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Plan

0 Introduction



Definitions (I)

Let X (the state space) and U (the input space) be Banach spaces. Let X
(respectively U,) be Banach spaces.

Definition

A well-posed control system with state space X and input space U is a family
Y = (X¢)ex0 of continuous maps from X; x LP([0,00); Uy) to X, such that,

setting z(t) = X, ﬁl) we have (in an appropriate sense)

z(t) = F(z(t), u(t)),  2(0) = z.

We refer to Mironchenko and Prieur [5] (2020), for a more precise (and slightly
different) definition.



Definitions (II)

Definition

The well-posed control system ¥ is said input-to-state stable (ISS) if there exist
continuous functions « : [0, 00) x [0,00) — [0,00) and v : [0, 00) — [0, 00) such
that:

1. Forevery r, s, t > 0 we have

«a(0,s) = lim «o(r,t) =~(0) =0,

t—oo

1
alt), a (r, > are strictly increasing on (0, 00).
2. Forevery t 20, zp € X; and u € L*(]0, 00); U;.) we have

12(t)llx < alllzllx; t) +( sup l[u(@)lv)- (1)

og|0,

v

Since Sontag [7] (1989), an overwhelming literature is devoted to this subject. For
PDEs, see Karafyllis and Krstic [3] (2019), Mironchenko and Prieur [5] (2020).
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Introduction

Some remarks

@ A linear system z = Az + Bu, with B € L(U, X) is ISS iff A generates an
exponentially stable semigroup.

@ The property still holds if B is an admissible control operator for the
exponentially stable semigroup generated by A.

@ An abstract class of bilinear control systems has been considered in Hosfeld,
Jacob and Schwenninger [2] (2020).

@ Various PDE examples (mostly parabolic semilinear) have been tackled in the
literature.

@ Only a few results are available in the nonlinear hyperbolic or quasilinear case.
@ For nonlinear system a local concept of ISS is also available.



Epidemic Model with Intermittent Vaccination

e An age structured Kermack—Mckendrick epidemic model with intermittent vaccination



Epidemic Model with Intermittent Vaccination

The governing equations

S(t) = u(t) —'v(t)S (1) J5° B(a)i(t, x) dx (t>0),

Si(t.a) = = 5Lt a) u,(a) (t,a) (t>0, ae(0,+00)),
i(t,0)=nS fo i(t,x)dx (t>0),

5(0) = So,

i(0,a) = ip(a) (t=0, ae(0,+00)),

@ 5(t) denotes the total susceptible population at instant t.

@ i(t,a) stands for the number of infected individuals with age of infection a at
time t.

@ 7 > 0 is the rate at which an infectious individual infects the susceptible
individuals.

@ The nonnegative number ((a) designs the probability to be infectious
(capable of transmitting the disease) with an age of infection equal to a.

e t — v(t), the vaccination rate, is L° and positive.

e ue€ L} _[0,00) is the input (disturbance), designing the flux of susceptible
population.



Epidemic Model with Intermittent Vaccination

Existence and uniqueness of solutions

Theorem (San Martin, Takahashi, Tucsnak, 2021)

Assume that 3 is bounded and uniformly continuous from [0, +00) to [0, +00).
Moreover, assume that vy € L*°[0, 00), that

vi(a) =0 (a € [0,00) a.e.).

Then for every u € L. [0,00), v € L>([0,00); R.), So >0, ig € L]0, 00), with
io(a) >0, and So + [, io(a)da < 1 there exists a unique solution with

S € Wh>(0, 00), i € C([0,00), L'[0,00)).

Some remarks:

@ Similar existence and uniqueness results are given in Perthame and Tumuluri
[6] (2008) and Magal and Ruan [4].

@ The positivity constraints are essential in establishing this result.
@ Our methodology seems adaptable to more complicated epidemic models.
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Epidemic Model with Intermittent Vaccination

Sketch of the proof(l)

Step 1. Let 7 > 0 and C; = Sp + [liol|1j0,00) + I[tl 1[0, 7). We set

ko ={pecomrpe) | px0 [ pradasc).

For ¢ € K, we solve

So(t) = u(t) — v(t)S,(t) — nS,(t) /Ooo B(a)p(t, x)dx, 5,(0) = So,

ip(£,0) =nS,(t) [~ B(x)p(t, x) dx (t>0), (2)
ix(0,a) = ip(a) (t =20, ae(0,00)),
and we define N = i.

{%’f(ra) 3'¢(ra> /( 2ip(t.a)  (t>0, a€(0,+)),
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Sketch of the proof(ll)

Step 2. We check easily that N, maps K. into K. and that, for every k € N and
every 1, 2 € K, we have

tk
N1 (t,-)=NE@a(t, )l 12j0,00) < Cfﬁ||<P1—<P2HC([o,r];LI[o,oo)))~ (t €[0,7]).

NX is thus, for k large enough, a strict contraction of K, which implies our
existence and uniqueness result.



ISS of the epidemic system

Proposition

Assume that v is periodic of period T with fOT v(t)dt > 0. Moreover, suppose
that vi(a) > vy > 0 a.e. on [0,00). Then the considered system is ISS.

Proof.

It suffices to remark that

% <5(r)+/ooo i(t,x) dx) < u(t) — min{v(t), o} <S(t) +/OOO i(t,X)dX) ;

to obtain that the ISS property holds with

a(r,t) = Mre™t, B(s) = vs.




Fluids and fluid-structure interactions

e Fluids and fluid-structure interactions



Fluids and fluid-structure interactions

The viscous Burgers equations with pointwise
control

{ V(t,y) — vy (t,y) + v(t,y)v (t,y) = u(t)d t€(0,00), y € (~1,1),
v(t,-1)=v(t,1)=0 t € (0,00),
v(0,y) = vo(y) y e (-1,1).

(3)

Proposition

The system (3) is ISS with X = [?*(—1,1), U = C and

a(r,t) = Mre™t, B(s) = s.
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Fluids and fluid-structure interactions

A simplified fluid-structure system

V(t7Y) - Vyy(t»}/) + V(t,y)Vy(t,y) = 0 te (0700)7 y € (_17 1)3 .y 76 h(t)
v(t,-1)=v(t,1)=0 t € (0, 00),

h(t) = v(t, h(t)) t € (0, 00),

h(t) = [v](t, h(t)) + u(t) t € (0,00),

v(0,y) = wo(y) y €(-1,1),

h(0) = ho,  h(0) = go

(4)
Conjecture

The system (4) is ISS with X = [*(—1,1) x C, U = C and

a(r, t) = Mre™*t, B(s) = vs.




A list of potential ISS systems of interest

o Navier-Stokes in bounded domains with boundary control (what about
velocities normal at the boundary?).

@ Fluid-structure interactions in several space dimensions.
@ Bilinear control.

@ More elaborate epidemiological models (with age of infection and age
structure).



The SIDHARTE system (1) (Giordano et al. [1] (2020))

S =—S(al + 8D+ A+ 6R), (5a)
I=S(al+BD+~yA+6R) — (e +C + M), (5b)
D=¢el—(n+p)D, (5¢)
A=Cl—(0+p+r)A, (5d)
R=nD+0A—(v+&)R, (5e)
T=pA+vR—(o(T)+r(T))T, (5)
H=M+pD+ rA+E¢R+o(T)T, (58)
E=7(T)T. (5h)

S - Susceptible, | - Infected (asymptomatic, undetected), D - Diagnosed
(asymptomatic, detected), A - Ailing (symptomatic, undetected), R -
Recognized (symptomatic, detected), T - Threatened (symptomatic with
life-threatening symptoms, detected), H - Healed (immune after prior infection,
detected or undetected), E - Extinct (dead, detected).
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Fluids and fluid-structure interactions

The SIDHARTE system (Il): Various inputs
(disturbances)

@ «, 3,7 describe the infection rates for susceptible individuals, i.e., the rate at
which susceptible individuals are infected by the states I, D or R, and A,
respectively, and hence join the state /.

@ ¢,0 describe the testing rate, i.e., at which rate (asymptomatic or
symptomatic) infected individuals go from undetected to detected.

@ ( describes the rate of asymptomatic (detected or undetected) infected
individuals exhibiting symptoms, i.e., going from states / or D to A or R,
respectively.

@ 1 is the rate at which infected individuals in A or R develop life-threatening
symptoms, i.e., join the state T.

@ A\ k,0(T) are recovery rates for individuals affected by COVID-19. The
recovery rate for threatened individuals o(T) depends on T.

o 7(T) is the mortality rate, i.e., the rate at which individuals with
life-threatening symptoms decease, and it depends on T.



Fluids and fluid-structure interactions

[

[

G. GIORDANO, F. BLANCHINI, R. BRUNO, P. COLANERI,

A. D1 Fiuippo, A. D1 MATTEO, AND M. COLANERI, Modelling the
COVID-19 epidemic and implementation of population-wide interventions in
Italy, Nature Medicine, (2020), pp. 1-6.

R. HosreELD, B. JACOB, AND F. SCHWENNINGER, Input-to-state stability
of unbounded bilinear control systems, arXiv preprint arXiv:1811.08470,
(2018).

I. KARAFYLLIS AND M. KRSTIC, Input-to-state stability for PDEs,
Springer, 2019.

P. MAGAL AND S. RUAN, Theory and applications of abstract semilinear
Cauchy problems, Springer, 2018.

A. MIRONCHENKO AND C. PRIEUR, Input-to-state stability of
infinite-dimensional systems: recent results and open questions, SIAM
Review, 62 (2020), pp. 529-614.

B. PERTHAME AND S. K. TUMULURI, Nonlinear renewal equations, in
Selected topics in cancer modeling, Springer, 2008, pp. 1-32.




Fluids and fluid-structure interactions

[3 E. D. SONTAG, Smooth stabilization implies coprime factorization, IEEE
Transactions on Automatic Control, 34 (1989), pp. 435—443.




	Introduction
	An age structured Kermack–Mckendrick epidemic model with intermittent vaccination
	Fluids and fluid-structure interactions

