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Introduction : Brenier and Strassen Theorems
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Optimal Transport - classical definition

Let ω : E × E → R+ be a measurable function on a Polish space (E , d).

Definition

The optimal transport cost between two probability measures µ and ν is given
by

Tω(ν, µ) = inf
π∈Π(µ,ν)

∫∫
E×E

ω(x , y)dπ(x , y),

where Π(µ, ν) denotes the set of probability measures π on E × E having µ
and ν as marginals (called ’transport plans between µ and ν’).

Equivalently
Tω(ν, µ) = inf

X∼µ,Y∼ν
E[ω(X ,Y )]

Classical Examples : Kantorovich distances of order p ≥ 1

W p
p (ν, µ) = inf

X∼µ,Y∼ν
E[dp(X ,Y )].
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Optimal transport plans

A transport plan π◦ is said optimal if

Tω(ν, µ) =

∫∫
ω(x , y) dπ◦(x , y).

Theorem

If ω is lower-semicontinuous then there always exists at least one optimal
transport plans.

Questions :

• How to characterize optimal transport plans ?

• Are they given by a transport map T : π◦ = Law(X ,T (X )), X ∼ µ ?
• Is T regular ? Main motivation of this talk : global Lispchitz continuity.

• . . .
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Brenier Theorem

Let | · | denote the standard Euclidean norm on E = Rn.
The following result characterizes optimal transport plans for the cost function
ω(x , y) = |y − x |2, x , y ∈ Rn.

Theorem (Brenier (1991))

If µ is absolutely continuous with respect to Lebesgue and if∫
|x |2dµ(x) < +∞ and

∫
|y |2dν(y) < +∞, then there exists a unique optimal

transport plan π◦, such that

W 2
2 (ν, µ) =

∫∫
|y − x |2 dπ◦(x , y).

Moreover π◦ is deterministic : there is some map T : Rn → Rn such that
π◦ = Law(X ,T (X )) and so

W 2
2 (ν, µ) =

∫
|T (x)− x |2 dµ(x).

Moreover there exists a convex function φ : Rn → R ∪ {+∞} such that

T (x) = ∇φ(x), for Lebesgue almost every x ∈ Rn.
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Remarks on Brenier Theorem

• Many generalizations : on manifolds, for other cost functions, for more
than two marginals . . .

• A necessary and sufficient condition for µ on Rn to be transported on any
measure ν with finite second moment by the gradient of a convex map
has been obtained by Gigli (2011).
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Strassen Theorem

Notation : P1(Rn) the set of probability measures with a finite first moment.

Definition

Let µ, ν ∈ P1(Rn) ; µ is dominated by ν in the convex order, denoted by
µ ≤c ν, if ∫

f dµ ≤
∫

f dν, for all convex function f : Rn → R.

Theorem (Strassen (1965))

Let µ, ν ∈ P1(Rn) ; the following propositions are equivalent

(1) µ ≤c ν,

(2) there exists a martingale (X0,X1) such that X0 ∼ µ and X1 ∼ ν.
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Remarks on Strassen Theorem

• Kellerer Theorem (1972) : generalization to a continuous family of
marginals.
 so called PCOC (Hirsch, Profeta, Roynette and Yor (2011))

• Optimal Transport with martingale constraints (Beiglboeck-Juillet,
Henry-Labordère-Touzi, de March, Tan, Ghoussoub-Kim-Lim . . . )
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Remark about the assumptions of Brenier and Strassen
Theorems

• If
∫
x dµ(x) 6=

∫
y dν(y), then there is no martingale (X0,X1) such that

X0 ∼ µ and X1 ∼ ν. . .
• If µ has an atom and ν is diffuse then there is no map transporting µ on
ν. . .
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Brenier then Strassen

Elementary remark : it is always possible to compose a deterministic transport
and a martingale transport to couple two arbitrary probability measures µ and
ν.

Indeed if (X ,Y ) is an arbitrary coupling then letting X̄ = E[Y |X ], the coupling
(X , X̄ ) is deterministic and (X̄ ,Y ) is a martingale.

Definition

A coupling (X ,Y ) between µ, ν ∈ P1(Rn) is of the Brenier-Strassen type if

E[Y |X ] = ∇φ(X ) a.s

with φ : Rn → R a convex function of class C1.

Remark : the independent coupling is of the Brenier-Strassen type.

Goal of the talk : Identify in the class of Brenier-Strassen couplings a sub-class
which is optimal for some generalized transport problem.
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I - Generalized Transport and a mixture of Brenier
and Strassen theorems
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Generalized Transport

G.-Roberto-Samson-Tetali (2017)

Let π ∈ Π(µ, ν) be a transport plan between µ and ν written in disintegrated
form

dπ(x , y) = dµ(x)dpx(y),

with x 7→ px a transition kernel (µ a.s unique).

If ω : E × E → R+ is a cost function then∫∫
ω(x , y) dπ(x , y) =

∫ (∫
ω(x , y) dpx(y)

)
dµ(x).

In other words, transports of mass coming from x are penalized through their
mean cost :

∫
ω(x , y) dpx(y).

Idea of generalized transport : introduce more general penalizations.
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Generalized Transport

Let P(E) denote the set of all probability measures on E .

Definition

Let c : E × P(E)→ R+ ∪ {+∞} ; the generalized transport cost Tc(ν|µ) is
defined by

Tc(ν|µ) = inf
p∈P(µ,ν)

∫
c(x , px) dµ(x),

where P(µ, ν) is the set of all probability kernels p such that µp = ν.

Classical transport :

c(x , p) =

∫
ω(x , y) dp(y).

In all useful examples, the function c is convex in p.

Nathaël Gozlan Weak optimal transport



Remarks

• First examples of these kind of transport costs appeared in K. Marton’s
papers on concentration of measure.

• Many applications of generalized transport in terms of dimension free
concentration of measure.

• Generalized transport encompasses many variants of the transport
problem : optimal transport with martingale constraints, entropic optimal
transport, causal optimal transport, . . .
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Quadratic barycentric transport

We will denote

T 2(ν|µ) = inf
p∈P(µ,ν)

∫ ∣∣∣∣x − ∫ y dpx(y)

∣∣∣∣2 dµ(x)

= inf
X∼µ,Y∼ν

E[|X − E[Y |X ]|2],

the generalized transport cost associated to the cost function

c(x , p) =

∣∣∣∣x − ∫ y dp(y)

∣∣∣∣2 .
By Jensen,

T 2(ν|µ) ≤W 2
2 (ν, µ).
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A mixture of Brenier and Strassen Theorems

G.-Juillet (2018) / Alfonsi-Corbetta-Jourdain (2017)
Dimension 1 : G.-Roberto-Samson-Shu-Tetali (2015)

Let P2(Rn) denote the set of probability measures with a finite second moment.

Theorem 1

Let µ, ν ∈ P2(Rn) ; define Bν = {η ∈ P1(Rn) : η ≤c ν}.
There exists a unique probability measure µ̄ ∈ Bν such that

W2(µ̄, µ) = inf
η∈Bν

W2(η, µ).

Moreover
T 2(ν|µ) = W 2

2 (µ̄, µ).
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A mixture of Brenier and Strassen Theorems

G.-Juillet (2018) / Backhoff-Veraguas - Beiglboeck - Pammer (2018)

Theorem 2

Let µ, ν ∈ P2(Rn) ;

(1) There exists a convex function φ : Rn → R of class C1 such that

µ̄ = ∇φ#µ.

Moreover ∇φ is 1-Lipschitz.

(2) A coupling (X ,Y ) between µ and ν is optimal for T 2(ν|µ) if and only if
E[Y |X ] = ∇φ(X ) a.s.
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Remarks

Optimal transport between µ and its projection µ̄ is thus more regular than in
the generic case : it is automatically given by a Lipschitz continuous transport
map without any particular assumption on µ.
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Examples

Theorem

If µ ∈ P2(Rn) and ν =
∑k

i=0 piδyi with pi ≥ 0 and y0, . . . , yk affinely
independent points of Rn, then there exists some c ∈ Rn such that

µ̄ = T#µ, with T (x) = Proj∆(x + c),

where ∆ is the convex hull of {y0, . . . , yk} and Proj∆ denotes the orthogonal
projection on ∆.

Other example : In dimension 1, Alfonsi-Corbetta-Jourdain (2017) obtained a
semi-explicit formula for the transport map T sending µ on µ̄.
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II - Link with the Caffarelli contraction theorem
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Caffarelli contraction theorem

Theorem (Caffarelli (2000))

If µ = γ is the standard Gaussian measure on Rn and dν(y) = e−V (y) dy is a
probability measure associated to a C2 smooth function V on Rn such that
HessV ≥ Id, then there exists a convex function φ : Rn → R of class C1 such
that ν = ∇φ#γ and such that ∇φ is 1-Lipschitz.

In other words, the Brenier map from γ to ν is a contraction.

It will be convenient to write dν(y) = e−W (y) dγ(y), with W a convex function.

Original proof based on the Monge-Ampère equation satisfied by φ.

Generalizations by Kolesnikov (’10), Kim-Milman (’12),
Colombo-Figalli-Jhaveri (’17).
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Applications of Caffarelli contraction theorem

Numerous consequences in the field of functional inequalities.

Example : the standard Gaussian measure γ satisfies the log-Sobolev inequality
(Gross (1975)) :

(LSI) Entγ(f 2) ≤ 2
∫
|∇f |2 dγ, ∀f : Rn → R C1

If dν(y) = e−V (y) dy with HessV ≥ Id, then according to Caffarelli Theorem
ν = ∇φ#γ with ∇φ 1-Lispchitz.

Therefore, applying (LSI) to f = g ◦ ∇φ yields to

Entν(g2) ≤ 2
∫
|Hessφ(x) · ∇g(∇φ(x))|2 dγ(x), ∀f : Rn → R C1

≤ 2
∫
|∇g(y)|2 dν(y).

So ν satisfies (LSI) : one recovers the Bakry-Emery criterion (with the good
constant)
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Link with Caffarelli contraction theorem

The following result is a consequence of our main results :

Corollary 1

Let µ, ν ∈ P2(Rn) ; the following propositions are equivalent

(1) There exists φ : Rn → R convex and C1 such that ν = ∇φ#µ with ∇φ
1-Lipschitz ;

(2) µ̄ = ν ;

(3) W 2
2 (ν, µ) = T 2(ν|µ).

Corollary 2

If γ is the standard gaussian measure on Rn and dν(y) = e−V (y) dy , with
HessV ≥ Id, then

γ̄ = ν.
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A new proof of Caffarelli contraction theorem

Joint work with M. Fathi et M. Prod’Homme.

Let dν(y) = e−W (y) dγ(y), with W convex.

Goal : Recover Caffarelli’s theorem by showing that γ̄ = ν, i.e

η ≤c ν ⇒W2(η, γ) ≥W2(ν, γ).

Idea : Go to the entropic level.

Relative entropy of ν1 with respect to ν2 :

H(ν1|ν2) =

∫
log

dν1

dν2
dν1 if ν1 � ν2

(and H(ν1|ν2) = +∞ otherwise)
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Heuristic calculation

Let us replace W2( · , γ) with H( · |γ). Then,

H(η|γ) =

∫
log

dη

dγ
dη

=

∫
log

dη

dν
dη +

∫
log

dν

dγ
dη

= H(η|ν)−
∫

W dη

≥ H(η|ν)−
∫

W dν since η ≤c ν

= H(η|ν) + H(ν|γ)

≥ H(ν|γ) since H(η|ν) ≥ 0
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A new proof of Caffarelli contraction theorem

Let Rε = Law(Z0,Zε) where (Zt)t≥0 is a standard Ornstein-Uhlenbeck process
at equilibrium.

Define the entropic regularization of the optimal transport cost :

T ε(µ, ν) = inf
π∈Π(µ,ν)

H(π|Rε).

Also related to Schrödinger bridges - see Leonard’s survey (’13).

Theorem (Fathi - G. - Prod’Homme, 2019)

If dν(y) = e−W (y) dγ(y), with W convex, then for all η ≤c ν regular enough

T ε(γ, η) ≥ T ε(γ, ν).

Since εT ε(µ, ν)→ 1
2W

2
2 (µ, ν) (Mikami ’04), one gets the desired property :

η ≤c ν ⇒W2(η, γ) ≥W2(ν, γ).
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Idea of the proof 1/3
Heuristic justification of εT ε(µ, ν)→ 1

2W
2
2 (µ, ν).

The law Rε is explicitly given by

Rε = Law
(
X ,Xe−ε/2 +

√
1− e−εY

)
,

with X ,Y two independent standard Gaussian random vectors on Rd .
In other words,

Rε(dxdy) =
1
Zε

exp

(
−|x |

2

2
− |y − xe−ε/2|2

2(1− e−ε)

)
dxdy .

Therefore, as ε→ 0

εH(π|Rε) = ε

∫
log

(
dπ

dx

)
dπ − ε

∫
log

(
dRε

dx

)
dπ

= ε

∫
log

(
dπ

dx

)
dπ +

ε

2(1− e−ε)

∫
|y − e−ε/2x |2 π(dxdy)

+
ε

2

∫
|x |2 µ(dx) + c(ε),

where c(ε)→ 0 (and is independent of µ, ν, π).
So for small ε, minimizing π 7→ H(π|Rε) amounts to minimizing
π 7→ 1

2

∫
|x − y |2 π(dxdy).

Rigorous proof can be found in Mikami (’04), Léonard (’12),
Carlier-Duval-Peyré-Schmitzer (’17)
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Idea of the proof 2/3

Key point : The optimal coupling π∗ for T ε(γ, ν) is of the form

dπ∗(x , y) = f (x)g(y) dRε(x , y),

with f log-convex and g log-concave.

Classical fact : A coupling π is optimal for T ε(γ, ν) if and only if it is of the
form

π(dxdy) = f (x)g(y)dRε(x , y).
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Idea of the proof 3/3
A p.m. π(dxdy) = f (x)g(y)dRε(x , y) is a coupling between γ and ν = e−W dγ
if and only if f and g solve the following non-linear system of equations{

1 = f (x)Pεg(x)

e−W (y) = Pε(f )(y)g(y)

which is equivalent to a fixed point equation

g(y) =
e−W (y)

Pεf (y)
and f = Φε(f ) where Φε(h) =

1

Pε
(
e−W 1

Pε(h)

)
 We want to show that this system admits a solution (f , g) with f

log-convex and g log-concave.

Crucial property : Φ leaves stable the class of log-convex functions.

Imagine Φε is contractant for a good metric, then starting with f0 log-convex,
the sequence fn defined by fn+1 = Φε(fn) will converge to a fixed point f∞
which will be log-convex. And g∞ = e−W /Pε(f∞) will be log-concave.

Φε is not contractant in general. Fortunately it is possible to adapt the
arguments of a paper of Fortet (1940) to show the convergence of fn to a fixed
point of Φε.
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which will be log-convex. And g∞ = e−W /Pε(f∞) will be log-concave.

Φε is not contractant in general. Fortunately it is possible to adapt the
arguments of a paper of Fortet (1940) to show the convergence of fn to a fixed
point of Φε.
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Thank you for your attention !
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