 hji1)2
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But || is also uniformly bounded from below (see (2.2.4))), and therefore we obtain that

2

Z hfﬂ/?(n] +2773+1> (¢]+1 d)]) <X Z hg+1/2(nj i %H) (d)j +2¢j+1>2

h_]+1/2
. G5+ Gir1\2 (Mjr1 — M52

Using the properties (2.2.23)) of the function 7 leads us to the following result:
Er,<CI,.

Therefore inequality (2.2.22)) can be deduced from inequality (2.2.15)) applied to w. O

2.2.4 The regularity assumption

Let us discuss the assumption on the regularity on the meshes.

Concentration effects without the M-regularity assumption
Here, we design a sequence of meshes S,, such that:

e The sequence Reg(S,,) goes to infinity arbitrarily slowly when n — cc.

e There exists an interval J = [a,b] for which there is no constant C' such that for all n, for all

eigenvectors ¢F of (2.2.1) on S,
Ef < CE%,, (2.2.25)

where EF and Eﬁn are, respectively, as in (2.2.12) and (2.2.14)).

Note that (2.2.25)) constitutes an obstruction for (2.1.12]) to hold.

Choose a strict non-empty closed subinterval J of (0,1), and a sequence K, going to infinity when
n — oo. Introduce a sequence of meshes (S,,), each one constituted by n + 2 points such that

—0 —1 Ti+in — Tjn = Hy,, if [xj,naxj—&—l,n] cJ,
Ton =Y, Tptin =1, —h T 0.11\J
Tjyin — Tjm = oy i [0, 251010] C[0,1]\J,

where H,, = K,h,. Remark that the mesh §,, is then totally described by the quantity K,. From

identities (2.2.17))-(2.2.18]), we get:

k
By Boaun 1= 1] A+ (G H,)?
Ef;n Ejn |J| 4+ (Aehy)?T
But
I
-Hn hn ’
and so (n+ 1)h, = (1 —|J|) + |J|/ K, converges to 1 — |J| when n — oco. But inequality (2.2.4]) gives
Anhy, n o
2> (n+ Dhy tan ( )
5 > (n+1)h, tan 713
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and then (A\hy, )y, goes to infinity when n — oco. Especially, this implies that

En 1—|J| H2 1-]J] _,
~ — = K
Enonee [ R g T

and therefore there is no constant such that (2.2.25) holds uniformly with respect to n € N and
kEe{l,--- ,n}.

Partial regularity assumptions

Without the M-regularity assumption, one can derive partial results, due to the explicit form ([2.2.17)
of the energy.

For instance, identity (2.2.17)) on the energy of the k-th eigenvector ¢* on S,, gives:
Mt 2>
h1/2,n .

h%/Q,n

4

Ek

n

VAN

4+ ()‘ﬁ,hl/ln)2 (‘ ¢If,n
44+ inf(Aﬁhj_i_l/Qm)Q h1/2,n
J

In particular, if there exists a constant M; > 0 such that for all n,

hijan < Myinfhipsn, (2.2.26)

then for all n and &,

Ek < (1 +M2)(‘ (blf,n 1/2n n¢1n >
" ! hi/2m 4 Thyipy,
Now, consider the reverse equality. From ([2.2.17)), we get
2
Ek > 44 ()\ﬁhl/ln)2 (’ gblin hl/Q,n )\]'rid)’f,n 2).
T At sup(Nihyga0)° N2 4 Thion
J

In particular, if there exists a constant My > 0 such that for all n,

sup hjy1/2n < Mahyjop, (2.2.27)
j

then, for all n and k, we get

Mgk,
h1/2,n

h%/Q,n

E¥ i

AV

o
1 +1M2? () hli;m 2 2)'

Besides, as in Subsubsection for each integer n, we can consider sequences of meshes S,
given as in (2.1.6)) defined by

T1p — Ton = hij2pn, Tjtin — Tjn = hp, Vj€{l,---,n},

where hy /5, and h,, are two sequences going to zero. It is then easy to check that if condition ([2.2.27)
is not satisfied, that is if hy,/hy /9, — 00 when n — oo, then there is no positive constant c such that

)

)
h1/2,n

n¢1 Ko}
h1/2,n

1/2 n
4

£t
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uniformly in £ and n.

On the contrary, if hy/hy /2, — 0 when n — oo, then there is no constant C' such that

)

h%/?,n

4

Mgk,
h1/2,n

uniformly in k£ and n.

Therefore, if we consider a sequence of meshes S, such that Reg(S,) is unbounded, we cannot
expect in general to have both observability and admissibility properties (2.1.11) uniformly with
respect to n.

Remark 2.2.7. 1f we are interested in the observability inequality (2.1.12]) for a particular subinterval
(a,b) C (0,1), the situation is more intricate. As above, due to the explicit description of the energies
(2.2.17) and (2.2.18)), one easily check that if there exists a constant M3 such that for all n € N,

sup {hjy1/om} < M3 iféf(ab){hjﬂ/zn}, (2.2.28)

xjn€(a,b) Zj,n

then for all n € N and for all k € {1,--- ,n},

M2
EF < 73 gk
(@bln = (p_g)™ ™

However, under the only condition m the estimates ‘2 2.11]) on the eigenvalues might be false,
and therefore the proof presented above of 1nequahty (2.2.22) (with J = (a, b)) fails. We do not know
if assumption (2.2.28]) suffices to guarantee to hold uniformly with respect to n € N and
kEe{l,--- ,n}.

Also remark that if assumption (2.2.28]) holds for a sequence of meshes S, for any subinterval
(a,b) C (0,1), then there exists a real number M such that all the meshes S,, are M-regular.

2.3 Application to the null controllability of the wave equation

2.3.1 The continuous setting

Let us first present the problem. It is well-known that for any time 7" > 2, given any initial data
(v°,y') € L*(0,1) x H71(0,1), we can find a control function v(t) € L?*(0,T) such that the solution
of

Ofy — 02,y = (z,t) € (0,1) x (0,T),
y(0,1) = () ( t) =0, te(0,T), (2.3.1)
y(z,0) = y°(2), 87:3/( 0) =y'(x), ze€(0,1),
satisfies
y(T) =0, owy(T)=0. (2.3.2)

By duality (namely the Hilbert Uniqueness Method, or HUM in short), this property is equivalent to
the observability inequality (2.1.4)), see [21].

Note that there might be several controls v € L2(0,7T) such that (2.3.2) holds for solutions of
(2.3.1). In the sequel, we will say that such a v is an admissible control for (2.3.1).
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2.3. Application to the null controllability of the wave equation

Besides, there is an explicit method to compute the so-called HUM control vgy,,, which is the one
of minimal L?(0,T)-norm among all admissible controls for (2.3.1)). Indeed, set T > 2 and consider
the functional

J : H}0,1) x L*(0,1) —= R

o 1y _ 1 [T Ly . (2.3.3)
T(0, 2 = 2/ (922)2(0, 1) dt—/ Y (2)0(,0) dot < 5, 2(,0) > -1,
0 0
where z is the solution of the backward conservative wave equation
Oz — 0%, =0, (2,1) € (0,1) x (0,T),
2(0,t) = z(1,t) =0, te(0,7), (2.3.4)
2(x,T) = 2°(x), Oz(x,T) = 24 (x), z€(0,1)

Then J is strictly convex, coercive (see (2.1.4)), and therefore has a unique minimizer (29, Z1) €
HE(0,1) x L?(0,1). The HUM control is then given by vyy(t) = 0:Z(0,t), where Z is the solution
of (2.3.4) with initial data (29, Z1).

Note also that the HUM control is the only admissible control v for (2.3.1)) that can be written as
v(t) = 9,2(0,t) for some z solution of (2.3.4) with initial data in H}(0,1) x L%(0,1).

It is then natural to try to compute this control numerically. This question will be investigated in
the sequel.

2.3.2 The semi-discrete setting

This part is inspired in [B, [6] where similar results have been derived for uniform meshes.

We consider a mesh S, as in (2.1.6) and derive an approximation scheme for (2.3.1) from a mixed
finite element method. The problem reads as follows: Given y® and y! defined on S,,, find a discrete
control v, € L?(0,T) such that the solution y, of

( hj_12, hjt1)2,
P 0) + P W+ o)
y]+17n — yj7n y]?” — y]—l,?’b
- - ) jzl) 7n)t607T7
hiv1/2.n hj1/2.n 0.7 (2.3.5)
yO,n(t) = ’Un(t), ?/n+l,n(t) = 07 te (OvT)7
y],n(o) = an y§7n(0) = yjl',nv ] = 11 N,
satisfies
yjn(T) =0, y}}n(T) =0, j=1,---,n. (2.3.6)

Again, the study of this problem is based on a duality principle. Given any T' > 2, we choose € > 0
such that T'— 4e > 2 and a smooth function p satisfying

p(t)y =1, if t € [2¢,T — 2¢],
{ o(t) =0, iftel0,dUlT —eT), and 0<p(t)<1, Vt (2.3.7)
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We then introduce the functional 7, defined by:

1 T 1 [T rz0(t))2
0 1 _ 4 / 2 - L
Tn(z,20) = 8/0 POl2RI (1) d+ 2/0 (hl/g,n> “

hl 2, - +1/2,
+ ( f; "Y1 21 (0) + ) ”T/”@},n + 4110 (27:0(0) + 241.0(0))

Jj=1

n (2.3.8)
_ <hlf,n W 2. (0)+> %ﬂ”l(yﬁn + 4041 0) (2,(0) + 2 +1m(()))) :
j=1
where z, is the solution of
B ) PR )
- ZJZ;/;?“ ; ZLZ;Z:”’ j=1,,n, te[0,T], (2.3.9)

20m(t) = zni1a(t) =0, t€(0,T),
\ Zj,n(T)—zO 2 (T):Zl- j=1--.n.

- Spn Cgn Jn

Then the following Lemma holds:

Lemma 2.3.1. For any integer n, the functional J, is strictly convex and coercive, and then has a
unique minimizer (Z9, Z}). Besides, for all n, if v, is the solution of
hl/2n 17 1 1 / / 1
— — vy = ——(pZ 4+ ——Z1n, t€]|0,7T],
4" hyjgn 1P%1) hijom b 0. 7] (2.3.10)
v (0) = v (T) =0,

where Z,, is the solution of ([2.3.9) with initial data (Z°,Z}), then v, (t) is a control of (2.3.5) in time
T.

The proof of Lemma is the same as in [5]. For completeness, we will give a sketch of the
proof hereafter.

For convenience, we introduce the operators Pgs, , Qs, and Rs, which map discrete data a, =
(@jn)jef1,—n} given on a mesh S, as in (2.1.6) to functions defined on (0, 1) by:

r — T

Ps,an(z) = ajn + (@410 = ajn) (7,1 M)a

j+1/2,n

_ Gjn T Gjtin
Qs,an(x) = B S— on [Tjn, Tjy1,n)s
hji1/2.n . Ak + Akt1,n
Rs, an(z) = %(aj,n +ajr1n) + Z hk+1/2,n<%)a
k=j+1

with the convention ag, = any1, = 0. With these definitions, Ps, and Qs, are extension operators,
and Rg, corresponds to a piecewise continuous approximation operator of the discrete integrals x —

fxl Qs, an(s) ds.

Let us rewrite all discrete computations in terms of the operators Pgs, ,Qs, ,Rs,. First, for any

solution z, of (2.3.9), the energy ([2.1.8]) writes
1 1
En(t) = B HQSnzn(t)Hi%o,l) + ) Hax(PSnzn(t))H%?(o,l) . (2.3.11)
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Second, the functional 7,, reads as

> LT oy
0 1 _ 1 / 2 _ L
b = [ ol e g [ (G0) o

1

1
+/ (Rs, ¥n) (0:Ps, 2(0)) dx—/ (Qs,5n)(Qs,2,(0)) dz. (2.3.12)
0 0

We are now in position to sketch the proof of Lemma [2.3.1]

Sketch of the proof of Lemma[2.3.1] Fix an integer n € N. The functional 7, is strictly convex, and
its coercivity is obvious since we are working in a finite dimensional setting. It follows that 7, has a
unique minimizer (Z2, Z1).

Let us compute the Fréchet derivative of J,, in the minimizer (Z9,Z!): For any (29,2}), the

solution z, of (2.3.9) on S, satisfies (Recall the definition (2.3.7)) of p):

g 1 / ’ 1
0= /0 ( — 1 Z1,(1) + . Zl,n(t)>z1’n(t) dt

1 1
+ /0 (R, 42) (0:Ps, 2 (0)) it — /0 (@s,42)(Qs, 74,(0)) d,

which rewrites, in terms of v, defined in ([2.3.10)), as

0= 1/Th ! 2 dt+/T gt
= — v,z (Y
4 0 1/2,nYn<1,n 0 n h1/2,n

1 1
+ [ (Re, 5 @rs,20(0) do— [ (@s,80)(Qs,24(0)) dr. (2313)
0 0

Now, consider y,, the solution of (2.3.5) with boundary control v,. Multiplying (2.3.5) by z,
solution of (2.3.9) with initial data (20, z!), we get, after tedious computations that are left to the
reader, that

0= 1/Th ! 2 dt+/T g
= — v,Z (Y
4 0 1/2,nYn<1,n 0 n h1/27n

v ' (Rs,y1)(0:Ps, zn(0)) dr - / (Qs.40)(Qs,,(0)) da
- /O (R, ,(T)) (0P, 20) s + /O (@5, 9a(T))(Qs, 21 do. (2.3.14)

Combined with ([2.3.13)), this yields that the solution y,, of (2.3.5) satisfies the following property:

For any (2, 2p),

1 1
— [ R, (1)(@Ps, ) da+ [ (Q,0(T))(@s,21) dx =0
0 0

This obviously implies (2.3.6]). O
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It is natural to ask if the discrete controls v,, constructed in Lemma [2.3.1| converge to an admissible
control for (2.3.1)) under some assumptions on the convergence of (y2,yL). We will prove that this is
indeed the case.

Given a sequence of meshes (Sy,),, we say that the sequence of discrete data (ay,,by), defined on
the meshes S, strongly converges to (a,b) in L?(0,1) x H~(0,1) if:

1
Qs,an —a in L*0,1), and Rg b, — (m H/ b(s) ds) in L*(0,1). (2.3.15)
xT

Remark that this definition makes sense, since for b € H~1(0,1), classical arguments allow to define
the function x — le b(s) ds in L?(0,1).

Theorem 2.3.2. Let (y°,y') € L?(0,1) x H71(0,1) and T > 2.

Given M > 1, we consider a sequence (Sy) of M-reqular meshes, and a sequence of initial data
(y2, yt) which strongly converges to (y°,y*) in L?(0,1) x H~1(0,1) in the sense of (2.3.15)).

Then the sequence of discrete controls (vy)n given by Lemma strongly converges in L*(0,T)
to the HUM control vy, for (2.3.1) with initial data (y°,y').

First of all, let us mention that, given (y°,y') € L%(0,1) x H~1(0,1), it is possible to find a
sequence of initial data (2, L) which strongly converges to (y°,y') in L?(0,1) x H=1(0,1) in the
sense of (2.3.15). We will briefly explain later (Remark below) how this can be done.

The proof of Theorem is mainly based on inequality (2.1.11)), that implies that the discrete
controls v, are bounded in L?(0,T). Once this is proved, the result can be deduced from classical
convergence properties of the scheme.

Proof. The proof is divided into several steps. First, we prove uniform bounds on the sequence v,,.
Second, we prove that any weak limit of v, is an admissible control for (2.3.1). Third, we prove that
there is only one weak limit, which coincides with the HUM-control vy, of . We finally prove
the strong convergence of the controls v, in L2(0,T).

Uniform bounds. Since 7,(Z°, Z}) < 7,(0,0) = 0, we have that

1T 1 (T 1 Zy ()2
Loz rw e s [ (20 i < 2B IRl e + 1@, 0
8 Jo 2J)o \hipon

where FE,,(t) denotes the energy of Z,(t), which is constant. In view of the definition of p, since we
assume that the meshes S,, are M-regular, inequality (2.1.11)) holds. This, combined with the fact
that (Qs,3°) and (Rs, y.:) are convergent in L?(0,1) and therefore bounded, leads us to

1 [T 1 [T/ Zia(t)\2
ke En(T) < / p(t)|Z,, 12(t) dt + / (17()) dt < C. (2.3.16)
8 Jo ’ 2J)o \Nhipon

Besides, multiplying (2.3.10) by hy/2 ,vn and integrating in time gives
/ 2 2 T hl/Q,n / / Zl,n(t)
GOF +lon (O di =] (ZEHpO 71,000 + J2 Zun(t)) d

/T h%/Q,n
0 4 h1j2.n

T h% 1/2 T T 2 1/2
/201 12 2 P@) 2 1/ Z1n(t) /
- L 3,
< (/0 P21 (0)F + lon(t)? dt) (/0 s P | <h1/2,n) at) ", (2.3.17)
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and therefore we obtain

T K2
/ PR () + a0 di < O (2.3.18)
0

We have thus proved, using the M-regularity assumption, that the sequence of discrete controls vy, is
bounded in L?(0,T). Therefore there exists a function v € L?(0,T) such that

v, — v, in L*(0,T) weak, and hij2nvy, =0, in L*(0,T) weak. (2.3.19)

The second statement in (2.3.19) comes from the continuity of the derivation in the sense of distribu-
tions.

The function v is an admissible control for (2.3.1)). We need the following classical Lemma
on the convergence of the numerical schemes (which can be found for instance in [7]):

Lemma 2.3.3. Consider two smooth functions (u®,u') on (0,1) such that u°(0) = u%(1) = 0 and
u(x,t) the solution of the conservative system ([2.1.1) with initial data (u®,u').

Given a sequence (Sp)pn of M-regular meshes, for alln € N, we denote by u,(t) the solution of the
conservative semi-discrete scheme (2.1.7) with initial data

u‘?’n = uo(x],n), u;n — ul(xj’n)’ ] c {1’ e ’n}‘
Then (Ps,ujn, Qs,uj,,) strongly converges to (u,u’) in C([0,T); HE(0,1) x L?(0,1)) and

n(t . :
f’() — 0pu(0,1) in L*(0,T), and wj,(t) — 0 in L*(0,T). (2.3.20)
1/2,n

This result is of course still true for the backward system (2.3.4]) and its semi-discrete approxima-

tions (2.3.9)).
0

Now, consider two smooth functions (2°, 2!), and define, as in Lemma the solution z of the
backward wave equation (2.3.4) with initial data (2%, 2'), and the solution z, of the semi-discrete

systems (2.3.9), with initial data (2°(z;,), 21 (zjn)).

Using ([2.3.19) and Lemma we can pass to the limit in (2.3.13|) and obtain that the solution
z of (2.3.4) satisfies:

T 1
0:/ 0(t)0:2(0,) di+ <y, 2(,0) >g-101)x 2 (0,1) / y°(2)02(x,0) d. (2.3.21)
0 0

By a density argument, this identity can be extended to any (2%, 2') € H}(0,1) x L(0,T).

Besides, for any (2°,2') € H}(0,1) x L?(0,1), as in (2.3.14]), multiplying the solution of (2.3.1)
with boundary condition y(0,t) = v(¢) and initial data (y°,y') by 2 solution of (2.3.4) with initial
data (zp, z1), we obtain that

T 1
0= / v(t)02(0,) di+ < y',2(.,0) >p-1(0,1)xH2 (0,1) —/ Y’ (2)8y2(x,0) dx
0 0

1
— < oy(T),2° > H-1(0,1)x H(0,1) —l—/o y(T,z)2"(x) de.
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Hence we deduce from ([2.3.21]) that
1
< dy(T), 2" > H-1(0,1)xHL(0,1) —/0 y(T, )z (z) dz = 0.

Therefore y satisfies (2.3.2)). This precisely means that v is an admissible control for (2.3.1)).

The limit v is the HUM control vy, It is sufficient to prove that v(t) coincides with some
0:2(t,0), where z is the solution of (2.3.4)) for some initial data (2°,21) € H}(0,1) x L*(0,1), see for
instance [21].

From (2.3.16)), there exist two functions Z° € H}(0,1) and Z! € L?(0,1) such that
Ps, 70 — Z° H}(0,1) weak, and Qs,Z! — Z', L*(0,1) weak.

Using the weak formulations of (2.3.9) and the conservation of the energy, we can prove (the proof
can be adapted in a standard way from the arguments in [7], in particular Lemma and is left to
the reader) that:

(Ps, Zn,Qs, Zn) — (Z,2') in L=(0,T; H}(0,1) x L*(0,1)) *weak,

2.3.22
Vvt € [0,T], (Ps,Zn(t),Qs,Zn(t)) — (Z(t),Z'(t)) in H}(0,1) x L*(0,1) weak, ( )
where Z is the solution of ([2.3.4)) with initial data (Z°, Z!). Besides, one easily shows that
Z1n h n
in TR L 9,2(0,t), in D(0,T). (2.3.23)
h1/2,n 4 ’

But Z1,,/hy /2y is bounded in L?(0,T) from ([2.3.16)), and therefore hij2mZ1, — 0 in D'(0,T). This
also gives that

Z
# —0,Z inD(0,T), Zin—0 inD'(0,T), hijon(pZy,) — 0 inD'(0,T). (2.3.24)
1/2,n
Combined with the definition of v,, in Lemma [2.3.1] it follows that
h2
—%vg + o, — 8,2(0,1), in D'(0,T).
But, since v, is bounded in L?(0,7) by (2.3.18),

hi g Vs = 0in D'(0,7),

and therefore v(t) = 9, Z(0,t) in D'(0,T).

Since we have already proved that v is an admissible control for ([2.1.1)), this proves that v is the
HUM control vgya.

Strong convergence. Since the weak convergence is already proven, it is sufficient to prove the
convergence of the L2(0,T)-norms.

Since v(t) = 9, Z(0,t) for a solution Z of (2.3.4)) with initial data (Z°, Z'), we get from (2.3.21)) that

T 1

56



2.3. Application to the null controllability of the wave equation

But (2.3.13)) gives:

1 [T 7
0:/ 12} () 2dt+/ } nl
L [ 01z, o) Al

1
/ (Rs, 42) (@)D (Ps, Zn) (2, 0) dar — / (@542 (2)(Qs, Z1) (x, 0) da.

0

Convergences ([2.3.22)) and ([2.3.15) imply that we can pass to the limit in the linear term, and therefore,

by (2.3.25]), we get:

17 T Zyn(t)2
7 / p(1)|1Z1 (1) dt + / | 210l
4 Jo o !hion

Combined with the weak convergences ([2.3.24]), this proves the following strong convergences:

VP21, =0,

AR
V(1) — 9, 2(0, 1),
h1/2,n

But, from the definition (2.3.10)) of v,, the convergence ([2.3.19)) implies that:

2

T hi,. T hijon Z1in(t
|08 + o 0F = [ 202,000 + T 1) a
0 4 0 4 h1/2,n

T T
= v 2 .
. /0 0.2(0,)0(t) dt /0 (t)? dt

h1/27n?);1 — 0 in L*(0,7), and v, — v =ovgyy in L*(0,T),

T
dt—>/ 19, 2(0,1)[2 dt.
0

in L2(0,T).

Hence we deduce from (2.3.19)) that:

which concludes the proof of Theorem [2.3.2 O

Remark 2.3.4. The proof of Theorem 2| slightly differs from the one in [5], which presented an
approach based on the spectral decomp081t10n of the solutions. This technique, in our context, seems
more technically involved than the one presented above, since the spectrum is not as explicit as in the
case of a uniform mesh.

Remark 2.3.5. Let us briefly comment the hypothesis (2.3.15)), and prove that, given (a,b) € L?(0,1) x
H~1(0,1) and a sequence S, of M-regular meshes, there exists a sequence of discrete data (ay,by)
defined on the mesh S, which strongly converges to (a,b) in L?(0,1) x H~1(0,1) in the sense of

2-3.15).

Indeed, for a € L?(0,1), define a, = Ag, (a) as follows (recall the convention a1, = 0):

2 Tj+1,n
Gjn + G410 = / a(z) dr, 1<j<n.
xT

hivi2m Jzj

If @ is continuous on [0, 1], one easily checks that

1Qs, (As, (a)) — GHL2(0,1) — 0.

Besides, if a is in L?, we have that
1Qs,, (As,(a) = all 20,1y < Cllall 201y -
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This, using the density of the continuous functions in L2(0,1), is sufficient to prove that the sequence
of discrete data a, = Qs, (As, (a)) converges to a in L?(0,1) for all a € L%(0,1).

For the approximation of b € H~1(0, 1), we look for an approximation of

which lies in L2(0,1). Thus, the sequence B,, = Ag, B provides discrete data which satisfy Qs, (B,) —
B in L?(0,1) when n — oco. It is then sufficient to find discrete data b, such that Rs, b, = Qs, Bn,
and this can be done explicitly.

2.4 Application to the damped wave equation

2.4.1 The continuous setting

We consider the continuous damped wave equation on the interval (0,1):

2w — 0%, w + 200w = 0, (x,t) € (0,1) x (0,00),
w(0,t) = w(l,t) =0, t € (0,00), (2.4.1)
w(z,0) = w'(z), Ow(x,0)=wl(z), z¢€(0,1),

with w® € H}(0,1) and w! € L*(0,1).

We assume that the damping function o = o(x) is bounded, non-negative and bounded from below
by a positive number on a subinterval J, that is there exists o > 0, such that

o(x) >a, Vel and o, =K. (2.4.2)
Then the energy, defined by (2.1.2)), satisfies the dissipation law

dE

1
d“ﬂz—ﬂécﬂﬂ@w@wﬁd% L>0. (2.4.3)

It is well-known that, under the assumption (2.4.2)), the energy is exponentially decaying: There exist
positive constants C' and p such that

E(t) < C E(0)exp(—put),  t>0. (2.4.4)

Using classical arguments in stabilization theory (see [16]), the energy of (2.4.1) is exponentially
decaying if and only if the observability inequality (2.1.5)) holds for solutions of the conservative

system (21.1).
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2.4.2 The semi-discrete setting

We consider a mesh S,, as in (2.1.6)), and discretize equation ([2.4.1)) according to the mixed finite
element method:

h'—1/2 hji1/2
PR Wl ) + T ) =

hjt1/2n05+1/2.n
9

h,; o;
]71/2,’”‘ ]71/27’”’ / !
- 9 (Wi_y p + w5 p) —

wj+17n — wjzn w]"n — wjan

(w;',n + w;‘—l—l,n)

n (2.4.5)

jzlv"'vna tG[0,00),

hjv1/2.m hi 12
wo(t) = wns1(t) =0,  t€[0,00),
[ wi(0) =w?,, wi(0)=wl,, ~ j=1--n,

where 0;1/2, is an approximation on [2;,,%;+1n] of the damping function o in (2.4.1) which is
assumed to satisfy the following properties:

Tjt1/2;m = @ ViZjn,Tjt+1,n] CJ, and 0< Oip1om <K, Vj€ {0,--- ,n}, (2.4.6)

where o, K and J are as in (2.4.2)).

The energy (2.1.8)) of solutions of (2.4.5)) satisfies

dE,, -
W(t) =-2 Z hit1/2n0541 /2.
=0

(w;,n(t) +Wi1n(?) ) g (2.4.7)

2

Obviously, this dissipation law corresponds to a discrete version of ([2.4.3]).

The question we investigate is the following: Given a sequence (S,,), of meshes, can we find positive
constants C' and p independent of n such that

E,(t) < CE,(0)exp(—put), t>0, (2.4.8)
for any solution of (2.4.5) on S,,7

Similarly as in the continuous setting, this property is equivalent to the uniform observability
inequality (2.1.12)) for solutions of the conservative system ([2.1.7)) (see for instance [28]). Therefore
Theorem leads to the following result:

Theorem 2.4.1. Let M > 1, and consider a sequence (Sp)n of M-regular meshes and a sequence of

damping functions oy, satisfying (2.4.6)).

Then there exist positive constants C and p such that for all n, inequality (2.4.8) holds for any
solution of (2.4.5) on Sy.

The proof of Theorem which can be adapted in a standard way from [16] or [28], is left to
the reader.

Remark 2.4.2. Note that this method yields an estimate on the decay rate p appearing in ,
which is far from being optimal in general. This is a drawback of the method, which is based on a
perturbation argument of the conservative system. Even in the continuous setting, the decay rate
parameter obtained through this method is not in general the sharp one, which is known to coincide
(at least in the one dimensional case) with the spectral abscissa (see [§]).
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Remark 2.4.3. The analysis proposed here can be applied as well to the 1d Perfectly Matched Layers
equations (see [2, [11]), which, roughly, consists in a damped wave equation written in hyperbolic form:

Op+ 0zq+op =0, (z,t) €

Oq + Oxp + 0q = 0, (z,t) € (0,1) x (0,00),
q(0,t) = p(1,t) =0, te
Q(xvo) = QO(x)’ p(az,O) = po(SC)7 LS (07 1)’

where o satisfies the assumptions ([2.4.2)).

(2.4.9)

In [11], it is proven that the 1d PML system is exponentially stable: The energy of solutions of

(2.4.9), defined as
1 /!
B0 =5 [ o0 +lat0)P do.
0
is exponentially decaying.

Besides, stabilization properties for space semi-discrete approximation schemes on uniform meshes
are studied in [II]: It is proved that finite difference approximation schemes are not uniformly ex-
ponentially stable, but adding a viscosity term in space makes the schemes uniformly exponentially
stable.

We claim that the so-called Box scheme (see for instance [I3], 4]) on M-regular meshes for the 1d PML
equations also are exponentially stable. To be more precise, for S, is a M-regular mesh, we consider
the space approximation scheme of given by:

/ /
) . — g
(p]7n p]+1,’n> + <QJ+1yn q]v’ﬂ) — 0’ 0 S ] S ,n/’ tZ 0’

2 hjt1/2n
/ /
) . _ . 2.4.1
<q.7,n qj+17n> + <pg+1,n pj,'n,) — 07 0 S ] S n, t Z 0’ ( 0)
2 hjt1/2.n

qon(t) = pny1a(t) =0, t>0.

Then the energy of solutions (py, g,) of (2.4.10)), defined by

p]n+p]+1n Qj,n+Qj+1,n 2
I (O e O
Pin +Pit1n\2 | (Gin T Gyin\2
(n—l—l) Z J+1/2m ( 2 ) +( 2 ) » (2411)

is exponentially decaying, uniformly with respect to n.

2.5 Further comments

In this paper, we have analyzed a space semi-discrete scheme derived from a mixed finite element
method for a 1d wave equation, which has a good behavior with respect to both stabilization and
controllability properties for a large class of nonuniform meshes.

1. The key point of our analysis is the description of the spectrum of the space discrete operator
given in Theorems It is particularly surprising that the spectrum can be described in a
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rather explicit way for any mesh. This does not seem to be the case for other classical schemes, as the
ones provided by finite difference or finite element methods. To our knowledge, in these cases, only
asymptotic distributions of the eigenvalues are available, see for instance [3] and the literature therein.

2. It would be particularly challenging to understand the behavior of the discrete waves in higher
dimension on nonuniform meshes. To our knowledge, this question has not been addressed so far. We
expect this question to be difficult to address with the tools used until now, which require either a
good knowledge of the eigenvalues (see [17, 25| 23, [26] 24, [3T], 5, [6] and our own approach) or the
existence of multipliers that behave well (see [28, 27, [I1]) on the discrete systems.

3. Let us mention the recent work [10], which studied observability properties for time-discrete
approximation schemes of linear conservative systems in a very general abstract setting. The approach
developed in [10] allows to derive uniform observability inequalities for time-discrete approximation
schemes in a systematic way. One of the interesting features of this technique is that it can be applied
to fully discrete schemes as soon as the space semi-discrete approximation schemes satisfy uniform
observability properties (see [L0, Section 5]). Note that the study presented here fits in this abstract
setting. Therefore, combining Theorem and the results in [I0], one can derive uniform (with
respect to the time and space discretization parameters) observability properties for time-discrete
approximation schemes of the space semi-discrete approximation scheme .

4. Tt would be interesting to estimate the (asymptotic) decay rate for the semi-discrete damped
equation as in the continuous case, see [§]. In the continuous case, the computation of the decay rate
of the energy is technically involved and requires to work directly on the damped system. We refer to
the works [8, O 20] that deal with these questions for damped wave equations.

To our knowledge, even in the case of uniform meshes, this question is still open. Only some
partial results in this direction are available in [I1] for the space semi-discrete Perfectly Matched
Layers equations (see [2]).

5. Let us also mention the recent work [12], which analyzes stabilization properties for time-
discrete approximation schemes of abstract damped systems. In particular, in [I2], several time-
discrete approximation schemes have been designed to guarantee uniform (with respect to the time
discretization parameter) stabilization properties, by adding a numerical viscosity term in time which
efficiently damps out the high frequency components. Besides, this can also be applied to families of
uniformly exponentially stable systems, and in particular to families of space semi-discrete approxi-
mation schemes that fit into the abstract setting of [12], which is the case for discrete approximations
of damped wave equations. Thus, one can combine Theorem and the results in [12] to derive
uniformly (with respect to both time and space discretization parameters) exponentially stable fully
discrete approximation schemes.

Acknowledgments. The author is grateful to E. Zuazua and J.-P. Puel for several suggestions
and remarks related to this work.

61



Chapter 2. A mixed finite element discretization of a 1d wave equation on nonuniform meshes

Bibliography

[1]

62

H. T. Banks, K. Ito, and C. Wang. Exponentially stable approximations of weakly damped wave
equations. In Estimation and control of distributed parameter systems (Vorau, 1990), volume 100
of Internat. Ser. Numer. Math., pages 1-33. Birkh&user, Basel, 1991.

J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput.
Phys., 114(2):185-200, 1994.

E. Bogomolny, O. Bohigas, and C. Schmit. Spectral properties of distance matrices. J. Phys. A,
36(12):3595-3616, 2003. Random matrix theory.

T. J. Bridges and S. Reich. Numerical methods for Hamiltonian PDEs. J. Phys. A, 39(19):5287—
5320, 2006.

C. Castro and S. Micu. Boundary controllability of a linear semi-discrete 1-d wave equation
derived from a mixed finite element method. Numer. Math., 102(3):413-462, 2006.

C. Castro, S. Micu, and A. Miinch. Numerical approximation of the boundary control for the
wave equation with mixed finite elements in a square. IMA J. Numer. Anal., 28(1):186-214, 2008.

L.C. Cowsar, T.F. Dupont, and M.F. Wheeler. A priori estimates for mixed finite element methods
for the wave equations. Comput. Methods Appl. Mech. Engrg., 82:205-222, 1990.

S. Cox and E. Zuazua. The rate at which energy decays in a damped string. Comm. Partial
Differential Equations, 19(1-2):213-243, 1994.

S. Cox and E. Zuazua. The rate at which energy decays in a string damped at one end. Indiana
Univ. Math. J., 44(2):545-573, 1995.

S. Ervedoza, C. Zheng, and E. Zuazua. On the observability of time-discrete conservative linear
systems. J. Funct. Anal., 254(12):3037-3078, June 2008. Cf Chapitre 3.

S. Ervedoza and E. Zuazua. Perfectly matched layers in 1-d: Energy decay for continuous and
semi-discrete waves. Numer. Math., 109(4):597-634, 2008. Cf Chapitre 1.

S. Ervedoza and E. Zuazua. Uniformly exponentially stable approximations for a class of damped
systems. To appear in J. Math. Pures Appl., 2008. Cf Chapitre 5.

J. Frank, B. E. Moore, and S. Reich. Linear PDEs and numerical methods that preserve a
multisymplectic conservation law. SIAM J. Sci. Comput., 28(1):260-277 (electronic), 2006.

R. Glowinski. Ensuring well-posedness by analogy: Stokes problem and boundary control for the
wave equation. J. Comput. Phys., 103(2):189-221, 1992.

R. Glowinski, W. Kinton, and M. F. Wheeler. A mixed finite element formulation for the boundary
controllability of the wave equation. Internat. J. Numer. Methods Engrg., 27(3):623-635, 1989.

A. Haraux. Une remarque sur la stabilisation de certains systémes du deuxiéme ordre en temps.
Portugal. Math., 46(3):245-258, 1989.

J.A. Infante and E. Zuazua. Boundary observability for the space semi discretizations of the 1-d
wave equation. Math. Model. Num. Ann., 33:407-438, 1999.

A. E. Ingham. Some trigonometrical inequalities with applications to the theory of series. Math.
Z., 41(1):367-379, 1936.



Bibliography

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

S. Labbé and E. Trélat. Uniform controllability of semidiscrete approximations of parabolic
control systems. Systems Control Lett., 55(7):597-609, 2006.

G. Lebeau. Equations des ondes amorties. Séminaire sur les E’quatz’ons auxr Dérivées Partielles,
1993-1994,Ecole Polytech., 1994.

J.-L. Lions. Controlabilité exacte, Stabilisation et Perturbations de Systémes Distribués. Tome 1.
Contrélabilité exacte, volume RMA 8. Masson, 1988.

F. Macia. The effect of group velocity in the numerical analysis of control problems for the wave
equation. In Mathematical and numerical aspects of wave propagation— WAVES 2003, pages
195-200. Springer, Berlin, 2003.

A. Miinch. A uniformly controllable and implicit scheme for the 1-D wave equation. M2AN Math.
Model. Numer. Anal., 39(2):377-418, 2005.

M. Negreanu, A.-M. Matache, and C. Schwab. Wavelet filtering for exact controllability of the
wave equation. STAM J. Sci. Comput., 28(5):1851-1885 (electronic), 2006.

M. Negreanu and E. Zuazua. Convergence of a multigrid method for the controllability of a 1-d
wave equation. C. R. Math. Acad. Sci. Paris, 338(5):413-418, 2004.

K. Ramdani, T. Takahashi, and M. Tucsnak. Uniformly exponentially stable approximations for a
class of second order evolution equations—application to LQR problems. ESAIM Control Optim.
Cale. Var., 13(3):503-527, 2007.

L. R. Tcheugoué Tebou and E. Zuazua. Uniform boundary stabilization of the finite difference
space discretization of the 1 — d wave equation. Adv. Comput. Math., 26(1-3):337-365, 2007.

L.R. Tcheugoué Tébou and E. Zuazua. Uniform exponential long time decay for the space semi-
discretization of a locally damped wave equation via an artificial numerical viscosity. Numer.

Math., 95(3):563-598, 2003.
L. N. Trefethen. Group velocity in finite difference schemes. SIAM Rewv., 24(2):113-136, 1982.

R. M. Young. An introduction to nonharmonic Fourier series. Academic Press Inc., San Diego,
CA, first edition, 2001.

E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2-D
wave equation in the square. J. Math. Pures Appl. (9), 78(5):523-563, 1999.

E. Zuazua. Propagation, observation, and control of waves approximated by finite difference
methods. SIAM Rev., 47(2):197-243 (electronic), 2005.

63






Part 11

Observability and stabilization
properties for time-discrete
approximation schemes

65






Chapter 3

On the observability of time-discrete
conservative linear systems

Joint work with Chuang Zheng and Enrique Zuazua.

Abstract: We consider various time discretization schemes of abstract conservative evolution equa-
tions of the form z = Az, where A is a skew-adjoint operator. We analyze the problem of observability
through an operator B. More precisely, we assume that the pair (A, B) is exactly observable for
the continuous model, and we derive uniform observability inequalities for suitable time-discretization
schemes within the class of conveniently filtered initial data. The method we use is mainly based on
the resolvent estimate given by Burq & Zworski in [2]. We present some applications of our results
to time-discrete schemes for wave, Schrodinger and KdV equations and fully discrete approximation
schemes for wave equations.

3.1 Introduction

Let X be a Hilbert space endowed with the norm ||-||, and let A : D(A) — X be a skew-adjoint
operator with compact resolvent. Let us consider the following abstract system:

2(t) = Az(t), =z(0) = zp. (3.1.1)

Here and henceforth, a dot (") denotes differentiation with respect to the time ¢. The element zp € X
is called the initial state, and z = z(t) is the state of the system. Such systems are often used as models
of vibrating systems (e.g., the wave equation), electromagnetic phenomena (Maxwell’s equations) or
in quantum mechanics (Schrodinger’s equation).

Assume that Y is another Hilbert space equipped with the norm ||-||,. We denote by £(X,Y)
the space of bounded linear operators from X to Y, endowed with the classical operator norm. Let
B € £(D(A),Y) be an observation operator and define the output function

y(t) = Bz(t). (3.1.2)

In order to give a sense to (3.1.2), we make the assumption that B is an admissible observation
operator in the following sense (see [27]):
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Chapter 3. On the observability of time-discrete conservative linear systems

Definition 3.1.1. The operator B is an admissible observation operator for system (3.1.1])-(3.1.2) if
for every T > 0 there exists a constant K7 > 0 such that

T
/ lyOIy dt < Kz ll=oll . V20 € D(A). (3.1.3)
0

Note that if B is bounded in X, i.e. if it can be extended such that B € £(X,Y), then B is
obviously an admissible observation operator. However, in applications, this is often not the case, and
the admissibility condition is then a consequence of a suitable “hidden regularity” property of the

solutions of the evolution equation (3.1.1)).
The exact observability property of system (3.1.1])-(3.1.2)) can be formulated as follows:

Definition 3.1.2. System ([3.1.1))-(3.1.2) is exactly observable in time T if there exists kr > 0 such
that

T
brlolk < [ IOl d Va0 e D). (3.1.4)
0

Moreover, (3.1.1)-(3.1.2)) is said to be exactly observable if it is exactly observable in some time 7" > 0.

Note that observability issues arise naturally when dealing with controllability and stabilization
properties of linear systems (see for instance the textbook [16]). Indeed, controllability and observ-
ability are dual notions, and therefore each statement concerning observability has its counterpart in
controllability. In the sequel, we mainly focus on the observability properties of —.

It was proved in [2] 18] that system (3.1.1)-(3.1.2) is exactly observable if and only if the following
assertion holds:

(3.1.5)

There exist constants M, m > 0 such that
M?||(iwl = A)z|> +m? | Bz|l§ > |2, ¥ weR, z€D(A),

This spectral condition can be viewed as a Hautus-type test, and generalizes the classical Kalman rank

condition, see for instance [18| [26]. To be more precise, if (3.1.5)) holds, then system (3.1.1)-(3.1.2) is

exactly observable in any time 7' > Ty = 7 M (see [18]).

There is an extensive literature providing observability results for wave, plate, Schrédinger and
elasticity equations, among other models and by various methods including microlocal analysis, mul-
tipliers and Fourier series, etc. Our goal in this paper is to develop a theory allowing to get results
for time-discrete systems as a direct consequence of those corresponding to the time-continuous ones.

Let us first present a natural discretization of the continuous system. For any At > 0, we denote
by zF and y* respectively the approximations of the solution z and the output function y of system
(3.1.1)—(3.1.2)) at time tx, = kAt for k € Z. Consider the following implicit midpoint time discretization

of system (3.1.1)):

k+1 k k+1 k
z —Zz z +z
_ A( ) n X, kez,
At 2 m < (3.1.6)
20 given.
The output function of (3.1.6)) is given by
" =B, kel (3.1.7)
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Note that (3.1.6)—(3.1.7)) is a discrete version of (3.1.1)—(3.1.2)).

Taking into account that the spectrum of A is purely imaginary, it is easy to show that szH I8
conserved in the discrete time variable k € Z, i.e. szH x = HzOH - Consequently the scheme under
consideration is stable and its convergence (in the classical sense of numerical analysis) is guaranteed
in an appropriate functional setting.

The uniform exact observability problem for system (3.1.6) is formulated as follows: To find a
positive constant kp, independent of AAt, such that the solutions 2* of system (3.1.6)) satisfy:

bl <ot Y Hy’“Hi (3.1.8)
ke(0,T/At)

for all initial data 2° in an appropriate class.

Clearly, (3.1.8)) is a discrete version of (3.1.4]).

Note that this type of observability inequalities appears naturally when dealing with stabilization
and controllability problems (see, for instance, [16] 26], [31]). For numerical approximation processes,
it is important that these inequalities hold uniformly with respect to the discretization parameter(s)
(here At only) to recover uniform stabilization properties or the convergence of discrete controls to the
continuous ones. We refer to the survey [31] and the references therein for more precise statements.
To our knowledge, there are very few results addressing the observability issues for time semi-discrete
schemes. We refer to [19], where the uniform controllability of a fully discrete approximation scheme
of the 1-d wave equation is analyzed, and to [28], where a time discretization of the wave equation
is analyzed using multiplier techniques. Especially, the results in [28] may be viewed as a particular
instance of the abstract models we address here.

In the sequel, we are interested in understanding under which assumptions inequality (3.1.8)) holds
uniformly on At. One expects to do it so that, when letting At — 0, one recovers the observability
property of the continuous model.

It can be done by means of a spectral filtering mechanism. More precisely, since A is skew-adjoint
with compact resolvent, its spectrum is discrete and o(A) = {ip; : j € N}, where (1) en is a sequence
of real numbers. Set (®;);en an orthonormal basis of eigenvectors of A associated to the eigenvalues

(i415) jen, that is:
AD; = ip; ®;. (3.1.9)

Moreover, we define

Cs = span {®; : the corresponding ijp; satisfies |p;| < s}. (3.1.10)

We will prove that inequality (3.1.8) holds uniformly (with respect to At > 0) in the class C5/a;
for any § > 0 and for Ty large enough, depending on the filtering parameter 9.

This result will be obtained as a consequence of the following theorem:

Theorem 3.1.3. Let § > 0.

Assume that we have a family of vector spaces X5y C X and a family of unbounded operators
(Aat, Bat) depending on the parameter At > 0 such that
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Chapter 3. On the observability of time-discrete conservative linear systems

(H1) For each At > 0, the operator Ap; is skew-adjoint on Xsae, and the vector space Xsae is
globally invariant by Ans. Moreover,

o

(H2) There ezists a positive constant Cpg such that

”BAtZHy <Cp HAAtZHX , Vz € X&,At, VAL > 0. (3.1.12)

(H3) There ezist two positive constants M and m such that

M2 (Ane — iw)el% +m? [ Bare = 1% -
Vz e Xsar U D(Apt),Vw € R, VAL > 0.

Then there exists a time Ts such that for all time T > Ty, there exists a positive constant ks such
that for At > 0 small enough, the solution of

k+1 k k+1 k
z -z z + z .
T :AAt<f>, m X(;’At, kGZ, (3114)
with initial data 2° € Xs ae satisfies
2 2
brs| e <ot > |Badt| . v e Xoan (3.1.15)
ke(0,T/At)
Moreover, Ts can be taken to be such that
52\ 2 §4q1/2
T(;:w[(lJrZ) M2+mZC%E} , (3.1.16)

where Cp is as in (3.2.1)).

As we shall see in Theorem taking Aat = A, Bay = B and X5/ = C5/n¢, Theorem
provides an observability result within the class C5/a; for system (3.1.6)-(3.1.7), as a consequence of

assumption (3.1.5) and B € £(D(A),Y).

Theorem [3.1.3] is also useful to address observability issues for more general time-discretization
schemes of (| - - than . For instance, one can consider time semi-discrete schemes of
the form

2P = T2, y* = B2, (3.1.17)

where T A is a linear operator with the same eigenvectors as the operator A. We will prove that, under
some general assumptions on Ty, inequality (3.1.8]) holds uniformly on At for solutions of (3.1.17))
when the initial data are taken in the class C5/a¢, as we shall see in Theorem

We can also consider second order in time systems such as
u(t) + Aou(t) = 0; u(0) = up, u(0) = vo, (3.1.18)

where Ag is a positive self-adjoint operator. Of course, such systems can be written in the same first-
order form as (3.1.1). However, there are time-discretization schemes such as the Newmark method
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which cannot be put in the form (3.1.17). Hence we present a specific analysis of the Newmark method
for (3.1.18)), still based on Theorem

One of the interesting applications of our results, and, in particular of Theorem [3.1.3] is that
they allow us to develop a two-step strategy to study the observability of fully discrete approximation
schemes of -. Roughly speaking, first, one needs to derive observability properties for
space semi-discrete approximation schemes, uniformly with respect to the space mesh-size parameter,
as it has already been done in many cases (see [4, [0, [7, 10 20, 2], 30] and [31] for more references).
Second, applying the results of this paper on time discretizations, the uniform observability (with
respect to both the time and space mesh-sizes) for the fully discrete approximation schemes is derived.
This procedure will be described in detail in Section|3.5] To our knowledge, the observability properties
of fully discrete approximation schemes have been studied only in [19], in the very particular case of
the 1-d wave equation. The results we present here can be applied to a much wider class of systems,
time-discretization schemes, in one and several space dimensions, etc.

To complete our analysis of the discretizations of system —, we also analyze admissi-
bility properties for the time semi-discrete systems introduced throughout this paper. They are useful
when deriving controllability results out of the observability ones. More precisely, it allows proving
controllability results by means of duality arguments combined with observability and admissibility
results (see for instance the textbook [16] and the survey article [31]). In particular, we prove that
the admissibility inequality can be interpreted in terms of the behavior of wave packets. From
this wave packet estimate, we will deduce admissibility inequalities for the time semi-discrete schemes.
This part can be read independently from the rest of the article.

The outline of this paper is as follows.

In Section we prove Theorem from which we deduce the uniform observability property
for system —, assuming that the initial data are taken in some subspace of filtered
data Cs/a4 for arbitrary 6 > 0. Our proof of Theorem is mainly based on the resolvent estimate
(3.1.13]), combined with standard Fourier arguments adapted to the time-discrete setting. In Section
[3.3] we show how to apply Theorem to obtain similar results for time semi-discrete approxima-
tion schemes such as and the Newmark approximation schemes, for which we prove that a
uniform observability inequality holds as well, provided the initial data belong to Cs/as. In Section
3.4l we give some applications to the observability of some classical conservative equations, such as the
Schrodinger equation or the linearized KdV equation, etc. In Section [3.5, we give some applications
of our main results to fully discrete schemes for skew-adjoint systems as . In Section we
present admissibility results similar to for the time semi-discrete schemes used along the article.
We end the paper by stating some further comments and open problems.

3.2 The implicit mid-point scheme

In this section we show the uniform observability of system (3.1.6)-(3.1.7), which can be seen as a
direct consequence of Theorem [3.1.3] In other words, its proof is a simplified version of the one of

Theorem To avoid the duplication of the process, we only give the proof of the latter one, which
is more general.

Let us first introduce some notations and definitions.

The Hilbert space D(A) is endowed with the norm of the graph of A, which is equivalent to ||A - ||
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since A has a compact resolvent. It follows that B € £(D(A),Y’) implies
|Bz|ly < Cg||Az||x, Vz € D(A). (3.2.1)

We are now in position to claim the following theorem based on the resolvent estimate (3.1.5)):

Theorem 3.2.1. Assume that (A, B) satisfy (3.1.5) and that B € £(D(A),Y).

Then, for any 6 > 0, there exists Ts such that for any T > T, there exists a positive constant ks,
independent of /\t, such that for At > 0 small enough, the solution z* of (3.1.6)) satisfies

ks || <o S HszHi V20 € Csynre (3.2.2)
ke(0,7/At)

Moreover, Ts can be taken to be such that

52

Ty = W[MQ(l + —)2 —l—m201236—4
1 16

}1/2, (3.2.3)

where Cp is as in (3.2.1)).

Remark 3.2.2. 1If we filter at a scale smaller than At, for instance in the class Cs/(ape, with a < 1,
then ¢ in (3.2.3) vanishes as At tends to zero. In that case the uniform observability time Ty we
obtain is Ty = wM, which coincides with the time obtained by the resolvent estimate in the
continuous setting (see [I8]). Note that, however, even in the continuous setting, in general M is not
the optimal observability time.

Proof of Theorem [3.2.1. Theorem can be seen as a direct consequence of Theorem which
will be proved below. Indeed, one can easily verify that (H1)-(H3) hold by taking An, = A, Baoy = B
and X&,At = Cé/At. OJ

Before getting into the proof of Theorem let us first introduce the discrete Fourier transform
at scale At, which is one of the main ingredients of the proof of Theorem [3.1.3

Definition 3.2.3. Given any sequence (u¥) € [?(AtZ), we define its Fourier transform as:

u(r) = AtZuk exp(—iTkAt), 1At € (—m, 7). (3.2.4)
kEZ

For any function v € L?(—m//At, 7/At), we define the inverse Fourier transform at scale At > 0:

1 7w/ At
,Dk

= — v(T) exp(iTkAt) dr, k€ Z. (3.2.5)
2m -7/t

According to Definition
(3.2.6)

S0
Il
S
v
Il
<

and the Parseval identity holds

1 TI'/At 9 k1o
o /At\ﬁ(r)\ dr = Aty [uF). (3.2.7)
- kEZ

These properties will be used in the sequel.

72



3.2. The implicit mid-point scheme

Proof of Theorem [3.1.3 The proof is split into three parts.

Step 1: Estimates in the class X5 ;. Let us take Ve Xs.n¢- Then the solution of (3.1.14])

has constant norm since Aa; is skew-adjoint (see (H1)). Indeed,

At

k k
z = >z = Taz",
(I_AQtAAt '

where the operator Ta; is obviously unitary.

Further, since

k| k+1
FAME S A 1 k I k
A ) ()

2 2( e m\ T,
we get that for any k,

2 2

zo+zl
2

ok 4
2

1 2
> —= "lx-
X1+ (3)

as a consequence of (3.1.11)) and the skew-adjointness assumption (H1) of Ax.

X

(3.2.8)

Step 2: The resolvent estimate. Set x € H'(R) and x* = x(kAt). Let gF = x*2*, and

k+1 k
- -
S (),

One can easily check that
Y I B N S IRV PY oo B
At 2 2 At
» (XkJrl Tk kL gk . YT R kT Zk>
A 2 2 2 2
XL — XN 2k R (Af)?2 Skl _
= =) a(=%))

- 2 4 At

- (- ()

Especially, recalling (3.2.8) and (3.1.11)), (3.2.10]) implies

ka”2 - (Xk-l-l_Xk)Q Zo-i-Zl
X~ At 2

o=

Ea

2 2
X(1+i).

In particular, f¥ € I2(AtZ; X).
Taking the Fourier transform of (3.2.9)), for all 7 € (—w/At, 7/At), we get
fr) = Atz fFexp(—ikAtr)

kEZ
k+1 + k

= Atz (W - AN<%)) exp(—ikAtT)
kEZ

— At (M ~ AN(M)) o exp(—ikAtr)

At 2
(2 (T2 1 Aoty (720 o (721

(3.2.9)

(3.2.12)
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We claim the following Lemma:

Lemma 3.2.4. | The solution (z*) in ([3.1.14) satisfies

2
1+ ey (XY g, (220
keZ Y
0 112 ko o k+1 k1 _ ok
> Z;z llmz<x +2X ) —apnnt Y (X Atx)], (3.2.13)
X kez kez
with
4 2
ar = (1 . ;) ay = M2(1 n ‘ff +m2CY (1 —) fﬁ + (Alé) 528 — 1), (3.2.14)

for any o > 0 and B > 1, where Cg, M, m are as in (3.1.12)-(3.1.13)).

Proof of Lemma[3.2.]. Let
TAL TAL

G(1) = g(7) exp(iT) cos( 5

By its definition and the fact that z* € Xs,At, it is obvious that G(7) € X5 a¢.

)- (3.2.15)

In view of (3.2.12)), applying the resolvent estimate (3.1.13)) to G(7), integrating on 7 from —7 /At
to m/At, it holds

LY VAN, 7/t LY2AN
e fr dT+m2 | BacG(r)|12 dr >/ 1G ()% dr. (3.2.16)
-7/t — /At —7 /At
Applying Parseval’s identity (3.2.7)) to (3.2.16)), and noticing that
- k k+1 k+1
¢ =TI e am = (T @,
2 2
we get
gk 4 gkl 2 gk 4 gkl 2
MQAtZkaH +m (7) >ary | (3.2.17)
Y keZ X

Now we estimate the three terms in (3.2.17). The first term can be bounded above in view of
B2.11).

Second, since

- ) )Rt C)

2 2 2 2 t

5 (3.2.18)

using

la+ b2 < (1 + @)l + (14 ) o],
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we deduce that
2

k+1 k k+1 k+1 NI
T +g X —I—X 242
J I < . 7
B 2 )Y— (14 a) (5 )BN( 2 )Y
k41l k9 k1 k(|2
LA a) (X Atx> BN<Z Atz)
Y
x’“+1+x EHL g k|2 (3.2.19)
< 1—|—a< ) BAt(7>
2 Y
54 L k220 4 o
) () -
+( * 16CB At 2 Iy
In (3.2.19)) we use the fact that (recalling (3.1.11)) and (3.1.12))
2k 4 Rt AR L §2Cp || 20 + 2
BaApt| ——— < COp||A4, (—F— H < .
H ( ) ¥ At( A2 |2 Iy
Finally, for any g > 1, recalling (3.2.8]), (3.1.11) and (3.2.18)), we get
‘gkﬂ_i_gk 2 N <1l>(Xk+l+Xk)2 SRty ok
2 |y ~ 3 2 2 |
A2 g RHL VR 2 || gL Gk 2
-6-0(3) ) |
X
k+1 ko -0 112
><1_l)<x +x> 24z
- B 2 z x o (3.2.20)
AtN4 T - RN 2 2+ 2
-6-1(3) ( ) |4 (=)
(B-1) 5 iy N .
k+1 k2 0 1
><1_l>(x +x) 204z
= 3 2 2 ||y
. SAEN2 /T — kN2 20 + 21 2
(TS )]

where we used 1
2 2 2
+o)*>(1-= —(B- _

Applying (3.2.11)), (3.2.19)) and (3.2.20)) to (3.2.17)), we complete the proof of Lemma O

Step 3: The observability estimate. This step is aimed to derive the observability estimate
(3.1.15) stated in Theorem from Lemma with explicit estimates on the optimal time Ty.

First of all, let us recall the following classical Lemma on Riemann sums:

Lemma 3.2.5. Let x(t) = ¢(t/T) with ¢ € H> N HE(0,1), extended by zero outside (0,T). Recalling
that x* = x(kAt), the following estimates hold:

¢ Y Tl | < 272t Wl 4

s (LY

L2(0,1)’
(3.2.21)

4

|4

L201’_ L2(0,1) £2(0,1)
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Sketch of the proof of Lemma[3.2.8 Tt is easy to show that for all f = f(t) € C'(0,T) and sequence
T, € [EAL, (K + 1)At], it holds

‘/f dt— At Y f(Tk>\ < > //k 1f(5)| ds dt

ke(0,T/At) ke(0,T/At) At (k1) At

< At/o | f| dt. (3.2.22)

Replacing f by ¢? we get the first inequality (3.2.21). Similarly, replacing f by ¢2, the second one
can be proved too. O

Taking Lemma and into account, the coefficient of ||(2° + zl)/QHi in (3.2.13]) tends to
1 1 )
k150,80 = 20+ o) [(1 - E)T 1l 72(0,1)

(e ) e (0 ) )7 el

L2(0,1) ]

. (3.2.23)

when At — 0.

Note that k754,84 is an increasing function of 7' tending to —co when 7' — 07 and to +o00 when
T — oo. Let T o 3,4 be the unique positive solution of k7 s, g4 = 0. Then, for any time T' > T , 5,4,
choosing a positive kr s such that
0 <krs <krsapss

there exists Aty > 0 such that for any At < Atg, the following holds:

2
< At Z

X ke€(0,T/At)

This combined with (3.2.8) yields (3.1.15)).

This construction yields the following estimate on the time Ts in Theorem Namely, for any
a >0, f> 1 and smooth function ¢, compactly supported in [0, 1]:

zo+zl

(3.2.24)

2
- Ay

2

Ba (

Y

w8 1 ey ey 2

We optimize in «, 8 and ¢ by choosing a = oo, § = oo and

sin(7t), te€ (0,1
9(t) = { 0, ™ elsex(zvher)e, (3.2.25)
which is well-known to minimize the ratio '
|4,
10l >
For this choice of ¢, this quotient equals 7, and thus we recover the estimate (3.1.16[). This completes
the proof of Theorem |3.1.3 O
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Theorem [3.2.1 has many applications. Indeed, it roughly says that, for any continuous conservative
system, which is observable in finite time, there exists a time semi-discretization which uniformly
preserves the observability property in finite time, provided the initial data are filtered at a scale
1/At. Later, using formally some microlocal tools, we will explain why this filtering scale is the
optimal one. Note that in Theorem 7.1 of [28] this scale was proved to be optimal for a particular
time-discretization scheme on the wave equation.

Besides, as we will see in Section Theorem [3.1.3] is a key ingredient to address observability
issues.

3.3 General time-discrete schemes

3.3.1 General time-discrete schemes for first order systems

In this section, we deal with more general time-discretization schemes of the form (3.1.17)). We will
show that, under some appropriate assumptions on the operator T a¢, inequality (3.1.8)) holds uniformly
on At for solutions of (3.1.17) when the initial data are taken in the class Cs/a;-

More precisely, we assume that (3.1.17)) is conservative in the sense that there exist real numbers
Aj,a¢ such that
Trt®; = eXp(’L')\j7AtAt)q)j. (3.3.1)

Moreover, we assume that there is an explicit relation between \j o and p; (as in (3.1.9)) of the
following form:
1
Njar = N h(piANt), (3.3.2)
where h : (=R, R) — [—m, 7] is a smooth strictly increasing function, with R € (0, o], i.e.

|h(n)| <, inf{h'(n), |n| <&} > 0; Vo < R. (3.3.3)

The parameter R corresponds to a frequency limit R//At imposed by the discretization scheme, see for
instance the example given in Subsection Roughly speaking, the first part of reflects the
fact that one cannot measure frequencies higher than 7/At in a mesh of size At. The second part is
a non-degeneracy condition on the group velocity (see [25]) of solutions of which is necessary
to guarantee the propagation of solutions that is required for observability to hold.

We also assume

him) —1 as n—0. (3.3.4)

n
This guarantees the consistency of the time-discrete scheme with the continuous model (3.1.1)).

We have the following Theorem:

Theorem 3.3.1. Assume that (A, B) satisfy (3.1.5) and that B € £(D(A),Y).

Under assumptions (3.3.1), (3.3.2), (3.3.3) and (3.3.4)), for any & € (0, R), there exists a time Ty
such that for all T > Ty, there exists a constant k1 s > 0 such that for all At > 0 small enough, any

solution of (3.1.17)) with initial value 2° € Cs/nt satisfies

k k+1
CHEPEYNED SRl G
ke(0,T/At)

(3.3.5)

Y
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Chapter 3. On the observability of time-discrete conservative linear systems

Besides, we have the following estimate on Ty:

Ts < W!M2<1 + tan? (h(;)»z illg{‘W}

1/2
+m?Ch |?7|u§% {g tan <h(277)) }2tan4 (h(;)>] , (3.3.6)

where Cp is as in (3.2.1)).

Proof. The main idea is to use Theorem Hence we introduce an operator Aa; such that the
solution of (3.1.17) with zo € Cr/a¢ coincides with the solution of the linear system
Zk-l—l _ Zk:

Sk JrZl~c+1> 0
_— —), =z
At

= AAt( 5

= 2. (3.3.7)

This can be done defining the action of the operator Aa; on each eigenfunction:

AAtq)j = ikAt(ﬂj)q)ja (338)
where ) h(wAt)
w
kar(w) = — tan ( 5 ) (3.3.9)
Indeed, if

zZ0 = E athDj,

then the solution of (3.1.17) can be written as

F =) a0 expliNkAt) =) ajéjexp(ih(u;At)k)
and the definition of Aa; follows naturally.

Obviously, when the scheme ([3.1.17)) under consideration is the one of Section that is (3.1.6)),
the operator Aa; is precisely the operator A.

Then would be a straightforward consequence of Theorem if we could prove the
resolvent estimate for Aan;. We will see in the sequel that a weak form of the resolvent estimate holds,
and that this is actually sufficient to get the desired observability inequality. In the sequel, J is a given
positive number, determining the class of filtered data under consideration.

Step 1: A weak form of the resolvent estimate. By hypothesis (3.1.5)),
M?||(A —iw)z||% + m? |Bz|l3 > ||2II%, 2 € D(A), weR (3.3.10)

For z € Cs/y, that is

z= > a;é;, (3.3.11)

lpj|<6/ At

one can easily check that

(A~ i)zl = ol (y — )’
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and 9
|(Ane— )23 = 3 las (kadli) - w)

Especially, for any w € R, this last estimate takes the form

I(Ans — ikar(w))2l = Z |aj’2<k‘At(Mj) - kAt(W)>2

with kas as in (3.3.9). Thus, taking € > 0, it follows that for any w < (§ +¢€)/At,

Ao = ikaalally = (| int, {Ikal})” 4 = iw)al

Hence, setting

d+e
YAV

-1
AALe = l{:At( ), Cse = (inf{k"m(w) D wlAt< 5+ 5}) , (3.3.12)
which is finite in view of (3.3.3), we get the following weak resolvent estimate:

2
C2.M> H (AN . iw)z ‘X +m2||Bz|% > |l2l% . 2 € Coan |w] < e (3.3.13)

Our purpose is now to show that this is enough to get the time-discrete observability estimate. We

emphasize that the main difference between (3.3.13) and (3.1.13)) is that (3.1.13)) is assumed to hold
for all w € R while (3.3.13)) only holds for |w| < aate.

Step 2: Improving the resolvent estimate (3.3.13)). Here we prove that (3.3.13]) can be
extended to all w € R. Indeed, consider w such that |w| > aate and 2 € Cs5/n4 as in (3.3.11)). Then

[An =izl = 30 (ko) — kae(S55)) a2
Iyl <0/ A8

S (ral ) k(L))
N, At =

> (&)Q(Wg[lgw En@)) 121,

Using the explicit expression (3.3.9) of kat, we get

Vv

, €\2 .
|(Ane —iw)ll% > () im0 P (3.3.14)

Therefore, for each ¢ > 0, in view of (3.3.3) and (3.3.12)), there exists (At). > 0 such that, for
At < (A,

2
C2. M2 H (Am - iw)zHX +m2||Bz|% > |21, 2 €Csap wER. (3.3.15)

Step 3: Application of Theorem First, one easily checks from ({3.3.8])-(3.3.9) that

At Apez| < ozl x s z € Cs/nes (3.3.16)
with & = 2tan(h(5)/2).
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Second, we check that there exists a constant Cg s such that

1Bz|ly < Cps

l[Anezllx, 2 €Coyne (3.3.17)

where Cp is as in (3.2.1)). Indeed, for z € Cs5/y,

kar(w
sty < sup {[FU

lw| A< w
and therefore one can take
Cgs = BsCg, (3.3.18)
where 5 h(n)
Ui
Bs = sup { —tan | ——= | ¢,
sup {tan (=55) }

which is finite from hypothesis (3.3.3]) and (3.3.4).
Third, the resolvent estimate (3.3.15) holds.

Then Theorem can be applied and proves the observability inequality (3.3.5)) for the solutions
of (3.1.17)) with initial data in C5/ . Besides, we have the following estimate on the observability time
Tse :

5212 o%q1/2

Ty = w[<1 + Z> M2CE, + mQC%ﬂ(?E] .
In the limit € — 0, T5. converges to an admissible observability time 5. Besides, using the explicit
form of the constants Cs.,d and (5 one gets (3.3.6]). O

3.3.2 The Newmark method for second order in time systems

In this subsection we investigate observability properties for time-discrete schemes for the second order

in time evolution equation (3.1.18]).

Let H be a Hilbert space endowed with the norm ||-||;; and let Ay : D(Ag) — H be a self-adjoint
positive operator with compact resolvent. We consider the initial value problem , which can be
seen as a generic model for the free vibrations of elastic structures such as strings, beams, membranes,
plates or three-dimensional elastic bodies.

The energy of (3.1.18)) is given by
2
) 1/2
B(t) = ()l + |45 *u)| - (3:3.19)

which is constant in time.

We consider the output function
y(t) = Biu(t) + Byu(t), (3.3.20)

where By and Bj are two observation operators satisfying By € £(D(Ay),Y) and B; € S(D(A(l)/Q), Y).
In other words, we assume that there exist two constants Cg; and Cp 2, such that

|Brully < Cpaldouly,  IIBavlly < Caal|Ag™|. (3.3.21)
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In the sequel, we assume either By = 0 or By = 0. This assumption is needed for technical reasons,
as we shall see in Remark and in the proof of Theorem

System ([3.1.18)—(3.3.20) can be put in the form (3.1.1)—(3.1.2). Indeed, setting

1/2 1/2

21(t) =+ 1Ay "u, 2o(t) =1 —iAy "u, (3.3.22)
equation (|3.1.18)) is equivalent to
1/2
P=Ar, 2= ( “1 ) A= | M 01/2 : (3.3.23)
22 0 —i4

for which the energy space is X = H x H with the domain D(A) = D(Aé/Q) X D(A(l)/Q). Moreover,
the energy F(t) given in (3.3.19) coincides with half of the norm of z in X.

Note that the spectrum of A is explicitly given by the spectrum of Ag. Indeed, if (u?) jen= (pj > 0)
is the sequence of eigenvalues of Ay, i.e.

Ao = pig;,  jEN,

with corresponding eigenvectors ¢;, then the eigenvalues of A are +iy;, with corresponding eigenvec-

tors
(I)j_((%j>, (I)_j_<¢())j>7 jEN* (3324)

Besides, in the new variables (3.3.22)), the output function is given by

y(t) = Bz(t) = B1A0_1/2<i22(t);i21(t)) + BQ(W). (3.3.25)

Recalling the assumptions on B; and By in (3.3.21]), the admissible observation B belongs to £(D(A),Y).

In the sequel, we assume that the system (|3.1.18))—(3.3.20]) is exactly observable. As a consequence
of this, we obtain that system (3.3.23)—(3.3.25) is exactly observable and therefore the resolvent

estimate (3.1.5)) holds.

We now introduce the time-discrete schemes we are interested in. For any At > 0 and 8 > 0, we
consider the following Newmark time-discrete scheme for system (3.1.18)):

Wk k=1 gk

+ Ao (ﬁukH (1 28)dk + ﬂu’“*l) —0,

At)?
w0+ ,il ?u1 0 L2 (3.3.26)
( 5 T >=(UQ,UQ)€D(AO )XH.
The energy of (3.3.26) is given by
ko k+1 2 k+1 k(|2
k+1/2 _ || g1/2 (Ut U o Tu
E ' Ay ( 2 ) * At
AL)2 k+1 _ k|2
+ (48— 1) 4) Aéﬂ(umu)‘  keZ, (3.3.27)

which is a discrete counterpart of the continuous energy (3.3.19). Multiplying the first equation of
(3-326) by (uFt! — u*~1)/2 and using integration by parts, it is easy to show that (3.3.27) remains
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Chapter 3. On the observability of time-discrete conservative linear systems

constant with respect to k. Furthermore, we assume in the sequel that 5 > 1/4 to guarantee that
system (3.3.26)) is unconditionally stable.

The output function is given by the following discretization of (3.3.20)):

ko ktl k1 _ ok
otk :B1<u +2“ )+32(u = v )7 (3.3.28)

where, as in (3.3.20)), we assume that either By or By vanishes.

For any s > 0, we define Cs as in (3.1.10)). Note that this space is invariant under the actions of
the discrete semi-groups associated to the Newmark time-discrete schemes ([3.3.26)).

We have the following theorem:

Theorem 3.3.2. Let > 1/4 and 6 > 0. We assume that either By =0 or By = 0.

Then there exists a time Ts such that for all T > Ty, there exists a positive constant kr s, such
that for At >0 small enough, the solution of (3.3.26)) with initial data (uo,vo) € Cs/ar satisfies

brsEV? <ty Hy’““/?HQ : (3.3.29)
EAte(0,T) Y

where 18 defined 1n (|3.9. an 1, D2 satis 9. .
here y*+1/2 is defined in (3.3.28) and B:, B sy (3-3.21)

Besides, Ts can be chosen as

Tyi=m [(1 + B62)2 (1 + (ﬂ - %)52>2M2 + m2C]2371fG4} 2 (3.3.30)
if Bo =0 and as
Tyo = [(1 + 352)?2 (1 + (ﬂ - %)52)1\42 n mQC?g,Q‘;} 2 (3.3.31)

if By = 0.

Remark 3.3.3. This result and especially the time estimates (3.3.30]) and (3.3.31)) on the observability
time need further comments.

As in Theorem [3.2.1] we see that, if we filter at a scale smaller than At, for instance in the class
Cs/(atye, with e < 1, then the uniform observability time Tp is given by To = mM, which coincides
with the value obtained by the resolvent estimate (3.1.5) in the continuous setting.

Note that the estimates (3.3.30) and (3.3.31) do not have the same growth in § when & goes to
oo. This fact does not seem to be natural because the observability time is expected to depend on the
group velocity (see [25]) and not on the form of the observation operator.

By now we could not avoid the assumption that either By or Bs vanishes, the special case 8 = 1/4
being excepted. However, we can deal with an observable of the form
1/2 sk 4 ft! L S
JiH2 = By (I (8- 1/4)(At)2A0) <#) + B2(T), (3.3.32)

with both non-trivial By and Bs>. Indeed, in this case, the operator Ba; arising in the proof of Theorem
does not depend on At and therefore the proof works as in the case By = 0, and yields the time
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3.3. General time-discrete schemes

estimate (3.3.31f). However, this observation operator, which compares to the continuous one (3.3.20)
when & — 0, does not seem to be the most natural discretization of (3.3.25|).

When 8 = 1/4, both (3.3.30) and (3.3.31)) have the same form. Besides, one can easily adapt the
proof to show that when = 1/4, we can deal with a general observation operator B as in (3.3.20)).
Actually, the Newmark scheme (3.3.26|) with 5 = 1/4 is equivalent to a midpoint scheme, and therefore

Theorem applies.

Proof. Step 1. We first transform system ([3.3.26)) into a first order time-discrete scheme similar to
(13.3.23]). For this, we define

Ag. e = Ao[T 4 (B — 1/4)(At)? Ag) L. (3.3.33)

Then (3.3.26)) can be rewritten as

S I s R W

E—1 k k+1
w4+ 2u” +u
Ao, )=0. 3.3.34
(01)? + Ap.At 1 ( )
As in (3.3.22)), using the following change of variables
Y s
2] —7+2A0At(7),
k+1At k 7 k 2 k1 (3.3.35)
12 U UL g)2 (u +u )
2 At O,At 2 ’
system ([3.3.26)) (and also system ([3.3.34])) is equivalent to
E+1/2 _ L k—1/2 k—1/2 |  k+1/2
z z z + z
—A ( ) 3.3.36
- s (33.30)
with
k+1/2
T B I . (3.3.37)
0 —iAy Ay LR/
’ 2
Consequently, the observation operator y*+1/2 in (3.3.28) is given by
. k+1/2 . k+1/2 k+1/2 k+1/2
_1/2 /1% —12 +z
yH iz = AoA/t< — >+B( 2 )
2 Bt (3.3.38)

Step 2. We now verify that system (3.3.36)—(3.3.38|) satisfies the hypothesis of Theorem

We first check (H1). It is obvious that the eigenvectors of Aa; are the same as those of A (see
(3.3.24))). Moreover, for any ®; we compute

Hj

\/1 B—1/4)(At)2p

Ap®j = il;®;, with £; = (3.3.39)
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In other words, we are close to the situation considered in Subsection and the time semi-discrete

approximation scheme ([3.3.36)) satisfies the hypotheses (3.3.1)), (3.3.2)), (3.3.3)), (3.3.3) and (3.3.4) with
the function h defined by

h(n) = 2 arctan (2 i 1_ T > (3.3.40)

In particular, this implies that (3.3.16) holds in the class C5/a¢, and takes the form

)
\/1 1/4 52 ||Z”X7

At HAAtZ”X S C&/At- (3.3.41)

Second, we check hypothesis (H2):

R N PN IR 0o I

L(Cs/nt:H)
lAnezly (4 (8= 1/0%)Cpa + /T + (B - 1/4)5203,2)
< CpsllAnezlly - (3.3.42)

ANPAY

The third point is more technical. Following the proof of Theorem for any € > 0, we obtain
the following resolvent estimate:

2
C2 M2 H (AN - iw)zHX +m2||Bz|% > |2k, 2 €Coapy wER, (3.3.43)
where Cjs . is given by (3.3.12), with
w
kat(w) =

V14 (B —1/4)(wAt)?

Straightforward computations show that, actually,

Oy = (1 Y (B—1/4)0+ 5)2)3/2. (3.3.44)

Our goal now is to derive from (3.3.43)) the resolvent estimate (H3) given in (3.1.13). Here, we will
handle separately the two cases By = 0 and Bs = 0.

The case By = 0. Under this assumption, Bao; = B, and therefore, (3.3.43) is the resolvent
estimate (H3) we need.

The case By = 0. In this case, we observe that

A1/2A 1/2 0
Batz = BRpgz, where Rpy = 70 0800, | = AAL
0 Ay AG A

Note that the operator Ra; commutes with Aa¢, maps Cs/n; into itself, and is invertible. Then,
applying (3.3.43|) to Ra:z, we obtain that

2
c2.M? HRN (AN - iw)z ‘X +m?||Baiz|)> > |Razl%, V2 € Csynp, Yo € R. (3.3.45)

We now compute explicitly the norm of Ra; and RE in the class Cs/a¢. Since
AgAg py = 1+ (B = 1/4)(At) Ay,
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one easily checks that
2
IRadll} =1+ (B-1/08%  |Ral|, = 1. (3.3.46)

where [|-||s denotes the operator norm from Cs,a, into itself. Applying (3.3.46) into (3.3.45]), we obtain

2 2 2 . 2 2 2 2
C2 M2 (14 (8- 1/4)9%) H(AN —zw)zHX +m? || Bagz)) > [120%
Vz € C(;/At,Vw €eR.

(3.3.47)

Thus, in both cases, we can apply Theorem which gives the existence of a time 75, such that
for T' > T ., there exists a positive k7 s such that any solution of (3.3.36|) with initial data 212 e Cs/nt
satisfies

T/At
2 2
T, LS ,} At y

Besides, the estimates of Theorem [3.1.3] allow to estimate the observability time Tj:

L+ (B—1/4)(6 +¢)*)? gz _
7|1+ %) R M24mPCh = |7, if By =0,
Tse =
’ 1+ (B—1/4)(6 +¢)?)? o2
st G M+ m*Chagg] i B0

Letting € — 0, we obtain the estimates (3.3.30))-(3.3.31)).

To complete the proof we check that if the initial data z'/2 is taken within the class Cg /At the

solution of (|3.3.26) satisfies

2 2 2
42 = =
X X

>
T 14+ (B—1/4)6
which can be deduced from the explicit expression of the energy (3.3.27)) and the formula (3.3.35). O

Ek+1/2

)

3.4 Applications

3.4.1 Application of Theorem [3.2.1
Boundary observation of the Schrodinger equation
The goal of this subsection is to present a straightforward application of Theorem to the observ-
ability properties of the Schrodinger equation based on the results in [14].
Let 2 C R™ be a smooth bounded domain. Consider the equation
iug = Agu, (t,x) € (0,T) x Q,

%(t,x} =0, (t,z) € (0,T) x 0. (3:4.1)

where ug € L?(2) is the initial data. Equation (3.4.1)) obviously has the form (3.1.1) with A = —iA,

of domain

u(0) = ug, = €,

D(A) = {np € H*(Q) such that ?;’0 = 0}.

v

85



Chapter 3. On the observability of time-discrete conservative linear systems

Let T'g € 99 be an open subset of 92 and define the output

y(t) = u(®)r,-

Using Sobolev’s embedding theorems, one can easily check that this defines a continuous observation
operator B from D(A) to L*(Tp).

Let us assume that I’y satisfies in some time Ty the Geometric Control Condition (GCC) introduced
in [I], which asserts that all the rays of Geometric Optics in € touch the sub-boundary I'y in a time
smaller than Tp. In this case, the following observability result is known ([14]) :

Theorem 3.4.1. For any T > 0, there exist positive constants kr > 0 and K1 > 0 such that for any
ug € L%(Q), the solution of (3.4.1)) satisfies

T
b ol 2oy < /0 /F [u(t) [ dTodt < K [luoll2aq, - (3.4.2)
0

We introduce the following time semi-discretization of system (3.4.1)):

z'“kHA; u Ax<uk+12+ “k) reQ keN,
aa“j(x) o0, r e, keN, (3:4.3)
u®(z) = uo(x), x €,
that we observe through
Yk = u‘kpo.

Then Theorem [3.2.1] implies the following result:

Theorem 3.4.2. For any § > 0, there exists a time Ty such that for any time T > Ty, there exists a
positive constant kr 5 > 0 such that for At small enough, the solution of (3.4.3)) satisfies

ks luol e < & Y /r
) 0

ke(0,T/ At

2
u ‘ dl (3.4.4)

Jor any ug € Cs/py-

Note that we do not know if inequality (3.4.4)) holds in any time 7" > 0 as in the continuous case
(see (3.4.2)). This question is still open.

Remark 3.4.3. Note that in the present section, we do not state any admissibility result for the time-
discrete systems under consideration. However, uniform (with respect to At > 0) admissibility results
hold for all the examples presented in this article. These results will be derived in Section [3.6] using

the admissibility property of the continuous system (3.1.1))-(3.1.2]).
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Boundary observation of the linearized KdV equation

We now present an application of Theorem to the boundary observability of the linear KdV
equation.

We consider the following initial-value boundary problem for the KdV equation:

[ wp+ Upew = O, (t,z) € (0,T) x (0,2m),
u(t,0) = wu(t,2m), te(0,7),
uzy(t,0) = wuy(t,2m), te(0,7), (3.4.5)
Ugz (£,0) = ugg(t,2m), te(0,7),
L u(0,2) = wup(x), x € (0,2m).

For any integer k£ we set

HEE {u e H*(0,27); &u(0) = Pu(2r) for 0<j <k — 1} , (3.4.6)

where H¥(0,27) denotes the classical Sobolev spaces on the interval (0, 27). The initial data of (3.4.5)
are taken in the space X 2 Hg(O, 27), endowed with the classical H?(0,27)-norm.

Let A denote the operator Au = —d3u with domain D(A) = H}). As shown in [24], A is a skew-
adjoint operator with compact resolvent. Moreover, its spectrum is given by o(A) = {ip; with pu; =
4%, j € Z}. The output function y(¢) and the corresponding operator B : D(A) — Y = R3 is given
by

A
y(t) = Bu(t) = | ua(t,0) |,
with the norm || Bul|3 = [u(0)|? 4 |u(0)[? + |us2(0)]?. Note that B € S(H]‘?,Rg).
The following observability inequality for system (3.4.5)) is well-known (Prop. 2.2 of [23]):

Lemma 3.4.4. Let T' > 0. Then there exist positive numbers kr and Kt such that for every ug €
H2(0,2m)
p b )

T
b fuollg < [ (1t OF + et OF + (8,00t < Ko oy (34.7)

We now introduce the following time semi-discretization of system (3.4.5)):

uk—l—lA; uk .\ uk+l ;‘ul:;xx =0, z€(0,2m), keN,

ut(0) =u(2m), en

O - o o (3.4.8)
uﬁz(O) _ uglﬁa;(%% keN,

w0 x) =uo(z), = € (0, 2m).
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It is easy to show that the eigenfunctions of A are given by {®; = eijx}jez with the corresponding
eigenvalues {ij3},cz. Hence, for any § > 0, we have

Cs/n¢ = span {®;,7° < 6/At}. (3.4.9)

As a direct consequence of Theorem we have the following uniform observability result for system
(13.4.8)):

Theorem 3.4.5. For any 6 > 0, there exists a time Ty such that for any T > Ts, there exists a
positive constant kr s > 0 such that for At > 0 small enough, the solution uF of ([3.4.9) satisfies

brsluolf < ot > (W (0)2 + [k (0) + uk,(0)2), (3.4.10)
kAte(0,T)

for any initial data u® € Cs/nt-

As in Theorem we do not know if the observability estimate (3.4.10)) holds in any time T > 0
as in the continuous case (see Lemma |3.4.4)).

3.4.2 Application of Theorem (3.3.1

Let us present an application of Theorem to the so-called fourth order Gauss method discretiza-
tion of equation (see for instance [8 [9]). This fourth order Gauss method is a special case
of the Runge-Kutta time approximation schemes, which corresponds to the only conservative scheme
within this class.

Consider the following discrete system:

(

2
Iii:A<2k+Atzaij/ij>, i:1,2,
j=1
N (3.4.11)
Zk—H:Zk-l-f(lil—l-IiQ), i i %—%
2 (Oéij) = 1 \/§ 1 .
22 e Cs/n¢ given, it P

The scheme is unstable for the eigenfunctions corresponding to the eigenvalues p; such that p; At >
2v/3 ([8,@]). Thus we immediately impose the following restriction on the filtering parameter :

5 < 2V/3.

To use Theorem we only need to check the behavior of the semi-discrete scheme (3.4.11f) on the
eigenvectors. If 2V = ®,, an easy computation shows that

2t = exp(il; At) 2,

where

L i /LjAt
b= Iy arctan (—2 — (,ujAt)Q/6>'

In other words, £;/At = h(u;At), where h : (—2v/3,2v/3) — [—, 7] is given by

(3.4.12)

h(n) = 2 arctan (ﬁ)

Then, a simple application of Theorem [3.3.1] gives :
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Theorem 3.4.6. Assume that B is an observation operator such that (A, B) satisfy (3.1.5) and
B e £(D(A),Y).

For any 6 € (0,2V/3), there exists a time Ts > 0 such that for any T > Ty, there exists a constant
krs > 0, independent of At, such that for At > 0 small enough, the solutions of system (3.4.11)
satisfy

kr.s Hzoﬂi < At Z HszHi, v2le Cs/nt- (3.4.13)
ke(0,T/At)

Note that Theorem also provides an estimate on Ty by using (3.3.6]).

In particular, this provides another possible time-discretization of (3.4.5), for which the observ-
ability inequality holds uniformly in At provided the initial data are taken in Cs/a;, with § < 21/3,
where Cs/; is as in (3.4.9).

3.4.3 Application of Theorem [3.3.2]

There are plenty of applications of Theorem [3.3.2l We present here an application to the boundary
observability of the wave equation.

Consider a smooth nonempty open bounded domain  C R? and let Ty be an open subset of €.
We consider the following initial boundary value problem:

Uy — ADgu =0, reQ, t>0,
u(z,t) =0, x€ed, t>0, (3.4.14)
u(z,0) = up, w(x,0)=wvg, =€

with the output

ou
t)=—| . 3.4.15
u) = 5| (3.4.15)

This system is conservative and the energy of (3.4.14)

1
Bt =5 / [lualt, 2)[? + [Vult, 2) ] dz, (3.4.16)
Q
remains constant, i.e.

E(t) = E(0), Vitelo,T]. (3.4.17)

The boundary observability property for system (3.4.14]) is as follows: For some constant C' =
C(T,Q,Ty) > 0, solutions of (3.4.14) satisfy

E(O)gC/OT/FO

Note that this inequality holds true for all triplets (T, 2, T'g) satisfying the Geometric Control Condition
(GCC) introduced in [I], see Subsection In this case, (3.4.18)) is established by means of micro-

local analysis tools (see [I]). From now, we assume this condition to hold.

2
gz\ dlodt,  V (uo,vo) € Hy(2) x L*(). (3.4.18)

89



Chapter 3. On the observability of time-discrete conservative linear systems

We then introduce the following time semi-discretization of (3.4.14)):

S I s R W
(At)?

=A, (ﬂuk"'1 + (1 —28)u* + ﬁuk_l>, in Q x 7Z,

uf =0, in Q x Z, (3.4.19)
0

0 1,1
U U U —u
(5 ) = (w0, vo) € HY() x L),
where (3 is a given parameter satisfying 3 > i.
The output functions y* are given by

oo
ov I

. (3.4.20)

0

System (3.4.14)—(3.4.15)) (or system (3.4.19)—(3.4.20])) can be written in the form (3.1.18) (or
(3.3.26))) with observation operator (3.3.20) by setting:

H = I2(Q), D(A) = HAQ)NH)(Q), Y = L*(Ty),

9
Agp = —Ayp Yo eD(Ay), Brp= a*f

One can easily check that Ay is self-adjoint in H, positive and boundedly invertible and

y P € D(AO)
To

D(AY?) = Hy(Q), DAY = H Q).

Proposition 3.4.7. With the above notation, By € £(D(Ay),Y) is an admissible observation operator,
i.e. for all'T > 0 there exists a constant Kr > 0 such that: If u satisfies (3.4.14)) then

A

for all (ug,vo) € HE(Q) x L*(Q).

ou |2 2 2
o] arodt < K ( lluollia + ol 720 )

The above proposition is classical (see, for instance, p. 44 of [16]), so we skip the proof.

Hence we are in the position to give the following theorem:

Theorem 3.4.8. Set 5> 1/4.

For any 0 > 0, system (3.4.19)) is uniformly observable with (ug,vo) € Cs/n¢- More precisely, there
exists Ty, such that for any T > T, there exists a positive constant kr s independent of At, such that
for At > 0 small enough, the solutions of system (3.4.19)) satisfy

s (w0l + ool ) < At EZ)AO

ouk |2
ke(0,T/At v

dry, (3.4.21)

for any (uo,vo) € Cs/n¢-

Proof. The scheme proposed here is a Newmark discretization. Hence this result is a direct consequence
of Theorem [3.3.2 O
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3.5. Fully discrete schemes

Remark 3.4.9. One can use Fourier analysis and microlocal tools to discuss the optimality of the
filtering condition as in [28]. The symbol of the operator in (3.4.19)), that can be obtained by taking
the Fourier transform of the differential operator in space-time is of the form (see for instance [17])

s (557) - [ef (1-as (757)):

Note that this symbol is not hyperbolic in the whole range (7,¢) € (—n/At,nw/At) x R". How-
ever, the Fourier transform of any solution of (3.4.19)) is supported in the set of (7,&) satisfying
1 — 48sin?(1At/2) > 0, where the symbol is hyperbolic.

As in the continuous case, one expects the optimal observability time to be the time needed by
all the rays to meet I'y. Along the bicharacteristic rays associated to this hamiltonian the following
identity holds

|T| = iaurctan Sy !
At 2 /14 (B—1/4)|€2(At)?

These rays are straight lines as in the continuous case, but their velocity is not 1 anymore. Indeed,
one can prove that along the rays corresponding to [£| < d/At, the velocity of propagation is given by
1 1 1

’ ‘_ L+ B([E1AY)? /1 +( —1/4)(§At)2 T (14862 /1+ (6—1/4)02
In other words, in the class Cs/a¢, the velocity of propagation of the rays concentrated in frequency

around §/At is (1+302)~ (14 (3 —1/4)5%)~/2 times that of the continuous wave equation. Therefore
we expect the optimal observability time 7 in the class Cs/a; to be

T; = T3 (1 + B6%) 1+ (ﬂ - %)52, (3.4.22)

where T is the optimal observability time for the continuous system. According to this, the estimate
T2 in (3.3.31) on the time of observability has the good growth rate when § — co. Besides, when ¢
goes to co, we have that

Tyo = wM(1+ 65%) 1+ (5 - %)52. (3.4.23)

Recall that mM = Tj is the time of observability that the resolvent estimate (3.1.5)) in the continuous
setting yields (see [18]). The similarity between (3.4.22)) and (3.4.23)) indicates that the resolvent

method accurately measures the group velocity.

Note however that wM is not the expected sharp observability time 7} in in the continuous
setting. This is one of the drawbacks of the method based on the resolvent estimates we use in this
paper. Even at the continuous level the observability time one gets this way is far from being the
optimal one that Geometric Optics yields.

3.5 Fully discrete schemes

3.5.1 Main statement

In this section, we deal with the observability properties for time-discretization systems such as (3.1.1))-
(3.1.2)) depending on an extra parameter, for instance the space mesh-size, or the size of the microstruc-
ture in homogenization.
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Chapter 3. On the observability of time-discrete conservative linear systems

To this end, it is convenient to introduce the following class of operators:

Definition 3.5.1. For any (m,M,Cp) € (R%)3, we define €(m,M,Cp) as the class of operators
(A, B) satistying:

(A1) The operator A is skew-adjoint on some Hilbert space X, and has a compact resolvent.

(A2) The operator B is defined from D(A) with values in a Hilbert space Y, and satisfies (3.2.1]) with
Cp.

(A3) The pair of operators (A, B) satisfies the resolvent estimate (3.1.5)) with constants m and M.

In this class, Theorems [3.2.1}3.3.1}{3.3.2] apply and provide uniform observability results for any of
the time semi-discrete approximation schemes (3.1.6)-(3.1.7), (3.1.17), and (3.1.18)). Indeed, this can
be deduced by the explicit form of the constants Ts and k7 s which only depend on m, M and Cp.
Note that this definition does not depend on the spaces X and Y. For instance, the following holds:

Theorem 3.5.2 (Corollary of Theorem [3.2.1)). For any (m,M,Cg) € (R%)3, for any § > 0, there

. VIL.C . .. .
exists Tgn’M’CB such that for any T > Tgn’ B there exists a positive constant kp s m m,cp, indepen-

dent of At, such that for /Nt small enough, for any (A, B) € €(m, M,Cg), the solution 2* of (3.1.6)
with 2° € Cs/ne satisfies (3.2.2)). Moreover, Tgn’M’CB can be taken as in (3.2.3)).

When considering families of pairs of operators (A, B), it is not easy, in general, to show that
they belong to the same class €(m, M, Cp) for some choice of the constants (m, M, Cp). Indeed, item
(A3) is not obvious in general. Therefore, in the sequel, we define another class included in some
&€(m, M,Cp) and which is easier to handle in practice.

Definition 3.5.3. For any (Cp, T, kr, K1) € (]Ri)‘l, we define ©(Cp, T, kr, K7) as the class of oper-
ators (A, B) satisfying (A1), (A2) and:

(B1) The admissibility inequality
T
/0 1B exp(tA)2||? dt < Kr |0 | (3.5.1)

where exp(tA) stands for the semigroup associated to the equation

3=Az, 2(0)=2"€X. (3.5.2)
(B2) The observability inequality

T
/{:THoni( S/ HBexp(tA)zOHi dt. (3.5.3)
0

As we will see below, assumptions (B1)-(B2) imply (A3):
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3.5. Fully discrete schemes

Lemma 3.5.4. If the pair (A, B) belongs to ©(Cp, T, kr, Ky), then there exist m and M such that
(A,B) € €(m,M,Cp).

Besides m and M can be chosen as

2T Kp
m \/kT, UQkT (3.5.4)

In fact, we only need to prove (A3). This is actually already done in [I8] or in [26]. Indeed, it was
proved that once the admissibility inequality (3.1.3)) and the observability inequality (3.1.4]) hold for
some time 7', then the resolvent estimate (3.1.5) hold with m and M as in (3.5.4)).

Note that assumptions (B1)-(B2) are related to the continuous systems (3.5.2)).

Now we consider a sequence of operators (A,, B,) depending on a parameter p € P, which are in
some £(X,) x £(D(A4,),Y,) for each p, where X, and Y}, are Hilbert spaces. We want to address the
observability problem for a time-discretization scheme of

t=Ayz, 2000=2"€ X,  y(t)=Byz(t) €Y, (3.5.5)

In applications, we need the observability to be uniform in both p € P and At > 0 small enough.
The previous analysis and the properties of the class ©(Cp, T, kr, K1) suggest the following two-steps
strategy:

1. Study the continuous system (3.5.5)) for every parameter p and prove the uniform admissibility

(3.5.1) and observability (3.5.3)).

2. Apply one of the Theorems|3.2.1} |3.3.1{and [3.3.2[to obtain uniform observability estimates (3.1.8])
for the corresponding time-discrete approximation schemes.

This allows dealing with fully discrete approximation schemes. In that setting the parameter p is
actually the standard parameter h > 0 associated with the space mesh-size. In this way one can use
automatically the existing results for space semi-discretizations as, for instance, [4 [6l [7, 10, 20, 21]
30, [31].

Remark 3.5.5. We emphasize that this approach is based on the systematic use of existing results
for space semi-discretizations. One could proceed all the way around, first, applying the results in
this paper to derive uniform observability results for time-discrete schemes and then discretizing the
space variables. For doing this, however, due to the more complex dependence of the PDE and its
space discretizations on the space variable, there is no systematic way of transfering results from the
continuous to the discrete setting. In this sense, the method we propose here of using the existing
results for space semi-discretizations to later apply the results in this paper about time discretizations
is much more easier to be implemented and yields better results.
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Chapter 3. On the observability of time-discrete conservative linear systems

3.5.2 Applications
The fully discrete wave equation

Let us consider the wave equation (3.4.14)) in a 2-d square. More precisely, let 2 = (0,7) x (0, 7) C R?
and ['g be a subset of the boundary of €2 constituted by two consecutive sides, for instance,

To = {(z1,7) : 21 € (0,7)} U{(m,22) : 25 € (0,7)} 2Ty UT.

As in (3.4.15)), the output function y(¢) = Bu(t) is given by

_up iu(avl, )

= —i—iu( z2)
Covity Oxo &2

B
Y I a$1

I'>

Let us first consider the finite-difference semi-discretization of (3.4.14]). The following can be found

in [30]. Given J, K € N we set
T T

731 TR

We denote by w;,(t) the approximation of the solution u of (3.4.14) at the point xj;, = (jh1,kho).
The space semi-discrete approximation scheme of (3.4.14)) is as follows:

h1

(3.5.6)

L Uik U1k — 2Ujk Ukl Uk—1 — 2Ujk
hi h3
0<t<T, j=1,---,J; k=1,--- | K, (3.5.7)
wjp =0, O<t<T, j=0J+1 k=0K+1,
ujk(0) = ujk0, Ujk(0) =ujp1, j=1,---,J; k=1,--- K.

System (3.5.7)) is a system of JK linear differential equations. Moreover, if we denote the unknown
Ut) = (ur1(t), ua1(t), - usn(t), - uik (), uax (t), -+, usx ()’

then system (3.5.7) can be rewritten in vector form as follows

{ Ut)+ AopU(t) =0, 0<t<T. (3.5.8)

U(0) = Uno, U(0) = Uy,

where (U0, Un1) = (Wjk,0, Ujk,1)1<j<J1<k<K € R2/K are the initial data. The corresponding solution
of (3.5.7) is given by (Un,Up) = (ujk, Ujk)1<j<si<k<k- Note that the entries of Ag ) belonging to
Mk (R) may be easily deduced from ([3.5.7)).

As a discretization of the output, we choose

BrlU = ((%)je{L...,J}’ (%)ke{hnk})' (3.5.9)

The corresponding norm for the observation operator By, is given by

) )
hi

J K

2 _ ujK (t) uk(t)
IBU)I, =) | =5 =] +he )
j=1 k=1
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3.5. Fully discrete schemes

Besides, the energy of the system (3.5.8)) is given by

J K
e I (e ey e B e D
7=0 k=0

As in the continuous case, this quantity is constant.
Eh(t) :Eh(()), VOo<t<T.

In order to prove the uniform observability of (3.5.8]), we have to filter the high frequencies. To do
that we consider the eigenvalue problem associated with (3.5.8)):

Agpp = M. (3.5.11)

As in the continuous case, it is easy to show that the eigenvalues M*"1:72 are positive numbers. Let
us denote by @J#"1:h2 the corresponding eigenvectors.

Let us now introduce the following classes of solutions of (3.5.8)) for any 0 < v < 1:

—

C,(h) = span { P02 guch that | MFM02 | max(hy, ho) < 20/7}.

The following Lemma holds (see [30]):

Lemma 3.5.6. Let 0 <y < 1. Then there exist T, such that for all T > T, there exist kr, > 0 and
K7~ >0 such that

T
braEa0) < [ 1B, dt < Kr Eal0) (35.12)
0

holds for every solution of (3.5.8)) in the class a(h) and every hy, he small enough satisfying

h /
sup‘h—;‘ < ﬁ

Now we present the time discrete schemes we are interested in. For any At > 0, we consider the
following time Newmark approximation scheme of system (3.5.8):

UMt 4+ Ukl - ouk
(At)?

+ Ao (US4 (1= 28)UF + U)o,

A, (3.5.13)
( 9 y N > = (Uh,Oa Uh,l)a
with 8 > 1/4.
The energy of (3.5.13)) given by

k k+1 k+1 k

k_ 1/2 U + U [
y _Q'AM (3.5.14)

(At)Q 1/2 Uk+1 _ Uk 0.
a9 =15 A ()|
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Chapter 3. On the observability of time-discrete conservative linear systems

which is a discrete counterpart of the time continuous energy (3.3.19) and remains constant (see

(3-3.27) as well).

In view of (3.5.12), conditions (B1) and (B2) are satisfied. Besides, conditions (A1) and (A2) are
straightforward. Therefore the following theorem can be obtained as a direct consequence of Theorem
0.0.2)

Theorem 3.5.7. Set > 1/4. Set 0 <y < 1. Assume that the mesh sizes hi,ha and At tend to zero

1 ’Y max 1,762
Sup)h ’<‘/ ’}/’ / T, (3515)

where T is a positive constant.

Then, for any 0 < 0 < 2,/7/7, there exist Ts > 0 such that for any T > Ts, there exists k.5, > 0
such that the observability inequality

2
krs,EF <Ot > HBhUk

kAte(0,T)

Yy
holds for every solution of (3.5.13|) with initial data in the class
Cé’/m = span {12 such that |[NRMR2| < 5/ At}

for hi, ho, At small enough satisfying (3.5.15)).

Proof. We are in the setting given before ‘and thus Lemma applies. Hence, to apply Theorem
3.3.1, we only need to verify that Cg/m C Cy(h). But

5 Nal VAl
Al < — Al <2 <2 .
Al < At A< TAt — max{hy, ho}

and this completes the proof. O

The 1-d string with rapidly oscillating density
In this paragraph, we consider a one-dimensional wave equation with rapidly oscillating density, which
provides another example where the model under consideration depends on an extra parameter.

Let us state the problem. Let p € L*(R) be a periodic function such that 0 < p,, < p(z) < py <
00, a.e. x € R. Given € > 0, set p°(x) = p(z/e) and consider the one-dimensional wave equation

p°(2)iif — 02,u° =0, (z,t) € (0,1) x (0,T),
u(0,t) = us(1,t) =0, te(0,7), (3.5.16)
u(z,0) = up(z), u°(x,0)=wvo(x), z € (0,1)

We consider the observation operator
Buf(t) = 0,u(1,t). (3.5.17)
The mathematical setting is the same as in Subsection [3.4.3] and therefore we do not recall it.
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3.5. Fully discrete schemes

The eigenvalue problem for (3.5.16) reads
PF()N2® + 02,2 =0, z€(0,1);  ®0)=d(1)=0. (3.5.18)
For each € > 0, there exists a sequence of eigenvalues
D<A <A< <A <-- >0

and a sequence of associated eigenfunctions (®),, which can be chosen to constitute an orthonormal
basis in L?(0,1) with respect to the norm

1
16[122 = /0 (@) ()2 de.

In [3], the following is proved:

Theorem 3.5.8 ([3]). There exists a positive number D > 0, such that the following holds:

Let T > 2\/p, where p denotes the mean value of p. Then there exist two positive constants kr
and K such that for any initial data (ug,vg) in

5D/5 =span{®; : n< D/e},
the solution u® of (3.5.16]) verifies

T
Fr (| (w0, 00) 151 0.1y x £2(0,1) < /0 Jug (1,0)2dt < Ko || (uo, v0) |73 0,1)x £2(0.1)

Given 3 > 1/4, let us consider the following time semi-discretization of (3.5.16))

ue,k—l—l _ 2us,k 4 us,k—l B
o (@) ( A ) = 0%, ((1 =28t 4+ st + k) =0,

(3.5.19)
(z,k) € (0,1) x N,
completed with the following boundary conditions and initial data
usF(0) = uSF(1) = 0, keN,
(Y @ = w@. ()@ = w@. re@.) (3:5:20

Since conditions (A1)-(A2)-(B1)-(B2) hold, we get the following result as a consequence of Theorem
0.9.2)

Theorem 3.5.9. Let 6 > 0 and § > 1/4. Assume that the parameters /At and e tend to zero.

Then there exists a time Ts such that for any T > Ty, there exists a positive constant ks such
that the observability inequality

kr.s H(quUU)H%I&(O,I)XLQ(O,I) < At Z uz™ (1)) (3.5.21)
kAtE(0,T)

holds for every solution of (3.5.19)-(3.5.20)) with initial data (up,v) in the class
C5/ny = span {®, : A, < 6/At}NCp)e
independently of At and .
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Chapter 3. On the observability of time-discrete conservative linear systems

3.6 On the admissibility condition

The goal of this section is to provide admissibility results for the time-discrete schemes used throughout
the paper. These results are complementary to the observability results proved in Theorems [3.2.1
and when dealing with controllability problems (see [16]).

3.6.1 The time-continuous setting

Let us assume that system (3.1.1)-(3.1.2)) is admissible. By definition, there exists a positive constant
K7 such that:

T
/\|y<t>|r%dtSKT||zo\|§ ¥ 2 € D(A). (3.6.1)
0

The goal of this section is to prove that this property can be read on the wave packets setting as
well.

Proposition 3.6.1. System (3.1.1)-(3.1.2) is admissible if and only if
There exist r >0 and D >0 such that

for alln € A and for all z = Z a® :  ||Bzlly <Dz, (3.6.2)
leJr(pn)
where
Jr(p) ={l € N, such that | — p| <r}. (3.6.3)

Proof. We will prove separately the two implications.

First let us assume that system (3.1.1])-(3.1.2]) is admissible.

Denote by
V(w,e) = span{®; such that |pu; —w| < e}.

Then the following lemma holds:
Lemma 3.6.2. Let us define K(w,¢) as
K(w,e)=||B(A- WI)AH):(V(LQ,E)*,Y) :

Then for any € > 0, K(w,¢) is uniformly bounded in w, that is

K(e) = SEEK(w,s) < 0. (3.6.4)

Besides, the following estimate holds

K(e) < /1_;;(_1) (1+ %) (3.6.5)

where K1 is the admissibility constant in (3.1.3]).
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Proof of Lemma[3.6.3 Let us first notice these resolvent identities:

(A—iwl)—1 = A—(1+iw)l,
(A-— A +iw)) ' I - (A—iwD)™) = (A—iwl) "
Hence
K(w,e) < [|B(A-(1+ Z'“’)I)AH;:(X,Y) (T — (A - iwj)il)Hs(v(w,a)*,X) :
Obviously

I
H(I o (A B ZUJI) )HQ(V(w,s)*,X) <1+ g

Hence we restrict ourselves to the study of

|B(A-(1+ iw)I)_lHQ(Xy) .
Let us remark that for all z = ) a;®; € X,

1
i(pj —w) =1

where z(t) is the solution of (3.1.1)) with initial value z. This implies that

A—(+i)) =Y 0, /OOO exp(—(1 +iw))=(t) dt,  (3.6.6)

00 2
|B(A—(1+ iw)I)_leQY = H/O exp(—(1 + iw)t)Bz(t) dt

< (/Ooo‘exp(—(l—l—%w)t)’ dt) (/0

But using the admissibility property of the operator B, we obtain

Y
00

exp(=0) B0} dt) < [~ expl=0) B0} .

oo k+1
/ exp(—t) | Bz(t)|y dt < ZGXP(—k)/ 1B=(t)|5 dt
0 keN k
K 2
< — D E— .
< (L ew(-h) K llaliy < o5 eIk
keN
The estimate (3.6.5)) follows. O

Let us now consider a wave packet 20 = ), 7, (un) C1®1- Then taking € = 1 in Lemma one
gets that

1Bzlly < [ BA =i = DD gy .1y ) | (A = it = 2Dz
< K@ — pn| +2 < 3K(1 .
< K mas (o= ] +2) 1) < 3K(1) 2]

Now we assume that estimate (3.6.2)) holds for some r > 0 and D > 0. Set zy € D(A), and expand

Zo as
20 — sz, 2k = Z Cl(I)l.

ke 1€, (2kr)

We need a special test function whose existence is established in the following Lemma:
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Chapter 3. On the observability of time-discrete conservative linear systems

Lemma 3.6.3. There exists a time T and a function M satisfying

M(t) =0,  |t|=T/2,
M(t) > 1, |t| < T2, (3.6.7)
Supp M C (—2r,2r).

The proof is postponed to the end of this section. Note that functions satisfying similar properties
appear naturally in the proofs of various Ingham’s type inequalities, see [11], 26].

Taking Lemma [3.6.3] into account, we estimate

T
[ BB < [ are- s @
0

< Z/Mt—T/2)<sz1() Bz, (t) >yxy dt.
k1,k2

But these scalar products vanish most of the time. Indeed, if |k1 — k2| > 2, from (3.6.7]), we get

/ M(t—-T/2) < szl(t),sz2(t) >y dt
R

= Z M(/Ml — ng) < allB@ll,al2B<I>l2 >y = 0.
(ll,lz)GJr(2k1 T)XJT(QICQ T')

This implies that

T
LB < [ -1/ % (1801 + 2RetBau(0), B Oy ) it

IA

k
3/M(t—T/2 SO 1Ba()2 dt<3D/M t—T)2) Zsz 12 de
R k

3DM (0) ||zo0|% -

IN

This completes the proof, since admissibility at time 7T is obviously equivalent to admissibility in any
time. 0

Proof of Lemma([3.6.3. In this proof, we do not care about the value of the parameters r and 7' that
can be handled through a scaling argument.
Let us consider the function

ft) = %Sinc(t) = sir;it).

It is well-known that its Fourier transform is f (7) = X(=1,1)(7), where x(_; 1) denotes the characteristic
function of (—1,1).

Hence, the function
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3.6. On the admissibility condition

satisfies the following properties

™
e

o M) >0, teR; M(r)=@2-l|])s, T€ER

2
M) > — t
)z, <

and the proof is complete. For instance, for > 0, one can take the function M, (t) as

M,(t) = 7T82$inc2(rt) (3.6.8)

which satisfies (3.6.7)) with T'= 7/2r. O

Remark 3.6.4. In the context of families of pairs (A, B), according to Proposition the uniform
admissibility condition (3.5.1)) is equivalent to a uniform wave packet estimate similar to (3.6.2]). To
be more precise, if (@? )jen denotes the eigenvectors of A, associated to the eigenvalues (A? )jen, that
is Ap<1>§ = )\g <I>§ , the uniform admissibility condition is equivalent to:

There exist >0 and D > 0 such that for all p, n € N

— D
and forall z= Y ¢@f: 1Bpzlly, < Dz]lx, -
leJr(X7)

3.6.2 The time-discrete setting

This subsection is aimed to prove that if the continuous system — is admissible, in the
sense of Definition then its time semi-discrete approximation will be admissible as well under
suitable assumptions. In this part, we will focus on the particular discretization given in Subsection
but everything works as well in all the time semi-discretization schemes considered in the article.

More precisely, we assume that the continuous system (3.1.1))-(3.1.2) is admissible, that is, from
Proposition the wave packet estimate (3.6.2)) holds.

Then we claim that, under the assumptions (3.1.17)), (3.3.1)), (3.3.2)), (3.3.3) and (3.3.4), the fol-
lowing discrete admissibility inequality holds:

Theorem 3.6.5. Assume that system — is admissible. Set § > 0. For any T > 0, there
exists a constant Krs > 0 such that for all At small enough, the solution of equation (3.1.17) with
initial data in Cs/ny satisfies

T/t

at Y ||BHE < B 1200 (3.6.9)
k=0

Proof. The proof follows the one given in the continuous case. First of all, let us remark the following
straightforward fact: There exists r5 > 0 such that for all n € Z satisfying At|\, a¢] < 6, for all
At > 0, the set )

Jrs(An.at) = {l € Z, such that [\ ar — A At < 7ats

where A\ A+ is as in (3.3.2)), is a subset of J,.(uy,) (recall (3.6.3])). Besides, one can take:

rs = rinf{[M'(n)], n| < o}.
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Chapter 3. On the observability of time-discrete conservative linear systems

Note that condition (3.3.3]) implies the positivity of the right hand side.
Given At > 0, assume that there is a time 7 and a function M** € I2(AtZ) such that

MABE >0, |kAt) > T2,
MABE > 1, It < T/2, (3.6.10)
Supp M4t C (—2rs, 2r5),

where this time M%2! denotes the discrete Fourier transform at scale At defined in Definition
One can easily check that we can take M“* = M, for all At > 0 where M,, is as in (3-6.8).

With this definition, the proof of inequality (3.6.9|) consists in rewriting the one of Proposition
by replacing the continuous integrals and the Fourier transform by their discrete versions. Since
all the steps are independent of At, the admissibility inequality holds uniformly. O

Note that this proof can be applied to derive uniform admissibility results for families of operators
(A, B) within the class ©(Cp, T, kr, Kr) for the fully discrete schemes. Indeed, in the setting of
Section[3.5] according to Remark[3.6.4], the proof presented above directly implies uniform admissibility
properties for operators in the class ©(Cp, T, kr, K7) when the initial data are taken in the filtered
class Cs/ -

3.7 Further comments and open problems

1. The resolvent estimate is a useful tool to analyze time-discrete approximation schemes, as we
have seen in this paper. However, although this method is quite robust, it does not allow to deal
with observability inequalities with loss, arising, for instance, when dealing with networks of vibrating
strings (see [0, Chapter 4]) or for the wave equation in the absence of the Geometric Control Conditions
(see [13,15]). In those cases one only needs a weaker version of the observability inequality , in
which the observed norm is weaker than ||-||y. Actually, this question is also open at the continuous
level.

2. As said in Remark[3.4.9] we are not able to recover the optimal value of the time of observability
for systems f and their time-discrete approximation schemes. This is a drawback of the
method based on the resolvent estimate. Indeed, even in the continuous setting, to our knowledge,
this method does not allow to recover the optimal time of observability.

3. There are several different methods to derive uniform observability inequalities for systems
. In [28], a discrete multiplier technique is developed to derive the uniform observability of the
time semi-discrete wave equation in a bounded domain. There, the same order of filtering parameter
0/(At) is attained but a smallness condition on § is imposed. Theorem m generalizes this result to
any 0 > 0, as the dispersion diagram analysis in [28] suggests.

4. Along the paper, we derived uniform observability inequalities and admissibility results for
time-discretization schemes of abstract first order and second order (in time) systems. As it is well-
known in controllability theory, they imply uniform controllability results as well. For instance, in
the context of the time-discrete wave equation analyzed in [28], combining the duality arguments in
it and the results of this paper, one can immediately deduce the uniform (with respect to At > 0)
controllability of projections on the classes of filtered space Cs/a;, for T' > T large enough and ¢ > 0
arbitrary. This improves the results in [28] that required the filtering parameter § > 0 to be small
enough.
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3.7. Further comments and open problems

The same duality arguments combined with the uniform observability and admissibility results
we have presented in this paper allow proving uniform controllability results in a number of other
cases including the time-discrete KdV and Schrodinger equations, the fully discrete wave equation,
the time-discretization of wave equations with rapidly oscillating coefficients, etc.

5. In this paper, we have only dealt with observability properties of time-discrete conservative
systems, but the same questions arise for dissipative systems. However the situation is completely
different for unbounded dissipative perturbations. One such example is the heat equation for which,
as far as we know, there is no resolvent characterization of the well-known properties of observability
from an arbitrarily small observation set and time. The observability of time-discrete heat equations
has been analyzed in [29] for the heat operator. But as far as we know, there is no systematic way
of transferring the known results on space semi-discretizations (see [32]) to observability properties
of full discretization schemes. At this respect the article [12] is also worth mentioning in which the
existing results on the control of continuous parabolic equations are transformed into approximate
controllability results for space semi-discretizations, with an explicit estimate of the error term.
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Chapter 4

Uniform exponential decay for viscous
damped systems

Joint work with Enrique Zuazua.

Abstract: We consider a class of viscous damped vibrating systems. We prove that, under the
assumption that the damping term ensures the exponential decay for the corresponding inviscid system,
then the exponential decay rate is uniform for the viscous one, regardless what the value of the viscosity
parameter is. Our method is mainly based on a decoupling argument of low and high frequencies.
Low frequencies can be dealt with because of the effectiveness of the damping term in the inviscid case
while the dissipativity of the viscous term guarantees the decay of the high frequency components.
This method is inspired in previous work by the authors on time-discretization schemes for damped
systems in which a numerical viscosity term needs to be added to ensure the uniform exponential
decay with respect to the time-step parameter.

4.1 Introduction

Let X and Y be Hilbert spaces endowed with the norms ||-||y and ||-||y respectively. Let A : D(A) C
X — X be a skew-adjoint operator with compact resolvent and B € £(X,Y).

We consider the system described by
t=Az+¢eA’>> — B*Bz, t>0, 2(0) = zp € X. (4.1.1)
Here and henceforth, a dot (") denotes differentiation with respect to time t. The element zy € X is
the initial state, and z(t) is the state of the system. Most of the linear equations modeling the damped

viscous vibrations of elastic structures (strings, beams, plates,...) can be written in the form (4.1.1]) or
some variants that we shall also discuss, in which the viscosity term has a more general form, namely,

i=Az+eV.z—B*Bz, t>0, 2(0)=z¢€X, (4.1.2)

for a suitable viscosity operator V., which might depend on €.
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Chapter 4. Uniform exponential decay for viscous damped systems

We define the energy of the solutions of system (4.1.1)) by
1
) = 5 =0l 120, (4.13)
which satisfies

dE

) =~ B0} — el ek, t20. (4.1.4)

In this paper, we assume that system (4.1.1)) is exponentially stable when ¢ = 0. For the sake of
completeness and clarity we distinguish the case in which the viscosity parameter vanishes

2=Az—B*Bz, t>0, z(0) = zp € X. (4.1.5)

This model corresponds to a conservative system in which a bounded damping term has been added.
The damped wave and Schrodinger equations enter in this class, for instance.

Thus, we assume that there exist positive constants 1 and v such that any solution of (4.1.5]
satisfies
E(t) <p E(0)exp(—vt), t>0. (4.1.6)

Our goal is to prove that the exponential decay property (4.1.6)) for (4.1.5) implies the uniform
exponential decay of solutions of (4.1.1)) with respect to the viscosity parameter € > 0.

This result might seem immediate a priori since the viscous term that adds to (4.1.5))
should in principle increase the decay rate of the solutions of the later. But, this is far from being
trivial because of the possible presence of overdamping phenomena. Indeed, in the context of the
damped wave equation, for instance, it is well known that the decay rate does not necessarily behave
monotonically with respect to the size of the damping operator (see, for instance, [6l [7, 15]). In our
case, however, the viscous damping operator is such that the decay rate is kept uniformly on €. This
is so because it adds dissipativity to the high frequency components, while it does not deteriorate the
low frequency damping that the bounded feedback operator —B*B introduces.

The main result of this paper is that system (4.1.1)) enjoys a uniform stabilization property. It
reads as follows:

Theorem 4.1.1. Assume that system (4.1.5)) is exponentially stable and satisfies (4.1.6) for some
positive constants p and v, and that B € £(X,Y).

Then there exist two positive constants pg and vy depending only on ||B||£(X7y), v and p such that

any solution of (4.1.1) satisfies (4.1.6|) with constants po and vy uniformly with respect to the viscosity
parameter € > 0.

Our strategy is based on the fact that the uniform exponential decay properties of the energy for
systems and , respectively, are equivalent to observability properties for the conservative
system

y=Ay, teR, y(0) =yo € X, (4.1.7)

and its viscous counterpart

o= Au+eA%u, teR, u(0) = up € X. (4.1.8)

For (4.1.7) the observability property consists in the existence of a time 7% > 0 and a positive
constant ks, > 0 such that

T*
ke lyol% < / By d, (4.1.9)
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4.2. Proof of Theorem 4.1.1

for every solution of (4.1.7)) (see [11]).

A similar argument can be applied to the viscous system (4.1.8). In this case the relevant inequality
is the following: There exist a time 7" > 0 and a constant k7 > 0 such that any solution of (4.1.8])
satisfies

T T
brluolly < [ 1Bu@IR dee [ JAul at (4.1.10)
0 0

Note however that, for the uniform exponential decay property of the solutions of (4.1.1)) to be inde-
pendent of £, we also need the time T and the observability constant k7 in (4.1.10) to be uniform.
Actually we will prove the observability property (4.1.10) for the time T'= T™* given in (4.1.9).

The observability inequality can not be obtained directly from (4.1.9)) since the viscosity
operator £A4? is an unbounded perturbation of the dynamics associated to the conservative system
. Therefore, we decompose the solution u of @ into its low and high frequency parts, that
we handle separately. We first use the observability of @ to prove , uniformly on ¢, for
the low frequency components. Second, we use the dissipativity of to obtain a similar estimate
for the high-frequency components.

In this way, we derive observability properties of the low and high frequency components separately,
that, together, yield the needed observability property (4.1.10)) leading to the uniform exponential
decay result.

Our arguments do not apply when the damping operator B is not bounded, as it happens when
the damping is concentrated on the boundary for the wave equation, see for instance [7]. Dealing with
unbounded damping operators B needs further work.

As we mentioned above, the results in this paper are related with the literature on the uniform
stabilization of numerical approximation schemes for damped equations of the form and in
particular with [21) 20, 18 19, ©]. Similar techniques have also been employed to obtain uniform
dispersive estimates for numerical approximation schemes to Schrodinger equations in [12].

The recent work [§] is also worth mentioning. There, observability issues were discussed for time
and fully discrete approximation schemes of (4.1.7)) and was one of the sources of motivation for this
work.

The outline of this paper is as follows.
In Section we recall the results of [§] and prove Theorem In Section we present a
generalization of Theorem to other viscosity operators. We also specify an application of our
technique for viscous second order in time evolution equations which fit . In Section we
present some applications to viscous approximations of damped Schrodinger and wave equations.
Finally, some further comments and open problems are collected in Section [£.5

4.2 Proof of Theorem [4.1.1]

We first need to introduce some notations.

Since A is a skew-adjoint operator with compact resolvent, its spectrum is discrete and o(A) =
{ip; : j € N}, where (p15)jen is a sequence of real numbers such that |p;| — oo when j — oo. Set
(®)jen an orthonormal basis of eigenvectors of A associated to the eigenvalues (ij;);en, that is

A(I)j = iﬂjq)j' (421)
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Moreover, define
Cs = span{®; : the corresponding ij; satisfies |p;| < s}. (4.2.2)

In the sequel, we assume that system (4.1.5)) is exponentially stable and that B € £(X,Y), i.e.
there exists a constant K g such that

|Bz|ly < KB ||zl x, Vz e X. (4.2.3)
The proof is divided into several steps.

First, we write carefully the energy identity for z solution of (4.1.1)).
Consider z a solution of [&1.1). Tts energy ||z(t)||% satisfies

T T
IIZ(T)II§<+2/O 1B=(t)IIy dt+2/0 ellAz(@)IIx dt = [l=(0)l - (4.2.4)

Therefore our goal is to prove that, with 7™ as in (4.1.9), there exists a constant ¢ > 0 such that any

solution of (4.1.1)) satisfies
2 r 2 ~ 2
=) < [ 1B} dete [ A0l ar (4.2.5)

It is easy to see that, combining (4.2.4)) and (4.2.5)), the semigroup S, generated by (4.1.1)) satisfies

1S(TH)| <v=1-c¢ (4.2.6)

for a constant 0 < v < 1 independent of € > 0. This, by the semigroup property, yields the uniform
exponential decay result.

We also claim that, for (4.2.5)) to hold for the solutions of (4.1.1)), it is sufficient to show (4.1.10))
for solutions of (4.1.8). To do that, it is sufficient to follow the argument in [II] developed in the

context of system (4.1.5]).

We decompose z as z = u + w where u is the solution of the system (4.1.8) with initial data
u(0) = zp and w satisfies

W= Aw+eA’*w - B*Bz, t>0,  w(0)=0. (4.2.7)

Indeed, multiplying (4.2.7) by w and integrating in time, we get

t t
||w(t)||§(+25/ | Aw(s)||5 ds+2/ < Bz(s), Bw(s) >y ds=0.
0 0

Using that B is bounded, this gives

t t t
lo(®)]% + 2 /0 | Aw(s)]% ds < /0 1B=(s)[12 + K3, /0 lw(s)I% ds. (4.2.8)

Gronwall’s inequality then gives a constant G, that depends only on Kp and T, such that

T T
sup {Hw(t)Hg( } —i—s/ [ Aw(s)||% ds < G/ IB2(s)|l3 ds. (4.2.9)
te[0,7%] 0 0
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4.2. Proof of Theorem 4.1.1

Therefore in the sequel we deal with solutions u of (4.1.8]), for which we prove (4.1.10)) for 7" = T*.

As said in the introduction, we decompose the solution u of (4.1.8)) into its low and high frequency
parts. To be more precise, we consider

u =y U, up = (I —m )0, (4.2.10)

where 7, /z is the orthogonal projection on Cy,, z defined in (4.2.2). Here the notation w; and uy,
stands for the low and high frequency components, respectively.

Note that both wu; and wj, are solutions of (4.1.8) since the projection my, 7 and the viscosity
operator A? commute.

Besides, uy, lies in the space Cll/ N in which the following property holds:

Veldyllx 2 llyllx . vy €G- (4.2.11)

In a first step, we compare u; with y; solution of (4.1.7) with initial data y;(0) = u;(0). Now, set
wy; = u; — 3. From (4.1.9), which is valid for solutions of (4.1.7)), we get

T* T*
b )1 = kel <2 [ 1Bl a2 [ jBul (4.2.12)

In the sequel, to simplify the notation, ¢ > 0 will denote a positive constant that may change from

line to line, but which does not depend on ¢.

Let us therefore estimate the last term in the right hand side of (4.2.12)). To this end, we write
the equation satisfied by w;, which can be deduced from (4.1.7) and (4.1.8]):

w; = Aw; + €A2ul, t >0, wi(0) = 0.

Note that w; € Cy, /z, since w; and y; both belong to €y, z. Therefore, the energy estimate for w;
leads, for t > 0, to

t t t
()% = —zg/< Auy(s), Awn(s) >x ds < &?/ | Aui(s)|% ds+/ lwn(s)|% ds.
0 0 0

Gronwall’s Lemma applies and allows to deduce from (4.2.12) and the fact that the operator B is
bounded, the existence of a positive ¢ independent of e, such that

T* T*
O3 < /0 | B2 dt + /0 | Aui(s)]% ds.

Besides,
T*

T* T*
| iBu@iz ar<z [ gpa dez [ 1Buol d
0 0 0

and, since uy(t) € Cf'/\/g for all ¢,

T* T* T*
| 1Bun@ de< x5 [ pa@l at< Kae [ aum@l d
0 0 0
It follows that there exists ¢ > 0 independent of € such that
T*

T*
(O] < / |Bu(t)|% dt+ e / | Au(s)|% ds. (4.2.13)
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Chapter 4. Uniform exponential decay for viscous damped systems

Let us now consider the high frequency component wuy. Since up(t) is a solution of (4.1.8) and
belongs to Cf-/ JE for all time t > 0, the energy dissipation law for uj solution of (4.1.8)) reads

t
lun(®)]% + 2 /0 |Aun()[1% ds = lun ()%, ¢ >0, (4.2.14)
and
lun(t)]5% < exp(—2¢) [[un(0)[%, V¢ > 0.

In particular, these two last inequalities imply the existence of a constant ¢ > 0 independent of € such

that any solution uy, of (4.1.8)) with initial data u(0) € CIL/ Ve satisfies

T*
cllun(0)]I% < / | Aun(s)ll% ds. (4.2.15)
0

Combining (4.2.13)) and (4.2.15)) leads to the observability inequality (4.1.10]). This, combined with
the arguments of [I1] and (4.2.9)), allows to prove that any solution z of (4.1.1)) satisfies (4.2.5)), and

proves (4.2.6)), from which Theorem follows.

4.3 Variants of Theorem 4.1.1]

4.3.1 General viscosity operators
Other viscosity operators could have been chosen. In our approach, we used the viscosity operator
€A%, which is unbounded, but we could have considered the viscosity operator

cA?
€V€ = 1_75142, (431)

which is well defined, since A2 is a definite negative operator, and commutes with A. This choice
presents the advantage that the viscosity operator now is bounded, keeping the properties of being
small at frequencies of order less than 1/4/¢ and of order 1 on frequencies of order 1/,/¢ and more.
Again, the same proof as the one presented above works.

The following result constitutes a generalization of Theorem which applies to a wide range
of viscosity operators, and, in particular, to (4.3.1)).

Theorem 4.3.1. Assume that system (4.1.5)) is exponentially stable and satisfies (4.1.6), and that
B e £(X,Y).

Consider a viscosity operator Ve such that

1. V. defines a self-adjoint definite negative operator.
2. The projection my, /z and the viscosity operator Ve commute.
3. There exist positive constants ¢ and C' such that for all € > 0,

VE||(V=Y)2|| < Clizlly s vz ey e
Ve (\/—Vs)z N >cllzllx, Vz EClL/\/g.
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Then the solutions of (4.1.2)) are exponentially decaying in the sense of (4.1.6|), uniformly with respect
to the viscosity parameter € > 0.

The proof of Theorem can be easily deduced from the one of Theorem and is left to the
reader.
Especially, note that the second item implies that both spaces C,,, 7 and Cf/ Jz are left globally
invariant by the viscosity operator V.. Therefore, if w; € €y, z and wy, € ClL/ e we have
< Ve(up + up), (ug + up) >x=<Veup,u; >x + < Veup,up >x -

Also remark that the second item is always satisfied when the operators V. and A commute.

4.3.2 Wave type systems

In this subsection we investigate the exponential decay properties for viscous approximations of second
order in time evolution equation.

Let H be a Hilbert space endowed with the norm |-||;;. Let Ag : D(Ag) — H be a self-adjoint
positive operator with compact resolvent and C € £(H,Y).

We then consider the initial value problem
U+ Agv + A0+ C*Co =0, >0,
12 . (4.3.2)
v(0) =vo € D(A)"), v(0)=v, € H.
System (4.3.2]) can be seen as a particular instance of (4.1.2) modeling wave and beams equations.

The energy of solutions of (4.3.2)) is given by

B(t) = 3 1ol + 5|45 00| (433)
and satisfies iE )
() = —lCo)ly - HAg/%(t)HH. (4.3.4)
As before, we assume that, for ¢ = 0, the system
i+ A+ C*Co=0, t>0, v(0)=uvg€DAY?), ©(0)=u € H, (4.3.5)

is exponentially stable, i.e. (4.1.6)) holds.
We are indeed in the setting of (4.1.2)), since (4.3.2]) can be written as

Z =AZ+¢eV.Z — B*BZ, (4.3.6)

Z:(;.)), A:<_?40 é) V8:<8 _?40>, B=(0 C). (4.3.7)

Note that the viscosity operator V. introduced in (4.3.7) does not satisfy Condition 1 in Theorem
Though, we can prove the following theorem:

with
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Theorem 4.3.2. Assume that system (4.3.5) is exponentially stable and satisfies (4.1.6) for some
positive constants p and v, and that C € £(H,Y). Set K < cc.

Then there exist two positive constants px and vi depending only on |\C’||£(H7y), K, v and p such

that any solution of (4.3.2)) satisfies (4.1.6) with constants po and vy uniformly with respect to the
viscosity parameter € € [0, K.

Before going into the proof, we introduce the spectrum of Ag. Since Ag is self-adjoint positive
definite with compact resolvent, its spectrum is discrete and o(A4p) = {)\? . j € N}, where A; is
an increasing sequence of real positive numbers such that A\; — oo when j — oco. Set (¥;)jen an
orthonormal basis of eigenvectors of Ay associated to the eigenvalues (/\]2) jEN-

These notations are consistent with the ones introduced in Section by setting A as in (4.3.7)),
and

1
—V;
Pt = zl:)\j, (I’j = Lty
v;
For convenience, similarly as in (4.2.2]), we define
Cs =span{V; : the corresponding \; satisfies |\;| < s}, (4.3.8)

which satisfies Cs = (€,)2.

Sketch of the proof. The proof of Theorem closely follows the one of Theorem

As before, we read the exponential stability of (4.3.5) into the following observability inequality:
There exist a time 7™ and a positive constant k, such that any solution of

i+ Ay =0, t>0, y(0) =yo € D(Aé/z), y(0) =y € H, (4.3.9)

satisfies

1/2

T*
b (ol + 45", ) < | Ican ae (4.3.10)

2
I
Due to (4.3.4), as in (4.2.5), the exponential decay of the energy for solutions of (4.3.2)) is equivalent

to the following observability inequality: There exist a time 7" and a positive constant ¢ such that for

any € € [0, K],

c(Hv1H12LI+ HA}/%OHZ) < /OTHC@(t)H?Y dt+5/OTHA3/%(t)HZ dt (4.3.11)

holds for any solution v of (4.3.2]).

Using the same perturbative arguments as in [I1] or (4.2.7)-(4.2.9)), the observability inequality
(4.3.11)) holds if and only if there exist a time T and a positive constant k7 > 0 such that, for any
e € [0, K], the observability inequality

2 12 || T 2 T 2
b (N By + [ 48 20| < / |Ca(t)|2 de+ g/ |a=a|” ar (4.3.12)
H 0 0 H
holds for any solution u of
i+ Agu+ Aot =0, t>0,  u(0)=ue DAY, @(0)=us € H. (4.3.13)
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As before, we then focus on the observability inequality (4.3.12)) for solutions of (4.3.13). As in
the proof of Theorem we now decompose the solution of (4.3.13]) into its low and high frequency
parts, that we handle separately. To be more precise, we consider

u =Py sz u, uh:(I—Pl/ﬁ)u.,

where P,z is the orthogonal projection in H on €, z as defined in . Again, both u; and uy,
are solutions of (4.3.13) since P, z commute with Ay.

Arguing as before, the low frequency component u; can be compared to y; solution of (4.3.9)) with

initial data (yo,y1) = (P, zu0, P1/zu1), and using (4.3.10)) for solutions of (4.3.9), we obtain the
existence of a positive constant ¢; such that

c1<HP1/\/gu1Hj{+HAé/zPl/\/gugHiI) g/OT* lCa(t)|% dt+s/ HAW H2 dt.  (4.3.14)

For the high frequency component uy, the situation is slightly more intricate than in Theorem
The energy of the solution wy, satisfies the dissipation law

1d

5= (i + [ 4520 ) = < | 432[ <~ anli (4.3.15)

where the last inequality comes from wuy € (’Sf/ Ve

Setting
12, 2
Bn(t) = 5 lin % + 5 [ 45 2w
we thus obtain that .
+ [ i)y ds < By, (4.3.16)
0

We now prove the so-called equirepartition of the energy for the solutions u of (4.3.13)). Multiplying
(4.3.13]) by u and integrating by parts between 0 and ¢, we obtain

< a(t),ult) > — < 1(0),u(0) >5 — / (o) ds+/ |a2uco)|) s
—i—a/ <Al/2 (s), A[l)/zu( ) > ds=0.
0
In particular,
t t 2 2 2
. 2 _ 1/2 /2, |l 41/2
[ oo ao= [ g, a5, -
+ < a(t),u(t) >g — < w(0),u(0) >p . (4.3.17)

Now, for uy, which is a solution of (4.3.13)), for all t > 0, up(t) € Qﬁf/ﬁ. In particular, for all t > 0,
we have

. VE | 1
< i (8), un(t) > | <5 iy + 5z s )1y < VEER(E), (4.3.18)
where we used that for ¢ € (‘:1/\[7
9l < e||ay|
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Combining (4.3.18]) with identity (4.3.17)) for uj, we obtain
1/2 2
Huh W2, ds > HAO un(s)|| | ds— <\/§—|—6>(Eh(t)+Eh(O)). (4.3.19)

This yields
t ¢
. 1
/ ||uh(3)|]§{ ds > / Ey(s) ds — 3 (\/E-i- 5) (ER(t) + ER(0)). (4.3.20)
0 0
Combined with (4.3.16|), we obtain

(1 _ %(\@+ z-:))Eh(t) n /Ot En(s) ds < Ex(0) (1 + %(\@+ 5)) (4.3.21)
Assuming that K > 1, which can always be assumed, for € € [0, K|, we thus have
(1— K)Ep(t) / En(s) ds < (1+ K)En(0).
The decay of Ej(t), guaranteed by the dissipation law , then proves that

(t+1— K)Ep(t) < (1+ K)Ey(0).

For t = 1+ 3K, we thus have Ej(1 + 3K) < Ej(0)/2. We then deduce from the dissipation law
(4.3.15)) the existence of a positive constant cx such that

PSR s 2
cx En(0) ge/ HAO i (s )HH ds. (4.3.22)
We finally conclude Theorem by combining (4.3.14) and (4.3.22) as before. O]

Remark 4.3.3. One cannot expect the results of Theorem to hold uniformly with respect to
e € [0,00]. Indeed, an overdamping phenomenon appears when ¢ — oco. This can indeed be deduced
from the existence of the following solutions of (4.3.13)):

€ € 5)\12 4 1
uj(t) == eXP(tTj)\IJj, t Z 0, where Tj = 7 1-— W -1 5)\:00 —g
J

Plugging these solutions in , one can check that the observability inequality cannot
hold uniformly with respect to ¢ € [0, oo). Finally, using the equivalence between the observability
inequality m ) for solutions of ( and the observability inequality m ) for solutions of
- this proves that the results of Theorem 2| do not hold uniformly with respect to € € [0, o0].

Remark 4.3.4. To avoid the overdamping phenomenon when € — o0, one can for instance add a
dispersive term in (4.3.2), and consider the initial value problem

’i)—i-AoU—i-&Ao@—f—EAoU-i—C*CDZO, t>0,
12 (4.3.23)
U(O) =1 € D(A ), 1')(0) =v; € H.
The energy of solutions of (4.3.23)) is now given by
R NPT l+e 1/2 2
E(t) = 5 o)l + () |4 - (4.3.24)

116



4.4. Applications

One can then prove that, if system is exponentially stable, then the energy E. of solutions of
systems is exponentially stable, uniformly with respect to the viscosity parameter e € [0, 00).
The proof can be done similarly as the one of Theorem and is left to the reader. The main
difference that the dispersive term introduces is that the high frequency solutions uy of

iy, + Agup, + eAgtp, + eAgup, =0, t>0, (4.3.25)

with initial data (up(0),1,(0)) € (Qll/\@)2 N (D(A(l)/Q) x H) now satisfy, instead of (4.3.19)), which

deteriorates when € — oo, the following property of equirepartition of the energy

t t 2
‘A|wmzds—a+f)AHA#%@>

. ds| < 2By () +2E..(0), (4.3.26)

where Ej, . is the energy of the solutions uj of (4.3.25).

4.4 Applications

This section is devoted to present some precise examples.

4.4.1 The viscous Schrodinger equation

Let © be a smooth bounded domain of R,

Let us now consider the following damped Schrodinger equation:

iz 4+ Ayz +ia(x)z =0, in 2 x (0, 00),
z =0, on 99 x (0, 00), (4.4.1)
2(0) = zo, in €,

where a = a(x) is a nonnegative damping function in L*°(2), that we assume to be positive in some
open subdomain w of €2, that is there exists ag > 0 such that

a(z) > ap, Yz € w. (4.4.2)

The energy of solutions of (4.4.1]), given by

E(t) = 5 [[2()72q) - (4.4.3)
satisfies

70 == [ a@l(to) do (4.4.4)

The stabilization problem for has already been studied in the recent years. Let us briefly
present some known results. Some of them concern the problem of exact controllability but, as
explained for instance in [16], it is equivalent to the observability and the stabilization ones addressed
in this article in the case where the damping operator B is bounded.

For instance, in [I4], it is proved that the Geometric Control Condition (GCC) is sufficient to
guarantee the stabilization property (4.1.6) for the damped Schrodinger equation (4.4.1). The GCC
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can be, roughly, formulated as follows (see [2] for the precise setting): The subdomain w of Q is said
to satisfy the GCC if there exists a time T" > 0 such that all rays of Geometric Optics that propagate
inside the domain €2 at velocity one reach the set w in time less than 7. This condition is necessary
and sufficient for the stabilization property to hold for the wave equation.

But, in fact, the Schrodinger equation behaves slightly better than a wave equation from the
stabilization point of view because of the infinite velocity of propagation and, in this case, the GCC
is sufficient but not always necessary. For instance, in [13], it has been proved that when the domain
Q) is a square, for any non-empty bounded open subset w, the stabilization property holds for
system . Other geometries have been also dealt with: We refer to the articles [4] [1].

Now, we assume that w satisfies the GCC and, consequently, that we are in a situation where the
stabilization property (4.1.6) for (4.4.1)) holds, and we consider the viscous approximations

iz + Agz +ia(x) z —in/elAgz = 0, in 2 x (0,00),
z=0, on 09 x (0, 00), (4.4.5)
2(0) = zo, in Q,

where € > 0.

System (4.4.1) can be seen as a Ginzburg-Landau type approximation. More precisely, system
(4.4.1) is the inviscid limit of (4.4.5)). We refer to the works [17, [3] where inviscid limits were analyzed

in a nonlinear context.
For the stabilization problem, Theorem applies and provides the following result:
Theorem 4.4.1. Assume that system (4.4.1)) is exponentially stable, i.e. it satisfies (4.1.6)).

Then the solutions of (4.4.5) are exponentially decaying in the sense of (4.1.6), uniformly with
respect to the viscosity parameter € > 0.

Proof. Let us check the hypothesis of Theorem [£.3.1]

This example enters in the abstract setting given in the introduction: The operator A = iA, with
the Dirichlet boundary conditions is indeed skew-adjoint in L?(£2) with compact resolvent and domain
D(A) = H?> N H () C L*(Q). Since a is a nonnegative function, the damping term in takes
the form B*Bz where B is defined as the multiplication by y/a(x), which is obviously bounded from
L2(2) to L?(Q).

The viscosity operator is
eV. = VeA, = —iv/eA = — /2| A|.

Obviously, this viscosity operator V. satisfies the assumptions 1, 2 and 3, and therefore Theorem [4.3.1
applies. O

4.4.2 The viscous damped wave equation

Again, let Q be a smooth bounded domain of RY.
We now consider the damped wave equation

U —Agv+a(z)v =0, in Q x (0, 00),
v =0, on 092 x (0, 00), (4.4.6)
v(0) = vy, 0(0) =1 in Q,
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where a is a nonnegative function as before, and satisfies (4.4.2)) for some non-empty open subset w
of Q.

The energy of solutions of (4.4.6]), given by

L. 1
Bt) = 5 1ol2aq) + 5 1900200 (4.4.7)
satisfies the dissipation law
dFE
4By - / a(2)]o]? da. (4.4.8)
dt Q

We assume that system (4.4.6) is exponentially stable. From the works [2 [5], this is the case if
and only if w satisfies the Geometric Control Condition given above.

We now consider viscous approximations of (4.4.6)) given, for £ > 0, by

U — Agv+a(z)d —eAg0 =0, in Q x (0, 00),
v =0, on 09 x (0, 00), (4.4.9)
v(0) = vy € HF(Q), 9(0) =v, € L%(Q).

Setting Ag = —A, with Dirichlet boundary conditions and C' = y/a(x), Theorem applies:

Theorem 4.4.2. Assume that w satisfies the Geometric Control Condition.

Then the solutions of (4.4.9) decay exponentially, i.e. satisfy (4.1.6) uniformly with respect to the

viscosity parameter € € [0,1]. To be more precise, there exist positive constants ug and vy such that

for all e € [0,1], for any initial data in H}(Q) x L*(Q), the solution of ([£.4.9) satisfies

E(t) < puo E(0) exp(—wot), t>0. (4.4.10)

4.5 Further comments

1. In this article, we have identified a class of damped systems, with added viscosity term,
in which overdamping does not occur. This is to be compared with the existing literature on the
overdamping phenomenon for the damped wave equation ([0} [7]).

2. As we mentioned in the introduction, our methods and results require the assumption that
the damping operator B is bounded. This is due to the method we employ, which is based on
the equivalence between the exponential decay of the energy and the observability properties of the
conservative system, that requires the damping operator to be bounded. However, in several relevant
applications, as for instance when dealing with the problem of boundary stabilization of the wave
equation (see [16]), the feedback law is unbounded, and our method does not apply. This issue
requires further work.

3. The same methods allow obtaining numerical approximation schemes with uniform decay prop-
erties.

The discrete analogue of the viscosity term added above for the stabilization of the wave equation
has already been discussed in the works [21], 20, (I8, [9] for space semi-discrete approximation schemes
of damped wave equations. In those articles, though, the viscosity term is needed due to the presence
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Chapter 4. Uniform exponential decay for viscous damped systems

of high-frequency spurious solutions that do not propagate and therefore are not efficiently damped
by the damping operator B* B when it is localized in space as in the examples considered above.

Following the same ideas as in [21], 20} [I8] 9], if observability properties such as hold for
fully discrete approximation schemes of the conservative linear system in a filtered space (see
[8]), then adding a suitable viscosity term to the corresponding fully discrete version of the dissipa-
tive system suffices to obtain uniform (with respect to space time discretization parameters)
stabilization properties. This issue is currently investigated by the authors and will be published in
[10].
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Chapter 5
Uniformly exponentially stable

approximations for a class of damped
systems

Joint work with Enrique Zuazua.

Abstract: We consider time semi-discrete approximations of a class of exponentially stable infinite
dimensional systems modeling, for instance, damped vibrations. It has recently been proved that for
time semi-discrete systems, due to high frequency spurious components, the exponential decay property
may be lost as the time step tends to zero. We prove that adding a suitable numerical viscosity term
in the numerical scheme, one obtains approximations that are uniformly exponentially stable. This
result is then combined with previous ones on space semi-discretizations to derive similar results on
fully-discrete approximation schemes. Our method is mainly based on a decoupling argument of low
and high frequencies, the low frequency observability property for time semi-discrete approximations
of conservative linear systems and the dissipativity of the numerical viscosity on the high frequency
components. Our methods also allow to deal directly with stabilization properties of fully discrete
approximation schemes without numerical viscosity, under a suitable CFL type condition on the time
and space discretization parameters.

5.1 Introduction

Let X and Y be Hilbert spaces endowed with the norms |[-|| y and ||-||y respectively. Let A : D(A) C
X — X be a skew-adjoint operator with compact resolvent and B € £(X,Y).

We consider the system described by
z2=Az—B*Bz, t>0, 2(0) = z9 € X. (5.1.1)

Here and henceforth, a dot (*) denotes differentiation with respect to time t. The element zy € X is
the initial state, and z(t) is the state of the system.

Most of the linear equations modeling the damped vibrations of elastic structures can be written
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in the form (5.1.1). Some other relevant models, as the damped Schrodinger equations, fit in this
setting as well.

We define the energy of the solutions of system ([5.1.1)) by

1
B(t) =5 =%, t>0, (5.1.2)
which satisfies
dE 9
O =—IB®)ly, t=0. (5.1.3)

In this paper, we assume that system (5.1.1]) is exponentially stable, that is there exist positive
constants p and v such that any solution of ([5.1.1)) satisfies

E(t) <p E(0)exp(—vt), t>0. (5.1.4)

Our goal is to develop a theory allowing to get, as a consequence of ([5.1.4)), exponential stability
results for time-discrete systems.

We start considering the following natural time-discretization scheme for the continuous system
(5.1.1). For any At > 0, we denote by z* the approximation of the solution z of system (5.1.1)) at
time t; = kAt, for k € N, and introduce the following implicit midpoint time discretization of system

(.1.1):
k1 Lk

k k+1 k k+1
Z z 2+ z 2+ z
A (P ke
At 2 < (5.1.5)
ZO = Z20.
As in (5.1.2)), we can define the discrete energy by
1 2
BF == H "fH keN 5.1.6
517 keN (5.1.6)
which satisfies the dissipation law
k1 _ gk k k+1 |2
i YRS el 5.17)
At 2 v

The results in [28], in the context of the conservative wave equation, which is a particular instance of
with B = 0, show that we cannot expect in general to find positive constants ug and vy such
that

E* < pg E®exp(—1pkAt), ke N, (5.1.8)

holds for any solution of uniformly with respect to At > 0. Indeed, it was proved in [2§]
that spurious high-frequency modes may arise when discretizing in time the wave equation, which
propagate with an arbitrarily small velocity and that, when the operator B is localized somewhere in
the domain where waves propagate, cannot be observed uniformly with respect to /At. This constitutes
an obstruction to the stabilization property as well.

Therefore, in order to get a uniform decay, it seems natural to add in system (5.1.5) a suitable
extra numerical viscosity term to damp these high-frequency spurious components. When doing it at
the right scale, the new system we obtain is as follows:

2’”;; 2k _ A(zk +22k+1> B B*B(zk +2§k+1 >’ .~
b+l _ gkl 5.1.9
o = (LA kel (5:1.9)
ZO = 20.
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This system introduces, indeed, numerical viscosity at the right scale since the spurious high-frequency
modes arising in [28] precisely correspond to solutions for which (At)A is of unit order or more.

Let us also remark that system (5.1.9) can be rewritten as

PRl _ Sk 2k 4 2k oo (284 2R 2 12 k41
o =A) Bt ) renan
At At
( 2) A3 k+1 ( 2) B* A2 k+1 (5110)

which is consistent with system (5.1.1)).

To motivate system (5.1.9), one can compare it with the time continuous system
5= Az — B*Bz + (At)? A%z, (5.1.11)

which generates the semigroup S(t) = exp(t(A — B*B+ (At)2A?)). In (5.1.9), 2! corresponds to an
approximation of exp(At(A — B*B))z* and z**! to an approximation of exp((At)3A%)z5T1. Doing
this, 25! is an approximation of S(At)z* ~ exp((At)3A?) exp(At(A— B*B))z*. Thus, system
can be viewed as an alternating direction time-discrete approximation of , for which dissipation

properties have been derived in the recent article [14].

Note that this numerical scheme is based on the decomposition of the operator A — B* B+ (/At)?A?
into its conservative and dissipative parts, that we treat differently. Indeed, the midpoint scheme is
appropriate for conservative systems since it preserves the norm conservation property. This is not the
case for dissipative systems, since midpoint schemes do not preserve the dissipative properties of high
frequency solutions. Therefore, we rather use an implicit Euler scheme, which efficiently preserves
these dissipative properties.

In Subsection we will consider other possible discretization schemes, variants of (5.1.9), which
still preserve the conservative properties of exp(tA) and the dissipative effects of exp(t(At)2A?). We
will also present other possible choices for the numerical viscosity term.

The energy of (5.1.9)), still defined by (5.1.6)), now satisfies

~ k+1
Ek“:Ek—AtH (i H k€N,
(5.1.12)
M4 (AP HAZMHQ (At HA2 k+1H2 _ B pen.
X X ’
Putting these identities together, we get
9 A\t)6 2 ko sk+1 2
EFTL 4 (AL HAz’““H CU HA%’““H + AL HB<Z+Z) = E*, (5.1.13)
X 2 X 2 y

The convergence of the solutions of towards those of the original system when At — 0
holds in a suitable topology. Indeed, the scheme is stable in view of , and its consistency is
obvious. Therefore its convergence (in the classical sense of numerical analysis) is guaranteed: When
At — 0, the solutions za; of , extended in a standard way as piecewise affine functions on R,
converge to the solution z of in L2((0,T); X).

The main result of this paper is that system (5.1.9) enjoys a uniform stabilization property. It
reads as follows:
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Chapter 5. Uniformly exponentially stable approximations for a class of damped systems

Theorem 5.1.1. Assume that system (5.1.1) is exponentially stable, i.e. satisfies (5.1.4) with con-
stants p and v, and that B € £(X,Y).

Then there exist two positive constants pg and vy depending only on u, v and ||B||£(X7y) such

that any solution of (5.1.9)) satisfies (5.1.8)) with constants po and vy uniformly with respect to the
discretization parameter /At > 0.

Our strategy is based on the fact that the uniform exponential decay properties of the energy
for systems and respectively are equivalent to uniform observability properties for the
conservative system

y=Ay, teR, y(0) =yo € X, (5.1.14)

and its time semi-discrete viscous version

¢ Skl ok ko ~k+1
U Atu :A<u +2u )’ keN,
k+1 _ ~k+1 5.1.15
% = (A1)2A%H) ke, ( )
u® = g,

At the continuous level the observability property consists in the existence of a time T > 0 and a
positive constant k7 > 0 such that

T
b lloll% < /0 IBy@I2 dt, (5.1.16)

for every solution of (5.1.14) (see [16] and Lemma below).

A similar argument can be applied to the semi-discrete system (5.1.9). Namely, the uniform
exponential decay (5.1.8)) of the energy of solutions of (5.1.9) is equivalent to the following observability
inequality: there exist positive constants T" and ¢ such that, for any At > 0, every solution u of ((5.1.15|
satisfies

2 2
chuli <o 5l voe S o],
kAte[0,T) kAte[0,T)
2
5| 42, k+1
At Y (A HAu HX (5.1.17)
kAte[0,T]

Note that, since the operator (At)?A? is unbounded, we cannot use the standard arguments in
[16], which state the equivalence between the uniform exponential decay of the energy for (5.1.9) and
uniform observability properties such as ((5.1.17)) for solutions of the conservative system

k+1 k k k+1
vy -y Yty 0
7214(7) keN, = Y0, 5.1.18
At 2 < Yy = ( )
or, equivalently,
~k+1 _ ,k k ~k+1
% _ A(%» S Z g L e, 0 = . (5.1.19)
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Let us now give some insights of the proof of for solutions of . The main idea is to
decompose the solution u of into its low and high frequency parts, that we handle separately.
We first use a uniform observability inequality proven in [12] for solutions of in a filtered
space, which yields a partial observability inequality for the low frequency components of solutions of
. Second, using the explicit dissipativity of at high frequencies, we deduce a partial
observability inequality for the high frequency components. Together, these two partial observability
inequalities yield the needed observability property leading to the uniform exponential decay
result.

Our results yield also uniform exponential decay rates for families of equations of the form (5.1.1]),
with pairs of operators (A, B), within a class in which the exponential decay rate of the continuous

system (5.1.1)) is known to be uniform.

One of the interesting applications of this fact is that our results can be combined with the existing
ones derived for space semi-discrete approximation schemes of various PDE models entering in the
abstract frame as [B, 6, 13, 11, 24, 27, 23] (see [32] for more references). Indeed, knowing
that some space semi-discrete approximation schemes of are exponentially stable, uniformly
with respect to the space mesh size, this fact, combined with Theorem allows deducing uniform
exponential decay properties for the corresponding fully discrete approximation schemes.

Our methods can also be applied directly to fully discrete approximation schemes under a suitable
CFL type condition on the time and space discretization parameters. This can be done without adding
a numerical viscosity term since the CFL condition by itself rules out the high frequency components.
As we will see in the examples, this CFL condition might be very strong and yield severe restrictions,
which do not appear when adding numerical viscosity as in (see Theorem .

As said above, these approaches require observability properties such as to hold uniformly
(with respect to the space discretization parameter) for solutions of the space semi-discrete schemes
for any initial data. However, it often occurs in applications that the space semi-discrete schemes are
uniformly observable only for filtered initial data corresponding to low frequencies (see [18|, 31} 13, 32]).
We therefore adapt our methods to this case, and prove that adding a numerical viscosity term
which is strong enough to efficiently damp out the high frequency components, one obtains uniformly
exponentially stable fully discrete approximation schemes. When doing this, we also prove that,
when considering space semi-discrete approximation schemes that are uniformly observable in filtered
low-frequency subspaces, adding a suitable numerical viscosity term makes the space semi-discrete
approximation schemes uniformly (with respect to the space discretization parameter) exponentially
stable. This generalizes the results [27, 25, 13], where particular instances of viscosity terms have
been used. This also generalizes [14], where it was proven that if is exponentially stable, then
adding a suitable viscosity term does not deteriorate the exponential stability of solutions.

In this sense, the approaches presented in this article are complementary.

Note however that we cannot apply these methods when the damped operator B is not bounded,
as in [20], where the wave equation is damped by a feedback law on the boundary. Dealing with
unbounded damping operators B needs further work.

The results in this paper on the uniform stabilization of time-discrete approximation schemes with
numerical viscosity term are related to several previous ones. The following ones are worth mentioning.
In [27] 26, 23] 13] numerical viscosity is added to guarantee the uniform exponential decay for finite-
difference space semi-discrete approximation schemes of the wave equation. Similar results, in an
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Chapter 5. Uniformly exponentially stable approximations for a class of damped systems

abstract setting, with a stronger viscous damping term, have been proved in [25]. Similar techniques
have also been employed to obtain uniform dispersive estimates for numerical approximation schemes
to Schrodinger equations in [17].

Let us also mention the recent work [12], where observability issues were discussed for time and
fully discrete approximation schemes of . The results of [12] will be used in the present work
to derive observability properties for system within the class of conveniently filtered low
frequency data. Since they constitute a key point of our proofs, we recall them in Section [5.2

Despite all the existing literature, this article seems to be the first one to provide a systematic way
of transferring exponential decay properties from the continuous to the time-discrete setting.

The outline of this paper is as follows.

In Section we recall the results of [I2] and prove Theorem Section is devoted to explain
how we can deduce uniform stabilization results for the fully discrete approximation schemes combining
Theorem [5.1.1] and known results on uniform stabilization for space semi-discrete approximations. We
also present an abstract setting specifically designed to address stabilization issues for fully discrete
approximation schemes without viscosity. In Section [5.4], we present some concrete applications in the
context of the wave equation for which several uniformly exponentially stable schemes are derived.
Finally, some further comments and open problems are collected in Section [5.5

5.2 Stabilization of time-discrete systems

This section is organized as follows. We first recall the results of [I2] on the observability of the time-
discrete conservative system ([5.1.18)). Second, we prove Theorem Third, we present several
variants of the numerical scheme (5.1.9) that lead to uniform exponential decay results similar to

Theorem B.1.11

5.2.1 Observability of time-discrete conservative systems

We first need to introduce some notations.

Since A is a skew-adjoint operator with compact resolvent, its spectrum is discrete and o(A) =
{ipj : j € N}, where (15)jen is a sequence of real numbers such that || — oo when j — oo. Set
(®;)jen an orthonormal basis of eigenvectors of A associated to the eigenvalues (if;);en, that is

Moreover, define
Cs(A) =span{®; : the corresponding is; satisfies |p;| < s}. (5.2.2)
The following was proved in [12]:
Theorem 5.2.1. Assume that B € £(D(A),Y), that is
1B} < CB (1A% + 121k ), ¥z € D(4), (5.2.3)
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5.2. Stabilization of time-discrete systems

and that A and B satisfy the following hypothesis:

{ There exist constants M, m > 0 such that (5.2.4)

M? |[(iw] = A)ylx +m?IBylly > |yl , ¥ weR, yeD(A).

Then, for any 6 > 0, there exists Ts such that for any T > T, there exists a positive constant ks,
independent of At, that depends only on m, M, Cg, T and §, such that for At > 0 small enough, the

solution y* of (5.1.18)) satisfies

2

ko o k+l
2 +
krs |05 <ot > B(%) . Yy € Csnil(A). (5.2.5)
kAte[0,T) Y
Moreover, Ty can be taken to be such that
52\ 2 §4q1/2
Ts = W[MZ(l + Z) + mQC?Bl—(J : (5.2.6)

where Cp is as in (5.2.3).

In the sequel, when there is no ambiguity, we will use the simplified notation Cs,; instead of
Cs/ni(A).

Note that if B € £(X,Y), then the operator B is also in £(D(A),Y"), and ([5.2.3)) holds. Thus the
assumption ([5.2.3)) is satisfied in the abstract setting we are working on.

Hypothesis (5.2.4) is the so-called resolvent estimate, which has been proved in [4, 22] to be
equivalent to the continuous observability inequality (5.1.16|) for the conservative system (|5.1.14]) for
suitable positive constants T" and k7, which turns out to be equivalent to the exponential decay

property ({5.1.4)) for the continuous damped system (5.1.1)).

To be more precise, it was proved in [22] that if the operator B is bounded, then the observability

property ({5.1.16]) implies hypothesis (5.2.4) with

2T T
=4\/—, M=T|B — 5.2.7
m kp | ||2(X7Y) ey ( )

where k7 is as in ([5.1.16)).

Observe that Theorem guarantees that, as soon as the observability inequality holds
for the continuous system , then its time-discrete counterpart holds uniformly for the solutions
of the time discrete systems within the class of filtered solutions Cs/a.(A) involving only the
low-frequency components corresponding to the eigenvalues |u;| < §/At. This fact will play a key role
in the proof of Theorem [5.1.1

5.2.2 Proof of Theorem [5.1.1]

In this Subsection, we assume that system ([5.1.1]) is exponentially stable and that B € £(X,Y), i.e.
there exists a constant Kp such that

|Bzlly < Kpll2llx, VzeX. (5.2.8)
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Chapter 5. Uniformly exponentially stable approximations for a class of damped systems

The proof is divided into several steps. First, we write carefully the energy identity for z solution
of (5.1.9). Second, we observe that the resolvent estimate holds, from which we deduce that
holds as well for solutions of system in the filtered space Cs/a;. Third, we derive the
observability inequality for solutions of . Finally, we deduce that the time-discrete
systems are uniformly exponentially stable.

The energy identity

Lemma 5.2.2. For any /At > 0 and 2° € X, the solution z of (5.1.9) satisfies

ka—1 Sl 2 ka—1
[ +2a0 Y |B(ZEE2)| +one Yo (202 |4z
i=k1 Y i=k1
ko—1 9
ALY (B[ = || VR <k (5.29)
Jj=k1

The proof simply consists in summing the identities in (5.1.13)) from k = l; to k = [o—1. Especially,
it implies that szH; is decreasing, which confirms the dissipativity of the time-discrete system.

The resolvent estimate

Lemma 5.2.3. Under the assumptions of Theorem the resolvent estimate (5.2.4) holds, with
constants m and M that depend only on p and v given by (5.1.4).

Proof. The proof is based on [16].

Since system ([5.1.1)) is exponentially stable, inequality (5.1.4) holds. In particular, there exists a
positive constant 7' > 0 such that 2E(T") < E(0). But equality (5.1.3) implies that any solution z of

(5.1.1)) satisfies
B+ [ B bt = B(0),
and therefore that . X
| 1B = gl (5210)
Let us now show that, as a consequence of this, holds for the solution of as well.

Given yp € X, let y and z be the solutions of (5.1.14)) and (5.1.1) with initial data yo. Then
w = z — y satisfies
W= Aw— B*Bw—B*By, tcR,  w(0)=0.

Multiplying by w and integrating in time, we obtain that

T T
sle@+ [1Be@l & < [ )< Bu). By >y | @
T
< 5[ (1Be®I + 1By} ) ar
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5.2. Stabilization of time-discrete systems

In particular,

T T
| 1Bu@ ae< [ syl a
This inequality, combined with ([5.2.10), leads to

1 T T T
Tl < [C1Be @<z [ (IBw@Id + 1Byl ) de<s [ 1B

It follows that (5.1.16]) holds, and the resolvent estimate (5.2.4)) holds with m and M as in (5.2.7)),
O

according to the results in [22].

Applying Theorem for any 0 > 0, choosing a time T > Ts (where T} is defined in ((5.2.6))
there exists a positive constant kp- 5 such that inequality (5.2.5)) holds for any solution y of (5.1.18))
with ¢0 € Cs/n¢- In the sequel, we fix a positive number § > 0 (for instance 0 = 1), and T* = 2T5.

Uniform observability inequalities

Lemma 5.2.4. There exists a constant ¢ > 0 such that (5.1.17)) holds with T = T™* for all solutions u
of (5.1.15)) uniformly with respect to At.

Proof. In the sequel we deal with the solutions u of (5.1.15)), for which we prove (5.1.17) for T' =
T* = 2Ts. The proof presented below is inspired in previous work [14] from the authors, where similar
arguments have been used in the continuous setting.

As said in the introduction, we decompose the solution u of ([5.1.15)) into its low and high frequency
parts. To be more precise, we consider

up = T apts Up = (I = T5/00)Us (5.2.11)

where ¢ > 0 is the positive number that have been chosen above, and 75,4, is the orthogonal projection
on Cs/ns defined in (5.2.2). Here the notations u; and wuy, stand for the low and high frequency
components, respectively.

Note that both w; and uy, are solutions of (5.1.15]).

Besides, uy, lies in the space Cél/ g in which the following property holds:

Atl|Aylly = Sllylly . Vy € CE (5.2.12)

The low frequencies. In a first step, we compare u; with y; solution of (5.1.18)) with initial data

y1(0) = u;(0). Now, set w; = u; — y;. From ((5.2.5)), which is valid for solutions of (5.1.18)) with initial
data in Cs/a¢, we get

k+~k+1 2
el = ks % <200 ||B(HEE)
kAt€[0,T*] Y
k ~k+1 2
SN B(%) (5.2.13)
EAtE[0,T%] Y
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Chapter 5. Uniformly exponentially stable approximations for a class of damped systems

In the sequel, to simplify the notation, ¢ > 0 will denote a positive constant that may change from
line to line, but which does not depend on At.

Let us then estimate the last term in the right hand side of (5.2.13)). To this end, we write the

equation satisfied by w;, which can be deduced from (|5.1.18]) and (5.1.15)):

~k+1 k ko ~k+l
Wy~ w _A<wz +w ) &
- Y E N?
. At i 2
+1_ =k+1
A 2 42, k+1 (5.2.14)
T_(At) A%u", keN,
wlo =0.
The energy estimates for w; give
2 2
Jat+ e = ] -
9 9 DF Lt (5.2.15)
ot = i - < a ()

Note that wlk and ﬁ;f“ belong to Cs s for all k € N, since w; and y; both belong to Cs/a¢. Therefore,
the energy estimates for w; lead, for k € N, to

k j ~j+1
2 , j j
Hw’ka = —2At) (At < Au{,A(wal) >x
j=1
k k ; ~ 41 2
112 w] +’LU]
< At QH ]H 2 i i
< Z(At) Auj ||+ Atz 5
Jj=1 Jj=1 X
<

k 112 LAY
sty (on? [au|| + o2t |wf|
j=1 Jj=0

where we used the first line of ([5.2.15|).

Gronwall’s Lemma applies and allows to deduce from (5.2.13)) and the fact that the operator B is
bounded, the existence of a positive ¢ independent of At, such that

2

k. ~k+1 2
cllufly <ot > B(%) A (At)QHAu?H.
kAte[0,T%] Y kAte)0,7+] .
Besides,
uk gkt 2 S N
sy B <ame S B()
kAte[0,T%] Y kAte[0,T+) Y
ko o~k |2
Uy + U
AL (hih)
+ > 1B
kAte[0,T+] Y
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5.2. Stabilization of time-discrete systems

and, since uh and ukJr1 belong to C(;/At for all k, we get from (5.2.12]) that

2

< KAt Z
EAtE[0,T)

2
g1
uy +

)

2 2
<Kint Y Hu’,jHX < 55& 3 (At)2HAu’;;HX + KA |ud]
kAte]0,T%] kAte]0,T]

since, from the first line of ([5.1.15)),

~k+1
uh—i—uh

Ny

kAte[0,T%)

X

~§+1H - HuhH . VkeN.
It follows that there exists ¢ > 0 independent of At such that

ko s~k |2
clufl <2t 35 |B(*=5—)

5 N (At)2HAu§in+At}|u2H§<. (5.2.16)
kAte[0,T

Y kAtE]0,T*]

The high frequencies We now discuss briefly the decay properties of solutions uy, of ([5.1.15)) with
initial data uh € C(S/N In this case, we easily check that for all £ € N, uh € C(;/At But, as in ((5.1.13]),
we have

o - @opaty = ok + 200 fank ]

2

(GON Rt N e N T O RS
Due to the property (5.2.12)), we get
2
2009 [ < ]
(1+ 20808 ||| < u]|
We deduce that ) . )
k1|7 H kH keN
Hh H S Tr2ane "l FED
which implies
& 2 1 k 0112
[o4) = (Tazam) 1405 ken (5.2.18)

Especially, taking k* = [T*/At], we get a constant v < 1 independent of At > 0 such that

112
Jod [ <l

Since we also have from (5.2.17)) that, for k£ € N,
k|2 a2 i+1||2 — 5 42, 5+1]|% 0|2
21t (At HA ] H AtS (At HA ] H - ,
Huth+ ]Z;( )7 || Auy, %7 ]z;)( ) Un | [[uh [

taking k = k* = [T*/At], we deduce the existence of a positive constant C', which depends only on
T* and ¢ (namely C' = (1 — ~)/2), such that

k*—1 k-1

> <oty (A2 AuJH LA (At)? || A%l ’ , (5.2.19)
X o llx
j=0 =0
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holds uniformly with respect to At > 0 for any solution of (5.1.15)) with initial data u° € Cg_/At'

Combining (5.2.16) and (5.2.19)) yields Lemma since up, and vy lie in orthogonal spaces with
respect to the scalar products < -, >x and < A-, A- >x. O

Proof of Theorem [5.1.1]

Proof of Theorem[5.1.1 Here we follow the argument in [16] [14].

We decompose z solution of ((5.1.9) as z = u 4+ w where u is the solution of the system (5.1.15))
with initial data u® = 2°. Applying Lemma [5.2.4to © = z — w, we get

k sk+1
el <2(at > |B(=5—)
kAte[0,T*]

+ar S (A HA%’““Hi) + 2<At 3
kALE[0, T kAte[0,T]

2 2
Y (At)QHAwk“H tar Y (At)5HA2w’“+1H ) (5.2.20)
kALE[0,T*] X kALE[D, T X

2
2
+AOE Y (At)QHAzkHH
Y kALE[0,T] X

B<wk _|_1Dk+1> 2
2 Y

Below, we bound the terms in the right hand-side of ([5.2.20) involving w by the ones involving z.

The function w satisfies

DRk wh 4+ gkt ok skt
- A( ) - B*B(i), keN,
k 1At k+1 2 2 -
+1 gkt 2.21
o = (A%, keN, (5.221)
w? = 0.

Multiplying the first line of (5.2.21)) by w” + @w**! and taking the norm of each member in the second
one, we get the following energy identities for k € N:

2 2 k sk+1 k 7k+1
[ = o 200 < B(==) B (=) >,

2 2 (5.2.22)
2 2 2 2
Jo e 2t w2t can® et = ]
X X X X
In particular, this gives
2 2 2
e L P K
ko sk+l k mk+l 2
rast< B ) () = o
Using that B is bounded, we get
5 k—1 o k—1 -
[+ 260 S (002 [ 4w+ (20) S (00 [ 4705
§=0 §=0
k—1 N 2 k—1
2 4zt K3 o 12
<ty |B(55—) B Ry > (|l + a5 ) (5.2.23)
§=0 §=0
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5.2. Stabilization of time-discrete systems

But the second line in (5.2.22) gives that

k—1 k—1
oty [ = Atz w1 + 20862 D (0% | 4w’
j=0 Jj=0 Jj=0
k—1
A2 (807 |A2Zw [ (5.2.24)
7=0

Therefore, for At small enough, (5.2.23)) gives

| +Atz (A2 [ Aw | + Atz A || A2+
7=0

k—1
(Z]Jrz] H + KA [l |3 (5.2.25)
=0

Gronwall’s inequality then gives a constant GG, that depends only on K and 7™, such that

2
sup { Hw H } + At At)2 HAwkHH
kAte[0,T%] }0 4] X

TUNED DRt PR YIS
kAt€]0,T] X JAte[0,T%]

B(Zj +2j+1> 2
2

Y
Combined with (5.2.24)), we get that

st 30 (el vae 3 @ favtal

kAt€]0,T+] kAte]0,T+]

+ar Y (At)5HA2w’f+1H2§GAt 3
kAte]0,T+] X JAte[0,T7]

5 (5.2.26)

Y

Combining (5.2.20]), (5.2.26) and the fact that B is bounded, we get the existence of a constant ¢ such
that

B<zk+2k+1> 2

+ar Y (o HAzkHHi

0
TEEIEDS :
kAte[0,T+] Y kAEE[0,T[

2
+ar Y (e HA%’““H . (5.2.27)

kEAte[0,T[ X

Finally, using the energy identity (5.2.9)), we get that

| T*/AtH (1—o)[]2°]% - (5.2.28)
The semi-group property then implies Theorem [5.1.1 O

Remark 5.2.5. Our proof of Theorem needs to introduce a parameter § > 0, that we can choose
arbitrarily. It would be natural to look for the choice of § > 0 yielding the best estimate in the
decay rate of the energy. However, our method, based on the arguments of [16], does not give a good
approximation of the decay rate of the energy. This is a drawback of this method, which also appears
in the continuous setting.
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5.2.3 Some variants

Other discretization schemes. Other discretization schemes for system (/5.1.1)) are possible. For
instance, we can consider the following one:

k+1 k k k+1

z2T—z 2V + 2

— A<7>, keN,

At 2 <
ktl _ okl 5.2.29
LA _ _p'Bt, keN, (5:2.29)

At

ZO = 20

As for system (5.1.5)), the results of [2§], in the context of the conservative wave equation, allow
proving the existence of spurious high-frequency waves, which do not propagate. This suffices to show
the lack of uniform exponential decay for (5.2.29)).

Therefore, we need to add a numerical viscosity term. We have at least two choices to introduce
this numerical viscosity: Either we consider

k+1 _k ko Jktl
21—z 2V 42
A _—r A(7>, k€N,
At > ©
k +1
Gl i = —B*BFl 4 (A1)2A%F kK eN (5.2.30)
At 9 9
2= 2,
o (oL ok g ke
7 A<7), k€N,
s 5 ©
+1 +1
2 A - _B*B*l keN
A7 2 ’ (5.2.31)
k k+1
ZRHL — o5t — (AD2AZHAH R eN
At ) M
ZO = 20.

The proof above of the uniform exponential decay rate can be adapted to both systems. The low
frequency components can be observed similarly. The same decoupling argument between low and
high frequencies can be applied as well. Indeed, putting B = 0 into systems ((5.2.30) and ([5.2.31])
yields again system . Therefore we can get the same results as for system ([5.1.9)).

Theorem 5.2.6. Assume that system (5.1.1) is exponentially stable, i.e. satisfies (5.1.4)) with con-
stants p and v and that B € £(X,Y).

Then there exist two positive constants o and vy depending only on p, v and ||B| g x y), such

that any solution of (5.2.30)) or of (5.2.31) satisfies (5.1.8)) with constants po and vy uniformly with

respect to the discretization parameter At > 0.

We skip the proof since it is similar to the previous one.

Other viscosity operators. Other viscosity operators could have been chosen. In our approach,
we used the viscosity term (At)2A2, which is unbounded, but we could have considered the viscosity
operator

(At)2A?

(At)Var = m,

(5.2.32)
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5.3. Stabilization of time-discrete systems depending on a parameter

which is well defined, since A? is a definite negative operator, and commutes with A. This choice
presents the advantage that the viscosity operator now is bounded, keeping the properties of being
small at frequencies of order less than 1/At and of order 1 on frequencies of order 1/At and more.
Again, the same proof as the one presented above works.

The following result constitutes a generalization of Theorem [5.1.1} and applies to a wide range of
viscosity operators, and, in particular, to (5.2.32)).

Theorem 5.2.7. Assume that system (5.1.1)) is exponentially stable, and that B € £(X,Y).

Consider a viscosity operator Vas such that there exists § > 0 such that:

1. V¢ defines a self-adjoint negative definite operator.
2. The operators w5 ny and Vay commute.

3. There exist two positive constants ¢ > 0 and C > 0 such that

VI (V)] = e, v o
VBH||(VVa)z| |z ellelly s Ve € Ca

uniformly with respect to /At > 0.

Then the solutions of

ktl _ gkl 5.2.33
T = (Ot keN, (5.2:33)
ZO = 20-

are exponentially uniformly decaying in the sense of (5.1.8]).

A similar result holds for the corresponding variants of systems ((5.2.30)) and (5.2.31)).

5.3 Stabilization of time-discrete systems depending on a parameter

This section is devoted to study time-discrete approximation schemes of abstract systems of the form
depending on a parameter, that can be for instance the space-mesh size when dealing with
fully discrete approximation schemes, in which case A is a space discretization of a partial differential
operator. As we shall see, the results of the previous section apply.

Furthermore, in the context of fully discrete systems, we shall also show that introducing a suit-
able CFL type condition, it is unnecessary to add a numerical viscosity term to obtain the uniform
exponential decay of the energy. This is so, roughly, because the CFL condition itself rules out the
high frequency components without the need of numerical viscosity.

As said in the introduction, this approach requires observability properties to hold uniformly with
respect to the space discretization parameter for solutions of the space semi-discrete schemes for any
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initial data. However, in numerous applications, the space semi-discrete approximation schemes are
only observable at low frequencies. We therefore develop our arguments to deal with this case adding
a stronger numerical viscosity operator to efficiently damp out the high-frequencies which are not
ruled out in the time continuous setting. Simultaneously, we prove a result for space semi-discrete
approximation schemes which, to our knowledge, had not been stated so far in such a general setting,
even if some instances can be found in [27] 25| [13].

Again, the strategy we propose is strongly based on the methods and results in [12], especially
Theorem [5.2.1] given above. Applications to the stabilization of numerical approximation schemes for
the damped wave equation are given in Section

5.3.1 The general case

To state our results, it is convenient to introduce the following class of pairs of operators (A, B):
Definition 5.3.1. For any (Kp, u,v) € (R%)3, we define D(Kp, y,v) as the class of operators (A, B)
satisfying:

(A1) The operator A is skew-adjoint on some Hilbert space X, and has a compact resolvent.

(A2) The operator B is in £(X,Y), where Y is a Hilbert space, and satisfies (5.2.8) with constant

Kp.
(A3) System (j5.1.1) is exponentially stable, and solutions of (5.1.1)) satisfy (5.1.4]) with constants p
and v.

Note that this definition does not depend on the Hilbert spaces X and Y.

In this class, Theorems [5.1.1}{5.2.615.2.7] apply and provide uniform exponential decay properties
for the time semi-discrete approximation scheme . This can be deduced from the explicit
dependence of the constants entering in Theorems [5.1.1}{5.2.6H5.2.7] which only depend on Kpg, 1 and
v. At this point, the fact that the class D(Kp, u, v) is independent of the spaces X and Y plays a key
role.

Also note that Definition only refers to the behavior of the continuous system (|5.1.1)), al-
though, as we have seen, and in particular in view of Theorem [5.2.1] it also has applications in what
concerns time-discrete systems.

This method allows dealing with fully discrete approximation schemes. In that setting, we consider
a family of operators (Aaz, Baz), where Az > 0 is the standard parameter associated with the space
mesh-size. In this way one can use automatically the existing results for space semi-discretizations as,
for instance, [1l, 5] 6, 13, 1T}, 23], 24, 27].

Note that the work [24] is not dealing with stabilization properties, but rather with controlla-
bility properties of space semi-discrete schemes. However, it is standard that these two properties
(controllability and stabilization) are very close, since both are equivalent to observability properties.
Therefore, these works can be adapted to study the stabilization properties as well. We refer to the
survey article [32] for more details and more references.

Remark 5.3.2. We emphasize that this approach is based on the systematic use of existing results
for space semi-discretizations. One could proceed all the way around, first applying the results in
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this paper to derive uniform stabilization results for time discrete approximation schemes and then
discretizing the space variables. For doing this, however, due to the more complex dependence of
the PDE and its space semi-discretizations on the space variables, there is no systematic way of
transferring results from the continuous to the discrete setting. In this sense, the method we propose
here of using the existing results for space semi-discretizations to later apply the results in this paper
about time discretizations is much more easier to be implemented and yields better results.

5.3.2 Stabilization of fully discrete approximation schemes without viscosity

This subsection is devoted to prove a particular result for fully discrete approximation schemes under a
CFL type assumption on the space and time discretization parameters, which does not require adding
numerical viscosity terms. We observe, however, that this approach requires, often, restrictions on At
that can be avoided by adding numerical viscosity terms.

Theorem 5.3.3. Let (Apz, BAz)azso0 be a family of operators defined on Hilbert spaces X a, endowed
with a norm ||-|| o,.. Assume that there exist positive constants Kp, p and v such that, for all Ax > 0,

(Apaz, Bag) € D(Kp, p,v).

Then, for any n > 0, there exist positive constants p, and v, such that the solutions of

E+1 Lk k k+1 k k+1
Epne T FAx - A ZAx+ZAx _B* B ZAJ:+ZA:C EeN
I S T A W T AR CE B
ZOAI = 29Nz € XA:By
satisfy
k|12 0 |2
“hal|, < iy HZAQJHAI exp(—vykAt), k>0, (5.3.2)
uniformly with respect to At > 0 and Ax > 0 provided that
n
HAAQEHE(XA:“XAx) < At (5.3.3)
Remark 5.3.4. In practical applications, the operator Aa, is often a space discretization of an un-
bounded operator A, for which we typically have a bound of the form HAA:,JH):(XA Xpg) C(Lx)~°
for some positive exponent o. In this case, condition ([5.3.3]) is guaranteed as soon as
¢
(Az)e — At

The CFL condition (5.3.3)) therefore imposes the ratio At/(Az)? to be uniformly bounded when Az
and At go to 0.

Remark 5.3.5. This theorem implies that we do not need to add a numerical viscosity term on the
time-discrete approximation schemes to get a uniform exponential decay of the energies if we impose
a CFL type condition on the discretization parameters Ax and At.

Proof. The proof of Theorem [5.3.3| is actually easier than the one of Theorem [5.1.1] since we do not
need the decomposition ([5.2.11f) into low and high frequency components. In some sense, the CFL
rules out the high frequency components.

First, we derive the energy identity for solutions of (5.3.1):

— k
L 0 2 = 2t Ep
leha . = leRalls, = 2883 | Baa (22522 ) |1 te (5.4
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Second, since (Aagz, Baz) € D(Kp, 1, v), the resolvent estimates ([5.2.4) involving Aa, and Ba,
hold uniformly with respect to Az > 0, due to Lemma [5.2.3

Then, applying Theorem with § = 7, because of assumption ([5.3.3) that implies that
Cn/At(AAm) = Xaz, we get a time T* > 0 and a positive constant kp~ independent of Az > 0
such that any solution ya, of

k+1 k + yk+1

N _yAx Az
e = A (), ke, (5.3.5)

0
Yre = Yo,00 € XAz,

satisfies )
yAx + yk:—i-l)
2

YD

kAte[0,T%]

Bm< (5.3.6)

YAac

Now, let 20 Az € XAy, and consider the solutions za, of (5.3.1) and ya, of (5.3.5) with initial
data Yo Az = 20,A2- Set WAz = 2az — Yae. Then

k41

9 ZA + 25

ST A | NE
kAte[0,T]

2 "

k
wk +w
+ Bm( = 2 )

YAJc

ke

2
) . (5.3.7)
Yaa

Therefore, we only need to bound the last term. This is easier than in ([5.2.20]). Indeed, wa, satisfies

k+1 k k k+1 k+1
w —w WA, + W 2K+ ZA
A e - ) = BagBa. (12 5 ), ken, (5.3.8)
: 0 _
with wx, = 0.
The energy estimates on wa, now give, for [ € N
-1 k+1 k k+1
2 2k + Zp WA, + W
1 _ Ax Ax Ax
me A 20 < Bm( 2 >’BA$< 2 ) ZYaw
k=0
and then
2 -1 wA + w"CJrl ? =1 zA + zkJrl 2
l 2 —hx - AT T
[ohell, = 261BA NG 2 oty Bas (5
k=0 Az k=0 Yaz
Since ||Bagz|| (X pnYag) = Kp, applying Gronwall’s Lemma, we obtain a constant G independent of

Az > 0 such that

At P < ant B Rt 28
kAtez[(;,T*] me Ao kAtez[(;,T*} Am( 2 ) Yan
This last inequality implies with that
k+1

2k + 2p
- BM( = 2 )

<201+ KpG)At >
kAte0,T%]

Yae
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Plugging this inequality in (5.3.4) for [* = [T*/At] gives

2 ks
o], = Ieallas (- )

As previously, setting

az(l—%),

which is independent of At, we obtain that

Hzle . < HZOAxHQAx exp ((ZTAf — 1) ln(a)>, Vvl € N,

which proves the result. ]

Remark 5.3.6. As before, the proof of Theorem [5.3.3] can also be carried out for the time-discrete
scheme

Zk+1 k “k+1
Rpae T RAx . (’ZA:B+ZAx ) LeN
At YAN: 9 ) )
k41 sktl
z Z (5.3.9)
A AN k+1
R A —B*AmBszA; , keN,
At .
Zpe = 20,00 € XA,

under the CFL condition ([5.3.3)).

5.3.3 Stabilization of fully discrete approximation schemes with viscosity

In this Subsection, we consider the case in which the space semi-discrete systems are uniformly ob-
servable for initial data lying in filtered subspaces, as it occurs often, see [18], 31}, 13, [32].

Theorem 5.3.7. Let (Apz, BAz)azso be a family of operators defined on Hilbert spaces X a, endowed
with the norms ||-|| -

Assume that there ezists a constant Kp such that for all Az > 0, the operator norm ||Ba,
s bounded by Kp.

||2(XA17YA93)

Assume that there exist positive constants n, o, T and kp such that for all initial data yo €
Co/(ra)e (Anz), the solution y of

U =Arzy, teR, y(0) =yo € Cn/(Az)o (Apz), (5.3.10)
satisfies
2 T 2
bl < [ IBas I, (53.11)
Set ¢ = max{At, (Ax)?}.

Consider a viscosity operator Ve such that:

1. V. defines a self-adjoint negative definite operator.

2. The operators my /. and V- commute.
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3. There exist two positive constants ¢ > 0 and C > 0 such that
Ve[ (V)2 < Cllellag V2 € CuelAnn),
Ve[| (vVw):

uniformly with respect to € > 0.

2 clellags V2 € CualAnn),

Then the solutions of

sk+1 k k sk+1 k sk+1
z —z z¥+z " z¥+z
A - Am( 9 >_BA$BM< 2 ) keN,
PRl _ k1 5.3.12
—x = eV.2Fl keN, ( )
ZO = 20-

are exponentially uniformly decaying in the sense of (5.3.2).

Sketch of the proof. The proof can be done similarly as the one of Theorems [5.1.1 The main
difference in the proof is that the low and high-frequency components are separated by the frequency
1/e instead of 1/At.

As explained in [I2], the observability inequalities (5.3.11)) in the filtered spaces C,/(az)s (Aaz) im-

ply observability inequalities (5.2.5]) for solutions of ([5.1.18) with initial data lying in C, /(Az)s (Aaz) N
Ci/nt(Anz) = Ci/e(Ang). The proof of this fact simply consists in the following remark: the uniform

observability inequalities (5.3.11)) in the filtered spaces C,/(Az)s (Aaz) imply uniform resolvent esti-
mates (5.2.4) for data in C,/az)o(Aaz), and Theorem due to the explicit dependence of the
constants in (5.2.5)) on the constants m and M appearing in (5.2.4)), yields the result.

Then, we replace system (5.1.15)) by

(bt _ ok uk gkt
e ( ) keN,
At A 2 <
k1 _ skl (5.3.13)
Y Y eyt keN,
At
uo = Uup,

and consider u; and uy, defined by
Up = Ty e, Up = (I - ﬂl/a)uv

instead of (5.2.11)).

The rest of the proof follows line to line that of Lemma [5.2.4] and is left to the reader. 0

Theorem [5.3.7 also yields an interesting corollary for time-continuous systems:

Corollary 5.3.8. Let (Aaz, Baz)azso be a family of operators defined on Hilbert spaces X a, endowed
with the norms ||| o,-

Assume that there exists a constant Kp such that for all Az > 0, the operator norm HBAQ:H)Z(XA Yaa)
is bounded by Kp.
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Assume that there exist positive constants n, o, T and kp such that for all initial data yo €

Co/(ra)e (Anz), the solution y of (5.3.10) satisfies (5.3.11]).

Consider a viscosity operator Va, such that:

1. YV, defines a self-adjoint negative definite operator.
2. The operators m, /(pg)e and V. commute.

3. There exist two positive constants ¢ > 0 and C' > 0 such that

(82)"2 || (V=Vr)
o (95

uniformly with respect to Ax > 0.

ZHM < Cllzllags V2 € Cppany (Anz),

ZHAz 2 CHZHAz? Vz e Cn/(ACC)U(AAx)L7

Then the solutions of
2= Apez — B, Bazz + (Dx)7Vazz, teR,,
z(0) = zo.

are exponentially uniformly decaying in the sense of (5.1.4]).

(5.3.14)

Indeed, this can be deduced from Theorem by letting At — 0.

Corollay can be seen as a generalization of [14], where similar results have been derived for
viscous approximations of . In [14], the same result is obtained but the assumptions differ in
one essential point: The observability inequality for solutions of is assumed to hold
for any initial data, and not only in a filtered space as in Corollary Thus, in [14], no assumption
is required on the viscosity parameter.

Though, the proof in [I4] can be easily adapted to prove Corollay directly for time continuous
systems.

Also remark that some instances of applications of variants of Corollary [5.3.8) can be found in
several different articles dealing with space semi-discrete damped systems [27, 25| 23], [13].

In Subsection we will indicate without proof how one can deduce the results in [27, 23] from
the results in [I8] and the methods developped in [14] and here.

Remark 5.3.9. Corollary yields optimal results in the following sense: If system (|5.3.14)) is
exponentially decaying for VA, = —|Aa.|, which always satisfies the assumptions of Corollary
uniformly with respect to the space discretization parameter, then there exists € > 0 such that any

solution y of ((5.3.10)) with initial data in C. /(aq)e (Aa.) satisfies (5.3.11)). Indeed, in this case, following
the proof of Lemma [5.2.3] one can prove that there exist a time 7" > 0 and a constant kr > 0 such

that, for any Az > 0, any solution y of ((5.3.10) satisfies
(/140 ot

In particular, if the initial data lies in C./(az)s (Aaz), we have that

2

dt.

T T
br loll, < /0 |Basy(®I2, dt + /0 (L) X

T
2 2 2
bl < [ 1Bam®I,, di+ < ool

and then, taking ¢ = k7 /2T, we recover (5.3.11).
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5.4 Applications

The goal of this section is to present several applications of Theorems to the damped wave
equation. Of course, the Schrédinger and plate equations, and the system of elasticity, among others,
enter in this frame too, but the applications to these other models will be presented elsewhere.

5.4.1 The time-discrete damped wave equation

Consider a smooth non-empty open bounded domain  C R
We consider the following initial boundary value problem:
ugy — Agu + o(x)?u; = 0, zeQ, t>0,

u(z,t) =0, xed, t>0, (5.4.1)
u(z,0) = ug € HA(), w(w,0)=v € L3(Q), z€Q,

where ¢ : 0 — R, is a non-negative bounded function which is strictly positive in some open non-
empty subset w C §2: There exists a > 0 such that

o*(z) > a, Vrecw. (5.4.2)
The energy of solutions of ([5.4.1))
1
E(t) = 2/ [100u(t, @) + [Vu(t, )] dr, (5.4.3)
Q
satisfies the dissipation law
dE 9 9
E(t) =— [ o(x)%|0wu(t, z)|* dz, vitelo,T). (5.4.4)

It is well-known that the energy (5.4.3) decays exponentially if the set w satisfies a geometric
condition, namely the so-called Geometric Control Condition, introduced in [2, [3]: there exists a time
T > 0 such that all the rays of Geometric Optics in €2 enter the set w in a time smaller than 7.

To show that system ([5.4.1)) enters in the abstract setting of this paper, let us recall that it is
equivalent to

. " . U 0 Id
Z—AZ—BBZ,mch—(v),A—(Ax 0>,B—(0 U). (5.4.5)

In this setting, A is a skew-adjoint unbounded operator on the Hilbert space X = H}(Q) x L*(Q),
with domain D(A) = H? N HL(Q) x H(Q). From the assumptions (5.4.2) on o, the operator B is
obviously continuous on X.

Besides, the energy (5.4.3) of (5.4.1)) reads as ||Z(t)|/% /2.
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Then, we introduce the following time semi-discrete approximation scheme:

Zk+1 _ Zk 0 Id)\ (ZF+ zZF! 0 0 ARS s .
At _<Ax 0>( 2 )‘(0&)( 2 ) ke N
gk+1 _ Zk—i—l 5 A, 0 1 »
(0
Z0 =
Vo

We then define the energy as in ({5.1.6]).

According to Theorem [5.1.1] we get:

Theorem 5.4.1. Assume that the damping function o satisfies (5.4.2)) for a non-empty open set
w C §Q, that satisfies the Geometric Control Condition.

Then there exist positive constants vy and po such that any solution of (5.4.6) satisfies (|5.1.8))
uniformly with respect to the discretization parameter At > 0.

5.4.2 A fully discrete damped wave equation: The mixed finite element method

Here we present an application to a fully discrete approximation scheme. To present our results
properly, we first need to recall some properties of the space semi-discrete wave equation.

We now consider the damped wave equation in 1d, that is with 2 = (0,1). We still assume
that the damping function ¢ is non-negative, bounded, and satisfies . Note that in this case
the Geometric Control Condition is automatically satisfied, and therefore the decay of the energy of
(5.4.1) is exponential.

When semi-discretizing equation in space, it may happen that the space semi-discrete ap-
proximations are not exponentially stable uniformly with respect to the space discretization parameter.
This has been observed in many cases, for instance in [15] [I8, 211 13]. We refer to the review article
[32] for more references.

A possible cure has been proposed in [I] and analyzed in [3] 6, [11] based on a mixed finite element
method, on which we will focus now.

Let N be a nonnegative integer. Set Ax = 1/(/N + 1) and consider the subdivision of (0,1) given
by
O=2o<z1 < - <zj=jlx<---oNnp =1L

Let us present the space semi-discrete approximation scheme of (5.4.1) in 1d, on (0, 1), derived
from the mixed finite element method (see [1l [5] 6], [11])

P .. ..
Ui + 2U; + Ujr1  Ujr1 —2u; +uj—p 1 . .
J 47 SRR (AZEJ)Z I + 1(05—1/2(%’—1 + ;)
+U]2-+1/2(11j + ﬂj—i—l)) =0, (t,j) € Ry x {17 T 7N}7 (5'4'7)

up(t) =un41(t) =0, teRy,
Uj(()) = Uj,0, uj((]) = V5,0, J€ {L"' 7N}7
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where o2 is an approximation of o2 on [jAz, (j + 1)Ax].

Jj+1/2

The energy of solutions of ([5.4.7) is defined by

N

Az Uj + Ui Ujp1 — Uj |2

Ep(t —2§%(‘ ‘ + |2, (5.4.8)
]:

Following [1L [5 6, [I1], one can prove that the energy Ea, is exponentially stable, uniformly with
respect to Az > 0, when o satisfies (5.4.2)).

Let us check that system ([5.4.7)) is a particular instance of the abstract setting we provided.

Define the N x N matrix Ma, by

1/2 if i =g,
Mpa(i,g) = 1/4 if [i—j|l=1,
0 else,

which is invertible, self-adjoint and positive definite.

The space semi-discrete approximation scheme ([5.4.7) can be written as
MAwUA:): + AO,AxUAm + Cl,AzUAx = 07 te R+,

where Ag A, is a positive definite matrix N x N, which represents the Laplace discrete operator, and
U1 ag is the N x N matrix

(O‘?_H/Q + 0]2_1/2)/4 if 1 = j,
2

o o /4 ifi+1=j
C — i+1/2 ’
I,ACIJ(%]) 05_1/2/4 ifi—1= j,
0 else.
System ((5.4.7)) can be rewritten as
e = Apzlpng — CprzZpng, tE Ry, (5.4.9)

where Za,, Ap, and Ca, denote

e - 0 Id
ZAI — < VAJ@ )7 AAI - < _MgiAO,Ax 0 )7

(5.4.10)

Remark that the matrix A, is skew-adjoint on the energy space Xa, = R?YN endowed with the

norm
UAx ?
VA&C

N
Vazi +Vazjri 2 |Unzjt1 — Unzj|?
— A (’ 5J 5J ‘ ‘ 5J 7.7‘ )
xz 2 + Az

Az =0
= < MAJ:VA:Ca VAx >inze + < AO,AQ:UAz, UAJ} > s Axs
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where the scalar product < -,- >, is the classical discrete L? scalar product, corresponding to the
discrete L? norm

N
Vaeline = D2 Vsl (5.4.11)
j=1

Note that, in this setting, the energy (5.4.8]) of solutions of (5.4.7)) coincides with the energy
HZAI(t)HQAI /2 of solutions of ((5.4.9).

Let us check that Ca, has the form B}  Ba, for some N x N matrix Ba,. According to Choleski’s
decomposition, we only have to check that Ca, is a selfadjoint positive matrix on Xa,. For generic

vectors Zia, and Zoa, as in (5.4.10)), we have:

< CpaZing Zopze >ne = < MAngiCIAxVIAm Vornz >xna
= < CiaV102Vore >wpa
N
Vines + Vineji1\ (Vones + Vana
9 1Az, 1Az,5+1 2z, 2Nz, j+1
= Dx) ok, (AT At ) (2200 T 000t ), (5.4.12)
=0

This last expression shows that Ca, is a selfadjoint positive operator on Xa,. Therefore there exists
Bpg such that B}, BA; = Ca,. Besides, classical linear algebra implies that

2
HCA$||2(XAZ,XAL) = ||BA$H£(XAL7XA1) ’

From the computations above, and especially (5.4.12]), we have

HCAwHS(XAz,XAz) :H Shlp {< CrzZine, Zana >A:c} < HJQHLOO : (5'4'13)
YAUN® Az <1,

We are then in the abstract setting given in Section Hypothesis (A1) and (A2) of Definition
have been checked above, and (A3) has been proved in [5] (see [T, 6, [11] for related results).
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Method I: Adding a numerical viscosity term in time

We add a numerical viscosity term to the scheme above, corresponding to (5.1.9). In this case, the
fully discrete approximation scheme reads:

Gkl gk gk gkl

J J _ J
At 2 ’
Lokt Kl | ~ktl k ko ok
4At(( 1205 ) — (v + 20 +”j+1)>
1
= gamy = 27 = 2uf T )
1 5 ko, ok Bl ket
_gajﬂ/z((”j +ui) + (07 + JL)>
1 ~
_§U?—1/2((”f—1+vf)+( L), (5.4.14)
1 ~
g (5 2™ ) — @ o i)
AENZ gt K+l k1
= (%) (it —2uf* ),
1 k1 K+l |kl k1 K+l | ~k+l
4At(( + +2U " +Ujj—_1) ( + +2U * +Ujj-_1))

At 2
= () O3 —2f¥ ),

which holds for (k,j) € N x {1,---, N}, with the boundary conditions

up :u?v_H = :v]]i/_H =0, VkeN, (5.4.15)
and the initial data

u) =uj0, vy =vj0, Vje{l--- N} (5.4.16)

Here u;“ and v;? respectively denote approximations of the functions v and % in x; = jAz at time kAL,

As an application of Theorem [5.1.1], we get:

Theorem 5.4.2. The energy

N k k k k
Nz VY 4+ U512 U, — U5 (2
ko _ J J+1 j+1 J
Ede = 2%(‘ 2 ‘Jr‘ Az ‘) kel,

of solutions of :5.4.14} is exponentially decaying, uniformly with respect to At > 0 and Ax > 0, in

the sense of (|5.3.2)).

148




5.4. Applications

Method II: Imposing a CFL condition

Here we want to use Theorem to derive uniform properties on the following fully discrete system,
obtained by discretizing in time system ([5.4.9)) using (5.3.1)):

u?“ - uf v}“ + phtt
At N 2
1 k41 k1, kel k ko4 ok
At ((vj_l +2v;7 + ”j+1) — (’Uj,l + 205 + vjﬂ))
1 k1, .k kil ko okl ok 5.4.17
= 2 Ax)? (ujJrl + gy — 2u = 2up - u uj_l) ( )
L, ko k k1, kel
_§Uj+1/2<<vj +vi) + (Uj+ + Ujjﬁ))
L 5 k k Rl | ktl
~ j_1/2<(vj_1 + k) + (o + o )),

which holds for (k, j) € Nx{1,---, N}, with the boundary conditions (5.4.15)) and initial data ([5.4.16]).
To apply Theorem we need to estimate the norm of the matrix Aa, defined in (5.4.10).

Actually, its spectrum is given in [5]: The eigenvalues of Aa, are

21 ™
r=T— I](Ax—), 1,--- N}
)\iLA tan ({ 5 ZG{ }

Since Aa, is skew-adjoint on X, its operator norm is given by its highest eigenvalue:

2 ™ 4
lAnellexp, x a0 = Ay tan ((1 B Aw)§> A0 m(Ax)?’

As a consequence of Theorem we get:

Theorem 5.4.3. The energy

ko ok k k
7)~+’U- 2 u; —u 2
J ]+1) ’]-H J‘) keN
2 * Az ’ ’

N
k
Pha =5 2
7=0
of solutions of (5.4.17)) is exponentially decaying, uniformly with respect to At > 0 and Ax > 0, in
the sense of (5.3.2)) provided there exists a constant n such that

At < n(Dx)?. (5.4.18)

Remark 5.4.4. In this case, the CFL condition (5.4.18)) is very restrictive for practical computations.
Therefore, in practice, the fully discrete scheme ((5.4.14]) that involves a numerical viscosity term, for
which no CFL condition is needed, seems preferable.

5.4.3 A fully discrete damped wave equation: A viscous finite difference approx-
imation

We now describe how our results may be combined with those of [27, 23], which add numerical viscosity
in the discretization with respect to the space-variable, to derive a uniformly exponentially stable fully
discrete scheme.
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The finite difference space semi-discrete approximation scheme of system ([5.4.1)) is as follows

Uj1 — 2uj + Uj—1

=~y Tl =0, t€Ry, je (L N},

5.4.19
U,O(t) = uN+1(t) = 0, te R+, ( )
uj(o) = Uj,0, UJ(O) = V5,0, j € {1’ T aN}v

where o0j, u;0, v;0 and u; are, respectively, approximations of the functions o, ug, vo at the point x;.

The energy of system (5.4.19)), given by

N .
Ax Ujpr(t) — u;(t) |2
i=0

is dissipated according to the law

N
dEA .
o () = —Az g sz\uj(t) 2

However, due to spurious high frequency solutions that are created by the numerical scheme, the
energies F, do not decay exponentially uniformly with respect to Az (see [18, 27]), except in the
particular case w = (0,1): If w # (0, 1), there are no positive constants x and v such that the inequality

Epy(t) < wEpg(0)exp(—vt), t>0, (5.4.21)
holds for any Az > 0 and for any solution of ([5.4.19)).

Therefore, to get a uniform decay rate of the energies Ex, (with respect to Az > 0), an extra
numerical viscosity term was added in [27]:

Uj+1 — 2'LL]‘ + Uj—1

’Llj - (AJ/’)Z +O']2-8tu]‘
Ujt1 — 2Uj + Uj— )
—(Al‘)2< e (ALL‘J)2 ! 1) = O’ te RJF? S {17 T 7N}7 (5422)
up(t) = un+1(t) =0, teRy,
UJ(O) = Ujo0, Uy ( ) V3,05 JE {17 7N}

For this system, the energy, still defined by (5.4.20)), is now dissipated according to the law:

dEps X Y i () — ui ()2
g0 =—0e 2 elligOF - (603 (A

J=0

It was proved in [27] that, if o satisfies ((5.4.2)), the energy of the solutions of (5.4.22)) is exponentially
stable uniformly with respect to the mesh size Az > 0, in the sense that there exist positive constants
u and v such that (5.4.21]) holds for any Az > 0 and for any solution of ([5.4.22)).

Besides, one can check that system (5.4.22)) can be written as
Unz + Ao,00Uns + Bi peBo.raUna + (A2)? Ao paUns = 0, t € Ry, (5.4.23)

where Uny = (u1,- - ,uj, - ,un)*, Ao sz is a positive definite matrix, which represents the discrete
Laplace operator, and By A, is the N x N matrix defined by:

BO,Ax = ( diag(o'j) )
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Exponential decay for the time continuous system (5.4.23))

In this Subsection, we indicate how one can prove the uniform exponential decay result for solutions
of (5.4.23)) using the combination of the results in [I8] and the methods introduced in [I4] and further
developed in Corollary

Let us first recall the results in [I4]. Let H be a Hilbert space endowed with the norm ||-|| ;. Let
Ap : D(Ag) — H be a self-adjoint positive operator with compact resolvent and B € £(H,Y).

We then consider the initial value problem

i + Agu + eAgi+ B*Bi= 0, >0,

L (5.4.24)
u(0) =up € D(Ay) "), u(0) =wu; € H.

The energy of solutions of (5.4.24)) is given by
2
1/2
B = 5 ol + 5 4520 (5.4.25)
and satisfies iE )
——|B — e||aga)| - 42

Wty =~ 1B 3 — < 4 a)| (5.4.26)

Theorem 5.4.5. Assume that system ((5.4.24) with e = 0 is exponentially stable and satisfies (5.1.4])
for some positive constants p and v, and that B € £(H,Y).

Then there exist two positive constants uo and vy depending only on HB”QHY) v and pu such
that any solution of (5.4.24] m satisfies (|5 with constants po and vy uniformly with respect to the
viscosity parameter € € [0, 1].

We now introduce the spectrum of Agp. Since Ag is self-adjoint positive definite with compact
resolvent, its spectrum is discrete and o(A4g) = {)\3 : j € N}, where ); is an increasing sequence
of real positive numbers such that \; — oo when j — oo. Set (V;)jen an orthonormal basis of
eigenvectors of Ay associated to the eigenvalues (A?) jEN-

For convenience, similarly as in (5.2.2]), we define
¢y =span{V, : the corresponding \; satisfies |\;| < s}. (5.4.27)
We claim that the proof of Theorem in [14] also proves the following Theorem:
Theorem 5.4.6. Let ¢ € (0,1]. Assume that system
i+ Agu=0, t>0, u(0)=ue DAY, u0)=u € H. (5.4.28)

is exactly observable within the class €, z in the following sense: there exist a time T* > 0 and a
positive constant k. > 0 such that any solution u of (5.4.28) with initial data (ug,u1) € Q:%/\/g satisfies

b ([, + ) < "B @

Then there exist two positive constants p and v depending only on ||B| gy vy, T* and k. such that

any solution of (5.4.24] m ) satisfies (b .
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In [I§], it has been proved that there exist positive constants 7" and k. such that for all Az > 0,
the solution of

UA{E + AO,AxUAx = 07 t> 07 (5429)

with initial data (Up Az, Ur,Az) € 61/&0(14&1)2 satisfies

2

1/2 2 9 ( :
k*( HAO’AxUO,Am + HUI,ACL"H*A;U> < / HBAIUAx(t) dt.
z 0

*/\

*A\x

Setting X,a, = RY endowed with the norm ||+, ,, one easily checks that 1Bazlleix, . x0n,) 38

bounded uniformly in Az > 0.

Theorem then applies, and proves that systems (5.4.23|) are exponentially stable uniformly
with respect to Az > 0.

Remark 5.4.7. Note that this method also applies in higher dimension, using for instance the results
in [31I] which state uniform observability properties for finite difference approximation schemes of a
2d wave equation. Doing this, we recover the results in [27] in 2d.

We now go on analyzing ([5.4.22)). We rewrite system ([5.4.22)) as

Zng = ApaZpg — BhyBroZag, tER,, (5.4.30)

U 0 Id

Bao= (0 /B puBosw + (B)Aos ).

where

(5.4.31)

One can check that the operator Aa, is skew-adjoint on the vector space X, = R2N endowed with

the norm ||| o,
Une
VAz

where Upng = (w1, - ,u5, -+ ,un)* and Vo, = (v1,---,v5,--- ,uN)*, with the convention uy =
un+1 = 0.

Note that the original energy (5.4.20]) of system (|5.4.22)) coincides with the quantity ||ZA$||2Ax /2
of solutions of ([5.4.30f), with the notation above.

2 N
. — .12
N> (|vjy2 + ‘M‘ ) (5.4.32)
Nz ; r

We then need to check that the operator Ba, is a bounded map from Xa, to Xfo = R2V,

where X, n, = RY is endowed with the classical discrete L? norm ||-||, 1, given in (5.4.11)). Since o is
assumed to be in L>°(0,1), we obviously have

[diag(0j)Vaall,ny < llollpee 1Vazll,ay -

Besides,
[(A2)* A0 paViallopp < 411Vacllpg

since
(A2)?AgpaVae = Wag,  with wj =vjy1 —2v5+v-1, Vje{l,--- N}
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Combining these last inequalities, we get the uniform bound

HBAxHQ(XAI7foz) <2+ [lo] oo -

We are therefore in the setting of Section We checked hypothesis (A1) and (A2) of Definition
for the operators Aa, and Ba,, and (A3) comes from the results of [27].

We now present the applications of the abstract methods in Section to this particular setting.

Method I: Adding a numerical viscosity term in time

We introduce the fully discrete approximation scheme, corresponding to (5.1.9), given by

~k+1 k k ~k+1
uj ' = Uy _ Vit v
At 2 ’
~k+1 k
V- — V> 1
J J o s k Las ~k+1
A = 2ha) (]+1+uj+1—2 2u +u +u )
1 k| ~k 1 ~k ~k ~k
—io—f(uj + o) + 5 (51 ol — 20T = 20F + A+ of ), (5.4.33)
k+1 ~k+1
At Ag/) VIt i =1
k41 ~k+1
v; — vy _ (gf(vkﬂ " k+1 —|—vk+1)
At Ax g+l

which holds for (k,7) € N x {1,---, N}, with the boundary conditions (5.4.15) and the initial data

(5.4.16). Here again, u? and U;-“ respectively denote approximations of the functions u and % in

x; = jAx at time kAL,

This fully discrete approximation scheme coincides with the system (5.1.9) with A = Aa, and
B = Bag.

Applying Theorem [5.1.1], we get:
Theorem 5.4.8. The energy

k

N k

ANz Uiy — UF |2

o I (i ‘JT:J’ ) (5.4.34)
=0

of solutions of system (5.4.33) is exponentially decaying, uniformly with respect to both parameters
Az > 0 and At > 0. To be more precise, there exist positive constants vg and g such that the

energies of solutions (5.4.33) satisfy (5.3.2)).

Note that in Theorem no CFL condition is required.
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Method II: Imposing a CFL condition

Again, we consider the space semi-discrete approximation 1) (or equivalently (5.4. 30|)) of (5.4.1),
that we now discretize in time using the midpoint scheme : For all (k,j) e Nx{1,---,N},

Gk b
At 2 ’
E+1 k
Yo TY uk 1 k+1 k+1 5.4.35
N ZQ(A)( +u]+1—2u 2u + u; —|—u ) (5.4.35)
x
1 1
LAt ) L o~ ot k),

\

with the boundary conditions ([5.4.15)), and initial data (5.4.16)).

The discrete energies are defined by (5.4.34) as before. Note that this scheme is simpler than
(5.4.33]), since it does not contain numerical viscosity terms in time.

To use Theorem we need to estimate the norm HAA@"H):(XA Xnn)

Actually, if
Ule > < U2Ar )
A = , 4 = ,

then
N
Ul Az,j+1 — Ul z,j V2Az,j+1 — V2Az,j
< ZlAwa AAxZQAx > A= AZ'Z (
: Ax YA
J=0
N
Ax Z ; (U2Am,j+1 — 2Ugpg,j T U2Az,j—1
- 1Az, A 2 .

In particular,

2

(Ax)Q‘ < ZlAacaAAmZ2Am > Az

al UL Az j+1 — Ul Az, 2 N 2
< (803 (U (05 (- )

j=0 7=0

N
— . . 2
2 u2Aaz,]+1 U2 z,j U2z, j U2z, j—1
+ (803 aegl) (& Z ( - Az ’

J=1

that gives
2
< E HzleHAx HZ2A90HAI'

‘ < ZleaAArZZAm > Az

This proves that [[Aaz]l (X Xny) = 2/Az. Actually, in this case, we know the eigenvalues and

eigenvectors explicitly (see for instance [I8]), and therefore this norm can be computed explicitly to
be 2sin((1 — Az)r/2)/Ax.

As a corollary of Theorem [5.3.3] we get:
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5.5. Further comments

Theorem 5.4.9. Given n > 0, if we impose the CFL type condition
At < nAex, (5.4.36)

then there exist positive constants vy and p, such that the energy of solutions of (5.4.35)) satisfies
(5.3.2)), uniformly with respect to the discretization parameters Ax > 0 and At > 0.

Remark 5.4.10. Here it seems more natural to use the discretization ([5.4.35)) than ((5.4.33)) since the
CFL condition ([5.4.36|) is not very restrictive.

Note that the results we presented here for the 1d wave equation can be adapted to deal with 2d
wave equations in a square as in [27] or more general domains as in [23].

Method III: Discretizing with only one viscosity term

We are in the setting of Theorem and therefore we can use only one viscosity term: Set ¢ =
max{At, Az} and consider

R+l _ ok ok 4 Rt

j Y _YTY
At 2 ’
~k+1 k
v — h 1 1
J J_ k1 k41 ek, k41
A7 BETVE (]H—i—uﬁl—Qu —2u + U —|—u )_503@ +07),
(5.4.37)
k1 k41
R (i)2(uk+1 — okt 4 it
At Ax Jj+1 J g=17
k+1 ~k+1
V. — U e 2
Yi 7Y (BN kL o kL, ket
= (o) G -2 o),

\

which holds for (k,j) € Nx{1,---, N}, with the boundary conditions (5.4.15)) and initial data ([5.4.16]).

Theorem 5.4.11. Setting e = max{At, Ax}, the energy ng defined in (5.4.34)) of solutions of system
(15.4.37)) is exponentially decaying, uniformly with respect to both parameters Ax > 0 and At > 0. To
be more precise, there exist positive constants vy and pg such that the energy of solutions (5.4.33)

satisfies (5.3.2)).

Remark 5.4.12. The main advantage of (5.4.37)) over (5.4.33) is the presence of only one viscosity
operator. In other words, ([5.4.33|) dissipates too much.

The advantage of (5.4.37)) over ([5.4.35)) consists in the absence of CFL condition, which makes
(5.4.37)) more robust in practice.

5.5 Further comments

1. As we mentioned in the introduction, our methods and results require the assumption that
the damping operator B is bounded. This is due to the method we employ, which is based on
the equivalence between the exponential decay of the energy and the observability properties of the
conservative system, that requires the damping operator to be bounded. That is the case, even in the
continuous setting. However, in several relevant applications, as for instance when dealing with the
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Chapter 5. Uniformly exponentially stable approximations for a class of damped systems

problem of boundary stabilization of the wave equation (see [20]), the feedback law is unbounded, and
our method does not apply. This issue requires further work.

2. Another drawback of our method is that it provides an explicit estimate of the exponential
decay rate of the energy of the time semi-discrete approximation systems, which is far from sharp in
general. Again, this also happens in the continuous case, since we deduce stabilization properties from
the study of the observability properties of the corresponding conservative systems. In the continuous
case, the computation of the decay rate of the energy is technically involved and requires to work
directly on the damped system. We refer to the works [7, 8, 19] that deal with these questions for
damped wave equations.

In our context, it would be also relevant to ask if one can choose the numerical viscosity term
such that the time-discrete damped systems are exponentially stable, uniformly with respect to the
time discretization parameter, and such that the decay rate of the energy of these time discrete
systems coincides with the one of the continuous system. To our knowledge, this issue is still open.
Let us mention the work [13], which gives a partial answer to this question for space semi-discrete
approximation schemes of the 1d Perfectly Matched Layers equations, which correspond to a particular
instance of damped wave equations.

3. In this article, we assumed exponential decay properties for the continuous damped systems
under consideration. However, there are several important models of vibrations where the energy decay
rate is polynomial or even logarithmic within the class of solutions with initial data in D(A) instead
of X. That is the case for instance for networks of vibrating strings [9] or damped wave equations,
when the damping operator is effective on a subdomain where the Geometric Control Condition is not
fulfilled [2, 19]. One could ask if there is a systematic discretization method for these systems that
preserves these decay properties. To our knowledge, this issue is widely open. The time semi-discrete
schemes provided here are good candidates to preserve these decay properties.

4. The same questions arise when discretizing in time semilinear wave equations. For instance,
in [I0] (see also [29] 30]), the exponential decay property of solutions of semilinear wave equations
in R? with a damping term which is effective on the exterior of a ball are analyzed. Under suitable
properties of the nonlinearity, it is proved that the exponential decay of the energy holds locally
uniformly for finite energy solutions. It would be interesting to analyze whether the same exponential
decay property holds, uniformly with respect to the time-step, for the numerical schemes analyzed in
this article in this semilinear setting.

156



Bibliography

Bibliography

[1]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. T. Banks, K. Ito, and C. Wang. Exponentially stable approximations of weakly damped wave
equations. In Estimation and control of distributed parameter systems (Vorau, 1990), volume 100
of Internat. Ser. Numer. Math., pages 1-33. Birkhauser, Basel, 1991.

C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control and
stabilization of waves from the boundary. SIAM J. Control and Optimization, 30(5):1024-1065,
1992.

N. Burq and P. Gérard. Condition nécessaire et suffisante pour la contrélabilité exacte des ondes.
C. R. Acad. Sci. Paris Sér. I Math., 325(7):749-752, 1997.

N. Burq and M. Zworski. Geometric control in the presence of a black box. J. Amer. Math. Soc.,
17(2):443-471 (electronic), 2004.

C. Castro and S. Micu. Boundary controllability of a linear semi-discrete 1-d wave equation
derived from a mixed finite element method. Numer. Math., 102(3):413-462, 2006.

C. Castro, S. Micu, and A. Miinch. Numerical approximation of the boundary control for the
wave equation with mixed finite elements in a square. IMA J. Numer. Anal., 28(1):186-214, 2008.

S. Cox and E. Zuazua. The rate at which energy decays in a damped string. Comm. Partial
Differential Equations, 19(1-2):213-243, 1994.

S. Cox and E. Zuazua. The rate at which energy decays in a string damped at one end. Indiana
Univ. Math. J., 44(2):545-573, 1995.

R. Déger and E. Zuazua. Wave propagation, observation and control in 1-d flexible multi-
structures, volume 50 of Mathématiques € Applications (Berlin). Springer-Verlag, Berlin, 2006.

B. Dehman, G. Lebeau, and E. Zuazua. Stabilization and control for the subcritical semilinear
wave equation. Ann. Sci. Ecole Norm. Sup. (4), 36(4):525-551, 2003.

S. Ervedoza. Observability of the mixed finite element method for the 1d wave equation on
non-uniform meshes. To appear in ESAIM: COCYV, 2008. Cf Chapitre 2.

S. Ervedoza, C. Zheng, and E. Zuazua. On the observability of time-discrete conservative linear
systems. J. Funct. Anal., 254(12):3037-3078, June 2008. Cf Chapitre 3.

S. Ervedoza and E. Zuazua. Perfectly matched layers in 1-d: Energy decay for continuous and
semi-discrete waves. Numer. Math., 109(4):597-634, 2008. Cf Chapitre 1.

S. Ervedoza and E. Zuazua. Uniform exponential decay for viscous damped systems. To appear
in Proc. of Siena ”Phase Space Analysis of PDEs 2007”7, Special issue in honor of Ferrucio
Colombini, 2008. Cf Chapitre 4.

R. Glowinski. Ensuring well-posedness by analogy: Stokes problem and boundary control for the
wave equation. J. Comput. Phys., 103(2):189-221, 1992.

A. Haraux. Une remarque sur la stabilisation de certains systémes du deuxiéme ordre en temps.
Portugal. Math., 46(3):245-258, 1989.

L. I. Ignat and E. Zuazua. Dispersive properties of a viscous numerical scheme for the Schrédinger
equation. C. R. Math. Acad. Sci. Paris, 340(7):529-534, 2005.

157



Chapter 5. Uniformly exponentially stable approximations for a class of damped systems

[18]

[19]

[20]

[21]

158

J.A. Infante and E. Zuazua. Boundary observability for the space semi discretizations of the 1-d
wave equation. Math. Model. Num. Ann., 33:407-438, 1999.

G. Lebeau. Equations des ondes amorties. Séminaire sur les E‘quations aux Dérivées Partielles,
1993-1994,Ecole Polytech., 1994.

J.-L. Lions. Controlabilité exacte, Stabilisation et Perturbations de Systémes Distribués. Tome 1.
Controlabilité exacte, volume RMA 8. Masson, 1988.

F. Macia. The effect of group velocity in the numerical analysis of control problems for the wave
equation. In Mathematical and numerical aspects of wave propagation—WAVES 2003, pages
195-200. Springer, Berlin, 2003.

L. Miller. Controllability cost of conservative systems: resolvent condition and transmutation. J.
Funct. Anal., 218(2):425-444, 2005.

A. Miinch and A. F. Pazoto. Uniform stabilization of a viscous numerical approximation for a
locally damped wave equation. ESAIM Control Optim. Calc. Var., 13(2):265-293 (electronic),
2007.

M. Negreanu and E. Zuazua. Convergence of a multigrid method for the controllability of a 1-d
wave equation. C. R. Math. Acad. Sci. Paris, 338(5):413-418, 2004.

K. Ramdani, T. Takahashi, and M. Tucsnak. Uniformly exponentially stable approximations for a
class of second order evolution equations—application to LQR problems. ESAIM Control Optim.
Cale. Var., 13(3):503-527, 2007.

L. R. Tcheugoué Tebou and E. Zuazua. Uniform boundary stabilization of the finite difference
space discretization of the 1 — d wave equation. Adv. Comput. Math., 26(1-3):337-365, 2007.

L.R. Tcheugoué Tébou and E. Zuazua. Uniform exponential long time decay for the space semi-
discretization of a locally damped wave equation via an artificial numerical viscosity. Numer.
Math., 95(3):563-598, 2003.

X. Zhang, C. Zheng, and E. Zuazua. Exact controllability of the time discrete wave equation.
Discrete and Continuous Dynamical Systems, 2007.

E. Zuazua. Exponential decay for the semilinear wave equation with locally distributed damping.
Comm. Partial Differential Equations, 15(2):205-235, 1990.

E. Zuazua. Exponential decay for the semilinear wave equation with localized damping in un-
bounded domains. J. Math. Pures Appl. (9), 70(4):513-529, 1991.

E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2-D
wave equation in the square. J. Math. Pures Appl. (9), 78(5):523-563, 1999.

E. Zuazua. Propagation, observation, and control of waves approximated by finite difference
methods. SIAM Rev., 47(2):197-243 (electronic), 2005.



Part 111

Admissibility and Observability for
finite element discretizations of
conservative systems

159






Chapter 6

Schrodinger equations

Abstract: In this article, we derive uniform admissibility and observability properties for the finite
element space semi-discretizations of iZ = Agz, where A is an unbounded self-adjoint positive definite
operator with compact resolvent. In order to address this problem, we present several spectral criteria
for admissibility and observability of such systems, which will be used to derive several results for
space semi-discretizations of iZ = Apz. Our approach provides very general results, which stand in
any dimension and for any regular mesh (in the sense of finite elements). We also present applications
to admissibility and observability for fully discrete approximation schemes, and to controllability and
stabilization issues.

6.1 Introduction

Let X be a Hilbert space endowed with the norm ||-|| y and let Ay : D(Ag) C X — X be an unbounded
self-adjoint positive definite operator with compact resolvent. Let us consider the following abstract
System:

i2(t) = Aopz(t), teR, 2(0) = zp € X. (6.1.1)

Here and henceforth, a dot (") denotes differentiation with respect to the time t. The element zp € X
is called the initial state, and z = z(t) is the state of the system. Such systems are often used as
models for quantum dynamics (Schréodinger’s equation).

Note that the system (6.1.1)) is conservative: The energy ||2(t)||% of solutions of (6.1.1) is constant.

Assume that Y is another Hilbert space endowed with the norm |[|-|ly,. We denote by £(X,Y)
the space of bounded linear operators from X to Y, endowed with the classical operator norm. Let
B € £(D(Ayp),Y) be an observation operator and define the output function

y(t) = Bz(t). (6.1.2)

We assume that the operator B € £(D(Ap),Y) is admissible for system (6.1.1)) in the following
sense:

Definition 6.1.1. The operator B is an admissible observation operator for system (6.1.1)) if for every
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T > 0 there exists a constant Kp > 0 such that
T
| 1B @t < Kr ol ¥ 20 € D0, (6.1.3)
0

for every solutions of (6.1.1]).

Note that if B is bounded in X, i.e. if it can be extended in such a way that B € £(X,Y), then B is
obviously an admissible observation operator, and Kp can be chosen as Kp =T ||B||?3( x,v)- However,
in applications, this is often not the case, and the admissibility condition is then a consequence of a
suitable “hidden regularity” property of the solutions of the evolution equation (|6.1.1]).

The exact observability property for system ((6.1.1])-(6.1.2)) can be formulated as follows:

Definition 6.1.2. System (6.1.1))-(6.1.2)) is exactly observable in time T if there exists k7 > 0 such
that

T
brlolk < [ 1B dt, ¥ 20 € D(o). (6.1.4)
0

for every solution of (6.1.1]).

Moreover, system ((6.1.1)-(6.1.2]) is said to be exactly observable if it is exactly observable in some
time T" > 0.

Note that observability and admissibility issues arise naturally when dealing with controllability
and stabilization properties of linear systems (see for instance the textbook [28]). These links will be
made precise later.

There is an extensive literature providing observability results for Schrédinger equations, by several
different methods including microlocal analysis [3, 26], multipliers and Fourier series [30], etc. Our
goal in this paper is to develop a theory allowing to get admissibility and observability results for
space semi-discrete systems as a direct consequence of those corresponding to the continuous ones,
thus avoiding technical developments in the discrete settings.

Let us now introduce the finite element method for (6.1.1)).

Consider (V3,)n>0 a sequence of vector spaces of finite dimension n;, which embed into X via a
linear injective map 7, : V3, — X. For each h > 0, the inner product < -,- >x in X induces a structure
of Hilbert space for V}, endowed by the scalar product < -, - >p=< 7wy, - >x.

We assume that, for each h > 0, the vector space 7, (V},) is a subspace of D(A(l)/ 2). We thus define
the linear operator Agy : Vi, — Vj, by

< Aon®n, Y >p=< Aéﬂﬂmh,Aé/Zﬂhwh >x, V(on,vn) € V2. (6.1.5)

The operator Agy, defined in (6.1.5)) obviously is self-adjoint and positive definite. If we introduce the
adjoint 7} of 7y, definition (6.1.5) reads as:

Aop, = 73 AoTip,. (6.1.6)

This operator Ag, corresponds to the finite element discretization of the operator Ag. We thus
consider the following space semi-discretisation of (6.1.1):

1z, = Aonzn, tER, zp(0) = zop, € V. (6.1.7)
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In this context, for all A > 0, the observation operator naturally becomes B;, = Bmj,. Note

that, when B € £(D(Ay>

B e &(D(A)%),Y).

),Y'), this definition always make sense. We are thus lead to impose

We now make precise the assumptions we have, usually, on 7, and which will be needed in our
analysis. One easily checks that
mhmy = Idy, . (6.1.8)

The injection 7, describes the finite element approximation we have chosen. Especially, the vector

space 7, (V}) approximates, in the sense given hereafter, the space D(A(l)/ 2): There exist 8 > 0 and
Cy > 0, such that for all A > 0,

HA})/Q(MW;; _ I)¢>HX < Cy HA})%HX . Vo e D(AY?),
(6.1.9)
|45y, ~ Do < Con 408l Vo € D(Ao).

Note that in many applications, and in particular for Ay the Laplace operator on a bounded domain
with Dirichlet boundary conditions, estimates (6.1.9) are satisfied for 6 = 1.

We will not discuss convergence results for the numerical approximation schemes presented here,
which are classical under assumption (6.1.9), and which can be found for instance in the textbook
[39].

In the sequel, our goal is to obtain uniform observability properties for (6.1.7) similar to (6.1.4]).

Let us mention that similar questions have already been investigated in [27] for the finite differ-
ence approximation schemes of the beam equation, for which we expect the same admissibility and
observability properties as for to hold. To be more precise, in [27], the authors considered the
finite-difference approximation scheme of the 1d beam equation on a uniform mesh, observed through
the boundary value. They proved that, in this case, the observability properties do not hold uniformly
in the space discretization parameter for any initial data. Though, they proved, similarly as in [23]
which dealt with 1d finite difference schemes of the wave equation, that one can recover uniform ob-
servability results when filtering the data. Actually, as pointed out by Otared Kavian in [46], it may
even happen that unique continuation properties do not hold anymore in the discrete setting due to
the existence of localized high frequency solutions.

Therefore, it is natural to restrict ourselves to classes of suitable filtered initial data. For all h > 0,
since Ay, is a self-adjoint positive definite matrix, the spectrum of Ag is given by a sequence of
positive eigenvalues

0<Af <A< <A (6.1.10)

and normalized (in V},) eigenvectors (‘P?)lﬁjﬁnh- For any s > 0, we can now define, for any h > 0, the
filtered space

Ch(s) = span {@? such that the corresponding eigenvalue satisfies |)\§’| < s}.

We are now in position to state the main results of this article:

Theorem 6.1.3. Let Ag be a self-adjoint positive definite operator with compact resolvent, and B €
L£(D(Af),Y), with k < 1/2. Assume that the maps (mn)n>0 satisfy property (6.1.9). Set

o = O min {2(1—25)%}. (6.1.11)
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Admissibility: Assume that system (6.1.1)-(6.1.2) is admissible.

Then, for anyn >0 and T > 0, there exists a positive constant Kr, > 0 such that, for any h > 0,
any solution of (6.1.7)) with initial data

zon € Cr(n/h%) (6.1.12)

satisfies

T
Aum%w@ﬁSKmu%m (6.1.13)

Observability: Assume that system (6.1.1))-(6.1.2)) is admissible and exactly observable.

Then there exist € > 0, a time T and a positive constant ky, > 0 such that, for any h > 0, any

solution of (6.1.7)) with initial data
zon € Cr(e/h%) (6.1.14)

satisfies

T*
bl < [ IBuaO1f b (6.1.15)
0

This theorem is based on new spectral characterizations of admissibility and exact observability

for (E11)- 12

For characterizing the admissibility property, we use the results in [12] to obtain a characterization
based on a resolvent estimate and, later, on an interpolation property.

Our characterization of the exact observability property uses the resolvent estimates in [6] [32].
Again, we prove that these estimates can be interpreted as interpolation properties.

The main idea, then, consists in proving uniform (in h) interpolation properties for the operators
Aop, and By, in order to recover uniform (in h) admissibility and observability estimates. This idea
is completely natural since the operators Ag, and By, correspond to discrete versions of Ag and B,
respectively.

Theorem [6.1.3] has several important applications. As a straightforward corollary of the results
in [12], one can thus derive observability properties for general fully discrete approximation schemes
based on ([6.1.7)). Precise statements will be given in Section

Besides, it also has relevant applications in control theory. Indeed, it implies that the Hilbert
Uniqueness Method (see [28]) can be adapted in the discrete setting to provide efficient algorithms to
compute approximations of exact controls for the continuous systems. This will be clarified in Section
0.0l

We will also present consequences of Theorem to stabilization issues for space semi-discrete
and fully discrete models based on (6.1.7)), using the results [15]. Indeed, in [I5], this problem has
been addressed in a very general setting which includes our models.

Let us briefly comment some relative works. Similar problems have been extensively studied in the
last decade for various space semi-discretizations of the 1d wave equation, see for instance the review
article [46] and the references therein. The numerical schemes on uniform meshes provided by finite
difference and finite element methods do not have uniform observability properties, whatever the time
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T is, see [23] (see also [27] for the beam equation). This is due to high frequency waves which do not
propagate, see [43, [31]. In other words, these numerical schemes create some spurious high-frequency
wave solutions which do not travel.

In this context, filtering techniques have been extensively developed. It has been proved in [23), [44]
(or [27] for the beam equation) that filtering the initial data removes these spurious waves, and make
possible uniform observability properties to hold. Other ways to filter these spurious waves exist, for
instance using wavelet filtering approaches as in [35] or bi-grids techniques [16] [36]. However, to the
best of our knowledge, these methods have been analyzed only for uniform grids in small dimensions
(namely in 1d or 2d). Also note that these results prove uniform observability properties for larger
classes of initial data than the ones stated here, but in more particular cases. Especially, we emphasize
that Theorem holds in any dimension and for any regular mesh.

Let us also mention that observability properties are equivalent to stabilization properties (see
[19]), at least when the observation operator is bounded. Therefore, observability properties can be
deduced from the literature in stabilization theory. Especially, we refer to the works [41l 40} 34, [13],
which prove uniform exponential decay results for damped space semi-discrete wave equations in 1d
and 2d, discretized on uniform meshes using finite difference methods, in which a numerical viscosity
term has been added. Again, these results are better than the ones derived here, but apply in the
more restrictive context of 1d or 2d wave equations on uniform meshes. Similar results have also been
proved in [38] in a general context close to ours, but for bounded observation operators. Besides, in
[38], a non trivial spectral condition on Ag is needed, which reduces the scope of applications mainly
to 1d equations.

To the best of our knowledge, there are very few papers dealing with nonuniform meshes. A
first step in this direction can be found in the context of the stabilization of the 1d wave equation
in [38]: Indeed, stabilization properties are equivalent (see [19]) to observability properties for the
corresponding conservative systems. The results in [38] can therefore be applied to 1d wave equation
on nonuniform meshes to derive uniform observability results within the class of data filtered at the
scale h™?. Though, they strongly use a spectral gap condition on the eigenvalues of the operator,
which do not hold for the wave equation in higher dimension. Another result in this direction is
presented in [I1], again in the context of the 1d wave equation, but discretized using a mixed finite
element method as in [2, [7, §]. In [I1], it is proved that observability properties for schemes derived
from a mixed finite element method hold uniformly with respect to the mesh size for a large class of
meshes, and, in particular, no filtering condition is required on the data.

We shall also mention recent works on spectral characterizations of the exact observability prop-
erties for abstract conservative systems. We refer to [0, [32] for a very general approach for linear
conservative systems, which yields a necessary and sufficient spectral condition for exact observability
to hold. Let us also mention the article [37], in which a spectral characterization of observability
properties based on wave packets is given. We also point out the recent article [4], which considers
several (weak) observability properties given as interpolation properties, which are close to the ones
that we will prove in the present work.

We also mention the recent work [12] which proved admissibility and observability estimates for
general time semi-discrete conservative linear systems. In [12], a very general approach is given,
which allows to deal with a large class of time-discrete approximation schemes. This approach is
based, as here, on a spectral characterization of exact observability for conservative linear systems
(namely the one in [0, 32]). Later on in [I5] (see also [14]), the stabilization properties of time
discrete approximation schemes of damped systems were studied. In particular, [I5] introduces time-
discretizations which are guaranteed to enjoy uniform stabilization properties.
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Let us finally notice that the results in Theorem [6.1.3] may not be sharp, in view of the results
in [27], which can be adapted to the finite element space semi-discretization of the 1d Schrédinger
equation to prove that the sharp filtering scale, in 1d and on uniform meshes, is A~2. In the very
general setting presented here, we do not have any conjecture on the sharp filtering scale. This question
deserves further work.

This article is organized as follows:

In Section [6.2] we present several spectral conditions which are equivalent to admissibility and

exact observability properties for abstract systems taking the form (6.1.1))-(6.1.2)). In Section we
prove Theorem [6.1.3] In Section [6.4] we provide some examples of applications of Theorem In

Section [6.5] we consider admissibility and exact observability properties for fully discrete approxima-
tion schemes of . In Section some applications of Theorem in controllability theory
are indicated. In Section we also present applications to stabilization theory. We finally present
some further comments and open questions.

6.2 Spectral methods

This section recalls and presents various spectral characterizations of admissibility and observability
for abstract systems such as (6.1.1)-(6.1.2)). Here, we do not deal with the discrete approximation

schemes (6.1.7]).

To state our results properly, we introduce some notations.

When dealing with the abstract system (6.1.1])-(6.1.2)), it is convenient to introduce the spectrum
of the operator Ag. Since Ag is self-adjoint and positive definite, its spectrum is given by a sequence
of positive eigenvalues

0<A <A< <A< -oe - 00, (6.2.1)

and normalized (in X') eigenvectors (®;);ens.

Since some of the results below extend to a larger class of systems than (6.1.1)), we introduce the
following abstract system

. _ N
{Z Az, 120, (6.2.2)

2(0) = 2 € X, y(t) = Bz(b),

where A : D(A) C X — X is an unbounded skew-adjoint operator with compact resolvent. In
particular, its spectrum is given by a sequence (if;);, where the constants p; are real and |u;| — oo
when j — oo, and the corresponding eigenvectors (¥;); (normalized in X)) constitute an orthonormal

basis of X. Note that systems of the form (6.1.1)-(6.1.2)) indeed are particular instances of (/6.2.2)).

This section is organized as follows.

First, we present spectral characterizations for the admissibility of systems (6.1.1)-(6.1.2]), based
on the results in [12], which we recall. Then, we present spectral characterizations for the exact

observability of systems (6.1.1])-(6.1.2)), based on the articles [6l 32].
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6.2.1 Characterizations of admissibility
Wave packet characterization

First, we consider the general abstract conservative equation (6.2.2)), and recall the results in [12]
Section 6]. Note that the admissibility inequality for (6.2.2]) consists in the existence, for any T > 0,
of a positive constant Kp such that any solution z of (6.2.2]) satisfies

T
| 1B v < Kol a0 € D) (6.23)
0

Theorem 6.2.1 ([12]). Let A be a skew-adjoint unbounded operator on X with compact resolvent,
and B be in £(D(A),Y).

System (6.2.2)) is admissible in the sense of (6.2.3)) if and only if
There exist r >0 and D >0 such that

for alln € N and for all z = Z a¥;: ||Bzlly <D|2]x, (6.2.4)
leJr(pn)
where
Jr(p) ={l € N, such that |y — p| < r}. (6.2.5)

Besides, if (6.2.4)) holds, then the constant Kp in (6.2.3|) can be chosen as follows:
34D

2rT .
KT — K7r/2r ’77—‘ s thh Kﬂ./2,’, — 47.

(6.2.6)

To be more precise, in [I2, Section 6], the estimates (6.2.6) are not given explicitly, but directly
come from the proof of Theorem 6.1 in [12], which yields the constant

Ky jor = 3DM,(0),

where M, (0) is the Fourier transform at 0 of the function

M) = (2

This makes precise the constant K /9., and the constant K7 for T > 0 can be obtained as a simple
consequence of the semi-group property and the conservation of the energy for solutions of (6.2.2]).

Resolvent characterization

In practice, when dealing with sequences of operators, whose eigenvectors may change, Theorem [6.2.1]
is not easy to use. We therefore introduce other characterizations of admissibility of (6.2.2]), which
yield more convenient criteria.

Theorem 6.2.2. Let A be a skew-adjoint unbounded operator on X with compact resolvent, and B
be in £(D(A),Y).

System (6.2.2) is admissible in the sense of (6.2.3)) if and only if there exist positive constants m
and M such that

M?||(A —iwl)z||3 +m? ||z|% > | Bz|l}, Vze D(A),Yw e R. (6.2.7)
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Besides, if (6.2.7) holds, then the constant Kp in (6.2.3]) can be chosen as follows:

. RV 72

Proof. Assume that system (6.2.2)) is admissible in the sense of (6.2.3)). Then Theorem proves
the existence of constants r and D such that (6.2.4) holds.

We now recall the following result, which is inspired by [37], and precisely stated in [I2, Lemma
6.2]:

Lemma 6.2.3. Under the hypotheses of Theorem assume that system (6.2.2)) is admissible. For
e > 0, define

V(w,e) = span{V¥; such that |p; —w| < e}.

Let us define K(w,€) as

K(w,e) = ||B(A - iwj)ilHE(V(w,s)L,Y) '

Then, for any e > 0, K(w,¢) is uniformly bounded in w, that is

K(e) = sup K (w, ) < 0. (6.2.9)
w€eR

Besides, the following estimate holds

K 1
K(e) < /ﬁ;(—n (1 + g), (6.2.10)

where K1 is the admissibility constant in (6.2.3)) for T = 1.

Let z € D(A) and w € R. Write 2z = z, + 2,1, with 2, € V(w,7) and 2,1 € V(w,7)*. Note that
this decomposition is unique and that z, and z,. are orthogonal in X, and with respect to the scalar
product < (A —iwl)-, (A —iwl)- >x. Then we have

2 2 2
[Bzlly < 2[[Bzully + 2Bz |y
< 2D7 [lzlly + 2K (r)? (A —iwl)z,1 |I%
<

2D |[z]|% + 2K (r)* [|(A — iwI)z||% ,
and (6.2.7) is proved.

Conversely, assume that holds. Let € be a positive constant. Then, for all w € R, for all
z € V(w,e),
(A —iwD)z|% < €%|=1%
and thus we get
B2y < (m® + M%) 2]

Estimate (6.2.4) follows with r = ¢ and D = vm? 4+ M?2e2, and, by Theorem this implies the
admissibility of system (6.2.2]). Taking e = 7/2, we obtain the estimate (6.2.8)). O]
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Applications to System ((6.1.1))-(6.1.2])

Let us consider the abstract setting of (6.1.1)-(6.1.2), which is a particular instance of (6.2.2)), with
A = —iAy.

In this case, one can obtain a more convenient spectral characterization of the admissibility of
(6.1.1))-(6.1.2)) by removing the dependence in the extra parameter w € R:

Theorem 6.2.4. Let Ag be an unbounded self-adjoint positive definite operator on X with compact
resolvent, and B be in £(D(Ap),Y).

System (6.1.1)-(6.1.2) is admissible in the sense of (6.1.3)) if and only if there exist positive con-
stants o and B such that

9 4
4522, < 120 (1doI% + 0 el = 82 1B=I ), ¥z € D(Ao). (6.2.11)

Besides, if (6.2.11]) holds, then system (6.1.1) is admissible, and the constant Kr in (6.1.3) can be

chosen as follows:
. 373 w2
KT = Kl |V77—|7 with Kl = ﬁ CK2 + Z (6212)

Proof. The idea is very simple. Thanks to Theorem [6.2.2] we only need to prove the equivalence
between (6.2.7) and (6.2.11)).

Now, remark that condition (6.2.7)) for (6.1.1)-(6.1.2) reads as follows: There exist positive con-
stants m and M such that

M |[(Ag — w2l +m? 2% = |B=Il%, vz € D(Ag),Yw € R.

This is equivalent to say that the quadratic form in w

2
|BZ||Y

2 2 1
2 1/2 2 m 2
w? 121k — 20|45 + 14021k + 25 l2l% — 575 |

is nonnegative for all z € D(Ay), or, equivalently, that its determinant is nonpositive, i.e.
2
12 |4 2 2 , M 2 1 2
45722, < a0k (Hdozl% + 3 12k = 555 18215 )-

This coincides with (6.2.11)) by the identification

m 1
— = —, 2.1
= A= (6.2.13)

The equivalence is then straightforward and estimate (6.2.12]) follows from (6.2.8]), and identity
6.2.13). 0

o=

6.2.2 Characterizations of observability

We first recall the results in [6, B2] concerning the observability properties for (6.2.2]), which consist
in the existence of a time T* and a constant kpr« such that any solution of (6.2.2)) with initial date
20 € D(A) satisfies

T*
ke || 20]|% g/ |Bz(t)|)3 dt. (6.2.14)
0
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Theorem 6.2.5 ([6, 32]). Let A be a skew-adjoint unbounded operator on X with compact resolvent,
and B € £(D(A),Y).

If system (6.2.2)) is admissible and exactly observable in time T™, then there exist positive constants
m and M such that

M?||(A —iwD)z|3% +m?||Bz|3 > ||z[|%, Vze€ D(A), Yw e R. (6.2.15)

Besides, in (6.2.15]), one can choose m = \/2T* [k~ and M = T*\/W where the constants k-«
and Kp« are the ones in (6.2.14) and (6.2.3) respectively.

Conversely, if (6.2.15)) holds, then for any time T' > wM, system (6.2.2)) is exactly observable, and
the constant kr in (6.1.4]) can be chosen as

_ 1
- om2T

Theorem when specified to system ((6.1.1)-(6.1.2)), yields the following result:
Theorem 6.2.6. Assume that Ay : D(Ap) C X — X is an unbounded self-adjoint positive definite
operator with compact resolvent, and that B € £(D(Ap),Y) for some Hilbert space Y .

If system (6.1.1)-(6.1.2) is admissible and exactly observable, then there exist positive constants «
and B such that

kr (T? — 7 M?). (6.2.16)

4
1/2
4672 < 2% (1402l +a® IB=I - B2112I1% ), v € D(Ay). (6.2.17)

Conversely, if (6.2.17)) holds, then system (6.1.1)-(6.1.2) is exactly observable in any time T > w/f3,
and the constant kr in (6.1.4) can be chosen as

- ,62 5 7.‘_2
br= oo (T - @). (6.2.18)

Proof. This result is based on Theorem Indeed, we only prove that conditions (6.2.17)) and
(6.2.15)) are equivalent. Note that condition (6.2.15)) for (6.1.1)-(6.1.2)) simply takes the form

M?||(Ag — wI)z||% + m? |Bz|2 > ||2||%, Vz € D(Ag), Vw € R. (6.2.19)

Remark that (6.2.19) can be rewritten as

2 m2 1
2 2 2
L+ (1402l + 25 18213 — 755 121% ) > 0.
Vz € D(Ap), Yw € R. (6.2.20)

W? |2l — 2w | Ag%

Since this last expression simply is a quadratic expression in w € R, then the nonnegativity of (6.2.20))
is equivalent to the nonpositivity of the discriminant of ([6.2.20]), i.e.

1/2 |4 2 o | m? 2 1 2
4522, < 120 (1dozlk + T 1B=13 = 75 120 ) V= € D(Ao). (6.2.21)
which is obviously equivalent to (6.2.17), with &« = m/M and 5 =1/M.

Conversely, if (6.2.17) holds, inequality (6.2.19) holds for any z € D(Ap) and w € R by taking
m = a/f and M = 1/3. Therefore, using the estimates in Theorem it follows that if (6.2.17))

holds, system (|6.1.1])-(6.1.2) is exactly observable for any time T' > 7 /3, and estimate (6.2.18)) follows
from ((6.2.16)). O
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6.3 Proof of Theorem [6.1.3

In this section, we present the proof of Theorem [6.1.3] To this end, we consider an unbounded self-
adjoint positive definite operator Ay with compact resolvent, and B € £(D(Af),Y), with x < 1/2,
and we work under the assumptions of Theorem [6.1.3

For convenience, since B is assumed to belong to £(D(Af),Y’), we introduce a constant Kp such
that
1Bolly < Kp [|A5ollx, V¢ € D(AG).

The proof is divided into two major parts, one analyzing the admissibility properties (6.1.13)), and
the other one the observability properties (6.1.15]).

6.3.1 Admissibility

Proof of Theorem[6.1.3: Admissibility. Assume that system (6.1.1)-(6.1.2) is admissible. Then, from
Theorem (6.2.11)) holds for some positive constants « and (.

In view of Theorem the admissibility properties (6.1.13)) is equivalent to the existence of two
positive constants a, and 0, such that, for all A > 0,

4
|52, < 1l ( NAonznl2 + 2 lnl2 = 62 UBuznlE ), ¥on € Cata/®). (63.1)

To prove inequality , a natural idea would have been to choose z = 7,25 in . However,
since we did not assume that 7 (V},) C D(Ap), this cannot be done. For instance, in the case of P1
finite elements for Aj the Laplace operator (say on (0, 1)) with Dirichlet boundary conditions, we have
that 7,(V,) N D(Ag) = {0}. Actually, even if we assume m,(V}) C D(Ayp), for z;, lying in a filtered
class, it is not clear that the quantities || Aopzpl|;, and [|Aomph2p| x are close.

Therefore, in the sequel, we fix h > 0, and, for z, € Cn(n/h?), where 7 is an arbitrary positive
number independent of h > 0, we consider Z;, € X defined by

AoZy, = mhAonzn = Ty Ao 2. (6.3.2)
Note that (6.3.2)) defines Z;, properly, since Ay is invertible.
Besides, Z, € D(Ay), since AgZy, belongs to X by (6.3.2)). It follows that (6.2.11]) applies and gives

4
|57 2] < 1200 (14020l + 02 12005 - 52 1BZul%. ). (6.33)

Below, we will deduce estimate (6.3.1]) from (6.3.3]), by comparing each term carefully.
From the definition (6.3.2]) of Z}, we have
[Aonznll, = llmnAonznllx = [[AoZnll x - (6.3.4)

We now estimate Zj, — m2p,. Using (6.1.6) and (6.3.2)), for all ¢ € D(Ap), we have:

< Iy, Agp >x=< AoZp, ¢ >x=< mrAonzn, » >x

=< 7Th7T;;A07thh, P >x=< Aé/Qﬂhzh,A(l)/zﬂhﬂ'Zqﬁ >x . (6.3.5)
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In particular, this implies that

< (Zh — ﬂhzh), A0¢ >x = < Zh7A0¢ >x — < “4(1)/271-’12}““4(1)/2(ZS >
= < AO/ thh,A(l]ﬂ(ﬂ'hﬂ'Z —DNop>x.

Using (6.1.9) and the invertibility of Ay, we obtain

HZh—ﬂ'hZhHX = sup { < (Zh—ﬂhzh),A0¢ >x }
#€D(Ao),
Aol x =1
1/2 *
< Al |-
¢6D(AO)7 X
Aol x =1

< Cohf HA(1]/27rhzh .

Besides, for any v € [0, 1], in view of (6.1.9)), interpolation properties yield
|45 i, — Do < Con™ = |4y ||, v e Dy,

and thus, as above,

“A3/2(Zh - Tthh)HX = sup {< A’Y/ (Zh — thh) 7/2§Z5 >x }
$eD(A; "),
1—v/2 _
4t %] =1
< Jmal, s -],
$eD(Ay %),
46772 =1

IA

Coh?(1=) HA})/ 27ThzhH
X
Especially, for v = 2k, we obtain

|A§(Zh — hzn)||x < Coh?(=2%)

‘A(l)/QwhzhH
X
Besides, using the definition (6.1.5)) of Agy, one easily gets that
HA1/2¢ H - HAO 7rh¢hH . Von € V. (6.3.6)

It follows that

i

120 = mnznllx < Coh? || 4gf7z||,

(6.3.7)
14520 = mnzn)lx < o429 [ 422, |

In particular, this implies, by the definition of the norm ||-||,, that

1z l, — Coh? Aéf/th <1Zullx < llznll, + Coh? || Agh2en| . (6.3.8)
h
and that
20 || 41/2, |2

1Zal% < 21l + 20807 || gy, (6.3.9)
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Using B € £(D(A§),Y) and the estimate (6.3.7), we obtain

IBZylly > |Brenlly — KpCoh?—2%)

1/2
‘AOh sl

(6.3.10)

Then we obtain

1 _ 2
IBZully = 5 I1Baznlly — KRCEN20—2) | Agi2a| (6.3.11)

. 12, |2 12|12
We now estimate ||A, " Zp M Ay 2n . On one hand, we have

2
HA(l)/QZhHX =< AoZp, Zp, >x =< mAonzh, Zn >x=< Aonzh, ThZn >h -
On the other hand, we have
1/2

2
*
HAOh ZhHh =< Aonzn, zn >p=< thzh,ﬂ'hﬂ'hzh >p .

Subtracting these two identities, we get

172, ||? 1/2_ ||
HAO/ ZhHX — HAOi/L ZhHh =< thzh,ﬂ';;(Zh — thh) >h,
and therefore, using (6.3.7)), that

2 2
L P A P o R 2

Plugging (6.3.4)), (6.3.8)), (6.3.9)), (6.3.10) and (6.3.12) into (6.3.3]), we get

(st - corvamant i, )" < Cant - con iz, )

2
[ 40nznll} + 2 (2 1l + 20302 || g/ )

2
Bl + PR

J

‘A(l)fzh

Since zp, is assumed to belong to Cp(n/h7), we get

4
1/2 _ _
| agi7an]|, (1 = Con®==/2 /i) < llanl (1 + Co®~/2 )2 | Aozl
2
+ (202 + 20°C30 -7+ PRI |t — 2 | Bacaliy |
Using o < 260, one gets that, for A small enough,

Lo (Lt Coh?=/2,/m
— (1 _ Cohe—a/z\/ﬁ

2 9—c)2
) <14 5Coh" /2 < 2, (6.3.13)
and thus,

4
HAé{LZZhHh < thHi [HAOhZhH}% + 500h0_0/2\/?] HAOhZhH;QL

2
+2(20% + 2023007y + BPEBCHPO=7) [zl — B} ]
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Since zp, belongs to Cp(n/h?), this yields
4
HA(IJ{LQZhHh < |lznll [”AOhZhHi + (5(70he_"/2_20775/2
_ —ow)— 3
+ 402 4 402G + 2P KROIN 027 2 — Bl
Thus, with o as in (6.1.11)), we obtain (6.3.1]) with
1
of = 5Con"? +40° (1 + Cn) + 28°K3Cn, 2= 5%

This completes the proof of the first statement in Theorem Also note that, using Theorem
m one can get explicit estimates on the constant K7, in (6.1.13]). O

6.3.2 Observability

Proof of Theorem [6.1.3: Observability. Assume that system (6.1.1])-(6.1.2) is admissible and exactly
observable. Then, from Theorem there exist positive constants a and ( such that (6.2.17]) holds.

In view of Theorem [6.2.6] our goal is to prove that there exist positive constants o, and B, such
that for any h > 0, the following inequality holds:

4
|Actzn||, < lznlih (1 Aonzalls + 2 1Bazally = 62 Wl ), Van € Cule/n?). (6:314)

To prove inequality (6.3.14)), as before, we fix zj, € Cp,(e/h7), where € is a positive parameter indepen-
dent of h > 0 that we will choose later on, and we introduce the element Z; € X defined by (6.3.2).

Again, since AgZ;, belongs to X by (6.3.2)), Z, € D(Ap). Then (6.2.17)) applies and yields
4
|45 2 < 1200 140zl + 02 1BZl — 82 1201k ). (6:3.15)

Using (638), we get
1 12 |2
5l — Con2 || AP < 1Zall% - (6.3.16)

Using B € £(D(Af),Y) and the estimate (6.3.7)), we obtain

1BZnlly < [[Buanlly + KpCoh®! =2

i

and then

2
IBZu)> < 2| Brenll> + 2K3C2p%00-20) ‘A;fzhHh. (6.3.17)

Now, plugging estimates (6.3.4)), (6.3.9), (6.3.12)), (6.3.16)) and (6.3.17) into (6.3.15]), we obtain

2 2 2
(s - o v i, ) = (1t i)

2
Aozl + 02 (2 Buzally: +2K3C3R0=2 || Agf%z| )

2 2
= 5 leallh + B*C3* HAé,/fzhHh] .
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Using that z;, € Cp,(e/h7), we get that
4
(1= Coh? e [agin|, < llanlfy (1 -+ Co?=o/2 ey

1 Aonznlly + 202 | Brznlly + 202 KECER* 297 ||z

2
— 2 JlanliE + 2GRN ||zh||i] -
For h small enough, estimate ((6.3.13)) holds, and then it follows that

4
1/2 _ _
| a5r72n]|, < NenlE | 1AonznllE + 5CORO 12720652 242 + 40 | B}

2
A0 KFORNP0 29 2 — O |l + 2070 mni] -

According to the choice (6.1.11]) of o, this yields

4
1/2
457224, < 1=nl? | NAonznl2 + 402 | Buznl

2
+ (50065/2 + +4a2K%C§e + QBQC(%E - %) ||Zh||i2z] ‘

Choosing € > 0 such that

2
5Coe%? + 40’ K3C2e + 23°C2e = %,

we finally obtain (6.3.14]) with
1
Oy = 20&, /8* = §ﬁa

which completes the proof of Theorem [6.1.3

Also remark that Theorem provides explicit estimates on the constants 7" and ks in (6.1.15)).
O

Remark 6.3.1. Similar results hold when the operator Ay only is nonnegative. This can be done
without restriction with the following argument.

The function z is solution of (6.1.1)) if and only if z, = zexp(—it) is the solution of

.. — >
{ iz = (Ao + Id)zs, t =0, (6.3.18)

2+(0) = 2.
The observation y in (6.1.2)) now reads on (6.3.18)) as y(t) = exp(it) Bz.(t).

Thus the admissibility and observability properties for (6.1.1)-(6.1.2) are equivalent to the corre-
sponding ones for ((6.3.18]). Also remark that A, = Ag + Id has exactly the same domain as Ag, with

equivalent norms, but now, A, is positive definite.
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Besides, when discretizing (6.3.18]) using a finite element method, the discretized version of A,
simply is A, = Aon + Idy,, and again, the admissibility and observability properties for (6.1.7) and
for

s > '
{ o Ath*h I = 07 yh(t) = eZtth*h(t)’ t> 0,

zn(0) = zop € Vi,
are equivalent.

Note that this argument can also be applied to deal with self-adjoint operators Ay that are only
bounded from below in the sense of quadratic forms.

6.4 Examples of applications

This section is dedicated to present some applications to Theorem [6.1.3], and to confront our results
with the existing ones in the literature.

6.4.1 The 1-d case

Let us consider the classical 1d Schrodinger equation:

10z + 02,2 = 0, (t,x) € R x (0,1),
z(t,0) = z(t,1) =0, teR, (6.4.1)
2(0,x) = zo(x), z € (0,1).

For (a,b) a subset of (0,1), we observe system (6.4.1)) through

y(tvl‘) = Z(tal')X(a,b)(l')’ (6'4'2)

where X(,4) is the characteristic function of (a,b).

This models indeed enters in the abstract framework considered in this article, by setting Ag =
—02, with Dirichlet boundary conditions, and B = X(a,p)- Indeed, Ay is a self-adjoint positive definite
operator with compact resolvent in L?(0,1) and of domain H?(0,1) N HZ(0,1). The operator B
obviously is continuous on L?(0,1) with values in L?(0,1). The admissibility property for (6.4.1))-

(6.4.2)) is then straightforward.

The observability property for — is well-known to hold in any time 7" > 0 when the
Geometric Control Condition is satisfied, see [26], B]. This condition, roughly speaking, asserts the
existence of a time T™ such that all the rays of Geometric Optics enters in the observation domain
in a time smaller than 7. In 1d, this condition is always satisfied, and thus system — is
exactly observable in any time 7" > 0. This can also be seen using multipliers techniques [30].

To construct the space V3, we use P1 finite elements. More precisely, for n, € N, set h =
1/(np + 1) > 0 and define the points x; = jh for j € {0,--- ,n; + 1}. We define the basis functions

r—x;1t .
ej(x) = |:]'_|hj‘:| ) v] € {17 ,Tlh}-
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Now, V;, = C™, and the injection 7}, simply is

Ve =C"  — L%*0,1)

21
Z9 '
aw=| . = mzn(e) =Y zjei(x).
: =
Zn,

Usually, the resulting schemes are written as

yn(t) = Brpzp(t), tER, (6.4.3)

{ iMpzp(t) + Kpzp(t) =0, t€R,
2r(0) = 2on,

where M), and K} are n, x nj matrices defined by (Mp);; = fol ei(x)ej(x) dr and (Kp);; =
fol Oyei(x)0zej(x) dx. Note that, since M} is a Gram matrix associated to a basis, it is invertible,
self-adjoint and positive definite, and thus the following defines a scalar product:

< OnyUn >n= G Mpthn,  (én,¥n) € Vi (6.4.4)

Besides, from the definition of Mj,, one easily checks that

1
< by ton = / T (On) @) (n) () da, V(m, tn) € V2,

as presented in the introduction.

Similarly, one obtains that, for all (¢p, ) € V2,
&1 Kby = ¢ My M, P Kby, =< ¢, My, 'Ky, >n= o5 K M, My,

1
=< M Kt >~ [ O man) @0 )

This proves that the operator M, LK), coincides with the operator Ay, of our framework. Note that
this operator indeed is self-adjoint, as expected, but with respect to the scalar product (6.4.4]) and not
with the usual hilbertian norm of C"»,

It is by now a common feature of finite element techniques (see for instance [39]) that, in this case,

estimates (6.1.9) hold for 8 = 1. We can thus apply Theorem to systems (6.4.3):

Theorem 6.4.1. There exist ¢ > 0, a time T™ and a constant k. such that for any h > 0, any solution

2 of (6.4.3) with initial data zop, € Cp,(e/h*/) satisfies (6.1.15)).

This result is to be compared with the ones in [27]: In [27], it is proved that, for finite difference
approximation schemes of the 1d beam equation, observability properties hold uniformly within the
larger class Cp(a/h?) for a < 4. Though not stated in [27], the same results hold for Schrédinger
equation, thus leading better results than our approach.

Though, as we will see hereafter, we can tackle more general cases, even in 1d, for instance taking
sequence of meshes S, given by n + 2 points as

Ton = 0< Tin < < Tpp < Tptln = 1, hj+1/2,n = Tj+1n — Ljn,

for which we assume hy, = sup;{h;j11/2,,} to go to zero when n — oo.
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6.4.2 More general cases

Let us mention that our results also apply in more intricate cases. Let {2 be a smooth bounded domain
of RN for N € N*, and consider

10z + divy(o(2)Vgez) = V(z)z, (t,z) € R xQ,
z(t,x) =0, (t,z) € R x 09, (6.4.5)
2(0,z) = zo(z), x € (),

where ¢ is a C! positive real valued function on Q, and V is a real-valued nonnegative bounded function
in Q. This indeed enters in the abstract setting of by setting Ay = —div,(o(x)Vy)+V(x) with
Dirichlet boundary condition, which is a self-adjoint positive definite operator with compact resolvent
in L?(Q2) and of domain H2(Q) N H(Q).

Let w be an open subdomain of {2 and consider the observation operator
y(t,z) = xw(z)2(t,z), teR. (6.4.6)
Assume that system ((6.4.5))-(6.4.6)) is exactly observable.

To guarantee this property to hold, one can assume for instance that the Geometric Control
Condition (see [3] and above) is satisfied. But, in fact, the Schrodinger equation behaves slightly
better than a wave equation from the observability point of view because of the infinite velocity of
propagation. The Geometric Control Condition is sufficient but not always necessary. For instance, in
[24], it has been proved that when the domain € is a square, for any non-empty bounded open subset

w, the observability property (6.1.4) holds for system (6.1.1). Other geometries have been also dealt
with, see for instance [0} 11 [6] [42].

We consider P1 finite elements on meshes 7;,. We furthermore assume that the meshes 7, of the
domain 2 are regular in the sense of [39, Section 5]. Roughly speaking, this assumption imposes that
the polyhedra in (7,) are not too flat:

Definition 6.4.2. Let 7 = Ugc7 K be a mesh of a bounded domain 2. For each polyhedron K € T,
we define hx as the diameter of K and px as the maximum diameter of the spheres S C K. We then
define the regularity of 7 as

Res() = {550}

A sequence of meshes (7;);,>0 is said to be uniformly regular if

sup Reg(7},) < 0.
h

In this case, see [39, Section 5], estimates (6.1.9)) again hold for # = 1, and Theorem implies:

Theorem 6.4.3. Assume that system (6.4.5))-(6.4.6) is exactly observable. Given a sequence of meshes
(71,)n>0 which is uniformly reqular, there exist € > 0, a time T* and a constant k. such that for any
h >0, any solution zy, of the P1 finite element approximation scheme of (6.4.5)) corresponding to the

mesh Tj, with initial data zop € Cp(e/h*/°) satisfies (6.1.15).

To our knowledge, this is the first time that observability properties for space semi-discretizations of
are derived in such generality. In particular, we emphasize that the only non-trivial assumption
we used is , which is needed anyway to guarantee the convergence of the numerical schemes
under consideration.
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6.5 Fully discrete approximation schemes

This section is based on the article [12], which studied observability properties of time discrete conser-
vative linear systems. As said in [12], Section 5], this study can be combined with observability results
on space semi-discrete systems to deduce observability properties for fully discrete systems. Below,
we present some applications of the results in [12].

Let us consider time discretizations of (6.1.7]) which takes the form

z]]zH = TAt’hz,’f, k €N, 22 = zon € V. (6.5.1)
Here At > 0 denotes the time discretization parameter, and zﬁ corresponds to an approximation of
the solution zj, of (6.1.7) at time ¢, = kAt. The operator Tasp : Vi, — Vj, is an approximation of
exp(—i(A) Agn).

To be more precise, we assume that there exists a smooth strictly increasing function ¢ defined on
an interval [—R, R] (with R € (0, oo]) with values in (—m, 7), and such that

Taen = exp(—iC((At)Aon))- (6.5.2)

In particular, this assumption implies that the operator Ty is unitary, and then the solutions of
have constant norms. The parameter R corresponds to a frequency limit R//At imposed by the
time discretization method we consider. The fact that the range of ¢ is included in (—,7) reflects
that one cannot measure frequencies higher than 7/At in a mesh of size At. The hypothesis on the
strict monotonicity of ¢ is a non-degeneracy condition on the group velocity (see for instance [43] and
[12, Remark 4.9]) for solutions of which is necessary to guarantee the propagation of solutions
required for observability properties to hold.

We also assume

o
n

which guarantees the consistency of the time discrete schemes (6.5.1]) with the time continuous models
(6.1.7)).

as n— 0,

Remark that these hypotheses are usually satisfied for conservative time-discrete approximation
schemes such as the midpoint discretization or the so-called fourth order Gauss method (see for
instance [18] or [12], Subsection 4.2]).

Then, from [12], we get:

Theorem 6.5.1. Let Ay be an unbounded self-adjoint positive definite operator with compact resolvent
on X, and B € £(D(Af),Y), with k < 1/2.

Assume that the maps (7p)p>o satisfy property (6.1.9). Set o as in (6.1.11]).

Consider a time discrete approximation scheme characterized by a function ¢ as above, and let
J€(0,R).

Admissibility: Assume that system (6.1.1))-(6.1.2)) is admissible.

Then, for anyn >0 and T' > 0, there ewists a positive constant Kt, s > 0 such that, for any h > 0
and At > 0, any solution of (6.5.1) with initial data

zon € Cr(n/h%) N CL(5/ L) (6.5.3)
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satisfies

2
k 2
at Y ||Buck|, < K lzonl;- (6.5.4)
kEALe[0,T]

Observability: Assume that system (6.1.1))-(6.1.2)) is admissible and exactly observable.

Then there exist € > 0, a time T* and a positive constant k, > 0 such that, for any h > 0 and
At >0, any solution of (6.5.1)) with initial data

2on € Cr(e/h%) N CL(5/AL) (6.5.5)
satisfies
2
Fellzonl? < ot Hth,’juy. (6.5.6)
kAte[0,T)

Obviously, inequalities (6.5.4)-(6.5.6|) are time discrete counterparts of (6.1.13))-(6.1.15). Remark
that, as in Theorem [6.1.3] a filtering condition is needed, but which now depends on both time and

space discretization parameters.

Also remark that if (At)h™7 is small enough, then Cp(e/h%) N Cp(6/At) = Cr(e/h?). Roughly
speaking, this indicates that under the CFL type condition (At)h™7 < €/§, then system ([6.5.1))
behaves, with respect to the admissibility and observability properties, similarly as the space semi-

discrete equations (6.1.7]).

6.6 Controllability properties

In this section, we present applications of Theorem to controllability properties. In the sequel,
we thus assume the hypotheses of Theorem [6.1.3

6.6.1 The continuous setting

We consider the following control problem: Given 7' > 0, for any yo € X, find a control v € L?(0,T;Y)
such that the solution y of

Y= *Z.A()y + B*’U(t), te [O7T]a y(O) = Yo, (661)

satisfies
y(T) = 0. (6.6.2)

It is well-known (see for instance [28]) that the controllability issue in time 7" for (6.6.1)) is equivalent
to the exact observability property for (6.1.1)-(6.1.2)) in time 7". Indeed, these two properties are dual,
and this duality can be made precise using the Hilbert Uniqueness Method (HUM in short), see [28§].

Roughly speaking, the idea of HUM is to consider the set of all functions v € L%(0,7;Y) such
that the corresponding solution of (6.6.1]) satisfies (6.6.2]), which we will call in the sequel admissible
controls for (6.6.1)), and to select the one of minimal L?(0,7;Y") norm.
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This control of minimal L?(0,T’; ) norm for (6.6.1)), which we will denote by vy, is characterized
through the minimizer of the functional 7 defined on X by

1

T
Fler) = 5 [ IB=O1 e+ Re(< 10,2(0) >x). (6.63)

where Re denotes the real part application and z is the solution of
Z=—iApz, te€]0,T], 2(T) = zr. (6.6.4)

Indeed, if 2}, is the minimizer of 7, then vyyy(t) = Bz*(t), where z* is the solution of (6.6.4) with
initial data z7.

Besides, the only admissible control v for (6.6.1)) that can be written as v = Bz for a solution z of
(6.6.4) is the HUM control vy . This characterization will be used in the sequel.

Note that the observability property for (6.1.1)-(6.1.2)) implies the strict convexity and the coer-
civity of J and therefore guarantees the existence of a unique minimizer for J.

6.6.2 The space semi-discrete setting

We are in the setting of Theorem Therefore there exists a time 7™ such that (6.1.15)) holds for
any solution of (6.1.7)) with initial data in the filtered space Cp(e/h7).

Now, if we try to compute an approximation of the control vyy,, a natural idea consists in
computing the discrete HUM controls for discrete versions of ([6.6.1]), which provides a sequence of
controls that shall converge to the HUM control vy, for . However, this method may fail
due to high-frequency spurious waves created by the discretization process. We refer for instance to
[46] for a detailed presentation of this fact in the context of the 1d wave equation. It is then natural
to develop filtering techniques which overcome this difficulty. This is precisely the object of several
articles, see for instance [36], 45], 146, [35] (17], and the methods presented below follow and adapt their
approach.

We now fix T > T*.

Following the strategy of HUM, we will introduce the adjoint problem:

Zn = —iAthh, te [O,T], Zh(T) = ZT}- (665)

Method 1

For any h > 0, we consider the following control problem: For any yo, € V4 find v, € L?(0,T;Y) of
minimal L2(0,T;Y’) such that the solution yj, of

Un = —iAonyn + Bron(t), t€[0,7], yn(0) = yon, (6.6.6)

satisfies
Phyh(T) = 0, (667)

where P, is the orthogonal projection in V3, on Cp(e/h7).
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To deal with this problem, we introduce the functional 7, defined for zgy, € Cp(e/h”) by

1 T
Tuern) =5 [ IBra Ol dt + Re(< yon,20(0) >1), (6.68)
0

where zp, is the solution of (6.6.5) with initial data zpp, € Cp(e/h7) .

For each h > 0, the functional Jj is strictly convex and coercive (see (6.1.15))), and thus has a
unique minimizer 2}, € Cy(e/h?). Besides, we have:

Lemma 6.6.1. For all h > 0, let 2}, € Cy(e/h?) be the unique minimizer of Jy, and denote by zj

the corresponding solution of (6.6.5)).
Then the solution of with vy, = Bz}, satisfies (6.6.7)).

Sketch of the proof. We present briefly the proof, which is standard (see for instance [2§]).

On one hand, multiplying by zp, solution of (6.6.5) with initial data zpp, we get that, for
all zpp € Vy,

T
/ < vh(t),BhZh(t) >y dt+ < Yoh, Zh(()) >p — < yh(T), Zh(T> >p= 0. (6.6.9)
0
On the other hand, the Fréchet derivative of the functional Jj, at 27, yields:

T
Re( / < Bzi(t), Baza(t) >y dt) +Re(< yon, zn(0) >1) = 0, Yorn € Cale/h%).  (6.6.10)
0

Therefore, setting vy, = Bjz;, taking the real part of and subtracting it to (6.6.10), we
obtain

R€(< yh(T), ZTh >h) =0, Vzp, € Ch(é/ha),
or, equivalently, (6.6.7)). O

We then investigate the convergence of the discrete controls vy obtained in Lemma
Theorem 6.6.2. Assume that the hypotheses of Theorem [6.1.5 are satisfied. Also assume that
Yy = {’U €Y, such that B*v € X} (6.6.11)
is dense in'Y .
Let yo € X, and consider a sequence (yon)n>o such that yop, belongs to Vi, for any h > 0 and
Thyon — Yo in X. (6.6.12)
Then the sequence (vp)p>o of discrete controls given by Lemma converges in L*(0,T;Y) to the
HUM control vgya of .

Remark that, for yo € D(Ay), in view of (6.1.9), the sequence (yon)n = (7}yo) converges to yo in

X in the sense of (6.6.12). For yo € X, one can then find a sequence (yon)n>0 satisfying (6.6.12]) and
yon € V3, for any h > 0 by using the density of D(Ap) into X.

The technical assumption (6.6.11]) on B is usually satisfied, and thus does not limit the range of
applications of Theorem Also note that when B is bounded from X to Y, the space Yx coincides
with Y and (6.6.11)) is then automatically satisfied.

182



6.6. Controllability properties

Proof. The proof is divided into several parts: First, we prove that the sequence (vj,)n~0 is bounded in
L?(0,T;Y). Then, we show that any weak accumulation point v of (vj,),0 is an admissible control for
. We then prove that v coincides with the HUM control vy, of , which also proves that
there is only one accumulation point for the sequence (vp). Finally, we prove the strong convergence
of the sequence (vy,) to v = vy, in L2(0,T;Y).

The discrete controls are bounded Using that z7, minimizes J,, we obviously have that
TIn(z5p,) < Jp(0) = 0, and therefore

T
/O 1Brziy (D15 dt < =2Re(< yon, 27,(0) >n) < 2 |mayonllx 127 (0)]], -

Since T" has been chosen such that the observability inequality (6.1.15]) holds for any solution of (6.1.7))
-or equivalently (6.6.5)- with initial data in Cj,(e/h?) with a constant k. independent of h, we get the
following both inequalities:

T
4
* 2 2
ke 120, (0)]], < 2 l17nyonl|x » /0 1Brzh()lly dt < - llmnyonllx - (6.6.13)

Since v, = Byzj, and the sequence (mpyop) is convergent in X, we deduce from (6.6.13) that the
sequence (vp)ps>o is bounded in L?(0,T;Y). Therefore we can extract subsequences such that the
sequence (v3)p>0 Weakly converges in L2(0,7;Y). From now on, we assume that

vy — v in L*(0,T;Y). (6.6.14)

The weak accumulation point v is an admissible control for (6.6.1) Using the same duality
as in (6.6.9), v is an admissible control for (6.6.1]) if and only if for any solution z of (6.6.4)), we have

T
Re(/ <o(t), Ba(t) >y dt) +Re(< y0, 2(0) >x) = 0. (6.6.15)
0
Since we already get from (6.6.10]) that any solution of (6.6.5]) with initial data zpp, € Cp,(e/h7) satisfies

T
Re / < un(t), Buza(t) >y dt) + Re(< yon, 21(0) >4) = 0, (6.6.16)
0

the proof of (6.6.15)) is based on the convergence of the solutions of (6.6.5)) to the solutions of (6.6.4):

Lemma 6.6.3. [39, Section 8] Assume that zp € D(Ap), and consider a sequence (Tpzrn)n>0 which

weakly converges to zr in D(Aé/Q).

Then the sequence of solutions (zp)nso of (6.6.5)) with initial data zp, converges to the solution z
of (6.6.4) with initial data zp in the following sense:

ez — 2z in C([0,T]; X),

6.6.17
Thzp — 2 in LOO(O,T;D(A(l)/Q)) W — *. ( )

Strictly speaking, the proof in [39] is dealing with the convergence of wave type equations, but it
can be easily adapted to our case.
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Therefore, taking zp € D(Ap), we only have to choose zp, € Cp(e/h?) such that (mpzry) — 2p in
D(A(l)/ 2). This can be done by choosing

ZTh — Ph7r ;:ZT.
Indeed, with this choice, we have

Imnzrn — 2rllx < (Pa— Dmpzrll, + |(mnmy, — Darl x

ha/2 . N
< HA;{LQWTH + || (s = Darllx
h"/ .
< HAO 7Th7ThZTH + H(T"hﬂ'h - I)ZT”X
h"/2 1/2 1/2 * *
< 2 ] s, ) o

and therefore the strong convergence of (mp271)r>0 to 27 in X follows from (6.1.9)). Besides, using

(6.3.6)), we have that

1/2
HAO/ (ﬂ'hZTh —7Th7T;kLZT H = HAO Th Ph —Idvh)ﬂ';;ZTHX

- i i, < o], < 4],

Combined with - this indicates that the sequence (7271 )n>0 is bounded in D(Al/ 2) Since it
1/ 2)

converges strongly to zp in X, the sequence (m,274)n>0 converges weakly to 2z in D(A,

Applying Lemma to this particular sequence (z7p)n>0, the corresponding sequence (zp)p~0 of
solutions of (6.6.5|) satisfies (6.6.17)), and for all h > 0, zpp, € Cp(e/h?). In particular, the convergences
(6.6.17) imply that the sequence (mj,2p)n>0 converges strongly to z in C([0,T]; D(Af)).

Thus, for zp € D(Ap), passing to the limit when h — 0 in (6.6.16]), we obtain that (6.6.15]) holds
for solutions of (6.6.4]) for any initial data zr € D(Ap). By density of D(Ap) in X, we obtain that
(6.6.15)) actually holds for any solutions of (6.6.4) with any initial data 27 € X, and thus v is an

admissible control for (6.6.1]).

The weak limit v is the HUM control of Here we use that the HUM control vgya, is
the only admissible control that can be written as Bz(t) for a solution z of . Since for all A > 0,
vp(t) = Bmyz;(t), a natural candidate for z is the limit (in a sense that will be made precise below)
of the sequence zj.

Here again, we will use a classical Lemma on the convergence of the finite element approximation
schemes:

Lemma 6.6.4. [39, Section 8] Let zp be in X, and consider a sequence (zrp)p>o of elements of Vj,
which weakly converges to zp in X, in the sense that (mpzrn) — 27 in X.

Then the sequence of solutions zj, of (6.6.5) with initial data zry weakly converges in L*(0,T; X) to
the solution z of (6.6.4) with initial data zp. Besides, for all time t € [0,T)], the sequence (mpzn(t))n>0
weakly converges in X to z(t).
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Lemma obviously is a refined version of Lemma Actually, it can be deduced directly
from Lemma by a duality argument.

We now apply Lemma to z7,: Indeed, since system ((6.6.5) is conservative, estimate ((6.6.13))
implies that

Imnzzallx = llzzall, = 12R(0),
is bounded, and thus, up to an extracting process, that the sequence (727, )n>0 weakly converges to
some zp in X.

It follows that
Thep — 2% in L2(0,T; X),

where Z* denotes the solution of (6.6.4) with initial data Z}.. Using (6.6.11)), we thus obtain that

vy = Brpzp — BE* in L*(0,T;Y).

Therefore we obtain that
v = U =vgyy in L2(0,T;Y),  mpz, — 2 =2 in L*(0,T;X), (6.6.18)

where z* is the solution of (6.6.4) with initial data 27} defined as the unique minimizer of the functional

J defined in (6.6.3).

Strong convergence Since the sequence (vy)n>0 weakly converges to v = vyyy, in L2(0,T;Y), we
only have to check the convergence of the L?(0,T;Y’) norms.

On one hand, applying (6.6.15) to z*, and recalling that v = vy, = Bz*, we obtain

T
/IW@ﬁfﬁ+Rd<mJW®>x%=0
0

On the other hand, applying (6.6.16) to z7,,, and recalling that v, = By}, we obtain

T
/HMm@ﬁ+R%ﬂwwm%@>ﬂ=0
0

From Lemma the sequence (mpz;(0)) weakly converges in X to z*(0). Since the sequence
(ThYor) >0 is assumed to be strongly convergent in X to yo, we get that

T 2 T 2
AHMmywﬁlem%u

and the strong convergence vj, — v = vy, in L2(0,T;Y) is proved. O

Method II

It might seem hard to implement in practice an efficient algorithm to filter the data. We therefore
remind the works [I7, [46] where an alternate process is given, which uses a Tychonoff regularization
of the functionals J},. Roughly speaking, it consists in the addition of an extra term in the functionals
Jn, which makes the functionals coercive on the whole space V},, uniformly with respect to h. However,
for the proofs, we will require the more restrictive condition B € £(X,Y).
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Let us introduce, for h > 0, the functional 7', defined for 27, € V}, by

17T he i
T (zrn) = 2/0 Hthh(t)HQY dt + 5 < AonZrh, TR >n +Re(< Yon, 21n(0) >p), (6.6.19)

where 2z, is the solution of (6.6.5) and Zpy, is the solution of
(Ith + h? Aon)Zrn = 2rh. (6.6.20)
This equation simply consists in an elliptic regularization of zp,. The variational formulation of
(6.6.20) is given by
- o /2 - 1/2
< ThaTh, Thdn >x +h7 < Ay “mhZrn, Ay "mhén >x=< ThaTh, Thdh > X,
Von € Vi,

and thus Z7p, can be computed directly. To simplify the presentation, it is convenient to introduce the
operator

~ —1
Ao = Ao (Idvh n h"AOh> , (6.6.21)

which satisfies )
~ . ~1/2
< Aonzrh, 2rh >=< AonZrh, 2TH >h= HAO;/Z ZThHh7

and the following two properties:

~ 2
|per2 o] < lonl, vun € v,
) 5 (6.6.22)
|n2 a2, = s Il vin € Ca(6/n)t, V6 2 0.

Note in particular, that the operator h? Ay, is bounded on Vj, uniformly with respect to A > 0. This
guarantees uniform continuity properties for J;".

We now check that, for B € £(X,Y), the functionals J;* are strictly convex and uniformly coercive
on Vj,: Indeed, for zgp, € Vj,, Theorem implies that any solution of (6.6.5)) satisfies

T
kﬂﬂmﬁs/nmﬂmmiw
0

It follows that

T 2 1 T 2 T 2
/ | Buzn(®)1% dt > / 1By Pazn ()2 dt—/ |B(Pn— 1y, ) snto)|
0 2 Jo 0 Y

1 T
> 2/0 IBhPrzn(t)y dt — T Bll3x.v) | (Pn — Tdv,)zall;
> M\ Pyarl2 - 1B P, —Id 2
> - Phernlly, = T I Bllex vy | (Ph = Tdv,) 2zl

kZT kT
> Szl = (T 1Blayy + 5 ) 1B = Tdvi)zzall;

> 52 el ~ (T 1Bl + 52) (219,

B el — (T 1Bl + ) (F29) |

/2 71/2 2
h /21402 (Idvh — Ph>ZThHh

Y

~ 2
ha/zA(l]{fZThHh .
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This proves the uniform coercivity of the functionals J;".

Thus, for each h > 0, J; has a unique minimizer Z7j € V},, and the uniform coercivity implies
the existence of two constants C; and C5 independent of h > 0 such that, setting Z; the solution of

(6.6.5) with initial data Zpp,

T - 2
12001 < €1 /0 1BZu®Iy dt + 1 || Ag) Zen|), ) < Collyonll3.-

Besides, setting vy, = By Zp, the solution yp, of (6.6.1]) satisfies
yh(T) = —hUAOhZTh = —hJAOhZTh.

In particular, if the sequence (7, yon)n>0 strongly converges to yo € X, the same arguments as before,
combined with the uniform coercivity of the functional J;", prove that the sequence (vj) converges to
Vaum Strongly ln L2(0, T7 Y)

To sum up, the following statement holds:

Theorem 6.6.5. Assume that the hypotheses of Theorem are satisfied, and that B € £(X,Y).

Let yo € X, and consider a sequence (Yon)n>0 such that yon belongs to Vi, for any h > 0 and
(Thyon) — Yo in X.

Then the sequence (vp)p>o of discrete controls given by vy, = BpZp, where Zy, is the solution of
(6:6.5) associated to the minimizer Zry, of J; (defined in (6.6.19)), converges in L?(0,T;Y) to the
HUM control vy of (6.6.1]).

Remark 6.6.6. Similar results can be obtained for fully discrete approximation schemes obtained by
discretizing equations in time. In this case, the proof is based on the observability inequality
and on convergence results for the fully discrete approximation schemes, which can be found for
instance in [39]. We deliberately choose to present the proof in the simpler case of the time continuous
setting for simplifying the presentation.

6.7 Stabilization properties

This section is mainly based on the articles [15, [14], in which stabilization properties are derived for
abstract linear damped systems. In this section, we assume B € £(X,Y).

6.7.1 The continuous setting

Consider the following damped Schiodinger type equations:
12 = Apz —iB*Bz, t>0, 2(0) = 20 € X. (6.7.1)
The energy of solutions of (6.7.1)), defined by E(t) = ||z(t)||§( /2, satisfies the dissipation law

dE

) =B}, t=0. (6.7.2)
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System (/6.7.1]) is said to be exponentially stable if there exist two positive constants p and v such
that
E(t) < pE(0) exp(—vt), t>0. (6.7.3)

It is by now classical (see [30, 19]) that the exponential decay of the energy of solutions of (6.7.1)) is
equivalent (here the operator B is bounded on X) to the observability inequality (6.1.4) for solutions

of ELD-[513).

6.7.2 The space semi-discrete setting

We now assume that system (6.1.1))-(6.1.2)) is exactly observable in the sense of (6.1.4)), or, equivalently
(see [30, [19]), that system (/6.7.1]) is exponentially stable.

Then, combining Theorem and [15], we get:

Theorem 6.7.1. Let Ay be a unbounded self-adjoint with compact resolvent in X, and B be a bounded
operator in £(X,Y). Assume that system (6.7.1) is exponentially stable in the sense of (6.7.3)). Also

assume that the hypotheses of Theorem are satisfied, and set o as in ((6.1.11]).

Consider a sequence of operators (Vy)p>o defined on Vi, such that for all h > 0, Vy, is self-adjoint
and positive definite. Also assume that for all h > 0, the operators Vi, and Py, (recall that Py is the
orthogonal projection in Vi, on Cp(e/h?)) commute, and that there exist two positive constants ¢ and
C independent of h > 0 such that

ho!? Hmzhuh < Cllenlly,  Von € Cale/h),

(6.7.4)
he/? H\/ VhZhHh >c|lznlly,  Ven € Ch(e/h7)™ .
Then the space semi-discrete systems
ié‘h = Athh — iB;:thh - z’h"thh, t 2 0, Zh(O) = 2pn € Vh, (6.7.5)

are exponentially stable, uniformly with respect to the space discretization parameter h > 0: there exist
two positive constants po and vy independent of h > 0 such that for any h > 0, any solution z, of
(6.7.5) satisfies

lzn (@), < 1o (|20 (0)[l), exp(=wot), ¢ > 0. (6.7.6)

Note that, since we assumed B bounded on X, x = 0 in Theorem [6.1.3] and then o coincides with

20/5.

The conditions (6.7.4) on the viscosity operator, roughly speaking, say that the operator h7V}, is
negligible for frequencies in the range Cp,(e/h?) and is dominant in the range Cp,(e/h?). In other words,
the viscosity operator h”V;, modifies significantly the dynamical properties of system (6.7.5)) only at
high frequencies.

In general, the viscosity operator is chosen as a function of Agp, for instance as:

Aon

= A = -
Vin Ohs Von T+ ho g’

Vaj, = h7 A2,
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Here, the choice Vyj, has the advantage that the operator A7V, is bounded. Remark that the viscosity
operator Vyj, also coincides with the elliptic regularization operator Agy, introduced in ((6.6.20)).

Remark 6.7.2. In [15], several time discrete approximation schemes are proposed to guarantee uniform
exponential decay properties for the energy of the time semi-discrete schemes as a consequence of the
exponential decay of the energy of the time continuous system. Since the results of [15] also apply to
families of uniformly exponentially stable systems, one can apply them to fully discrete approximation

schemes of (6.7.1)).

6.8 Further comments

1. One of the interesting features of our approach is that it works in any dimension and in a
very general setting. To our knowledge, this is the first work which proves in such a systematic
way admissibility and observability properties for space semi-discrete approximation schemes as a
consequence of the ones of the continuous setting.

2. A widely open question consists in finding the sharp filtering scale. We think that the results in
[9, [10], which prove the lack of observability for the 1d wave equation in highly heterogeneous media,
might give some insights on the best results we can expect on the filtering scale.

3. Our methods and results require the observation operator B to be continuous on D(Af), with
k < 1/2. However, in several relevant applications, as for instance when dealing with the boundary
observation of the Schrédinger equation (see for instance [29]), this is not the case. This question
deserves further work.

4. An interesting issue for Schrédinger type equations concerns their dispersive properties. To
our knowledge, this question, which has been extensively studied in the last decades (see for instance
[25] and the references therein), has been successfully addressed for numerical approximation schemes
discretized using finite difference (or finite elements) on uniform meshes in dimension 1 and 2, see [21],
20, 22]. We think that, similarly as for the observability properties, one could use spectral conditions
to derive uniform dispersive properties for space semi-discretizations of Schrodinger equations in a
very general setting, for instance by adapting Morawetz’s estimates (see [33]).

5. Following the same ideas as the ones presented here, one can derive admissibility and observ-
ability results for space semi-discretizations of wave type equations derived from the finite element
method. This issue is currently investigated by the author and will be published elsewhere.
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Chapter 7

Wave equations

Abstract: In this article, we derive uniform admissibility and observability properties for the finite
element space semi-discretizations of i + Agu = 0, where Ag is an unbounded self-adjoint positive
definite operator with compact resolvent. To address this problem, we present a new spectral approach
based on several spectral criteria for admissibility and observability of such systems. Our approach
provides very general admissibility and observability results for finite element approximation schemes
of -+ Apu = 0, which stand in any dimension and for any regular mesh (in the sense of finite elements).
Our results can be combined with previous works to derive admissibility and observability properties
for fully discretizations of i + Agu = 0. We also present applications of our results to controllability
and stabilization problems. We finally give applications of our results to space semi-discretizations of
Schrodinger systems i2 = Apz, again based on spectral techniques.

7.1 Introduction

Let X be a Hilbert space endowed with the norm |||y and let Ag : D(Ap) C X — X be a self-adjoint
positive definite operator with compact resolvent.

Let us consider the following abstract system:
u(t) + Aou(t) =0, teR, u(0) = ug, 4(0) = uy. (7.1.1)

Here and henceforth, a dot (*) denotes differentiation with respect to the time ¢. In (7.1.1), the initial
state (ug,up) lies in X = D(A(l)/2) x X.

Such systems are often used as models of vibrating systems (e.g., the wave and beams equations).
Note that system ((7.1.1]) is conservative: the energy

B = 5 42 uo|[} + 5 Nl (7.12)

of solutions of ([7.1.1)) is constant.

Assume that Y is another Hilbert space equipped with the norm ||-||y,. We denote by £(X,Y)
the space of bounded linear operators from X to Y, endowed with the classical operator norm. Let
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B¢ S(D(A(l)/ %, Y') be an observation operator and define the output function

y(t) = Bu(t). (7.1.3)

We assume that the operator B € S(D(A(l)/ 2), Y') is admissible for system (7.1.1)) in the following

sense:

Definition 7.1.1. System (7.1.1)-(7.1.3)) is admissible if for every 7' > 0 there exists a constant
K7 > 0 such that any solution of (7.1.1)) with initial data (ug,u1) € D(Ap) X D(A(l)/2) satisfies:

T 2
| 1Bl e < o (45w + nl ). (7.1.4)
0

Note that if B is bounded on X, i.e. if it can be extended in such a way that B € £(X,Y’), then B is
obviously an admissible observation operator, and K7 can be chosen as Kp =T ||B||2£( x,v)- However,
in applications, this is often not the case, and the admissibility condition is then a consequence of a
suitable “hidden regularity” property of the solutions of the evolution equation ([7.1.1).

The exact observability property for system ([7.1.1))-([7.1.3)) can be formulated as follows:

Definition 7.1.2. System (7.1.1))-(7.1.3)) is exactly observable in time T if there exists k7 > 0 such
that any solution of ([7.1.1]) with initial data (ug,u1) € D(Ap) X D(A(l)/2) satisfies:

12 |2 2 T2
kT<HAO u0HX+|yu1HX)g B e (7.1.5)

Moreover, system ([7.1.1])-([7.1.3]) is said to be exactly observable if it is exactly observable in some
time 7" > 0.

Note that observability and admissibility issues arise naturally when dealing with controllability
and stabilization properties of linear systems (see for instance the textbook [23]). These links will be
clarified later on.

There is an extensive literature providing observability results for wave and plate equations, among
other models, and by various methods including microlocal analysis [2, [3], multipliers techniques
[21, B0] and Carleman estimates [I8], [39], etc. Our goal in this paper is to develop a theory allowing to
get observability results for space semi-discrete systems as a direct consequence of those corresponding
to the continuous ones, thus avoiding technical developments in the discrete setting.

Let us now introduce the finite element method for (7.1.1)).

Consider (Vj)p~0 a sequence of vector spaces of finite dimension n;, which embed into X via a
linear injective map 7, : V, — X. For each h > 0, the inner product < -,- >x in X induces a structure
of Hilbert space for V}, endowed by the scalar product < -, - >p=< 7wy, 7 >x.

We assume that for each h > 0, the vector space 7,(V},) is a subspace of D(A(l]/ 2). We thus define
the linear operator Agy : Vi — Vi, by

< Aop®n, Yn >p=< A(l]/27fh¢h,z4(1]/27fh¢h >x, Y(on,vn) € Vi (7.1.6)
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The operator Ay, defined in ([7.1.6) obviously is self-adjoint and positive definite. If we introduce the
adjoint 7} of 7y, definition (7.1.6)) implies that

AOh = WZA(]?T}L. (717)

This operator Agy, corresponds to the finite element discretization of the operator Ag (see [33]).
We thus consider the following space semi-discretizations for (7.1.1)):

Up + thuh =0, t>0, uh(O) = ugp, € Vi, dh(O) = uyy € Vj. (7.1.8)

In this context, for all h > 0, the observation operator naturally becomes

yn(t) = Bpup(t) = Brptip(t). (7.1.9)
Note that, since B € £(D(A(1)/ ?),Y), this definition always makes sense since m,(V,) C D(Aé/ %.

We now make precise the assumptions we have, usually, on 7, and which will be needed in our
analysis. One easily checks that m;m, = Idy,. Besides, the injective map 7, describes the finite
element approximation we have chosen. Especially, the vector space m,(V},) approximates, in the
sense given hereafter, the space D(A(l)/ 2): There exist # > 0 and Cy > 0, such that for all h > 0,

s o] <] voeo
(7.1.10)
|46 rumi — D < Con® 4ol ¥6 € D(Ao).

Note that in many applications, and in particular for Ay the Laplace operator on a bounded domain
with Dirichlet boundary conditions, estimates ([7.1.10f) are satisfied for § = 1.

We will not discuss convergence results for the numerical approximation schemes presented here,
which are classical under assumption (|7.1.10)), and which can be found for instance in the textbook
[33].

In the sequel, our goal is to obtain uniform admissibility and observability properties for ([7.1.8])-

(7.1.9) similar to ([7.1.4) and (7.1.5) respectively.

Let us mention that similar questions have already been investigated in [I9] for the 1d wave
equation observed from the boundary on a 1d mesh. In [19], it has been proved that, for the space
semi-discrete schemes derived from a finite element method for the 1d wave equation on uniform
meshes (which is a particular instance of ), observability properties do not hold uniformly with
respect to the discretization parameter, because of the presence of spurious high frequency solutions
which do not travel. However, if the initial data are filtered in a suitable way, then observability
inequalities hold uniformly with respect to the space discretization parameter. Actually, as pointed
out by Otared Kavian in [4I], it may even happen that unique continuation properties do not hold
anymore in the discrete setting due to the existence of localized high-frequency solutions.

Therefore, it is natural to restrict ourselves to classes of suitable filtered initial data. For all h > 0,
since Agy, is a self-adjoint positive definite matrix, the spectrum of Ag is given by a sequence of
positive eigenvalues

0<A <A< <A (7.1.11)

and normalized (in V},) eigenvectors (q’?)léjﬁnh' For any s > 0, we can now define, for each h > 0,
the filtered space

Ch(s) = span {CD? such that the corresponding eigenvalue satisfies |)\?] < s}.
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We are now in position to state the main results of this article:

Theorem 7.1.3. Let Ag be a self-adjoint positive definite operator with compact resolvent and B €
L(D(A§),Y), with k < 1/2. Assume that the maps (mp)n>0 satisfy property (7.1.10). Set

o = 6 min {2(1—2@,;}. (7.1.12)

Admissibility: Assume that system (7.1.1)-(7.1.3)) is admissible.

Then, for any n > 0 and T > 0, there exists a positive constant Kr, such that, for any h > 0
small enough, any solution of (7.1.8)) with initial data

(uon, u1n) € Ch(n/h7)? (7.1.13)
satisfies

T 2 1/2 2 2
| 1Brin®1 de < K ([[ 47200, + ). (7.1.14)
0

Observability: Assume that system (7.1.1))-(7.1.3)) is admissible and exactly observable.

Then there exist € > 0, a time T™ and a positive constant k., > 0 such that, for any h > 0 small
enough, any solution of (7.1.8) with initial data

(uon, u1p) € Cp(e/h7)? (7.1.15)

satisfies

2 T
b (b2, + lunnl) < [ 1Brinl at (7.1.16)
0

These two results are based on new spectral characterizations of admissibility and exact observ-

ability for (7.1.1)-([7.13).

To characterize the admissibility property, we use the results in [IT], [10] to obtain a characterization
based on a resolvent estimate and, later, on an interpolation property.

Our characterization of the exact observability property is deduced from the resolvent estimates
in [24, 31, B7] and the wave packet characterization obtained in [31] and made more precise in [37].
However, our approach requires explicit estimates, which, to our knowledge, cannot be found in the
literature. We thus propose a new proof of the wave packet spectral characterization in [31], which
yields quantitative estimates. Again, we show that these criteria can be interpreted as interpolation
properties.

The main idea, then, consists in proving uniform (in h) interpolation properties for the operators
Ao, and By, in order to recover uniform (in h) admissibility and observability estimates. This idea
is completely natural since the operators Ag, and By, correspond to discrete versions of Ag and B,
respectively.

Theorem has several important applications. As a straightforward corollary of the results in
[11], one can derive observability properties for general fully discrete approximation schemes based on
(7.1.8)). Precise statements will be given in Section
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Besides, it also has relevant applications in control theory. Indeed, it implies that the Hilbert
Uniqueness Method (see [23]) can be adapted in the discrete setting to provide efficient algorithms to
compute approximations of exact controls for the continuous systems. This will be clarified in Section
(.0l

We will also present consequences of Theorem to stabilization issues for space semi-discrete
damped models. These will be deduced from [I4], which addressed this problem in a very general
setting which includes our models.

We finally investigate observability properties for space semi-discretizations of two other models,
namely the wave equation observed through y(t) = Bu(t) instead of (7.1.3)), for which we can
adapt the method we have developed to prove Theorem [7.1.3] and the Schrodinger equation iz = Apz,
for which we can use Theorem to derive observability properties, similarly as in [26].

Let us briefly comment some relative works. Similar problems have been extensively studied in the
last decade for various space semi-discretizations of the 1d wave equation, see for instance the review
article [41] and the references therein. The numerical schemes on uniform meshes provided by finite
difference and finite element methods do not have uniform observability properties, whatever the time
T is ([19]). This is due to high frequency waves which do not propagate, see [36] 25]. In other words,
these numerical schemes create some spurious high-frequency wave solutions which are localized.

In this context, filtering techniques have been extensively developed. It has been proved in [19] [40]
that filtering the initial data removes these spurious waves, and make possible uniform observability
properties to hold. Other ways to filter these spurious waves exist, for instance using a wavelet filtering
approach [28] or bi-grids techniques [I5, 29]. However, to the best of our knowledge, these methods
have been analyzed only for uniform grids in small dimensions (namely in 1d or 2d). Also note that
these results prove uniform observability properties for larger classes of initial data than the ones
stated here, but in more particular cases. Especially, Theorem depends on neither the dimension
nor the uniformity of the meshes.

Let us also mention that observability properties are equivalent to stabilization properties (see
[17]), when the observation operator is bounded. Therefore, observability properties can be deduced
from the literature in stabilization theory. Especially, we refer to the works [35, 84} 27, [12], which prove
uniform stabilization results for damped space semi-discrete wave equations in 1d and 2d, discretized
on uniform meshes using finite difference approximation schemes, in which a numerical viscosity term
has been added. Again, these results are better than the ones derived here, but apply in the more
restrictive context of 1d or 2d wave equations on uniform meshes. Similar results have also been proved
in [32], but using a non trivial spectral condition on Ay, which reduces the scope of applications mainly
to 1d equations.

To the best of our knowledge, there are very few paper dealing with nonuniform meshes. A
first step in this direction can be found in the context of the stabilization of the 1d wave equation
in [32]: Indeed, stabilization properties are equivalent (see [17]) to observability properties for the
corresponding conservative systems. The results in [32] can therefore be applied to 1d wave equations
on nonuniform meshes to derive uniform observability results within the class Cp,(¢/h?) for € > 0 small
enough. Though, they strongly use a spectral gap condition on the eigenvalues of the operator Ay,
which does not hold for the wave operator in dimension higher than one.

Another result in this direction is presented in [9], in the context of the 1d wave equation discretized
using a mixed finite element method as in [I, [5]. In [9], it is proved that observability properties for
schemes derived from a mixed finite element method hold uniformly within a large class of nonuniform
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meshes.

Also remark that observability and admissibility properties have been derived recently in [10] for
Schrodinger type equations discretized using finite element methods. The results in [10] are strongly
based on spectral characterizations of admissibility and observability properties for abstract systems.
Actually, the present work follows the investigation in [I0]. The main difference consists in the lack
of simple spectral conditions for observability properties of wave type systems. This requires to
design new spectral characterizations of admissibility and observability properties adapted to deal

with systems (7.1.1)-(7.1.3).

We shall also mention recent works on spectral characterizations of exact observability for abstract
conservative systems. We refer to [4, [26] for a very general approach of observability properties
for conservative linear systems, which yields a necessary and sufficient resolvent condition for exact
observability to hold. Let us also mention the articles [24], [31], which derived several spectral conditions
for the exact observability of wave type equations. In [31], a spectral characterization of observability
properties based on wave packets is also given. Our approach is inspired in all these works.

We also mention the recent article [I1], which proved admissibility and observability estimates
for general time semi-discrete conservative linear systems. In [II], a very general approach is given,
which allows to deal with a large class of time discrete approximation schemes. This approach is
based, as here, on a spectral characterization of exact observability for conservative linear systems
(namely the one in [4], 26]). Later on in [14] (see also [13]), the stabilization properties of time discrete
approximation schemes of damped systems were studied. In particular, [I4] introduces time discrete
schemes which are guaranteed to enjoy uniform (in the time discretization parameter) stabilization
properties.

This article is organized as follows:

In Section we present several spectral conditions for admissibility and exact observability

properties of abstract systems (7.1.1))-(7.1.3]). In Section we prove Theorem In Section

we give some precise examples of applications. In Section we consider admissibility and exact
observability properties for fully discrete approximation schemes of . In Section we present
applications of Theorem to controllability issues. In Section [7.7] we also present applications to
stabilization theory. In Section we present similar results for two other different models, namely

for the wave equation ([7.1.1)) observed through y(t) = Bu(t) instead of (7.1.3]), and for Schrédinger
type systems. We finally present some further comments and open questions.

7.2 Spectral methods

This section recalls and presents various spectral characterizations of admissibility and observability
for abstract systems (7.1.1)-(7.1.3]). Here, we are not dealing with the discrete approximation schemes
(7.1.8)).

To state our results properly, we introduce some notations.

When dealing with the abstract system (7.1.1)), it is convenient to introduce the spectrum of the
operator Ag. Since Ay is self-adjoint and positive definite, its spectrum is given by a sequence of
positive eigenvalues

O<AM <A< <A< — oo, (7.2.1)
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and normalized (in X') eigenvectors (®;);en-.

Since some of the results below extend to a larger class of systems than (7.1.1))-(7.1.3]), we also
introduce the following abstract system

:=Az, t>0,
ot i3b w-co,

(7.2.2)
where A : D(A) C X — X is an unbounded skew-adjoint operator with compact resolvent and
C € £(D(A),Y). In particular, the spectrum of A is given by a sequence (ip;);, where the constants
pj are real and |pu;| — oo when j — oo, and the corresponding eigenvectors (¥;) (normalized in
X) constitute an orthonormal basis of X. Note that systems of the form (7.1.1)-(7.1.3) indeed are

particular instances of ([7.2.2)).

This section is organized as follows.

First, we present spectral characterizations for the admissibility of systems (7.2.2)) and (7.1.1)-
(7.1.3), based on the results in [10], which we will recall. Then we present spectral characterizations
for the exact observability of systems (7.2.2]) and (7.1.1)-(7.1.3), based on the articles [31), 24].

7.2.1 Characterizations of admissibility

Note that for ((7.2.2)), the admissibility inequality consists in the existence, for all T > 0, of a positive
constant K7 such that any solution z of (7.2.2)) with initial data zg € D(.A) satisfies

T
| iesol < Kr . (7.2.3)

Resolvent characterization

The following result was proved in [10]:

Theorem 7.2.1. Let A be a skew-adjoint operator on X with compact resolvent and C be in £(D(A),Y).
The following statements are equivalent:

1. System ([7.2.2)) is admissible.
2. There exist r > 0 and D > 0 such that

VHER, V2= Y a¥, |Czly<Dlz|y, (7.2.4)
where
Jr(p) ={l € N, such that |p; — p| <r}. (7.2.5)

Besides, if (7.2.4) holds, then system (7.2.2) is admissible, and the constant Kp in (7.2.3) can be

chosen as follows:

2rT , 3D
KT = KTF/ZT‘ ’77-‘, with Kw/2r = T (726)
3. There exist positive constants m and M such that
M?|[(A —iwl)z||% +m? |25 > ||IC2]3, Vz e D(A),VYw € R. (7.2.7)
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Besides, if (7.2.7) holds, then system (7.2.2) is admissible, and the constant Ky in (7.2.3) can be

chosen as follows:
, 373 w2
KT:K1|(T-|, with Kl = 7 m2+M2?. (728)

The proof of Theorem in [10] is based on the previous work [I1] which proves a wave packet
characterization for the admissibility of systems ([7.2.2).

Applications to Wave type equations

We now consider the abstract setting (7.1.1)-(7.1.3), which is a particular instance of (7.2.2]) with
X =D(AY?) x X, and
0 Id
.A—<_A0 O)’ C=(0, B). (7.2.9)

In particular, the domain of A simply is D(Ag) x D(A(l)/ 2) and the conditions C' € £(D(A),Y) and
B e £(D(A(1)/2), Y') are equivalent.

Theorem 7.2.2. Let Ay be a self-adjoint positive definite operator on X with compact resolvent and
B be in S(D(A(l)/Q), Y). The following statements are equivalent:

1. System (7.1.1)-(7.1.3) is admissible in the sense of (7.1.4));

2. There exist positive constants m and M such that:
2 2
W2 1Blly < M? || (Ao - D[ +m? (il +||45%0 ). W e RYo € D(40). (7:210)

Besides, if ((7.2.10) holds, then system (7.1.1)-(7.1.3)) is admissible, and the constant K in (7.1.4)

can be chosen as follows:

2T 3t
Kr =K. {7] with Ky = ﬁx/gw ¥ 5m2. (7.2.11)

3. There exist positive constants o, B and vy such that

[426] + 02 1ot < ol \Io0l + 52 4] + 216l Vo DAY (1212

Besides, if (7.2.12)) holds, then system (7.1.1)-(7.1.3)) is admissible, and the constant K in (|7.1.4))

can be chosen as follows:

2T _ 97t 5
Kr =Ky {7] with Ky = 5[ 1+ 2 sup{52, 292}, (7.2.13)

Proof. Let us first prove that statements 1 and 2 are equivalent.

Assume that system ([7.1.1])-(7.1.3) is admissible. Then, from Theorem there exist positive
constants m and M such that (7.2.7) holds:

2 2
1Bolly < M2( A5/ (v—dwu) ||+ 40w+ iwollk ) +m? (|| 457+ 10l ),

VYw € R, V(u,v) € D(Ag) x D(AY?).
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Taking ¢ € D(Ap), setting u = ¢ and v = iw¢ in this last expression, we obtain ((7.2.10)).

Assume now that (7.2.10) holds. To prove the admissibility of (7.1.1)-(7.1.3), we use the wave
packet criterion (7.2.4). Before going into the proof, let us recall that the spectrum (i, ¥;) ez of

A can be deduced from the spectrum (\;, ®;); en of Ag as follows:

+1
1| 7%
ptj = F\/Aj,  jENT, Wiy = 2 iV , JEN. (7.2.14)
®;

Now, let wy be a real number, take » = 1 and consider a wave packet
_ _ [~
2= ) q¥ = < . > (7.2.15)
l€J1(w0)

For |wo| > 1, applying (7.2.10)) to 2z for w = wp, we get

M2 9 m2 2

2 2 2 1/2
IC203 = 1Bzl < = [[(A0 — wfDzaly +m? o)k + 2y [ 452

w; w; X

But, using the explicit expansion of z3, one easily checks that
2 1 2 2
(4o —wfDzal[x =5 D |y +wol’ iy — wl] < 2(lwol + 1) [l2allx < Slwol® 22l »
| —wol<1

and

2 |12 1 2
|47 =5 X lalfu? <2k
|15 —wol <1

since |wo| > 1.

Using ||z]|3 = 2||22]|%, we then obtain

3
1C2lly < \/8M2 [2a]l% + 3m2 [120]% < <\/4M2 + 2m2> llx (7.2.16)

We now need to prove a similar estimate for z as in ([7.2.15) with |wo| < 1. In this case, we apply
(7.2.10) for w = 1, and as before, we obtain

12 |12
IC2 < M2 (Ao = Dzl +m?(llealk + || 45| )

IN

9M? + 5m?
=) 1%, (7.2.17)

OM2 |zl + 5m? |1zl = (——

where we used that for z as in (7.2.15)), HzH%6 = 2||22||% and, when |wp| < 1,

2
I(Ao—Dallk <9lal, A2 <4lzl}-

Combining (|7.2.16|) and (7.2.17)), we get (7.2.4) for any wave packet z with » = 1 and

D= /9M2—21—5m2.
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The estimate (|7.2.11)) then follows from (7.2.6).

We now prove that statements 2 and 3 are equivalent. As in [10], the idea consists in noticing that
(7.2.10) is equivalent to the nonnegativity of the quadratic form (in w?)

2
1Bolly —

Aol 22 (|4 + 1613 ) + doge + 2 [ 432

2M? M2

which is equivalent to (as one can easily check by studying the positivity of the quadratic form
x +— azx? — 2bz + c on Ry for a > 0 and ¢ > 0):

e + |wa2MwaﬂquMmm+ ;v

2M 2
or, equivalently, (7.2.12]) with

= 7\/§M,
Conversely, if ([7.2.12)) holds, then we can take

L sw{A Ve
V2a’ V2a

n ([7.2.10)), and this completes the proof of Theorem O

M =

7.2.2 Characterizations of observability

We first recall the following criterion for the observability of (7.1.1f)-(7.1.3):

Theorem 7.2.3 ([31], see also [24]). Let Ay be a self-adjoint positive definite operator on X with
compact resolvent and B € E(D(A[l)/2),Y). Assume that system (7.1.1)-(7.1.3) is admissible in the

sense of ([7.1.4)).

Then system (7.1.1)-(7.1.3)) is exactly observable if and only if there exist positive constants m and
M such that

M?||(Ao — 2T)ul% + m? lwBul} > |lwu|%, Vu € D(Ay), Yw € R. (7.2.18)

Note that Theorem does not provide precise estimates on the constants in (7.1.5). This is
due to the proof of this theorem, based on Theorem below.

Before stating Theorem note that for ((7.2.2)), the exact observability property consists in the
existence of a time T and a positive constant kp such that any solution of (7.2.2)) with initial data
zp € D(A) satisfies

T
e ol < [ ez} dt (7.2.19)
0

Theorem 7.2.4 ([31]). Let A be a skew-adjoint operator on X with compact resolvent, and C €
L£(D(A),Y). Assume that system (7.2.2)) is admissible in the sense of (7.2.3).
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Then system (7.2.2)) is exactly observable if and only if

There exist a« >0 and (>0 such that
for all p € R and for all z = Z a¥i: ||Czlly = Bzllx, (7.2.20)
leJa(H)

where Jo (1) is as in (7.2.5)). Besides, if system (7.2.2)) is admissible and exvactly observable in time
T*, then one can choose

1 k= 2
= T ) /6 = .
7\l @Kr-) T

Here again, no estimates on the constants entering in (7.2.19)) are given. Though, a non-explicit
constant is given in [37], but which makes the use of Theorems and delicate for the appli-

cations we have in mind, which involve sequences of operators.

Therefore, we present below a new proof of the fact that ((7.2.20]) implies the exact observability of
system (7.2.2)), which yields explicit estimates in Theorem as well. These estimates are crucial
in our setting.

A refined version of Theorem [7.2.4]

Theorem 7.2.5. Let A be a skew-adjoint operator on X with compact resolvent, and C € £(D(A),Y).
Assume that system (7.2.2) is admissible in the sense of (7.2.3)).

If (7.2.20) holds, then system ((7.2.2)) is exactly observable in any time T > T*, for

. 2eym 3\ 1+1/In(L)
== <Z In(L) + Z> : (7.2.21)
where %
27 1/a®
L=— . 7.2.22
Besides, the constant kp in (7.2.19) can be chosen as
2 T*\ 2n"—1 1
kr = % (1 - <7) >, where n* = b(ln(L) + 1)—‘ (7.2.23)

Remark 7.2.6. Note that the constant L is always greater than 27/3, and then In(L) > 0. Indeed, one
can consider the solution z(t) = exp(iu1t)¥y of (7.2.2), for which we get

1/a
/0 IC=)| dt < Ky,

as a consequence of the admissibility of system ((7.2.2)), and

1/ ﬁQ

1/«
/ lC2(t)15 dt > B2 |z()|% dt > =,
0 0 «

which follows from ([7.2.20)).
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Proof. Set zy € X, and denote by z(t) the solution of with initial data zg. Set
9(t) = x(D)=(t), (7.2.24)
where x : R — R is a function whose Fourier transform is smooth and satisfies
Supp X C (—o, ). (7.2.25)
Note that these conditions imply that y is in the Schwartz class S(R) and therefore g and § both
are in L?(R, X).

We expand zg and z(t) on the basis ¥;:
20 = Zaj\llj, z(t) = Zaj exp(ip;t)V;. (7.2.26)
J J

One then easily check that
G(w) = a;X(w — ). (7.2.27)

Especially, due to the property ((7.2.25]), for all w, §(w) is a wave packet and therefore (7.2.20)) implies

B g% < ICGW)II5 - (7.2.28)
Note that, due to the explicit expansion ([7.2.27)), we have the identity

~ 2 ~
g% =D laP1x(w — ).
J
Then, integrating ((7.2.28) in w, and using Parseval’s identity on the right hand-side of ([7.2.28|), one
easily obtains

#( [ eea) (2 o) < [lesl = [ ¢wlcswi (7.229)

where the last equality comes from the definition ((7.2.24)) of g.

Now, since xy € S(R), we know that for each n € N*, there exists a constant ¢, such that

IX(®)] < ¢n Vit # 0. (7.2.30)

[ef”
Hence, for any time 7" > 0, using the admissibility in time T', we obtain that

o

[ewiczor as [ 2wies0 a3, g )k lal;
R L Y Py (KT)2n /)" *

T 2
< [ R@IC:0 d+ Tkl (7231
-7

We therefore need to estimate ¢, in (7.2.30). Of course, one cannot expect it to be uniform in
the whole Schwartz class, and it will strongly depend on the choice of x. By a scaling argument, we
assume without loss of generality that

x(t) = v(te), %) = 2d(2), (123
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7.2. Spectral methods

where ¢ belongs to the Schwartz class and satisfies
Supp ¢ C (—1,1). (7.2.33)

Remark that integrations by parts then yield:

L h(w) exp(iw w:; b exp(iwt) dw
0(t) = <= [ ) expliot) d muwn/w p(ict) d

Thus we obtain the following decay estimate on :

1 1 A 1/2
9O < Tz ([100rR @) ", rem

Therefore x satisfies
1 /1 \n . 1/2
D < —(— (n))2 g t € R 7.2.34
o< 2= (57) (/w Paw)” e (7.2.34)

Also note that the L™ norm of y can be estimated by the L? norm of 1:

X(®)] = [$(ta)| = ]j% / $(w) explivta) du| < ;7;( / 2 o)

. 1 5
[iakao =2 [ 1o,

we obtain from ([7.2.29)), (7.2.31)) and (7.2.34)) that

(56 [ 1iPdo - ko B () (10 dw) feold

T 1 R T
< / COlCx0N ar< o [1iPds) [ csol @ (1:23)

Besides, since one easily checks that

Let us now assume that T« is strictly greater than 1. In this case, we can estimate Kt by
Ky < Ky)o(1+Ta) <2K,,,Ta. (7.2.36)

Therefore, to guarantee that the left hand side of ((7.2.35|) is positive, we only need T > 1 and

1/(2n—1) 7(n) 1/(2n—1)
2K Y
Ta > inf 77714,104 inf H : (7.2.37)
n 30 PeD(~1,1) 1[)
L2

We now derive an estimate on the following coefficient:

o™ |2, )"
Yp = inf L2 . (7.2.38)
0eD(-11) |72

Lemma 7.2.7. We have the following estimate:

o < % Vn € N*. (7.2.39)
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Chapter 7. Wave equations

Proof of Lemma[7.2.7]. Set n € N*. Let us consider
. U n
¢n(x) = sin (5(;1: + 1)) ,

which belongs to Hj(—1,1), and which, by density, is admissible as a test function in the infimum
(17.2.38)).

Consider the Fourier development of ¢,,, which takes the form

on(z) = z": ay exp (Zk;m>

k=—n

Then we have

Wl _ % kr\2n 2 o n 20
o= Xl ()7 < (F) 7 2 taul* < () ol
Lemma [7.2.7 follows. -

Therefore, using the constant L introduced in ([7.2.22)), we need to minimize on N

2n/(2n—1
Fln) = L/ (BT

2

In R, the infimum is attained in 7 such that
9% —1=In(L) + In (%)

Therefore, a good approximation of the minimizer of f on N is given by n* as in ((7.2.23)), for which
we have

31) 1+1/In(L) _ T*

f(n*) < e(zln(L) + 5

4

Choosing n = n* in ([7.2.35)) and using ([7.2.36)), we obtain that

[0 e T (1= e (U Yl > (1 (37) ) -l

a

Since the semi-group generated by (7.2.2)) is a bijective isometry on X, this gives, for any zg € X,

[ e a0 (2 1l

This completes the proof of Theorem by replacing 27 by T. O

Remark 7.2.8. The time estimate we obtain with this strategy strongly depends on the estimate
on 7, defined in . To our knowledge, though this problem might seem classical, there
is no precise bounds on v,. Especially, note that if we were able to prove that lim inf, . v, = N < o0,
then condition would simply become T'av > 28, which would be very similar to the assumptions
of Ingham’s Lemma [20] (see also [38] on the completeness of non harmonic Fourier series in L?(0,T)).
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7.2. Spectral methods

Application to Theorem We can now make precise the estimates in Theorem [7.2.3]

Theorem 7.2.9. Under the assumptions of Theoremm assume that (7.2.18)) holds. Also assume
that the first eigenvalue of Ay satisfies A\ > v > 0.

Set

1WA 1
a—mln{gﬁM,T}, ﬁ—%. (7.2.40)

Then system ([7.1.1)-(7.1.3]) is exactly observable in any time T > T*, for T* as in (7.2.21).
Besides, the constant kp in (7.1.5) can be chosen as in (7.2.23) as an explicit expression of T, m, M,

7Y, and the admissibilty constant K1 /4.

Proof. The proof combines the estimates given in Theorem with the following proposition:

Proposition 7.2.10. Let A, Ay, B and C be related as in (7.2.9). Under the assumptions of Theorem
setting o and B as in (7.2.40), the following wave packet estimates holds: For all w € R,

Ve= Y a¥, Blzllx<Cly - (7.2.41)
l€Ja(w)

Proof. First, we remark that, since a < ,/7/2, when |w| < /7/2, the set J,(w) is empty. Therefore
we only need to prove (7.2.41)) for |w| > /7/2, or, due to the explicit form of the spectrum and the

relations ([7.2.14), only for w > /7/2.
Given w > ,/7/2, let z be a wave packet

z
= X an= (1),

l€Jo(w)

for which we have

1 2 1 2 1 2
29 = 7 E cq®;, an ||22HX 5 E |c1] 5 HZHx

leJo(w) leJa(w)

Applying ((7.2.18)) to z3, we obtain
1 2 2 2 M2 2 2 M2 2
5 2l = llz2lx < m?[Bally + —5 [[(Ao — w2y = m? [C2lly + —5 [[(Ao — w?)2][ -

But the last term satisfies

2 2 1 2( 2 2\ 2
l(Ao =Pzl = 5 3 lal (4 —o?)
leJa(w)
+ w2
< 2 Y laP(R57) n—w?
leJa(w)
< 22 Y |c|2(w+9>2<9a2w2||z||2
> 1 9 =9 x>
leJa(w)

where we used that, for | € J,(w) with w > a > 0, we have 1y < w + a < 2w.
With the choice of a given in ([7.2.40)), we thus obtain
2 2
I2]1% < 4m® || Czlly,

and the result follows. O
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Chapter 7. Wave equations

Theorem then directly follows from Theorem [7.2.5] O

An interpolation criterion We finally deduce another criterion for the observability of wave type

equations (7.1.1)-(7.1.3).

Theorem 7.2.11. Let Ay : D(Ap) C X — X be a self adjoint positive definite operator with compact

resolvent, and let B € S(D(A(l)/Z), Y') be an admissible observation operator for (7.1.1))-(7.1.3)). Assume
that there exists a positive constant v such that the first eigenvalue of Ag is greater than ~y.

If system (7.1.1)-(7.1.3) is exactly observable, there exist positive constants o and (3 such that

1/2 |2
|46 <l Dol +a?1Bull} - B2 ulk V€ D(A). (7.2.42)

Conversely, if (7.2.42)) holds, then system (7.1.1))-(7.1.3)) is exactly observable: There exists a time

T, which only depends on «, 3, v and the admissibility constants, such that for any time T > T*, there
exists a positive constant kr > 0, which only depends on T, «, 3, v and the admissibility constants,

such that (7.1.5) holds for any solution of (7.1.1]).

Proof. The proof is based on Theorem In view of Theorem [7.2.9] it is sufficient to prove that
conditions ([7.2.42)) and (7.2.18) are equivalent.

Remark that (7.2.18)) can be rewritten as

Ml — 22| A = Bl + i ) + Aol >0
M? 2M? -

X 2
Vu € D(Ap), Yw € R. (7.2.43)

Since this last expression simply is a quadratic expression in w? € R, then the nonnegativity of

(7.2.43) is equivalent to (again, this follows from the study of the polynomial function = + ax?—2bx+c
on R+)Z

1/2 |2 m? 1
| 457 — s NBulld + sl < llullx Aoullx, Vu € D(Ao). (7.2.44)

2
This last inequality obviously is equivalent to (7.2.42), with o = m/+/2M and 8 = 1/v/2M.

Conversely, if (7.2.42) holds, inequality (7.2.18) holds for any u € D(Ap) and w € R by taking
m=a/B and M = 1//2p.

Theorem [7.2.11] then follows from Theorem [7.2.0] O

7.3 Proof of Theorem [7.1.3

In this Section, we prove Theorem [7.1.3] Below, we assume that the assumptions of Theorem [7.1.3
are satisfied.

For convenience, since B is assumed to belong to £(D(Af),Y ), we introduce a constant Kp such
that
1Bolly < KpllAgolx, V¢ e D(Ag).
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7.3. Proof of Theorem [7.1.3

7.3.1 Admissibility

Proof of Theorem [7.1.3: Admissibility. Assume that system (7.1.1)-(7.1.3) is admissible. Then, from
Theorem there exist positive constants «,  and « such that (7.2.12]) holds.

Again using Theorem [7.2.2] it is sufficient to prove the existence of positive constants a., B, and
v« such that for any h > 0,

2
1/2
AggZun| + 42

Yuy, € Ch(n/hg). (7.3.1)

1/2 2
| A5i2un |, + a2 11Breanlly < Nunlly /N Aonunlly + 52

For h > 0, we fix uj, € Cp(n/h?). Similarly as in [10], we introduce U, € D(Ap), defined by
AoUy, = mpmy, Aompun, = T Aonun,.- (7.3.2)
This defines an element Uy, € D(Ap), which we expect to be close to uy.

Since Uy, € D(Ay), inequality (7.2.12)) applies:

2 2
|40 + a2 1BUME < 104l J |A6UnI + 82 | 452Un |+ ITaI5 (7.33)

The computations below are the same as in [10]. For convenience, we recall them.
From the definition (7.3.2]) of Uy, we have

[Aonunlly, = llmnAonunllx = | AoUnl| x - (7.3.4)

We now estimate Uy, — mpuyp,. Using (7.1.7)) and (7.3.2)), for all ¢ € D(Ap), we have:

< Uny Ao >x=< AoUp, ¢ >x=<mrAonun, ¢ >x
=< 7Th7T;:A07Th’U,h, o >x=< A(l)/zﬂhuh,A(l)/27rh7TZ¢ >x . (7.3.5)

In particular, this implies

< (up — mpup), Agd >x = < Up, Agd >x — < A Pmpun, A6 >x

= < A(l)/27rhuh,A(1)/2(7rh7T;; — I)¢ >x .

Using ([7.1.10) and the invertibility of Ay, we obtain

Uy — mhupllx = sup { < (Up — mhup), Aod >x }
¢€D(A0)7
Aol x =1
< HA(l)/QwhuhH sup HA(1)/2(7T}L7T;; — I)(ﬁH
X ¢€D(AO)7 X
Aol x=1
S C()hQHA(l)/QWhuh X

Besides, for any § € [0, 1], in view of ([7.1.10]), interpolation properties yield
HA(1]/2(7Th7T;; - I)(;SHX < Coht?1=9) HA(I)_6/2¢HX . Ve DAY,
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Chapter 7. Wave equations

and thus, as above,

HAS/Q(Uh — Whuh)H = sup { < Ag/Z(Uh — Thup), A qb >x }
X peD(45"?),
Jat2] =
< ol s, i<
D(Al 5/2 X
HAl ‘”2¢Hf
<

C(]he(l_é) HA(I)/Q'/ThuhH
X
Especially, for § = 2k, we obtain

| A5 (Un — mhup)||x < Coh?(=2)

’A(l)/QﬂhuhH
X
Besides, using the definition ((7.1.6) of Agy, one easily gets
A1/2 —||42/? v Vi 7.3.6
on o Th®h|| én € V. (7.3.6)

It follows that
|Un — mhun| x < Coh? HAOh up, Hh,

(7.3.7)
145 (Un = mraun)l c < Con# 02 || Ay P |
In particular, this implies, by definition of [|-||;,, that
funll = Cob” [ AggZun]|, < 10l < llunlly + Coh? || 4Gy | (7338)
and that
VA% < 2 funl; + 2080 | A 7un (7.3.9)
Using B € £(D(A§),Y) and the estimates ((7.3.7), we obtain
|BUly = 1Brunlly | < KpCon®t=29 \Aé{fuhﬂh (7.3.10)
In particular,
|BUly = 1Bunlly — KpCoh? =2 || A5 u| (7.3.11)
Then we obtain ) ,
|BUA = 5 | Buunlly — KBC3R0 = ‘Aé}/fuhHh. (7.3.12)

2
We now estimate HA /2U H — HAOh uhHh. On one hand, we have

2
1/2
HAO/ UhHX =< AoUh,Uh >x =< WhAOhUh,Uh >x=< AOhUhﬂTZUh >h .
On the other hand, we have
12 |2 .
AOh Up, —< Appup, up >p=< A()huh,ﬂhﬂhuh >p .
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Subtracting these two identities, we get

2 2
4300 =[], =< v, i 0 =i >,

and therefore, using (7.3.7)),

ol - ool <ot i, s

Since up, € Cp(n/h?), estimates (7.3.4), (7.3.8), (7.3.9)), (7.3.12)) and (7.3.13) imply:

UR|l x < [Junll, (1 + Cohe_”/Z\/ﬁ)’
UII% < 2 llunll? (L + C2h20=on),

1
2 L 2 2 ~2720(1-2k)—0 2
> p—
| BRI = 5 1Buunls — K5C3h 1 {[unlly (7.3.14)
2 2
HA(l)/QUhHX 2 HA(l)’/lzuhHh (1= Coh9*0/2\/77),

2 2
b, < a2y,

From (7.3.3) we then deduce

—0 2 a2 -0
(1= Con® /2 /) | Agf2un|, + S I Buunly < lunl, (1 -+ Coh=/2 ) x

[ HAOhuh”’Ql + ﬂ2 HA(l)f“hHi (1+ Coﬁh9*0/2)} 1/2

+29% unlli (1 + Conh** =) + ® KECh* 025" uy |} . (7.3.15)

Using 0 < 20 and o < 20(1 — 2k) (by definition ([7.1.12))), we simplify this expression into
— 2 |12, of 2 0—c/2
(1= Con=/2/m) || AgiZun |, + 5 1 Baunlly: < llunlly (1 + Con=/2 /i) x
2 1/2
[l Aonunll? + 82| Agfun |, (1+ Coyi] ™ + (2421 + Cim) + K3 CEn) un}

Again using o < 26, we get, for h small enough,

1+ Coh?=7/2 /i o
<1+ 3Coh?=7/?
1— Cohefg/Q\/ﬁ <1+ 0 \/ﬁa

1 2, and

< L <
—1- Cohefg/Qﬁ o
and thus
2 |2, o 2 9—a/2
| AchZun | + 5 I1Brunly, < llunll, (1 +3Con? =2 /i)
2 1/2
| Aonunll;, + 52 HAéfuhHh (1+ 0377)]

+ 2(272(1 +C2) + a2K%C§n) lunll?. (7.3.16)

Again using o < 26, we get, for h small enough,

(1+3Coh?=7/2/m)? <14 7Coh? /% /i < 2.
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Chapter 7. Wave equations

In particular,
(1 + 3o~ (| Awanl2 + 8 [ Alf2w]| (1 + i)
< [ Aonun2 + 7Coh®="% /7 | Agnunl|? + 25 HAg,/fuhH (1+ C2p)
< || Aonun|2 + HAgfuhH (700h9 30/23/2 4 932(1 4 con))

With ¢ as in (7.1.12)), we thus obtain (7.3.1)) for ~ small enough with
2

2 a
a —
* 27
2
*

B2 = 7Con*? + 28%(1 + C3n),
= 4fy (14 C’On) + 2a2KBCOn

Remark that applying Theorem one can obtain explicit estimates on the constants in ([7.1.14)).
O

7.3.2 QObservability

Proof of Theorem[7.1.3: Observability. Assume that system (7.1.1))-(7.1.3) is admissible and exactly
observable. Then, from Theorem [7.2.11] there exist positive constants o and g such that ([7.2.42)
holds.

Our proof is now based on the spectral criterion given in Theorem

We first prove that there exist positive constants a,, and (3, such that for any A > 0, the following
inequality holds:

| Abi2un]|} < unl 1Aoneunlly + o2 Buawn 3 — B2l Vun € Cale/h). (7.3.17)

In the sequel, we fix h > 0, up, € Cpr(e/h?), where € is a positive parameter independent of h > 0 which
we will choose later on, and, similarly as in (7.3.2)), we introduce U, € D(Ay) defined by ([7.3.2]).

Since Uy, belongs to D(Ay), (7.2.42)) applies:

2
|40 < 10l 146U + 02 IBURIE — 52 1041 (7.3.18)

We will then deduce estimate ([7.3.17)) from ([7.3.18]), by comparing each term carefully. Actually,
we only need the estimates ([7.3.14)) used above, and the following estimates,

2
IBUW < 211Brunl; + 2K3C3R202) | Ag P |

2 (7.3.19)
1/2
1Ul7 = fuuhu - O3 | AP

which follows easily from ([7.3.10) and ((7.3.8)).
Now, plugging estimates ([7.3.14]) and ([7.3.19)) into ([7.3.18]), we get:

2
(1 = Cov/en®=/2) || Agf2u]| < (1 Cov/en®=/2) lul, | Aonunl, + 202 | Braus 3

—2K)—0 /8 —0
+ 202 KRCFen® 2977 |lup [} — - llun [ + B2CER* € [lun[}, . (7.3.20)
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But, for h small enough,

1
0—oc/2
<1+ 3Co\/eh , and 1= Co/ehi—o/? <2,

1+ C()\/Ehg_o/2
1-— Coﬁhﬁ—oﬂ

and thus we obtain
12 |2 _
| A5i2un| < (1+3Coven™") Junly lonunlly + 40® | Breunli}
2
407 K002 a2 — T 2 + 2620807 2

This yields

2
[ A572un | < el N Aonunlly, + 402 1 Braunl i3 + lfunll} %
2
(300h9—30/263/2 + 40P KL 02ep¥(-20—0 4 9202200 _ %) (7.3.21)

Let us then check that we can choose € > 0 such that, for all A > 0 small enough,

2
3Coe32h0739/2 4 402 K3 C2en?(1=2K) =0 1 95202 p20—0¢ — % < —%. (7.3.22)

This can indeed be done, due to the choice ([7.1.12)) of . Then, taking such an € > 0, we obtain
(7.3.17)) by setting

Now, we need to check that the first eigenvalues )\}1‘ of the operators Agy, are uniformly bounded
from below by a positive constant. This can be easily deduced from the Rayleigh characterization of
the first eigenvalues of Ay, and Ag:

12 12 1/2 1%
A~ g HAO’/z ¢h”h i\ inf HAO/ ¢HX (7.3.23)
— LR — 1= in —_—. -9.
L7 onevi ol pen(al?)  [ol%

Indeed, from (|7.3.6)), identities ([7.3.23)) imply

2 2
|4 |4z
i h — X > >0 (7.3.24)

h O e o 7 Ix
oneVi  |onll on€Vi || mhdnlx

The observability property stated in Theorem then follows from Theorem [7.2.11] and the
uniform admissibility properties stated in Theorem already obtained in the previous subsection.
O

7.4 Examples

In this section, we present several applications of Theorem [7.1.3] and confront our results with the
existing ones.
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Chapter 7. Wave equations

7.4.1 The 1d wave equation

Let us consider the classical 1d wave equation:

i — 02,u =0, (t,x) € R x (0,1),
u(t,0) = u(t,1) =0, t € R, (7.4.1)
uw(0,z) = up(z), u(0,2) =wui(z), xe€(0,1).

For (a,b) a subset of (0,1), we observe system (7.4.1)) through

y(t7 :U) = u(ta x)X(a,b) (%), (742)
where X(44) is the characteristic function of (a,b).

This model indeed enters in the abstract framework considered in this article, by setting Ag = —92,
on (0, 1) with Dirichlet boundary conditions, and B = x(44). Indeed, Ay is self-adjoint, positive definite
with compact resolvent in L2(0, 1). The operator B obviously is continuous on L?(0, 1) with values in

L?(0,1). The admissibility of (7.4.1)-(7.4.2)) is then straightforward.

The observability property for — is well-known to hold if and only if the Geometric
Control Condition is satisfied, see [2, B]. This condition, roughly speaking, asserts the existence of a
time 7™ such that all the rays of Geometric Optics enters in the observation domain in a time smaller
than T™. In 1d, this condition is always satisfied, and thus system - is exactly observable.
This can also be seen using multipliers techniques as in [21], [30].

To construct the space V3, we use P1 finite elements. More precisely, for n, € N, set h =
1/(np + 1) > 0 and define the points x; = jh for j € {0,--- ,n; + 1}. We define the basis functions

r—x;t .
e = [1- 22T e ),

Now, V;, = R™ and the injection 7}, simply is

s Vp=R"™  — LZ(O, 1)

uy
us 'h
un=| . — mhun(e) = > uje;().
: =
U,

Usually, the resulting schemes are written as

{ Myiin(t) + Kyun(t) =0, t€R, oy g i), teR, (7.4.3)

up(0) = upp, Up(0) = urp,

where M), and Kj are nj X n, matrices defined by (Mp);; = fol ei(x)ej(x) dr and (Kj);; =
fol Ogei(x)0zej(x) dr. Note that, since M} is a Gram matrix corresponding to a linearly indepen-
dent family, it is invertible, self-adjoint and positive definite, and thus the following defines a scalar
product:

< On o >n= O Mpthn,  (Pn.1bn) € Vi2. (7.4.4)

Besides, from the definition of M}, one easily checks that

1
< &n,Un >h:/0 (o) (2)mh () (2) dx,  V(dn, ) € Vi,
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as presented in the introduction.

Similarly, one obtains that, for all (¢p, ) € V2,
on Kby = o5 My M, " Kby, =< p, My, Ko >p= ¢, Kn M, " My,

1
=< M; 'Knon, ¥n >h_/0 Oz (Thodn) (2) 0z (Trabn ) () du,

which proves that the operator M, LK), coincides with the operator Ay, of our framework. Note that
this operator indeed is self-adjoint, but with respect to the scalar product (7.4.4) and not with the
usual euclidean norm of R™".

It is by now a common feature of finite element techniques (see for instance [33]) that estimates
(7.1.10) hold for # = 1. We can thus apply Theorem to systems (7.4.3):

Theorem 7.4.1. There exist € > 0, a time T and a positive constant ks such that for any h > 0,

any solution uy, of (7.4.3)) with initial data (uop,u1p) € Cp(e/h?/?)? satisfies (7.1.16)).

This result is to be compared with the better ones obtained in [19]: In [19], it is proved that, for
finite element approximation schemes of the 1d wave equation, observability properties hold uniformly
within the larger class Cp(a/h?) for a < 4.

Though, as we will see hereafter, we can tackle more general cases, even in 1d, for instance taking
sequence of meshes S, given by n + 2 points as

To,n = 0< Tip < < ZTpn < Tptln = 1, hj+1/2,n = ZTjt+1n — Tjn,

for which we only assume h,, = supj{hjﬂ/g,n} to go to zero when n — oo.

7.4.2 More general cases

Let © be a bounded smooth domain of RY, with N > 1, and consider the following wave equation:

i — div(M (z)Vu) =0, (x,t) € Q@ xR,
u(z,t) =0, (z,t) € 092 x R, (7.4.5)
u(z,0) =up(z), u(z,0)=wui(z), xe€Q,

where M(z) is a C* function on Q with values in the self-adjoint N x N matrices. We also assume
that there exist positive constants o and 3 such that for all £ € RY,

al¢]? < (M(2)€,€) < BIE)®, Ve, (7.4.6)
where (-, -) is the canonical scalar product of RY and |- | is the corresponding norm.

Under these assumptions, it is well-known that system ((7.4.5)) is well-posed for initial data (ug, u1) €
H(Q) x L*(Q).

System (7.4.5) is a particular instance of (7.1.1)) for Ay = —div(M(x)V-) on  with Dirichlet
boundary condition. This operator is indeed self-adjoint positive definite with compact resolvent, and
its domain is D(Ag) = H?*(Q) N HL(Q).

Now, set w a non-empty open subset of €, which satisfies the Geometric Control Condition (see
[2] and above), and consider the observation

y(z,t) = xo(z)u(z,t), (x,t) € Qx(0,T). (7.4.7)
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This defines a bounded operator B on L?(§2). Therefore, the admissibility condition for (7.4.5)-(7.4.7)

is obvious.

As said above, the Geometric Control Condition guarantees the exact observability property for
(7.4.5)-(7.4.7). Note that, in our case, the rays are not necessarily straight lines, but correspond to
the bicharacteristic rays of the pseudo-differential operator 72 — (M (z)¢, €).

We consider P1 finite elements on meshes 7;,. We furthermore assume that the meshes 7;, of the
domain  are regular in the sense of finite elements [33, Section 5]. Roughly speaking, this assumption
imposes that the polyhedra of (7;) are not too flat.

Definition 7.4.2. Let 7 = U7 K be a mesh of a bounded domain ). For each polyhedron K € 7T,
we define hi as the diameter of K and pg as the maximum diameter of the spheres S C K. We then
define the regularity of 7 as

Res(r) = {35}

A sequence of mesh (7},) is said to be uniformly regular if

sup Reg(7},) < 0.
h

In this case, see [33], setting h = supg 7 hi, estimates (7.1.10) again hold for § = 1, and Theorem
.1.3| implies:

Theorem 7.4.3. Assume that system (7.4.5)-(7.4.7) is observable. Given a sequence of uniformly
regular meshes (Tp)n>0 satisfying h = supy g, hic, there exist € > 0, a time T™ and a positive constant
ks such that for any h > 0 small enough, any solution uy of the P1 finite element approximation

scheme of (7.4.5)-(7.4.7) corresponding to the mesh T, with initial data (uon,u1n) € Cp(e/h?/3)?
satisfies ((7.1.16]).

To our knowledge, this is the first time that observability properties for space semi-discretizations
of — are derived in such generality for the wave equation. In particular, we emphasize
that the only non-trivial assumption we used is , which is needed anyway to guarantee the
convergence of the numerical schemes.

7.5 Fully discrete approximation schemes

This section is based on the article [11], which studied observability properties of time discrete conser-
vative linear systems. As said in [IT], Section 5], this study can be combined with observability results
on space semi-discrete systems to deduce observability properties for fully discrete systems. Below,
we present an application of the results in [I1].

Let 8 > 1/4 and consider the following time discrete approximation scheme - the so-called Newmark
method, see for instance [33] - of (7.1.8]):

uzﬂ + uz_l — 2u’fL
(At)?

+ Aon (ﬂuz_l + (1 —20)uf + Bu’,ﬁ*l) =0, keN*
(7.5.1)
u% + u}L u}L — ug
(P55

) = (uon, u1p) € Vi3,
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where uﬁ corresponds to an approximation of the solution uy, of (7.1.8)) at time ¢ = kAt.
The energy of solutions uy, of ((7.5.1]), defined by

2 2
phrz _ 1| uf + uyt! 1wt —uf
h T2 ||7on ( 2 ) X 2 At .
2
(At)? 1o (uptt —
48 -1)]|A <7) 5.2
+ 8 ( ﬁ ) Oh At h7 k € N: (7 5 )

is constant.
Then we get the following observability result (see [I1]):

Theorem 7.5.1. Let Ay be a self-adjoint positive definite unbounded operator with compact resolvent
and B € £(D(A}),Y), with k < 1/2.

Assume that the maps (mp)nso satisfy property (7.1.10). Let 5 > 1/4, and consider the fully
discrete approximation scheme (7.5.1). Set o as in (7.1.12), and § > 0.

Admissibility: Assume that system (7.1.1)-(7.1.3) is admissible.

Then, for anyn >0 and T > 0, there exists a positive constant K, > 0 such that, for any h >0
and At > 0, any solution of (7.5.1) with initial data

2
(tton, w11) € (Ch(n/h7) N Cu(8%/ (1)) (7.5.3)
satisfies
k1 k|
kAte[0,T] Y

Observability: Assume that system (7.1.1))-(7.1.3) is admissible and exactly observable.

Then there exist € > 0, a time T and a positive constant k., > 0 such that, for any h > 0 and
At > 0, any solution of (7.5.1) with initial data

(uonuar) € (Cale/h7) NG (8% (A1)’ (75.5)

satisfies

bt — ok 2
D VN .

kEAte[0,T%]

(7.5.6)

Y

Obviously, inequalities ((7.5.4)-(7.5.6|) are time discrete counterparts of ((7.1.14)-(7.1.16]). Remark

that, as in Theorem [7.1.3] a filtering condition is needed, but which now depends on both time and
space discretization parameters.

Also remark that if (At)2h 77 is small enough, then Cy(e/h%) NCp(62/(At)?) = Cp(e/h°). Roughly
speaking, this indicates that under the CFL type condition (At)2h~7 < €/62, system (7.5.1])) behaves,
with respect to the admissibility and observability properties, similarly as the space semi-discrete

equations (|7.1.8).
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Remark 7.5.2. We restrict our presentation to the Newmark method, but similar results hold for a
large range of time discrete approximation schemes of . We refer to [11], and in particular to
Section 3, for the precise assumptions on the time-discrete approximation schemes under which we
can guarantee uniform observability properties to hold.

7.6 Controllability properties

This section aims at discussing applications of Theorem to controllability properties for space
semi-discretizations of wave type equations such as ([7.1.1)). The approach presented below is strongly
inspired by previous works [16], (19, [40], [41], [10], and closely follows [10].

In the whole section, we assume that the hypotheses of Theorem [7.1.3] are satisfied.

7.6.1 The continuous setting

Consider the following control problem: Given T' > 0, for any (wq,w1) € D(Aé/ 2) x X, find a control
v € L*(0,T;Y) such that the solution w of

W+ Apw = B*v(t), te€[0,T], w(0) = wp, w(0)=wy, (7.6.1)
satisfies

w(T) =0, &(T)=0. (7.6.2)

The controllability issue in time 7" for ((7.6.1)) is equivalent to the observability property in time T’
for ((7.1.1))-(7.1.3)) (see for instance [23]). Indeed, these two properties are dual, and this duality can
be made precise using the Hilbert Uniqueness Method (HUM in short), see [23].

More precisely, the control of minimal L?(0,T;Y) norm for (7.6.1]), that we will denote by vgyar,
is characterized through the minimizer of the functional J defined on D(A(l]/ 2) x X by:

LT :
I (uor, wir) = 2/ 1Ba(t) |} di+ < Ay *u(0), Ag/*wo >x + < i(0), w1 >x, (7.6.3)
0

where w is the solution of
i+ Apu=0, tel0,T], w(T) =uopr, (T)=uip. (7.6.4)

Indeed, if (uyp, ujp) is the minimizer of 7, then vy, (t) = Bu*(t), where u* is the solution of (7.6.4)
with initial data (up,ujp).

Besides, the only admissible control for ((7.6.1)) which can be written as Bu(t) for a solution u of
(7.6.4) is the HUM control vy, This characterization will be used in the sequel.

Note that the observability property (7.1.5)) for (7.1.1)-(7.1.3) implies the strict convexity and the
coercivity of J and therefore guarantees the existence of a unique minimizer for J.

7.6.2 The semi-discrete setting

The natural idea which consists in computing the discrete HUM controls for discrete versions of ([7.6.1])
may fail in providing good approximations of the HUM control for ([7.6.1]). We refer for instance to
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7.6. Controllability properties

the survey article [41] for a detailed presentation of this fact in the context of the 1d wave equation.
We thus use filtering techniques developed for instance in [16} 19, 40, 4T}, [10] to overcome the problems
created by the high-frequency components.

Our presentation closely follows the one in [I0]. The proofs of the result below will be only sketched,
and can be done similarly as in [10].

Since we assumed that the hypotheses of Theorem hold, there exists a time 7™ such that
(7.1.16)) holds for any solution of (7.1.8) with initial data in the filtered space Cj,(e/h%)2.

We now fix T" > T*.

Following the strategy of HUM, we introduce the adjoint problem

iy, + Aopup, =0, t€ [O, T], (uh, Tlh)(T) = (uoTh, ulTh). (7.6.5)

Method 1

For any h > 0, we consider the following control problem: For any (wopn,w1n) € Vh2, find v, €
L?(0,T;Y) of minimal L?(0,T;Y) such that the solution wy, of

Wy, + Aopwp, = Byop(t), te 0,77, wr(0) = won, Wh(0) = wip, (7.6.6)

satisfies
Pywp(T) =0, Ppuwp(T) =0, (7.6.7)

where Py, is the orthogonal projection in Vj, on Cp,(e/h?).
To deal with this problem, we introduce the functional 7, defined for (ugrp, uirn) in Cp(e/h%)? by
1/2 1/2

T .
jh(uOTh,ulTh) = 2/ ||Bhuh(t)|]%/ dt+ < AOh th?AOh uh(O) >p + < wlh,uh(O) >, (7.6.8)
0

where uy, is the solution of (7.6.5)).

For each h > 0, the functional Jj is strictly convex and coercive (see (7.1.16))), and thus has a
unique minimizer (uly,, uiry,) € Cr(e/h%)>.

Besides, we have:

Lemma 7.6.1. For all h > 0, let (ulp,, wir,) € Ch(e/h?)? be the unique minimizer of Jy, (on
Cr(e/h?)?), and denote by uj, the corresponding solution of (7.6.5). Then the solution of (7.6.6) with
vy, = By, satisfies (7.6.7)).

Sketch of the proof. We present briefly the proof, which is standard (see for instance [23]).

On one hand, multiplying (7.6.6) by iy, solution of ((7.6.5) with initial data (ugrp,wirn), we get,
for all (ugrp,uiTh) € VhQ,

T
/ < op(t), Bpup(t) >y dt+ < A(l);/?womA(l]éQuh(O) >p 4 < wip, Wp(0) >p
0

— < Aéfwh(T), A[I){fuo’]"h >p — < wp(T),urrn, >p=0. (7.6.9)
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On the other hand, the Fréchet derivative of the functional J}, at (ufp,, ujr,) yields:

T
/ < Byt (t), Byin(t) >y dit+ < A won, Aptun(0) > + < wip, iy (0) >,= 0,
0

Y(uorn, uirn) € Cp(e/R%)%.  (7.6.10)

Therefore, setting v, = Bp1;, subtracting (7.6.9) to (7.6.10]), we obtain

< A(l)i/12wh(T)v A(l)}/fUOTh >p + < wp(T),uirn >n=10, ¥(uorhn,uirn) € Ch(e/ha)2,

or, equivalently, (7.6.7)). ]

As in [I0], we then investigate the convergence of the discrete controls vy, obtained in Lemma|7.6.1

Theorem 7.6.2. Assume that the hypotheses of Theorem[7.1.3 are satisfied. Also assume that
Yy = {y €Y, such that B*y € X} (7.6.11)
is dense in Y.

Let (wp,wq) € D(A(l)/2) x X, and consider a sequence (wop, w1ip)p>o0 such that (wop,wyp) belongs
to Vh2 for any h > 0 and

(mhwon, Thwin) — (wo,wy)  in D(AY?) x X. (7.6.12)

Then the sequence (vy)p>o of discrete controls given by Lemma converges in L?(0,T;Y) to the
HUM control vgyy of (7.6.1) associated to the initial data (wg,w1).

Remark that, for w € D(Ap), in view of (7.1.10)), the sequence (wp), = (7jw) converges to w in
D(A(l)/Z) in the sense that the sequence (7, wy,) converges to w in D(A(l)/Q). For (wg,w1) € D(A(l)/Q) x X,
one can then find a sequence (wop, w1p)p>o satisfying (7.6.12) and (wop, w1p) € V2 for any h > 0 by

using the density of D(Ag)? into D(Aé/z) x X.

The technical assumption (7.6.11) on B is usually satisfied, and thus does not limit the range of
applications of Theorem[7.6.2] Also note that when B is bounded from X to Y, the space Yx coincides
with Y and (7.6.11)) is then automatically satisfied.

The proof of Theorem uses precisely the same ingredients as the one in [I0], and is briefly
sketched for the convenience of the reader.

Sketch of the proof. Step 1. The discrete controls vy, are bounded in L?(0,7;Y). This follows from
the inequality
In(ugrn, uiry) < Jn(0,0) =0,

and the observability inequality ([7.1.16]). Hence the controls are bounded, and, up to an extraction, the
sequence (vy) weakly converges to some function v in L?(0,7;Y). Besides, the sequence (UWrns WiTn)
is also bounded in D(Aé/ 2) x X, and therefore weakly converges in D(Aé/ 2) x X to some couples of

functions (tgr, t17).

Step 2. The weak limit v is an admissible control for (7.6.1]) associated to the data (wg,w;). This
can be deduced, as in [10], from the convergence properties of the approximation schemes (|7.1.8) (or
equivalently (7.6.5))), which can be found for instance in [33, Section 8§].

220



7.6. Controllability properties

Step 3. The weak limit v is the HUM control for associated to the data (wp,w;). This is
also based on a convergence result which can be found in [33], Section 8], and which guarantees that
v = Bii, where 4 is the solution of with initial data (tgp, @y7). This also proves that (tgr, @17)
coincides with the minimizer (ugy, uj7) of the continuous functional J in (7.6.3). Assumption
is needed in this step to identify the limit of (B} ) with Ba.

Step 4. Finally, the strong convergence of the controls is proved using the convergence of the
L*(0,T;Y) norms. Compute first the Fréchet derivative of J at (uy, uly): for (uor, uir) € D(A(l)/Q) X
X, we obtain

T
/ < Bi*(t), Bu(t) >y dt+ < AY*u(0), AY*wy >x + < @(0),wy >x=0. (7.6.13)
0

Now, applying (7.6.10) to (u{py,, uipy,) and (7.6.13) to (ul,, uip), the assumptions on the convergence
of (wop,w1y) imply the convergence of the L?(0,T;Y) norms of vy, to the L2(0,T;Y) norm of v. [

Method II

As in [10], one can prefer a method which does not involve a filtering process in the discrete setting.
We thus recall the works [16, [41), 10], which propose an alternate process based on a Tychonoff
regularization of Jj,.

Theorem 7.6.3. Assume that the hypotheses of Theorem [7.1.5 are satisfied. Also assume that B €

L£(X,Y), which, in particular, implies that o = 26/3.

Let (wop,wy) € D(Aé/z) x X, and consider a sequence (wop, Wip)p>0 Such that (wop,wyp) belongs to

Vh2 for any h > 0 and (7.6.12) holds.

For any h > 0, consider the functionals J;;, defined for (uorh, uiTh) € Vh2 by

* 1 T . h° ~ 2 ~ 2
T (uorh, vrTh) = 2/ | Brin (8|3 dt + 7( ‘ A(l)fA(l)éQuOThHh + HA(l)i/fulThHh>
0
+< A(I);/fwoh,Aéf up(0) >p + < wip, up(0) >4, (7.6.14)
where .
Aoy, = th(Ith + hUAOh)fl, (7.6.15)
and uy, is the solution of (7.6.5)) with initial data (uorh,wiTh)-

Then, for any h > 0, the functional J; admits a unique minimizer (Uyrn, Urrn) in Vh2. Besides,
setting vp,(t) = BpU(t), where Uy is the solution of (7.6.5)) with initial data (Uyrn, Uirh), one gets
the following convergence results:

Vh — VUguwm Zn LQ(O, T, Y), (7616)

where vyyy denotes the HUM control for (7.6.1)).

Theorem proposes a numerical process based on the minimization of the functional 7, defined
for any element of th . Though, the functional [J; involves the regularizing term

2

~ 2
L VT

Agy Agy worn ‘ ’ .
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This term is small for data in Cj(€/h?) and of unit order for frequencies higher than 1/h%. Also note
that this term can be computed easily since

Lo 1/2

¢hH = h° < Aondn, dn >n=h" < Aondn, n >n,

where ¢, is the solution of
(Idvh v h"AOh>¢h — ¢ (7.6.17)

In other words, the operator Ay, simply introduces an elliptic regularization of the data, and the
regularizing terms can be computed explicitly by solving the elliptic equation ([7.6.17]).

Besides, from ((7.6.15)), Ags and Ag;, commute, and Ag, satisfies:

|
|

Let us check that the functionals 7" are uniformly coercive. For (ugrp, u1rn) € VhQ, using (|7.1.16]),
we obtain

w2 At < Il v € Vi,
(7.6.18)
lnly, Vb € Cu(6/h7)*, V6 > 0.

hU/QAl/QwhH “ 1+ 5

T , 17 ) T 9
[ 1Bl = 5 [ 1B Pl - [ Ba(P - 1y, )ino)|
0 0 0 Y

k 2 T . )
> %( A2 Pyuory, Tt HPhulThHi) —/ 1B % x vy H(Ph - Idvh>uh(t)Hh
0

Y

k 2
7T( A(l)}/ZQPhUOTh +”PhU1ThHi21)
T 1Bl ( HA”Q ~ Tdy, o[, + 1P~ Tav, Juran?)

v

k 2
%( A(l)i/fPhUQTh N + ||PhU1ThHi2l)
o 1+e 2 it 2
7T Bl (=) (A Ak wora [, + | 468 7mm | )

Besides, for (uorn, uirn) € V}2, using (7.6.18), we also have

1/2 2 2
|’ (v, = 2o+ (1, = Py Josma
1+e 2 ~ 2
< () (v Ao, + [ ama], )
Combining these two inequalities, we prove that the functionals [J;* are uniformly coercive.

The proof of Theorem [7.6.3| can now be done similarly as the one of Theorem and thus is
left to the reader.

Remark 7.6.4. Similar results can be obtained for fully discrete approximation schemes derived from
Newmark time discretizations of (or more general time discrete approximation scheme, see
Remark . The proof can then be done similarly as in the time continuous setting, using the ob-
servability inequality and convergence properties for the fully discrete approximation schemes,
which can be found for instance in [33].

222



7.7. Stabilization properties

7.7 Stabilization properties

This section is mainly based on the articles [I4] 13], in which stabilization properties are derived for
abstract linear damped systems.

Below, we assume that Ag is self-adjoint, definite positive and with compact resolvent, and that
B e £(X,Y).

7.7.1 The continuous setting

Consider the following damped wave type equations:
i+ Agu+ B*Bi=0, t>0,  (u(0),1(0)) = (ug,u1) € D(AF?) x X. (7.7.1)

The energy of solutions of ([7.7.1)), defined by ([7.1.2), satisfies the dissipation law

dE

— (O =—[Ba®)5, t>0. (7.7.2)

System (|7.7.1]) is said to be exponentially stable if there exists positive constants p and v such
that any solution of ([7.7.1)) with initial data (ug,u1) € D(Aé/Q) x X satisfies

E(t) < pE(0) exp(—vt). (7.7.3)

It is by now well-known (see [I7]) that this property holds if and only if the observability inequality

(7.1.5) holds for solutions of (7.1.1)).

7.7.2 The space semi-discrete setting

We now assume that system (7.1.1))-(7.1.3) is observable in the sense of (7.1.5)), or, equivalently (see
[17]), that system ((7.7.1)) is exponentially stable.

Then, combining Theorem and the results in [14], we get:

Theorem 7.7.1. Let B be a bounded operator in £(X,Y), and assume that system (7.7.1)) is exponen-
tially stable in the sense of (7.7.3)). Also assume that the hypotheses of Theorem are satisfied.

Then the space semi-discrete systems

{ iin + Aonun + By By + b Agpiy, =0, ¢ >0, (7.7.4)

(un(0), @r(0)) = (uon, urn) € Vi,

are exponentially stable, uniformly with respect to the space discretization parameter h > 0: there exist
two positive constants o and vo independent of h > 0 such that for any h > 0, any solution up, of
(7.7.4) satisfies, fort > 0,

[aifzan®)], + N1 < o (|42 O, + 10O ) esp(-wn. (775

223



Chapter 7. Wave equations

Here, several other viscosity operators could have been chosen: We refer to [14] for the precise
assumptions required on the viscosity operator introduced in ((7.7.4) for which we can guarantee
uniform stabilization results.

Note that systems are similar to the numerical approximation schemes of the 1d and 2d wave
equations studied in [35] [34], 27], which were dealt with using multiplier techniques. In [35] 34) 27], the
viscosity term h2Agp, instead of h29/3 Ay, in our setting, has been proved to be sufficient to guarantee
the uniform exponential decay of the energy. However, the range of applications of [35, 34 27] is
limited to the case of uniform meshes and of wave equations with constant velocity.

Systems are also similar to the ones in [32], where uniform stabilization results are derived
for general damped wave equations using a non-trivial spectral conditions. Especially, it is
proved in [32] that systems are uniformly exponentially stable with a weaker viscosity term:
Namely, the viscosity term needed in [32] is h? Ay, instead of h??/3Ag;,. However, in [32], a non-
trivial spectral gap condition on the eigenvalues of Aj is needed, which restricts the range of direct
applications to the 1d case only.

Thus, in many situations, our results are not sharp. However, they apply for a wide range of
applications: Especially, no condition is required on the dimension or on the uniformity of the meshes.

Remark 7.7.2. One can use the results in [I4] to derive fully discrete approximation schemes of ([7.7.1)
for which one can guarantee uniform (in both time and space discretization parameters) stabilization
properties.

7.8 Other models

In this section, we mention two other models of interest, for which our methods apply and yield new
results.

7.8.1 A wave equation observed through y(t) = Bu(t)

Here, rather than studying an observation operator which involves the time derivative of solutions of

(7.1.1) as in , we focus on the case of an observation of the form
y(t) = Bu(t). (7.8.1)

The operator B is now assumed to belong to £(D(Ap),Y ), where Y is an Hilbert space.

Now, the admissibility property for (7.1.1)-(7.8.1)) consists in the existence, for every T' > 0, of a
constant K7 such that any solution of (7.1.1]) with initial data (up,u1) € D(Ap) X D(A(l)/ 2) satisfies

T 2 12 |2 2
| 1Bl de < s ( 43w+l ): (7.82)
0

In particular, when B belongs to S(D(Aé/ 2), Y), system ([7.1.1)-(7.8.1) is obviously admissible because
of the conservation of the energy ([7.1.2]).
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The observability property for (7.1.1)-(7.8.1) now reads as follows: There exist a time 7" and a
positive constant k7 > 0 such that

kT< HA;%OHi " ||u1|]§(> < /OT | Bu(t)| dt. (7.8.3)

Similarly as before, assuming that system (|7.1.1)-(7.8.1)) is admissible and exactly observable, one
can ask if the discrete systems (|7.1.8]) observed through

yn(t) = Brpup(t), (7.8.4)
are uniformly admissible and exactly observable in a convenient filtered class.

Below, we provide a partial answer to that question. As before, we can only consider operators B
which belong to £(D(Af),Y) for £ < 1/2. This makes the admissibility properties obvious since the
observation operators By = Bmy, are then uniformly bounded as operators from V}, endowed with the

norm HA1/2 Hh = HAé/27Th.HX (see (7.3.6)) to Y.
We therefore focus on the observability properties of ((7.1.8)-(7.8.4]), for which we obtain the fol-

lowing;:

Theorem 7.8.1. Let Ay be a self-adjoint positive definite operator with compact resolvent and B €
L(D(Af),Y) with k < 1/2. Assume that the maps (my,) satisfy property (7.1.10). Set ¢ =26/3.

Assume that system (7.1.1)-(7.8.1) is exactly observable. Then there exist € > 0, a time T and a
positive constant ks > 0 such that, for any h > 0, any solution of (7.1.8) with initial data (uop,uip) €
Ch(e/h*)? satisfies

T*
(HAOh UOh\) +Hu1hui) g/ | Brpun ()| dt. (7.8.5)
0

The proof of Theorem [7.8.1] is based on the following spectral characterization, which can be
deduced from Theorems [T.2.4H7.2.5

Theorem 7.8.2. Let Ay be a self-adjoint positive definite operator on X with compact resolvent and

B € £(D(Ap),Y). Assume that system ([7.1.1)-(7.8.1)) is admissible in the sense of (7.8.2)).

Then the following statements are equivalent:

1. System (7.1.1)-(7.8.1)) is exactly observable.

2. There exist positive constants m and M such that
M2 |[(Ag — w2 D% + m? || Bul% > HAW H Yu € D(Ay), Yw € R. (7.8.6)

3. There exist positive constants o and 3 such that

Jab2|’ <l (1Aoul + o2 [Bul — 2| 452 ), vueDan). (87)

Besides, assuming that the first eigenvalue of Ay is bounded from below by a positive constant v > 0,
if one of the statements 2 or 3 holds, then the time T and the constants kr in (7.8.3) can be chosen
explicitly as functions of v, the admissibility constants and either (m, M) or (a, (3).
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The proof of Theorem is left to the reader. We only briefly indicate the method one can use
to show Theorem [[.8.2

To prove that statement 2 in Theorem is equivalent to the exact observability of (7.1.1))-
(7.8.1)), one can follow the proof of Theorem in [31] and use the refined version of Theorem
given in Theorem [7.2.5

The equivalence of statements 2 and 3 follows from the same arguments as in Theorem [7.2.11]

Once Theorem [7.8.2] is proved, one only needs to prove that for h > 0 small enough, there exist
positive constants a, and (3, such that

12 |1 12, ||?
itz < el (1ol + a2 1 Brnly - 82 [ 4gf2un], ). (755)

h

for any up € Cp(e/h*). The proof of ([7.8.8) can be done similarly as in Subsection and is also
left to the reader.

Remark 7.8.3. When observing the solutions of the wave equation with Dirichlet boundary conditions
via their normal derivative on a part of the boundary which satisfies the Geometric Control Condition,
the observation operator is not continuous on D(A(l)/ 2), and thus our results do not apply. This issue

deserves further work.

7.8.2 Applications to Schrodinger type equations

In this section, we focus on the consequences of Theorem to the study of Schrédinger type
equations

i2(t) = Aoz(t), teR, 2(0) = zp € X, (7.8.9)
observed through
y(t) = Bz(t). (7.8.10)
The admissibility property for (7.8.9))-(7.8.10) reads as
T
/\wdm@ﬁgkbmﬂ; V 2o € D(Ao), (7.8.11)
0

and the exact observability property as
T
MWM§§/|B4m@ﬁ, ¥ 20 € D(Ag). (7.8.12)
0

The results in [26] imply that if the system (7.1.1)-(7.1.3) is admissible and exactly observable in some
time 7™ > 0, then system (|7.8.9)-(7.8.10)) is admissible and exactly observable in any time T > 0.

Below, we adapt this strategy to deduce admissibility and exact observability results for the space

semi-discrete approximation schemes of ((7.8.9)-(7.8.10)).

When discretizing ([7.8.9)) using finite element methods described by (V4, 7p,) as in the introduction,
we obtain (see [10])

12, = Aonzn, tER, 21 (0) = zop, € Vi, (7.8.13)
The natural observation operator is then
yn(t) = Bpzp(t) = Bmpzp(t). (7.8.14)

We then prove the following result:
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Theorem 7.8.4. Let Ay be a positive definite unbounded operator with compact resolvent and B €
L(D(Af),Y), with k < 1/2. Assume that the approximations (wp)n>o satisfy property (7.1.10). Set o

as in (7.1.12)).
Admissibility: Assume that system (7.1.1)-(7.1.3) is admissible.

Then, for anyn > 0 and T' > 0, there exists a positive constant Kr, > 0 such that, for any h > 0,

any solution of (|7.8.13|) with initial data
20n € Ch(n/hg) (7.8.15)

satisfies

T
| 1Bl de < Ky ol (7.8.16)

Observability: Assume that system (7.1.1))-(7.1.3|) is admissible and ezxactly observable.

Then there exist € > 0, a time T* and a positive constant ky > 0 such that, for any h > 0, any

solution of (7.8.13) with initial data

20n € Ch(e/ha) (7817)
satisfies

T*
bl < [ IBaaOl b (7.8.18)
0

This result has to be compared with the ones in [I0]. Indeed, in [I0], under the assumption
that system (|7.8.9))-(7.8.10) is admissible and exactly observable, it is proved that finite element
approximation schemes ([7.8.13))-(7.8.14)) are admissible and exactly observable for initial data filtered
at the scale

= 9min{2(1 - 2@,%}.

Theorem then states a stronger result than [I0], but under the stronger assumption that

(7.1.1)-(7.1.3]) is admissible and exactly observable.

Proof. Consider the wave system (7.1.1)-(7.1.3). Note that we are in the setting of Theorem Be-
low, we only prove the exact observability property for (7.8.13))-(7.8.14)). The proof of the admissibility
properties ([7.8.16|) is similar and is left to the reader.

Assume then that system ([7.1.1))-(7.1.3)) is admissible and exactly observable. Then, from Theorem
the admissibility and exact observability properties hold in a filtered class Cp,(e/h?), uniformly
with respect to h > 0, for systems (7.1.8).

By Theorem there exist positive constants & and 3 such that for all b > 0, for all @ € R, for
any wave packet

1 Eq’? Uoh
Up = —= Z a; J = )
V2 N utp
|H’j -o|<a, (o3
h o
Ar<e/h
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where M?’ = \/)\? for j > 0, and —, //\9‘ for j < 0, the following inequality holds

~ 1/2 2 ~
1Breaanlly = 32 ( llusnl} + || AGhuon| ) = 2682 eanlly

Now, take a positive number w, and consider z;, a wave packet

Zh = Z athD?,
N} —w[<a,
)\?Se/ho
where a will be chosen later on. Remark that, if

N —w| < a,

then

o o o
= Vo | = [ = V| < << X
J J [L;-L + \/(TJ /)\ib VAL
where the last estimates come from the positivity of w and (|7.3.24)).
Therefore, if a < @v/\1, applying (7.8.19)) in © = \/w to

> a2l

Zh

we get that for all w € (0, 00), for any wave packet zj, as in (7.8.20)), with a < av/Ap,

| Bhznlly = V28 ||z, -

Criterion ((7.2.20]) for (7.8.13)-(7.8.14]) follows, uniformly with respect to h > 0, by taking

o= min{d\/x, \/)\»1}, and 8 = v24.

Indeed, this choice guarantees that, for w <0, J,(w) is empty.

Therefore Theorem applies and yields ([7.8.18]).

(7.8.19)

(7.8.20)

O]

Under the assumptions of Theorem it is very likely that systems ([7.8.13))-(7.8.14) are uni-

formly exactly observable in any time 7" > 0, but our methods do not yield this result. Indeed, the
proof of [26] in the continuous setting does not apply in our case. It uses a compactness argument to
deal with the low-frequency components of the solutions, and this cannot be done in our setting.

7.9 Further comments

1. One of the interesting features of the approach presented here is that it works in any dimension
and in a very general setting. To our knowledge, this is the first work (namely with the companion
paper [10]) which proves in a systematic way observability properties for space semi-discrete systems

from the ones of the continuous setting.
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7.9. Further comments

2. A widely open question consists in finding the sharp filtering scale. We think that the works [6l
7], which present a study of the observability properties of the 1d wave equation in highly heterogeneous
media, might give some insights to address this issue. In [0, Paragraph 3.3.1], it is interesting to notice
that, as in Theorem the exponent 2/3 appears naturally as a critical value when comparing the
spectrum of the wave operators corresponding to the oscillating media and the one of the homogenized
wave operator. Though, in [6], it is proved that observability properties still hold when filtering the
data at a higher scale.

3. In this article, we assumed that the continuous systems are exactly observable. However, there
are several important models of vibrations where the energy is only weakly observable. That is the
case for instance for networks of vibrating strings [8] or when the Geometric Control Condition is
not fulfilled (see [2, 22]). It would be interesting to address the observability issues for the space
semi-discretizations of such systems. To our knowledge, this issue is widely open.

Acknowledgements. The author acknowledges Jean-Pierre Puel, Enrique Zuazua and Marius
Tucsnak for their fruitful comments.
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Chapter 8

Control and stabilization property for
a singular heat equation with an
inverse square potential

Abstract: The goal of this article is to analyze control properties of parabolic equations with a
singular potential —u/|z|?, where p is a real number. When p < (N —2)2/4, it was proved in [19] that
the equation can be controlled to zero with a distributed control which surrounds the singularity. In
the present work, using Carleman estimates, we will prove that this assumption is not necessary, and
that we can control the equation from any open subset as for the heat equation. Then we will study
the case p > (N — 2)2/4, and prove that the situation changes completely: Indeed, we will consider a
sequence of regularized potentials 11/ (|x|? + £2), and prove that we cannot stabilize the corresponding
systems uniformly with respect to € > 0, due to the presence of explosive modes which concentrate
around the singularity.

8.1 Introduction

Let N > 3 and consider a smooth bounded domain © C R¥ such that 0 € Q, and let w C ) be
a non-empty open set.
We are interested in the control and stabilization properties of the following equation

O — Agu — ﬁu =f, (x,t) € Q x (0,7T),

u(z,t) =0, (z,t) € 09 x (0,T), (8.1.1)
u(x,0) = up(z), x €,
where ug € L?(Q2). Here, f € L?((0,T); H1(2)) is the control that we assume to be null in Q\@, that

Vo € DIAN\@), 6Of =0 in L*((0,T); H1(Q)). (8.1.2)

First of all, let us briefly mention that the Cauchy problem with such singular potential is not
straightforward. Indeed, it has been proved that there is a critical value p*(N) = (N — 2)2/4 of p

235



Chapter 8. Control and stabilization property for a singular heat equation

which determines the well-posedness of (8.1.1). Actually, this problem is strongly related to the Hardy
inequality:

2
Vu € HY (), M*(N)/ U—Q dx < / |Vul|? dx, (8.1.3)
o || Q
where p*(N) is the optimal constant. Note that equality in (8.1.3)) is not attained.

The first work [I] on the Cauchy problem was considering positive initial data. In [I], it was proved
that if u < p*(N) and if the initial data wg is positive, then equation (8.1.1]) has a global weak solution
whereas if © > p*(N), then equation (8.1.1) has no solution if ug > 0 and f > 0, even locally in time
(see also [4]).

Actually, the Cauchy problem properties for equation @ can be deduced from generalizations
of the Hardy inequality . Studying more precisely @D, it is proved in [20] that the Cauchy
problem is well-posed in L?(€2) for any u < p*(N). A precise functional setting is given even in the
special case = p*(N) (see [20]).

The objective of the present paper is twofold. First, when p < p*(N), we will prove the null-
controllability of (8.1.1]) with a control f € L?((0,7T); L?(w)). Second, we will show that when p >
w*(IN), there is no way to stabilize system (8.1.1)) with a control supported in w in a reasonable sense
when 0 ¢ ©.

The null-controllability problem reads as follows: Given any ug € L%*(Q), find a function f €
L%*(w x (0,T)) such that the solution of (8.1.1]) satisfies

u(z,T) =0, x €. (8.1.4)

The controllability issue was already discussed under the assumption p < p*(N) in the recent
work [19], in the special case where w contains an annulus centered in the singularity. The authors
of [19] need this assumption since their proof strongly uses a decomposition in spherical harmonics
which allows to reduce the problem to the study of 1-d singular equations. J. Le Rousseau mentioned
an argument in [I9] to relax this strong geometric assumption into these two conditions: w circles the
singularity, and the exterior part of w contains an annular set centered in the singularity. Even with
this improvement, a non-trivial geometric assumption on w is needed. Our purpose is to prove that
we can actually remove this assumption and consider any non-empty open subset w of €.

Theorem 8.1.1. Let u be a real number such that p < p*(N).

Given any non-empty open set w C €, for any T > 0 and ug € L*(), there exists a control
f € L?((0,T) x w) such that the solution of (8.1.1)) satisfies (8.1.4). Besides, there exists a constant
CT such that

11122 0.7y xw) < O lluoll L2y - (8.1.5)

Following the by now classical HUM method ([16]), the controllability property is equivalent to an
observability inequality for the adjoint system

"

8tw+Azw+Ww:0, (z,t) € Q x (0,7),
w(z,t) =0, (z,t) € 8Q x (0,T), (8.1.6)
w(:c,T) = wT(JU)a x € Q.
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More precisely, when p < p*(N), we need to prove that there exists a constant C' such that for all
wr € L?(£2), the solution of (8.1.6)) satisfies

/\wwO]zdx<C// (. )2 dx dt. (8.1.7)

wx(0,T)

In order to prove (8.1.7), we will use a particular Carleman estimate, which is by now a classical
technique in control theory, see for instance [2], 9] 10, 111, 12, 13, [I4]. ..Indeed, the Carleman estimate
we will derive later implies that for any solution w of (8.1.6)),

// mt\Qdth<C// lw(z,t))? dx dt, (8.1.8)

ax(L,3L wx (0,T)
which directly implies inequality (8.1.7]) since ¢ — ||w(t, .) ||%2 () Is increasing by the Hardy inequality
®13).

The Carleman estimate derived here is inspired by the works [5, [I7] on 1-d degenerate heat equa-
tions, the recent paper [19] which is inspired from the methods and results in [0, [I7] to obtain radial
estimates, and the article [13] on the controllability of the heat equation in any dimension. As in
[0, 17, 19, T3], the major difficulty is to choose a special weight function appearing in the Carleman
estimate. In [19], this has been done in the 1d case only, using spherical harmonics to recover results in
the multi-d case, but with an extra geometric condition on the support of the control region. We thus
adapt the results in [19] to derive directly Carleman estimates without using a spherical harmonics
decomposition, in order to avoid the use of the geometric condition needed in [19].

Let us briefly present the existing results concerning the observability properties of a parabolic
equation with a potential V:

Oz +Dgz+V2z=0, (x,t) € Q@ x(0,T),
z(xz,t) =0, (z,t) € 0Q x (0,7T), (8.1.9)
2(T) = zr € L3(Q).

It has been proved in [I3] using Carleman estimates that, for potentials V' € L>(2x (0,T')), such sys-
tems are observable in the sense of for any open set w C 2. Later, in [14], this result has been ex-
tended to the case V € L>((0,T); L*N/3(2)). To our knowledge, the case V € L®((0,T); LN/?T¢(Q))
with € > 0 is still open. Note that our work presents a case in which the potential V = u/|x|? is not in
LN/2 (), and therefore none of these results applies. In this context, it is worth mentioning the work

[15] which proves the strong unique continuation property for system (8.1.9)) for a general potential
Ve LIVD/2(Q % (0,T)).

The second part of this work is devoted to the case p > p*(N). In this case, the Cauchy problem
is severely ill-posed as proved in [I] and [4]. Indeed, if ug is positive and f = 0 in , there is
complete instantaneous blow-up, which makes impossible to define a reasonable solution. However, it
does not answer to the following stabilization problem:

Given ug € L?(f2), can we find a control f € L%((0,T); H 1(£2)) localized in w such that there
exists a solution u € L2((0,T); H}(2)) of ?

In other words, we ask whether it is possible or not to prevent from blow-up phenomena by
acting only on a subset. Before going further, note that if u € L2((0,T); HZ(9)) satisfies with
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f € L%((0,T); H (), then dyu € L?((0,T); H~(Q)), and therefore v € C([0,T]; L?(2)), and the
equality u(0) = wup in (8.1.1) makes sense.

Following the ideas of optimal control, for any ug € L?(Q), we consider the functional

Tt £) =5 [[ lutta)? axars /Hf Zs gy dt, (5.1.10)

Q>< 0,1

defined on the set
C(ug) = {(u, £) € L2((0,T); H () x L2((0,T): H~1(Q)) such that u
satisfies (8.1.1) with f as in } (8.1.11)

We say that we can stabilize system (8.1.1)) if we can find a constant C' such that

Vug € L3(9), inf  Jyu (u, f) < Clluol?2,0 - 8.1.12
uo (€) i o f) < Clluollz2(0 ( )

Of course, this property strongly depends on the set w where the stabilization is effective. Especially,

when 0 € w, (8.1.12) holds (see Section BI1).

When 0 ¢ @, the situation is more intricate. Therefore we focus our study on this particular case,
and give a severe obstruction, in this case, to the stabilization property (8.1.12]).

More precisely, for ¢ > 0, we approximate (8.1.1)) by the systems

atu—Aw“_W%U:f, (z,t) € Q% (0,T),
u(z,t) =0, (z,t) € 09 x (0,T), (8.1.13)
u(a:,O) = u0($)a x € Q.

For these approximate problems, the Cauchy problem is well-posed. Therefore we can consider the

functionals
// e, )2 dx dt + - /||f M1y dt, (8.1.14)

Q>< 0,7

where f € L?((0,T); H*(Q)) is localized in w in the sense of (8.1.2) and w is the corresponding
solution of (8.1.13]). We prove the following:

Theorem 8.1.2. Assume that > p*(N), and that 0 ¢ ©.

There is no constant C such that for all e > 0, and for all ug € L*(Q2),

inf i () < Clluolf2(q) 8.1.15
f e I(O.T): H- (@) o () < CluollZ2 o ( )
f asin

In particular, this result implies that the stabilization of (8.1.1)) is impossible to attain through
regularization processes when p > p*(N) and 0 ¢ @, and that we cannot prevent the system from
blowing up.

Let us briefly mention the related work [12], which presents a study of the control properties of
weakly blowing-up semi-linear heat equations, which deals with a similar question as the one asked
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here. In particular, in [12], examples of systems are given for which blow up may occur in finite time,
but this blow-up can be controlled in any time for any initial data.

The structure of the paper is the following. In Section we give the proof of Theorem [8.1.1
for p < p*(N), or, to be more precise, of inequality (8.1.7) for the solutions of the adjoint equation

(8.1.6). In Section we prove that when p > p*(N) we cannot uniformly stabilize system (8.1.1),
in the sense of Theorem In Section we add some comments.
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8.2 Null controllability in the case u < u*(N)

First of all, to simplify the presentation, we assume that 0 ¢ @, that can always be done, taking if
necessary a smaller set. We also assume that the unit ball B(0, 1) is included in © and B(0,1) N is
empty. This can always be done by a scaling argument.

8.2.1 Carleman estimate

As said in the introduction, the main tool we use to address the observability inequality (8.1.8) is a
Carleman estimate. However, since it is based on tedious computations, we postpone the proofs of
several technical lemmas in Subsection [8.2.3

The major problem when designing a Carleman estimate is the choice of a smooth weight function
o, which is in general assumed to be positive, and to blow up as ¢t goes to zero and as t goes to T
Hence we are looking for a weight function o that satisfies:

o(t,x) >0, (x,t)eQx(0,T),

lim o(t,z) = lim o(t,z) = +o0, € . (8.2.1)
t—0+ t—T—
More precisely, we propose the weight
1
ot ) = s(t) (P7Y = Sfaf? — M) (8.2.2)

where s and A are positive parameters aimed at being large,

0(t) = (t(Tl_t))S (8.2.3)

and v is a function satisfying

Y(x) =In(|z|), =€ B(0,1),
P(z) =0, x € 09, (8.2.4)
¥(z) >0, r € Q\B(0,1),
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and there exists an open set wgy such that wy C w and § > 0 such that

|Vi(x)| > 0, r € Q\wo. (8.2.5)
The existence of such function v is not straightforward but can be easily deduced from the construction
given in [13].

Indeed, there exists a smooth function which extends In(|z|) outside the ball, which vanishes on
the boundary, and with finitely many critical points, since this property is generically true. Then it
is sufficient to consider such a function, and to move its critical points into wg without modifying the
function in B(0,1). This can be done following the construction given in [13].

Note that the weight function o defined by (8.2.2) indeed satisfies (8.2.1)) and is smooth (at least
in C*((0,T) x Q)) when X is large enough.

To explain this choice for the weight function o, we point out that in the ball B(0, 1), since v is
negative, the weight function o behaves like

0()(C — gJeP)

when A is large. This corresponds precisely to the weight given in [I7] for dealing with singular 1-d
heat-type equation and in [19] when dealing with the observability around the singularity. On the
contrary, outside the unit ball, since v is positive, when A is large enough, the weight is very close to
the one used for the observability of the heat equation in [13].

To simplify notations, let us denote by ¢ the function
$(a) = M), (8.2.6)
by O the open set Q\(B(0,1) Uxg) and by O the open set Q\B(0,1).
We are now in position to state the Carleman estimate.

Theorem 8.2.1. There exist positive constants K and N\g such that for X > X\, there exists so(\)
such that for all s > sg, any w solution of (8.1.6]) satisfies

2
A2 // Oe=27|Vw|? dx dt + s // 6—2"’“’| dx dt

Ox(0,T) Qx(0,T)

3 // 032 |z|?|w|? dx dt + s>\ / 03¢ 27 |w|? dx dt

2x(0,7) Ox(0,T)

< K(S)\Z // Ope 27| vw|? dx dt + s3\* / 03pPe 27 |w|? dx dt). (8.2.7)

wox(0,T) wox(0,T)

Remark 8.2.2. Following the proof carefully, one can check that there exists a constant s1(¢)) > 0 such
that the choice

so(A) = s1 e3Asupy

is convenient in Theorem R.2.1]
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Remark 8.2.3. We stated the Carleman estimate (8.2.7) in the restrictive setting that we need, but
we can handle a source term. To be more precise, for any w € D([0,T] x Q), taking s and A large

enough, the following holds:

sA\2 // Ope 2 |Vw|? dx dt + s // 96720 dxdt-i-s // 06720

Ox(0,T) Qx(0,T) Qx(0,T)
3 // 03¢ |z} jw|? dx dt + s>\ // 03pPe 27 |w|? dx dt
Qx(0,T) Ox(0,T)
2
( // 29| 9pw + Agw + B w‘ dx dt + s)\? // Ope™ 27 |vw|? dx dt
Qx(0,7) wox(0,T)

x dt

+ 531 / 93¢ |w|? dx dt).

wo X (O,T)

Proof. We present the main ideas and steps of the proof of Theorem [8.2.1] using several technical

Lemmas, that are proved later in Subsection [8.2.3

Let us first remark that using the density the density of H} (Q) in L2(R2), if estimate (8.2.7) holds
for any solution w of (8.1.6)) with initial data wr € H} (Q) then also holds for any solution w
of (8.1.6) with initial data wz € L?(2). We thus prove only for solutions of (8.1.6)) with initial

data in HZ(9).

Now, let us assume that w is a solution of (8.1.6)) for some initial data wy € Hg (), and define

z(t,x) = exp(—o(t,z))w(t,z),

which obviously satisfies
2(T)=2(0)=0 in H}(Q)

due to the assumptions (8 on o.
Then, plugging w = zexp(o(t,x)) in the equation (8.1.6)), we obtain that z satisfies

7

Oz + DNpz+ —52+2Vz- Vo + 20,0 + z(@tff + ]VJ]2> =0, (x,t)eQx(0,T),

|22

with the boundary condition
z2=0, (x,t)€0Qx(0,T).

Let us define a smooth positive radial function a(z) = a(|z|) such that

1 1 3
= < — = — > —
a(e)=0, lrl<y  ale)=~ 27,
1 1 3
< < — - < < -.

Setting

Sz =Agz+ a Z+Z(8t0+|VJ| ) Az:8t2+2Vz-Va+zAma<1+a),

(8.2.8)

(8.2.9)

(8.2.10)

(8.2.11)

(8.2.12)

(8.2.13)
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one easily deduces from (8.2.10]) that
Sz+ Az = —azA,o0, [S2)|% + [|Az|> + 2 < Sz, Az >= |lazA,0]?,

where ||-|| denotes the L?(2 x (0,T)) norm and < -,- > the corresponding scalar product. Especially,
the quantity

1
I =<5z Az > ~5 lazALo|? (8.2.14)
is non positive.

Lemma 8.2.4. The following equality holds:

I=-2 // D?¢(Vz,Vz) dx dt + // 10,2 Opods dt

Qx(0,7) o0 x(0,T)
/ V22 A0 a dx dt 4 = / 12|?AZq <1 +a) dx dt
Qx(0,T) QX(0 T)
// |2°Va - VAo dx dt + = / |22 A0 Agar dx dt
Qx(0,T) Q><(0 T)
1
—3 // |z[2<5t2t0 + 23t(|V0|2>> dx dt — 2 / |z|2D20(VU VU) dx dt (8.2.15)
Qx(0,T) Qx(0,1)
// alz|PA, 0' 8,50—1- |VU| dX dt — = // o?|z]?|Apo|? dx dt
Qx(0,1) Q>< (0,T)
|’2 oo dx dt +2 |’2
[ ") e
Qx(0,T) Qx(0,T)

where O, =1 -V, 1l being the normal outward vector on the boundary, 0, = ﬁ -V and ds denotes the
trace of the Lebesgue measure on Of).

For the proof, see Subsection [8.2.3]

Now, we will decompose the term [ in (8.2.15)) into several terms that we handle separately.

Let us define I; as the sum of the integrals linear in ¢ which do not have any time derivative:

I =-2 // D?0(Vz,Vz) dx dt + // |0p2|* Opods dt

Qx(0,T) o0 x(0,T)

- // |V2|?Azo o dx dt + 3 // \z|2A§a(1 —i—a) dx dt

Qx(0,T) Qx(0,T)

1
+ // |2*Va - VAo dx dt + 3 // |2*Azo Aga dx dt

Qx(0,T) 2x(0,T)

// Ayo adx dt +2u // T—30r0 dx dt. (8.2.16)

Qx(0,7) Qx(0,7)
Then we have the following estimate:
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Lemma 8.2.5. There exist positive constants such that for \ large enough, we have:

2
I > 2s // ’Z| dx dt + sN // fa| vz dx dt

Qx(0,7) Qx(0,T)
+ O\ // 0¢|vz)? dx dt — Cas)? // 0¢|vz|* dx dt

Ox(0,T) wox (0,1

— C3s)\! // 0)z)? dx dt — Cys\? / 0¢|z|* dx dt. (8.2.17)
Qx(0,1) Ox(0,T)
Again, the proof is given in Subsection[8.2.3] Note that the proof of Lemma [8.2.5 uses an improved
form of the Hardy inequality , which can be found for instance in [18], namely:
Lemma 8.2.6. There exists a positive constant Cs > 0, such that

H*(N)/MZ dx + 2
|zl

_— dxg/ |V 2|2 dX—|—C5/ |z dx, z€ H}(Q). (8.2.18)
Q |zl Q Q

Of course, this inequality also holds for u < p* (V).

We then consider the integrals involving non-linear terms in ¢ and without any time derivative,
that is

= -2 // |z|> D% Vo* VJ dx dt + // alz]?Ago|vel? dx dt

Qx(0,7) Qx(0,7)
// o?|z*| Ao dx.  (8.2.19)

Q>< 0,T)
Then, with o as in (8.2.2)), we obtain (see Subsection [8.2.3)) that

Lemma 8.2.7. There exist positive constants such that for A large enough, for s > so(A),

Iy > Cgs® // 03z |%|2* dx dt + Crs3\* // 03¢3|2|% dx dt

Qx(0,1) Ox(0,T)

— Cgs® M // 03¢3|z|? dx dt. (8.2.20)

wo X (O,T)

We finally estimate the terms involving the time derivatives in o:

=—= // |2|? att0+28t<|V0'| dX dt + // a|z2Ayodi0 dx dt. (8.2.21)

Q><(0T Qx(0,7)

We also add to I; the integrals appearing in Lemma [8:2.5] that we want to get rid of and define

I = I; — C3s\? // 0)z)? dx dt — Cys\* // 0¢|z|* dx dt. (8.2.22)

Qx(0,T) Ox(0,T)

Then we have to prove that I, is negligible with respect to the positive terms in (8.2.17)) and (8.2.20)).
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Lemma 8.2.8. For any \ large enough, there exists so(\) such that for s > so(\),

2
L] < s // Z' dx dt+06 3 // 6l dx dt+ C1 sy // 036322 dx dt,  (8.2.23)

Qx(0,T) Qx(0,7) O>< 0,T)

where Cg and Cr7 are as in (8.2.20]).

Using (8.2.14) and Lemmas|8.2.5] [8.2.7] and |8.2.8] whose proofs are postponed to Subsection
we obtain a Carleman estimate in the z variable. Undoing the change of variable (8.2.8]) provides the

Carleman estimate (8.2.7)). O

8.2.2 From the Carleman estimate to the Observability inequality

In this Subsection, we explain why the Carleman estimate (8.2.7)) implies the observability inequality
(18.1.8)).

We fix A > N\g and s > so(A) such that (8.2.7) holds. These parameters now enter in the constant

K:
// e—% S ddi< K [ poc il axacs k[ oot P acan (s22)

Qx(0,7) wo % (0,T") wo % (0,T")

One easily checks the existence of a constant C' such that

1 T 3T
0 6720@ > C, (x,t) € Q x [Z, SZ]’
pe® < Ce?  (x,t)€wx(0,T),
e < C, (x,t) € wy x (0,T).

Thus, (8.2.24)) implies

// w[? dx dt < K // | vw]? dx dt + K // [ dx dt. (8.2.25)
QX (T/4,3T/4)

wox(0,T) wox(0,T)

Therefore to obtain inequality (8.1.8), it is sufficient to prove the following lemma:

Lemma 8.2.9 (Cacciopoli’s inequality). Let & : (0,T) x @ — R% be a smooth nonnegative function
such that
o(t,z) — +oo ast — 0% and ast — T~

There exists a constant C independent of u < p*(N) such that any solution w of (8.1.6)) satisfies

// e | vw|? dx dt < C // lw|? dx dt. (8.2.26)

wo % (0,T") wx(0,T)

The proof of this lemma is given for instance in [I9, Lemma III.3]. This obviously implies (8.1.8])

by taking ¢ = o in Lemma since o satisfies (8.2.1)). It follows that inequality (8.1.7) holds as
well and, by the classical HUM duality ([16]), this proves Theorem
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8.2.3 Proofs of technical Lemmas

Here we present the proofs of the technical Lemmas stated in Subsection [8.2.1] This part can be
skipped in a first lecture. In this subsection, all the constants are positive and independent of A or s.

Proof of Lemma|8.2.4). To make the computations easier, we define
H 2
S1z = Az, Soz = S3z = z(0s0 + |Vol|?),
! v 22T e 32 = 2(00 + [T (8.2.27)
A1z = Oz, Agz =2Vz- Vo, Azz = zAxo*(l + a),

and denotes by I;; the scalar product < Si, A; >. We will compute each term using integration by
parts and the boundary conditions and ( m

Computation of I1:

2
Iy = // Ayz 8z dx dt = / at(W;' ) dx dt = 0, (8.2.28)

Qx(0,T) Qx(0,T)

where the last identity is justified by (8.2.9).

Computation of I1o: Note that, since z vanishes on the boundary, its gradient Vz on the boundary
is normal to the boundary, and therefore Vz = 9,z 7, where 7i denotes the normal outward vector on
the boundary.

L, = 2/ Apz Vz- Vo dx dt

Qx(0,T)
= -9 // vz - v(Vz . Va) dx dt + 2 // |8nz\2 Onods dt,
Qx(0,T) 00x(0,T)

Besides, one can check that
1
Vz-V (Vz : VJ> =5V (|Vz|2> Vo + D?0(Vz,Vz).

It follows easily that

I = // |Vz|2A,0 dx dt — 2 // D?0(Vz,Vz) dx dt + // |0p2|? O,0ds dt. (8.2.29)

Qx(0,T) Qx(0,T) o0 x(0,T)

Computation of I13:
I3 = // Ayz zAxa(l + a) dx dt = — // vz - V(zAma<1 + a)) dx dt.
Qx(0,7) Qx(0,T)
Thus we obtain
I3 = — // ]vZ\Aal—i—a dxdt+ // |z|2PA%0 1+a>dxdt
Qx(0,T) QX(OT

// |2*Va - VAo dx dt + = / |2]2AL0 Aza dx dt. (8.2.30)

Qx(0,T) Q><(OT)
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Computation of Iz1: As in (8.2.28)), using (8.2.9)), one easily checks that

Is; = 0.

Computation of Iay:

Iy = // - Vo dx dt

Qx(0,7)
2
‘| ’|2Aadxdt—|—2u // 8adxdt
Qx(0,T) Qx(0,T)
Computation of Is3:
Iy = 1 2 A a<1+a) dx dt
’ 227 |
Qx(0,T)
Computation of I3;:
I3 = / 8,5 z| 8t0—|— |Vo| ) dx dt = — = // | 2|20, 8ta+ |Vo| ) dx dt.
Q><(OT Q><(0 T)

Computation of Iso:
I3p = // V<|z|2> . Va(ata + |VU|2) dx dt.
Qx(0,7)
It follows that

iy = — // 2P deo (010 + [vol?) dx dt

Qx(0,T)

// 12|?Vo - v 8t0 -2 // 2|2 D% VJ VJ) dx dt.

Qx(0,1) Qx(0,T)

Computation of Is3:

Iy = / ]z\QAxa<8tU + Way?) (1 + a) dx dt.
Qx(0,T)

Lemma follows directly from these computations.

Proof of Lemma[8.2-5. Since the integral I; is linear in o, we decompose o as
o = s0(t)e PV 4 oo (t,x) + og(t, x),
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with )
o2(t,x) = —s0(t )|g| og(t,x) = —s0(t)p(x).

Note that the term s exp(2Asup 1) in o does not appear in the computations of I;, since it is constant
in the space variable, and each integral in (8.2.16)) involves space derivatives.

We then define [; ;2 and [} 4 as the terms in I; corresponding respectively to 0,2 and 0.

First, we compute [; ;2. In this case, all the computations are explicit:

I 2 =2s // |vz|? dx dt — s / 00, 2|°7 - fids dt

Qx(0,T) 00 x(0,T)
+ sN // 00<|Vz|2dxdt—s— // 6|22 Ay dx dt
Qx(0,T) Qx(0,T)
— suN // 9a—dxdt725 // d dt.
Qx(0,T) Qx(0,T)

Thus, from the Hardy improved inequality (8.2.18)), since 6 only depends on the time variable ¢t and
since a vanishes on B(0,1/2) by (8.2.12)), there exists a constant such that

I 2 > 2s // |’dxdt—+—sN // fa| vz dx dt
x

Qx(0,T) Qx(0,T)
// 0|0p 2|22 - fids dt — C's // 0|z|* dx dt. (8.2.37)

o0 x(0,T) Qx(0,T)

Second, let us consider I; 4. To simplify, we decompose this integral into the integrals I; 41 in
B(0,1) and I 42 outside B(0,1).

In the unit ball, ¢(x) = \a:|)‘ and then, all the computations are explicit. Especially, ¢ is convex
(at least for A > 1, which can be assumed since \ is aimed at being large), and therefore D?¢(¢, &) is
a positive quadratic form in &, and A,¢ > 0. Besides, all the terms

A24, VAL, Ay, S22 00
2|27 |xf3

are bounded by CA*|z|*~* for A large enough (namely A > 4). Then

Lisn > —Cs\! // ()24 dx dt. (8.2.38)

Outside the unit ball, the computations are more intricate. First, let us compute the first derivative
of ¢:
Vo= AV, 070 = Apd; b + N¢ 0 D),

Ay = XA + >\2¢yv¢|2 (8.2.39)
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Besides, due to the particular choice of 1, and especially (8.2.5)), one can get the following estimates :

2D?$(£,€) + al,¢|¢? > CN%l¢f, ¢ERN, z €0,
2D%6(¢,€) + a /¢ < ONGEP,  £eRY, zew,
IAZ0] + | D] + VO] + [0:0] + VAP < CopAY, x €0,

for A large enough. Hence we deduce that

Lig2 > COs\? // 0¢|vz|? dx dt — s\ // 00|10, 2|? V) - fids dt

0x(0,T) o0 x(0,T)
— Cs)\! // 0|2 dx dt — s\? // 06|vz|? dx dt. (8.2.40)
Ox(0,T) wo x(0,1)

Taking A large enough, due to the properties and l-b the sum of boundary terms in
(8:2.37) and in (8.2.40) is positive. Indeed, from and (8:2.5), vy - it = —|vep| < —6, and thus

the choice A > diam(2)/d, where diam(2) is the diameter of Q, is convenient.

Hence, combining (8.2.37)), (8.2.38) and (8.2.40]) gives Lemma O

Proof of Lemma[8.2.7]. Again, we handle separately the integrals I,;;; in the unit ball and I,;3 outside
the unit ball. This is needed since the terms |z|? and ¢ of o (see (8.2.2)) do not have the same order
inside and outside the unit ball.

Notice that, in the unit ball,

Vo = —sfzx(1+ )\|x|/\_2),

(8.2.41)
Ao = —sO(N + AN + A — 2)|:U|A—2).

Hence we compute explicitly the terms appearing in the integrals for a radial vector & of RY which
is the case of Vo in the unit ball:

algol¢]® — 2D%0(€,€) = se((2 — alN)[E1* + 27z + Az PP (2 —a)d —4 — a(N + 2))).

Thus we can take A large enough such that

-2 // |z\2D2 Vo, VJ dx dt + // alz|?Ao|ve|? dx dt

B(0,1)x(0,T) B(0,1)x(0,T)

// 9|z\ 2|vo)? dx dt > s° // 03|2z)%)2)* dx dt. (8.2.42)

B(0,1)x B(0,1)x(0,T)

The last term in (8.2.19|) can be absorbed, since from (8.2.41)), we have
|A,0]” < Cs26%A1.
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Indeed, combined with the assumption (8.2.12]) on the support of «, the last integral in (8.2.19)) satisfies

// 02|22 Ayol? dx dt < Cs2A? // 622222 dx dt.

B(0,1)x(0,T) B(0,1)x(0,T)

Then taking s large, for instance s > CA*, we can absorb the third term in (8.2.19)), and we obtain
that

Iy > Cs® // 03222 dx dt. (8.2.43)

Outside the unit ball, due to the particular choice of 1, and especially (8.2.5)), and since ||«|| L) <
2, as in [13] we remark that, for s and A large enough,

algo|Vo|? —2D%*0(Vo,vo) > Cs3\6%¢3, z€O,
algo|Vo|? —2D%0(Vo,vo)| < CsPX6%¢3, z € wo,

and

|Azo? < Cs?A10%¢%, z €.
Then, taking s large yields

Tz > Cs3)\! // 03632 dx dt — Cs®A? / 03¢3|2|* dx dt. (8.2.44)
Ox(0,T) wox(0,T)
Hence the proof of Lemma [8.2.7] is completed. O

Proof of Lemma |8.2.8. First notice that

)99’ <ce®,  |ol<ced, o] < oo,

Then, since « vanishes in B(0, 1/2), bounding the integral in B(0, 1) and O using respectively (8.2.39)

and (8.2.41)),
‘ // alz]2Ayodi0 dx dt‘ < Os?\2e2Asuwpy // 03|2|?|2|* dx dt

Qx(0,T) B(0,1)x(0,T)
+ Cs?\2e2Asupy // 03¢|2|* dx dt.
Ox(0,T)
Similarly,
‘ // Bk at yw| dx dt‘ < Cs2\? // 93|:c| 12[2 dx dt
Qx(0,T)
+ Os?)\? // 03¢?|2|* dx dt. (8.2.45)

Ox(0,T)
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The remaining term
=5[] 1Ptk axai—cuont [[ o axai—cunt [[ ool ax a
Q>< 0,7) Qx(0,1) Ox(0,T)

satisfies for A large enough

‘R‘ < CsePAsup / 6%/3 |22 dx dt. (8.2.46)

Qx(0,7)

Let us then estimate this last integral. Take § a positive number that we will choose later on. Then

1
// 65/3) 22 dx dt — // CERATED (B92/3\x|_2/3|z|4/3> dx dt

Qx(0,T) Qx(0,T)
53 3 2 Z|2
// 63|z)?|z|? dx dt + 53/2 // Tl dx dt,

Q><OT Qx(0,7)

where we used the classical convexity inequality
1 2
ab < —a® + Zb¥/2.
— 3 3
Then we get three constants such that

1] < 1 (202 4 2NPA0PY e ) / 6312222 dx dt

Qx(0,T)
+ e (52)\262)‘“1”’[’ + 52)\2> // 03¢3|2|% dx dt + 03562>‘SUPwﬂ;/2 // ]z|2 dx dt. (8.2.47)
Ox(0,T) 2x(0,T)
Thus, for a given A > 0, choosing 3 such that
cge? Sy — 33/2
there exists so(A) such that for any s > so(A), inequality holds. O

8.3 Non uniform stabilization in the case p > p*(N)

The goal of this section is to prove Theorem The proof is divided into two main steps.

First, we prove some basic estimates on the spectrum of the operator

I

F=—beppre

(8.3.1)

on €2 with Dirichlet boundary conditions, especially on the first eigenvalue A\f and the corresponding
eigenfunction ¢j. This will be done in Subsection

Second, we deduce Theorem [8.1.2]in Subsection by giving a lower bound on the quantity Jes
that goes to infinity when ¢ —
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8.3.1 Spectral estimates

Since for € > 0, the function 1/(|z|? + &2) is smooth and bounded in €, the spectrum of L is formed
by a sequence of real eigenvalues \jg < A\] < --- < A7 < .-+, with A;, — 400. The corresponding
eigenvectors ¢;, are a basis of L?(2), orthonormal with respect to the L? scalar product. We choose
¢ of unit L?-norm.

In the sequel, we focus on the bottom of the spectrum -the most explosive mode.

Proposition 8.3.1. Assume that p > p*(N). Then we have that

lim \j = —oc. (8.3.2)
e—0
and for all a > 0,
L (1651 2 (2 (0,0)) = O- (8.3.3)

Proof. We argue by contradiction, and assume that Af is bounded from below for a subsequence by a
real number C. Then, from the Rayleigh formula we get

2
Ve > 0,YVu € HY(Q), / ’2‘ > dx</Wu!2 dx—c/yuP dx.
lz[*+e

Taking u € D(2), we pass to the limit ¢ — 0 and get

2
M/ Ju” dx§/ T2 dx—C/ fuf? dx, (8.3.4)
a || Q Q

that must therefore hold for any u € HE(Q) by a density argument.

Now, there exists ap > 0 such that B(0,cp) C Q. We then choose u € H}(B(0,a)) that we
extend by 0 on R, and define for a > 1
ua(r) = a® u(ar).

These functions are in Hg(B(0, ap)), and therefore in H{ (), and we can apply (8.3.4) to them:

|U’2 2 2
X — X X.
( dx— | |vu d <=C | Jul

Passing to the limit a — oo, we obtain that

Juf?

Vue HA(B(0,a0)), 1 dx < / IVuf? dx.
Q

o lz?

Therefore we should have that u < p*(N), since this is the Hardy inequality (8.1.3)) in the set B(0, o),
and then we have a contradiction.

Now, consider the first eigenvector ¢§ € Hg(Q) of L*:
I .
Az — m% = Ao¢p, in €L (8.3.5)
Remark that since the potential is smooth in €2, the function ¢ is smooth by classical elliptic estimates.
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Set @ > 0. Let 7, be a nonnegative smooth function that vanishes in B(0,«/2) and equals 1 in
RN\ B(0, @) with |14/, < 1. Multiplying (8.3.5) by 7a.¢§, we get:

2 1
/m!v%!z dx + |A§ I/ nalg5? —u/ T TR 4 22 "f‘l'r > dx+2/QAna|¢62 dx. (8.3.6)
Therefore, since ¢§ is of unit L2-norm, due to the particular choice of 7., we get
4p 1
6 [ 16 dx < k] Al
0 2\B(0.0) 0 o2 g l1Ballallree (@)

Since |A\j| — oo when € — 0, we get that for any o > 0,

lim |¢5]? dx = 0. (8.3.7)

=0 Jo\B(0,a)

Besides, still using (8.3.6) and the particular form of 7,

dp 1 2
VoE|? dx < (=5 4 = [|Azfiall ;o / #5|? dx.
/Q oy |70 (5 + 5 18l ey ) o 8

Therefore the proof of (8.3.3) is completed by using (8.3.7)) for /2 instead of «. O

8.3.2 Proof of Theorem [8.1.2]

Fix € > 0, and choose u§ = ¢, which is of unit L?-norm. Our goal is to prove that

inf Joe (f) — oc. (8.3.8)
fer* o, () 0 0
fasin

Let f € L2((0,T); H }(Q)) as in (8.1.2), and consider u the corresponding solution of (8.1.13)
with initial data ug = ¢f.

Set
a(t) = /Qu(t,x)gbg(a:) dx, b(t) =< f(t), o5 > H-1(Q)x HL(Q) -

Then a(t) satisfies the equation
a'(t) + A§a(t) = b(t), a(0) = 1.

Duhamel’s formula gives

a(t) = exp(—Agt) —i—/o exp(—A5(t — s)) b(s)ds.

/OT a(t)? dt

> % /OTexp(—Q)\gt) dt—/OT</0texp(—)\6(t—s))b(s)ds)2dt.(8.3.9)

Therefore

/ lu(t, 2)[? dx dt

Qx(0,T)

v
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Of course,

T
/Oexp(—Q)\Ot)d 4‘)\E‘<exp(2\)\ \T)—l)

T t t
/ ( / exp(—2)\8(t—s))ds / yb(s)Pds) dt
0 0
r 2
< /0 2|)\E exp(2|A§t) / |b(s) ds

exp(2]X5|T) /0 b(s) [2ds.

N =

The other term satisfies

/OT ( /Ot exp(—A§ (t — s))b(s)ds>2 dt

IN

<
— 4’ )\5 ‘2
Besides, from the definition of b and the assumption (8.1.2), we get that

() < 11FO 1710 16617 ()

Hence we deduce from ({8.3.9) that

1 2‘)\E|T 2 H(rZSOHHl(U_) 2|)\E|T T 2
4%(6 ; lu(t, )2 dx dt + e 1O

Qx(0,1)

L/ opeir 2
— <
8\)\ | ( 0 1) < lu(t, z)|* dx dt

Qx(0,7)

Therefore, either

or
2
1 28| T ) ‘|¢8”H1(w) 2|)\5T/T 2
— 1)< ——— 0 t - dt
o (¢ <= IOl d

and in any case, for any f as in , we get

21T 1 ‘)\s|

JE-(f) > inf , 0 1—e 2T 8,
° 16161 416517 ) ( )

This bound blows up when ¢ — 0 from the estimates (8.3.2)). Indeed, since 0 ¢ w, we can choose o > 0
small enough such that w C Q\B(0, «) and therefore

19301210 < 165111201 B0.07) — O -

8.4 Comments

In this article we proposed a study of a parabolic equation with an inverse-square potential —su/|x|?
from a control point of view, in the two cases p < p*(NN), which corresponds to a subcritical case, and
> p*(N), the surcritical case.

A. When p < p*(N), we have addressed the null-controllability problem for a distributed control
in an arbitrary open subset of . To this end, we have derived a new Carleman inequality (8.2.7))
inspired by the articles [19] and [13].
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1. Our arguments can be adapted in much more general settings than presented here. For instance,
one can handle several inverse-square singularities:

Hi
atU—AmU—Zmu:f, (fE,t)GQX(O,T),

u(z,t) =0, (z,t) € 9Q x (0,T),

(8.4.1)

where pu; < p*(N) for each ¢ and f is localized in some open subset w C 2 in the sense of (8.1.2). In
this case, the difficulty will again come from the choice of the weight. Let us assume that the points
x; satisfy the following properties

|l’i - :L‘j| > 3, 1 75 j, d(l’l,aQ) > 3.

Note that by a scaling argument, this can be assumed as soon as the set {z;}; does not have any
accumulation point in §2, which is equivalent to say that they are in finite numbers since €2 is bounded.
In this case, we propose a weight of the form

1
o(t,z) = s0 <e2’\5up¢ —5 Z |z — i *y(x — ;) — e’\w(fff))’

7

where A and s are positive parameters, 6 is as in (8.2.3)), ¢ satisfies

= In(|x — z;]), x € B(x;, 1),
¢($) = 07 T € 39,
> 0,

xe Q\( Ui Bz, 1)),
and (8.2.5), and v = ~y(|z|) is a smooth cut-off function such that
Vo) =1, o<1, @) =0, |a|>3/2

Using this weight and following the proof of Theorem one can prove a Carleman estimate for the
adjoint system of , which still directly implies . However it may occur that the system
is not dissipative (see [§] where a necessary and sufficient condition is given for a multipolar
potential to be positive on R™), and therefore we need to explain why inequality is still implied
by . Following for instance [0, Lemma 2.1], one can prove that

F(t) :/Q\w(t,:nﬂz dx

satisfies
F'(t) > —CF(t).

Thus a Gronwall inequality allows us to conclude (8.1.7)) from (8.1.8].

2. Note also the dispersive properties (that is Strichartz estimates) of the operators i9; + P and

0% + P, with
1
Perfenp
were studied in the whole space RV, N > 3, in [3]. In [3], it is proved that Strichartz estimates hold
for the Schrodinger and the wave equations provided p < p*(N). This result was generalized to the
critical case p = p*(IN) and to the multipolar case in [6]. To complete this picture, we mention [7], in
which a positive potential V' of order
log(|z[)?
|=[?
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was constructed in such a way that there exist quasi-modes for P = —A, + V localized around the
singularity. Note that in this case, the operator P is strongly elliptic since V is positive. To our
knowledge, the controllability properties for the wave or Schrodinger equations with an inverse-square
potential are widely open. Especially, it would be interesting to understand precisely the behavior of
the rays of Geometric Optics around the singularities.

B. When p > p*(N), we have shown that we cannot uniformly stabilize regularized approximations
of (8.1.1)) with a control supported in w when 0 ¢ @.

1. To complete this result, we comment the case 0 € w, for which the stabilization property (8.1.10))
holds. Given ug € L?(€), we claim that we can find u € L2((0,7); H}(Q)) and f € L2((0,T); H=1(Q))
as in (8.1.2)) such that u is the solution of (8.1.1]) and that Jy,(u, f) < C HUOH%Q(Q) (see (8.1.10)).

Indeed, denote by x a smooth function that equals 1 in a neighborhood of 0 and vanishing outside
w. Then consider the solution u of

8tu—Axu—(1—X)#u: , (x,t) € Q@ x (0,7T),
u(z,t) =0, (x,t) € 002 x (0,T),
u(z,0) = ug(x), x € Q.

which satisfies u € L2((0,T); Hi(2)), and ||UHL2(0,T;H3(Q)) < C'|Jugl| ;2 for some constant C. Then

taking f = uxu/|x|? € L*((0,T); H~()) provides an admissible stabilizer with the required property
R12).

The same argument can also be applied to derive the null-controllability property for (8.1.1)) when
0 € w. Indeed, the results in [I3] proves that there exists a control v € L?((0,T) x w) such that the
solution of

8tu—Amu—(1—X)xL’2u:U, (x,t) € Q x (0,7),

u(z,t) =0, (x,t) € 092 x (0,7,

u(z,0) = ug(z), z €.
satisfies u(T) = 0. Besides, the norms of v in L?((0,T) x w) and u in L*((0,T); Hi(Q)) are bounded
by the norm of ug in L?(2). Then, taking f = v + u x u/|z|? provides a control in L2((0,T); H=(Q))
for (8.1.1)) that drives the solution to 0 in time 7.

2. Since we proved that we cannot uniformly stabilize (8.1.13) when 0 ¢ @, there is no uniform
observability properties such as (8.1.7) for the corresponding adjoint regularized systems.
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