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Introduction

Definitions (I)

Let X (the state space) and U (the input space) be Banach spaces. Let X+
(respectively U+) be Banach spaces.

Definition

A well-posed control system with state space X and input space U is a family
Σ = (Σt)t>0 of continuous maps from X+ × Lp([0,∞); U+) to X+ such that,

setting z(t) = Σt

[
z0
u

]
we have (in an appropriate sense)

ż(t) = F (z(t), u(t)), z(0) = z0.

We refer to Mironchenko and Prieur [5] (2020), for a more precise (and slightly
different) definition.
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Introduction

Definitions (II)

Definition

The well-posed control system Σ is said input-to-state stable (ISS) if there exist
continuous functions α : [0,∞)× [0,∞)→ [0,∞) and γ : [0,∞)→ [0,∞) such
that:
1. For every r , s, t > 0 we have

α(0, s) = lim
t→∞

α(r , t) = γ(0) = 0,

α(·, t), α
(

r , 1
·

)
are strictly increasing on (0,∞).

2. For every t > 0, z0 ∈ X+ and u ∈ L∞([0,∞); U+) we have

‖z(t)‖X 6 α(‖z0‖X , t) + γ( sup
σ∈[0,t]

‖u(σ)‖U). (1)

Since Sontag [7] (1989), an overwhelming literature is devoted to this subject. For
PDEs, see Karafyllis and Krstic [3] (2019), Mironchenko and Prieur [5] (2020).
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Introduction

Some remarks

A linear system ż = Az + Bu, with B ∈ L(U,X ) is ISS iff A generates an
exponentially stable semigroup.
The property still holds if B is an admissible control operator for the
exponentially stable semigroup generated by A.
An abstract class of bilinear control systems has been considered in Hosfeld,
Jacob and Schwenninger [2] (2020).
Various PDE examples (mostly parabolic semilinear) have been tackled in the
literature.
Only a few results are available in the nonlinear hyperbolic or quasilinear case.
For nonlinear system a local concept of ISS is also available.
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Epidemic Model with Intermittent Vaccination

The governing equations


Ṡ(t) = u(t)− v(t)S(t)− ηS(t)

∫∞
0 β(a)i(t, x) dx (t > 0),

∂i
∂t (t, a) = − ∂i

∂a (t, a)− νI(a)i(t, a) (t > 0, a ∈ (0,+∞)),
i(t, 0) = ηS(t)

∫∞
0 β(x)i(t, x) dx (t > 0),

S(0) = S0,
i(0, a) = i0(a) (t > 0, a ∈ (0,+∞)),

S(t) denotes the total susceptible population at instant t.
i(t, a) stands for the number of infected individuals with age of infection a at
time t.
η > 0 is the rate at which an infectious individual infects the susceptible
individuals.
The nonnegative number β(a) designs the probability to be infectious
(capable of transmitting the disease) with an age of infection equal to a.
t 7→ v(t), the vaccination rate, is L∞ and positive.
u ∈ L1

loc[0,∞) is the input (disturbance), designing the flux of susceptible
population.
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Epidemic Model with Intermittent Vaccination

Existence and uniqueness of solutions

Theorem (San Martin, Takahashi, Tucsnak, 2021)

Assume that β is bounded and uniformly continuous from [0,+∞) to [0,+∞).
Moreover, assume that νI ∈ L∞[0,∞), that

νI(a) > 0 (a ∈ [0,∞) a.e.).

Then for every u ∈ L1
loc[0,∞), v ∈ L∞([0,∞);R+), S0 > 0, i0 ∈ L1[0,∞), with

i0(a) > 0, and S0 +
∫∞
0 i0(a) da 6 1 there exists a unique solution with

S ∈W 1,∞(0,∞), i ∈ C
(
[0,∞), L1[0,∞)

)
.

Some remarks:
Similar existence and uniqueness results are given in Perthame and Tumuluri
[6] (2008) and Magal and Ruan [4].
The positivity constraints are essential in establishing this result.
Our methodology seems adaptable to more complicated epidemic models.
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Epidemic Model with Intermittent Vaccination

Sketch of the proof(I)

Step 1. Let τ > 0 and Cτ = S0 + ‖i0‖L1[0,∞) + ‖u‖L1[0,τ ]. We set

Kτ =
{
ϕ ∈ C([0, τ ]; L1[0,∞))

∣∣ ϕ > 0,
∫ ∞
0

ϕ(t, a) da 6 Cτ
}
.

For ϕ ∈ Kτ we solve

Ṡϕ(t) = u(t)− v(t)Sϕ(t)− ηSϕ(t)
∫ ∞
0

β(a)ϕ(t, x) dx , Sϕ(0) = S0,


∂iϕ
∂t (t, a) = −∂iϕ

∂a (t, a)− νI(a)iϕ(t, a) (t > 0, a ∈ (0,+∞)),
iϕ(t, 0) = ηSϕ(t)

∫∞
0 β(x)ϕ(t, x) dx (t > 0),

iϕ(0, a) = i0(a) (t > 0, a ∈ (0,∞)),
(2)

and we define Nτϕ = iϕ.
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Epidemic Model with Intermittent Vaccination

Sketch of the proof(II)

Step 2. We check easily that Nτ maps Kτ into Kτ and that, for every k ∈ N and
every ϕ1, ϕ2 ∈ Kτ we have

‖Nk
τϕ1(t, ·)−Nk

τϕ2(t, ·)‖L1[0,∞) 6 c2τ
tk

k!‖ϕ1−ϕ2‖C([0,τ ];L1[0,∞))). (t ∈ [0, τ ]).

Nk
τ is thus, for k large enough, a strict contraction of Kτ , which implies our

existence and uniqueness result.
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Epidemic Model with Intermittent Vaccination

ISS of the epidemic system

Proposition

Assume that v is periodic of period τ with
∫ τ
0 v(t) dt > 0. Moreover, suppose

that νI(a) > ν0 > 0 a.e. on [0,∞). Then the considered system is ISS.

Proof.
It suffices to remark that

d
dt

(
S(t) +

∫ ∞
0

i(t, x) dx
)

6 u(t)−min{v(t), ν0}
(

S(t) +
∫ ∞
0

i(t, x) dx
)
,

to obtain that the ISS property holds with

α(r , t) = Mre−ωt , β(s) = γs.
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Fluids and fluid-structure interactions

The viscous Burgers equations with pointwise
control

 v̇(t, y)− vyy (t, y) + v(t, y)vy (t, y) = u(t)δξ t ∈ (0,∞), y ∈ (−1, 1),
v(t,−1) = v(t, 1) = 0 t ∈ (0,∞),
v(0, y) = v0(y) y ∈ (−1, 1).

(3)

Proposition
The system (3) is ISS with X = L2(−1, 1), U = C and

α(r , t) = Mre−ωt , β(s) = γs.
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Fluids and fluid-structure interactions

A simplified fluid-structure system



v̇(t, y)− vyy (t, y) + v(t, y)vy (t, y) = 0 t ∈ (0,∞), y ∈ (−1, 1), y 6= h(t),
v(t,−1) = v(t, 1) = 0 t ∈ (0,∞),
ḣ(t) = v(t, h(t)) t ∈ (0,∞),
ḧ(t) = [vy ](t, h(t)) + u(t) t ∈ (0,∞),
v(0, y) = v0(y) y ∈ (−1, 1),
h(0) = h0, ḣ(0) = g0.

(4)

Conjecture
The system (4) is ISS with X = L2(−1, 1)× C, U = C and

α(r , t) = Mre−ωt , β(s) = γs.
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Fluids and fluid-structure interactions

A list of potential ISS systems of interest

Navier-Stokes in bounded domains with boundary control (what about
velocities normal at the boundary?).
Fluid-structure interactions in several space dimensions.
Bilinear control.
More elaborate epidemiological models (with age of infection and age
structure).
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Fluids and fluid-structure interactions

The SIDHARTE system (I) (Giordano et al. [1] (2020))

Ṡ = −S(αI + βD + γA + δR), (5a)
İ = S(αI + βD + γA + δR)− (ε+ ζ + λ)I, (5b)

Ḋ = εI − (η + ρ)D, (5c)
Ȧ = ζI − (θ + µ+ κ)A, (5d)
Ṙ = ηD + θA− (ν + ξ)R, (5e)
Ṫ = µA + νR − (σ(T ) + τ(T ))T , (5f)
Ḣ = λI + ρD + κA + ξR + σ(T )T , (5g)
Ė = τ(T )T . (5h)

S - Susceptible, I - Infected (asymptomatic, undetected), D - Diagnosed
(asymptomatic, detected), A - Ailing (symptomatic, undetected), R -
Recognized (symptomatic, detected), T - Threatened (symptomatic with
life-threatening symptoms, detected), H - Healed (immune after prior infection,
detected or undetected), E - Extinct (dead, detected).
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Fluids and fluid-structure interactions

The SIDHARTE system (II): Various inputs
(disturbances)

α, β, γ describe the infection rates for susceptible individuals, i.e., the rate at
which susceptible individuals are infected by the states I, D or R, and A,
respectively, and hence join the state I.
ε, θ describe the testing rate, i.e., at which rate (asymptomatic or
symptomatic) infected individuals go from undetected to detected.
ζ describes the rate of asymptomatic (detected or undetected) infected
individuals exhibiting symptoms, i.e., going from states I or D to A or R,
respectively.
µ is the rate at which infected individuals in A or R develop life-threatening
symptoms, i.e., join the state T .
λ, κ, σ(T ) are recovery rates for individuals affected by COVID-19. The
recovery rate for threatened individuals σ(T ) depends on T .
τ(T ) is the mortality rate, i.e., the rate at which individuals with
life-threatening symptoms decease, and it depends on T .
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