Bernstein inequalities via the heat semigroup

El Maati Ouhabaz, Univ. Bordeaux

Bordeaux, November 2019
joint work with Rafik Imekraz

The Bernstein inequality (1912)

The Bernstein inequality (1912)

Let $P(x)=\sum_{k=0}^{N} \alpha_{k} e^{i k x}$ with $\alpha_{k} \in \mathbb{C}$. Then

$$
\left\|P^{\prime}\right\|_{\infty} \leq N\|P\|_{\infty}
$$

The Bernstein inequality (1912)

Let $P(x)=\sum_{k=0}^{N} \alpha_{k} e^{i k x}$ with $\alpha_{k} \in \mathbb{C}$. Then

$$
\left\|P^{\prime}\right\|_{\infty} \leq N\|P\|_{\infty}
$$

This classical inequality is used in:

The Bernstein inequality (1912)

Let $P(x)=\sum_{k=0}^{N} \alpha_{k} e^{i k x}$ with $\alpha_{k} \in \mathbb{C}$. Then

$$
\left\|P^{\prime}\right\|_{\infty} \leq N\|P\|_{\infty}
$$

This classical inequality is used in:

- Approximation theory (see e.g. the book of G.G. Lorentz),
- Random trigonometric series (see e.g. the book of J.P. Kahane),
- Random Dirichlet series (see e.g. the book of H. Queffelec and M. Queffelec),

The Bernstein inequality (1912)

Let $P(x)=\sum_{k=0}^{N} \alpha_{k} e^{i k x}$ with $\alpha_{k} \in \mathbb{C}$. Then

$$
\left\|P^{\prime}\right\|_{\infty} \leq N\|P\|_{\infty}
$$

This classical inequality is used in:

- Approximation theory (see e.g. the book of G.G. Lorentz),
- Random trigonometric series (see e.g. the book of J.P. Kahane),
- Random Dirichlet series (see e.g. the book of H. Queffelec and M. Queffelec),
More on the Bernstein inequality can be found in the survey paper: - H. Queffelec and R. Zarrouf, Arxiv March 2019.

Observation:

$$
(-\Delta)\left(e^{i k x}\right)=k^{2} e^{i k x} .
$$

Observation:

$$
(-\Delta)\left(e^{i k x}\right)=k^{2} e^{i k x}
$$

One may ask whether the above inequality holds for eigenfunctions of the Laplacian in a more general setting.

Observation:

$$
(-\Delta)\left(e^{i k x}\right)=k^{2} e^{i k x}
$$

One may ask whether the above inequality holds for eigenfunctions of the Laplacian in a more general setting.

This question was considered by :

- Donnelly and Fefferman, 1990 . They prove localized estimates: $-\Delta u=\lambda^{2} u$ then

$$
\sup _{B(x, r)}|\nabla u| \leq \frac{C \lambda^{1+m / 2}}{r} \sup _{B(x, r)}|u| \quad\left(r<r_{0}, m=\operatorname{dim} M\right) .
$$

Observation:

$$
(-\Delta)\left(e^{i k x}\right)=k^{2} e^{i k x}
$$

One may ask whether the above inequality holds for eigenfunctions of the Laplacian in a more general setting.

This question was considered by :

- Donnelly and Fefferman, 1990 . They prove localized estimates: $-\Delta u=\lambda^{2} u$ then

$$
\sup _{B(x, r)}|\nabla u| \leq \frac{C \lambda^{1+m / 2}}{r} \sup _{B(x, r)}|u| \quad\left(r<r_{0}, m=\operatorname{dim} M\right) .
$$

- Ortega-Cerdà and Pridhnani, 2013

$$
\|\nabla u\|_{\infty} \leq C \lambda\|u\|_{\infty} .
$$

Observation:

$$
(-\Delta)\left(e^{i k x}\right)=k^{2} e^{i k x}
$$

One may ask whether the above inequality holds for eigenfunctions of the Laplacian in a more general setting.

This question was considered by :

- Donnelly and Fefferman, 1990 . They prove localized estimates: $-\Delta u=\lambda^{2} u$ then

$$
\sup _{B(x, r)}|\nabla u| \leq \frac{C \lambda^{1+m / 2}}{r} \sup _{B(x, r)}|u| \quad\left(r<r_{0}, m=\operatorname{dim} M\right) .
$$

- Ortega-Cerdà and Pridhnani, 2013

$$
\|\nabla u\|_{\infty} \leq C \lambda\|u\|_{\infty} .
$$

- F. Filbir and H.N. Mhaskar, 2010 for a more general setting. However, they had to assume rather restrictive regularity assumptions on the semigroup $e^{t \Delta}$ (or the corresponding heat kernel).

Notation and assumptions:

Notation and assumptions:

- M Riemannian manifold, d and $d x$: Riemannian distance and measure,
- $v(x, r)$ the volume of the ball $B(x, r)$,
- Δ the negative Laplace-Beltrami operator,

$$
e^{t \Delta} f(x)=\int_{M} g_{t}(x, y) f(y) d y
$$

Notation and assumptions:

- M Riemannian manifold, d and $d x$: Riemannian distance and measure,
- $v(x, r)$ the volume of the ball $B(x, r)$,
- Δ the negative Laplace-Beltrami operator,

$$
e^{t \Delta} f(x)=\int_{M} g_{t}(x, y) f(y) d y
$$

We make the following assumptions:

- doubling condition:

$$
v(x, 2 r) \leq \operatorname{Cv}(x, r)
$$

- Gaussian upper bound:

$$
\left|g_{t}(x, y)\right| \leq \frac{C}{v(x, \sqrt{t})} e^{-c \frac{d^{2}(x, y)}{t}} .
$$

Notation and assumptions:

- M Riemannian manifold, d and $d x$: Riemannian distance and measure,
- $v(x, r)$ the volume of the ball $B(x, r)$,
- Δ the negative Laplace-Beltrami operator,

$$
e^{t \Delta} f(x)=\int_{M} g_{t}(x, y) f(y) d y
$$

We make the following assumptions:

- doubling condition:

$$
v(x, 2 r) \leq \operatorname{Cv}(x, r)
$$

- Gaussian upper bound:

$$
\left|g_{t}(x, y)\right| \leq \frac{C}{v(x, \sqrt{t})} e^{-c \frac{d^{2}(x, y)}{t}} .
$$

Let $0 \leq V \in L_{l o c}^{1}(M)$ and set $L:=-\Delta+V$.

$$
e^{-t L} f(x)=\int_{M} p_{t}(x, y) f(y) d y
$$

Notation and assumptions:

- M Riemannian manifold, d and $d x$: Riemannian distance and measure,
- $v(x, r)$ the volume of the ball $B(x, r)$,
- Δ the negative Laplace-Beltrami operator,

$$
e^{t \Delta} f(x)=\int_{M} g_{t}(x, y) f(y) d y
$$

We make the following assumptions:

- doubling condition:

$$
v(x, 2 r) \leq \operatorname{Cv}(x, r)
$$

- Gaussian upper bound:

$$
\left|g_{t}(x, y)\right| \leq \frac{C}{v(x, \sqrt{t})} e^{-c \frac{d^{2}(x, y)}{t}} .
$$

Let $0 \leq V \in L_{l o c}^{1}(M)$ and set $L:=-\Delta+V$.

$$
e^{-t L} f(x)=\int_{M} p_{t}(x, y) f(y) d y
$$

Note that the heat kernel $p_{t}(x, y)$ satisfies the above Gaussian upper bound.

First main results

First main results

The case $p \in[1,2]$.

First main results

The case $p \in[1,2]$.

Theorem

Suppose L has discrete spectrum $\sigma(L)=\left(\lambda_{k}^{2}\right)_{k=0,1, \ldots}$

$$
L \varphi_{k}=\lambda_{k}^{2} \varphi_{k} .
$$

$\varphi_{k} \in L^{2}(M),\left\|\varphi_{k}\right\|_{2}=1$. Then for every $p \in[1,2]$, there exists a constant C such that for every N and $\alpha_{k} \in \mathbb{C}$

$$
\begin{equation*}
\left\|\nabla\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p}+\left\|V^{1 / 2}\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p} \leq C \lambda_{N}\left\|\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p} \tag{p}
\end{equation*}
$$

First main results

The case $p \in(2, \infty]$.

First main results

The case $p \in(2, \infty]$.

Theorem

Suppose L has discrete spectrum $\sigma(L)=\left(\lambda_{k}^{2}\right)_{k=0,1, \ldots}$

$$
L \varphi_{k}=\lambda_{k}^{2} \varphi_{k} .
$$

$\varphi_{k} \in L^{2}(M),\left\|\varphi_{k}\right\|_{2}=1$. Suppose in addition that

$$
\begin{equation*}
\left\|\nabla e^{-t L}\right\|_{p \rightarrow p}+\left\|V^{1 / 2} e^{-t L}\right\|_{p \rightarrow p} \leq \frac{C}{\sqrt{t}} \tag{p}
\end{equation*}
$$

Then for every $p \in(2, \infty]$, there exists a constant C such that for every N and $\alpha_{k} \in \mathbb{C}$

$$
\begin{equation*}
\left\|\nabla\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p}+\left\|V^{1 / 2}\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p} \leq C \lambda_{N}\left\|\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p} \tag{p}
\end{equation*}
$$

Remark

Remark

The previous theorem hold also in other settings. For example:

$$
L=-\operatorname{div}(A(x) \nabla \cdot)
$$

an elliptic operator on $L^{2}(\Omega)$, subject to Dirichlet boundary conditions, $A=\left(a_{k l}\right), a_{k l} \in L^{\infty}(\Omega, \mathbb{R}), \Omega$ is a bounded domain of \mathbb{R}^{n}.

Remark

The previous theorem hold also in other settings. For example:

$$
L=-\operatorname{div}(A(x) \nabla \cdot)
$$

an elliptic operator on $L^{2}(\Omega)$, subject to Dirichlet boundary conditions, $A=\left(a_{k l}\right), a_{k l} \in L^{\infty}(\Omega, \mathbb{R}), \Omega$ is a bounded domain of \mathbb{R}^{n}. Then:

$$
\begin{equation*}
\left\|\nabla\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p} \leq C \lambda_{N}\left\|\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p} \tag{p}
\end{equation*}
$$

for $p \in[1,2]$.

Remark

The previous theorem hold also in other settings. For example:

$$
L=-\operatorname{div}(A(x) \nabla \cdot)
$$

an elliptic operator on $L^{2}(\Omega)$, subject to Dirichlet boundary conditions, $A=\left(a_{k l}\right), a_{k l} \in L^{\infty}(\Omega, \mathbb{R}), \Omega$ is a bounded domain of \mathbb{R}^{n}. Then:

$$
\begin{equation*}
\left\|\nabla\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p} \leq C \lambda_{N}\left\|\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)\right\|_{p} \tag{p}
\end{equation*}
$$

for $p \in[1,2]$.
For $p \in[2, \infty],\left(B_{p}\right)$ holds as well under the assumption that Ω is $C^{1+\epsilon}$ and the coefficients are C^{ϵ} for some $\epsilon>0$. In this case, the regularity property

$$
\left\|\nabla e^{-t L}\right\|_{\infty \rightarrow \infty} \leq \frac{C}{\sqrt{t}}
$$

holds since the gradient of the heat kernel has a Gaussian upper bound (with $\left.\frac{1}{\sqrt{t}}\right)$. This holds even for complex coefficients, see
A.F.M. ter Elst and E.M. O.: Dirichlet-to-Neumann and elliptic operators on $C^{1+\kappa}$ domains: Poisson and Gaussian bounds (J. Diff Eqs 2019).

Main ideas of proof

Main ideas of proof

In order to prove the previous Bernstein type inequality $\left(B_{p}\right)$ we introduce the semi-classical Bernstein inequality (for a given $\phi \in C_{c}^{\infty}([0, \infty))$:

$$
\begin{equation*}
\|\nabla \phi(h L)\|_{p \rightarrow p}+\left\|V^{1 / 2} \phi(h L)\right\|_{p \rightarrow p} \leq \frac{C_{\phi}}{\sqrt{h}} \tag{p}
\end{equation*}
$$

Main ideas of proof

In order to prove the previous Bernstein type inequality $\left(B_{p}\right)$ we introduce the semi-classical Bernstein inequality (for a given $\phi \in C_{c}^{\infty}([0, \infty))$:

$$
\begin{equation*}
\|\nabla \phi(h L)\|_{p \rightarrow p}+\left\|V^{1 / 2} \phi(h L)\right\|_{p \rightarrow p} \leq \frac{C_{\phi}}{\sqrt{h}} . \tag{p}
\end{equation*}
$$

Note that
$\left(s c B_{p}\right)$ is equivalent to $\left(B_{p}\right)$.

Main ideas of proof

In order to prove the previous Bernstein type inequality $\left(B_{p}\right)$ we introduce the semi-classical Bernstein inequality (for a given $\phi \in C_{c}^{\infty}([0, \infty))$:

$$
\begin{equation*}
\|\nabla \phi(h L)\|_{p \rightarrow p}+\left\|V^{1 / 2} \phi(h L)\right\|_{p \rightarrow p} \leq \frac{C_{\phi}}{\sqrt{h}} . \tag{p}
\end{equation*}
$$

Note that

$$
\left(s c B_{p}\right) \text { is equivalent to }\left(B_{p}\right)
$$

For the direct implication, suppose $\sigma(L)=\left(\lambda_{k}^{2}\right)_{k}$ and set

$$
\phi(\lambda)=\left\{\begin{array}{l}
1 \text { for } \lambda \in[0,1] \\
0 \text { for } \lambda \text { large }
\end{array}\right.
$$

Main ideas of proof

In order to prove the previous Bernstein type inequality $\left(B_{p}\right)$ we introduce the semi-classical Bernstein inequality (for a given $\phi \in C_{c}^{\infty}([0, \infty))$:

$$
\begin{equation*}
\|\nabla \phi(h L)\|_{p \rightarrow p}+\left\|V^{1 / 2} \phi(h L)\right\|_{p \rightarrow p} \leq \frac{C_{\phi}}{\sqrt{h}} \tag{p}
\end{equation*}
$$

Note that
($s c B_{p}$) is equivalent to $\left(B_{p}\right)$.
For the direct implication, suppose $\sigma(L)=\left(\lambda_{k}^{2}\right)_{k}$ and set

$$
\phi(\lambda)=\left\{\begin{array}{l}
1 \text { for } \lambda \in[0,1] \\
0 \text { for } \lambda \text { large }
\end{array}\right.
$$

Then, for $h=\frac{1}{\lambda_{N}^{2}}$

$$
\phi(h L)\left(\sum_{k=0}^{N} \alpha_{k} \varphi_{k}\right)=\sum_{k=0}^{N} \alpha_{k} \phi\left(\frac{\lambda_{k}^{2}}{\lambda_{N}^{2}}\right) \varphi_{k}=\sum_{k=0}^{N} \alpha_{k} \varphi_{k} .
$$

Thus we reduce the proof of our $\left(B_{p}\right)$ to $\left(s c B_{p}\right)$.

Thus we reduce the proof of our $\left(B_{p}\right)$ to $\left(s c B_{p}\right)$. Let $\phi \in C_{c}^{\infty}([0, \infty))$ and set $\phi_{e}(\lambda):=\phi(\lambda) e^{2 \lambda}$. The inverse of the Fourier transform gives

$$
\begin{equation*}
\phi(h L)=\int_{\mathbb{R}} e^{-(2-i \xi) h L} \hat{\phi}_{e}(\xi) d \xi=\int_{\mathbb{R}} e^{-h L} e^{-(1-i \xi) h L} \hat{\phi}_{e}(\xi) d \xi \tag{E}
\end{equation*}
$$

Thus we reduce the proof of our $\left(B_{p}\right)$ to $\left(s c B_{p}\right)$. Let $\phi \in C_{c}^{\infty}([0, \infty))$ and set $\phi_{e}(\lambda):=\phi(\lambda) e^{2 \lambda}$. The inverse of the Fourier transform gives

$$
\begin{equation*}
\phi(h L)=\int_{\mathbb{R}} e^{-(2-i \xi) h L} \hat{\phi}_{e}(\xi) d \xi=\int_{\mathbb{R}} e^{-h L} e^{-(1-i \xi) h L} \hat{\phi}_{e}(\xi) d \xi \tag{E}
\end{equation*}
$$

Next,
I) $\nabla e^{-h L}, V^{1 / 2} e^{-h L}: L^{1}(M) \rightarrow L^{1}(M)$ with norm $\leq \frac{C}{\sqrt{h}}$.

Thus we reduce the proof of our $\left(B_{p}\right)$ to $\left(s c B_{p}\right)$. Let $\phi \in C_{c}^{\infty}([0, \infty))$ and set $\phi_{e}(\lambda):=\phi(\lambda) e^{2 \lambda}$. The inverse of the Fourier transform gives

$$
\begin{equation*}
\phi(h L)=\int_{\mathbb{R}} e^{-(2-i \xi) h L} \hat{\phi}_{e}(\xi) d \xi=\int_{\mathbb{R}} e^{-h L} e^{-(1-i \xi) h L} \hat{\phi}_{e}(\xi) d \xi \tag{E}
\end{equation*}
$$

Next,
I) $\nabla e^{-h L}, V^{1 / 2} e^{-h L}: L^{1}(M) \rightarrow L^{1}(M)$ with norm $\leq \frac{c}{\sqrt{h}}$. Indeed: there exists $\epsilon>0$ s.t.

$$
\int_{M}\left|\nabla_{x} p_{h}(x, y)\right|^{2} e^{\epsilon^{d^{2}(x, y)}}{ }^{h} d x \leq \frac{C}{h} v(y, \sqrt{h})^{-1} .
$$

This is due to A. Grigor'yan, 1995 when $L=-\Delta$ (the proof is the same for $L=-\Delta+V)$.

Thus we reduce the proof of our $\left(B_{p}\right)$ to $\left(s c B_{p}\right)$. Let $\phi \in C_{c}^{\infty}([0, \infty))$ and set $\phi_{e}(\lambda):=\phi(\lambda) e^{2 \lambda}$. The inverse of the Fourier transform gives

$$
\begin{equation*}
\phi(h L)=\int_{\mathbb{R}} e^{-(2-i \xi) h L} \hat{\phi}_{e}(\xi) d \xi=\int_{\mathbb{R}} e^{-h L} e^{-(1-i \xi) h L} \hat{\phi}_{e}(\xi) d \xi \tag{E}
\end{equation*}
$$

Next,
I) $\nabla e^{-h L}, V^{1 / 2} e^{-h L}: L^{1}(M) \rightarrow L^{1}(M)$ with norm $\leq \frac{c}{\sqrt{h}}$. Indeed: there exists $\epsilon>0$ s.t.

$$
\int_{M}\left|\nabla_{x} p_{h}(x, y)\right|^{2} e^{\epsilon^{d^{2}(x, y)}}{ }^{h} d x \leq \frac{C}{h} v(y, \sqrt{h})^{-1} .
$$

This is due to A. Grigor'yan, 1995 when $L=-\Delta$ (the proof is the same for $L=-\Delta+V)$.
Similarly,

$$
\int_{M}\left|\sqrt{V(x)} p_{h}(x, y)\right|^{2} e^{\epsilon \frac{\sigma^{2}(x, y)}{h}} d x \leq \frac{C}{h} v(y, \sqrt{h})^{-1} .
$$

Thus (for $\Gamma=\nabla_{x}$ or $\sqrt{V(x)}$),

$$
\begin{aligned}
\int_{M}\left|\Gamma p_{h}(x, y)\right| d x & \leq\left(\int_{M}\left|\Gamma p_{h}(x, y)\right|^{2} e^{\epsilon \frac{d^{2}(x, y)}{h}} d x\right)^{1 / 2} \cdot\left(\int_{M} e^{-\epsilon \frac{d^{2}(x, y)}{h}} d x\right)^{1 / 2} \\
& =\frac{C}{\sqrt{h}} v(y, \sqrt{h})^{-1 / 2} v(y, \sqrt{h})^{1 / 2}=\frac{C}{\sqrt{h}}
\end{aligned}
$$

II) $e^{-z L}: L^{1}(M) \rightarrow L^{1}(M)$ with norm $\leq \frac{C}{[\cos (\arg (z))]^{\frac{n}{2}+\epsilon}}$ for all $z \in \mathbb{C}^{+}$.
II) $e^{-z L}: L^{1}(M) \rightarrow L^{1}(M)$ with norm $\leq \frac{C}{[\cos (\arg (z))]^{\frac{n}{2}+\epsilon}}$ for all $z \in \mathbb{C}^{+}$. This is a consequence of the fact that the Gaussian bound extend from $t \in \mathbb{R}$ to $z \in \mathbb{C}^{+}$ with

$$
\left|p_{z}(x, y)\right| \leq C \frac{(|z| / \Re(z))^{-n}}{\sqrt{v\left(x, \frac{|z|}{\sqrt{\Re(z)}}\right) v\left(y, \frac{|z|}{\sqrt{\Re(z)}}\right)}} \exp \left(-c \frac{\Re(z) d(x, y)^{2}}{|z|^{2}}\right) .
$$

Due to E.B. Davies 1989 if $v(x, r) \sim r^{n}$ and G. Carron, Th. Coulhon, E.M. O., 2002 for a more general setting of doubling metric spaces.
II) $e^{-z L}: L^{1}(M) \rightarrow L^{1}(M)$ with norm $\leq \frac{C}{[\cos (\arg (z))]^{\frac{n}{2}+\epsilon}}$ for all $z \in \mathbb{C}^{+}$. This is a consequence of the fact that the Gaussian bound extend from $t \in \mathbb{R}$ to $z \in \mathbb{C}^{+}$ with

$$
\left|p_{z}(x, y)\right| \leq C \frac{(|z| / \Re(z))^{-n}}{\sqrt{v\left(x, \frac{|z|}{\sqrt{\Re(z)}}\right) v\left(y, \frac{|z|}{\sqrt{\Re(z)}}\right)}} \exp \left(-c \frac{\Re(z) d(x, y)^{2}}{|z|^{2}}\right) .
$$

Due to E.B. Davies 1989 if $v(x, r) \sim r^{n}$ and G. Carron, Th. Coulhon, E.M. O., 2002 for a more general setting of doubling metric spaces. We insert I) and II) into (E) and we obtain

$$
\|\nabla \phi(h L)\|_{1 \rightarrow 1}+\left\|V^{1 / 2} \phi(h L)\right\|_{1 \rightarrow 1} \leq \frac{C}{\sqrt{h}}\|\phi\|_{H^{n / 2+1}}
$$

which is $\left(s c B_{1}\right)$. This proves the first theorem (after interpolation for $p \in(1,2])$.

More on $\left(s c B_{p}\right)$

More on $\left(s c B_{p}\right)$

Theorem

Let $p \in[1,+\infty]$. The following statements are equivalent:
i) there exists a non-trivial function $\psi_{0} \in C_{c}^{\infty}([0, \infty))$ for which the semi-classical Bernstein inequality ($s c B_{p}$) holds.
ii) for every $\psi \in C_{c}^{\infty}\left([0, \infty)\right.$), the semi-classical Bernstein inequality $\left(s c B_{p}\right)$ holds, i.e.,

$$
\|\nabla \phi(h L)\|_{p \rightarrow p}+\left\|V^{1 / 2} \phi(h L)\right\|_{p \rightarrow p} \leq \frac{C_{\phi}}{\sqrt{h}}
$$

iii) the gradient estimate $\left(R_{p}\right)$ is satisfied, i.e.,

$$
\left\|\nabla e^{-t L}\right\|_{p \rightarrow p}+\left\|V^{1 / 2} e^{-t L}\right\|_{p \rightarrow p} \leq \frac{C}{\sqrt{t}}
$$

More on $\left(s c B_{p}\right)$

Theorem

Let $p \in[1,+\infty]$. The following statements are equivalent:
i) there exists a non-trivial function $\psi_{0} \in C_{c}^{\infty}([0, \infty))$ for which the semi-classical Bernstein inequality ($s c B_{p}$) holds.
ii) for every $\psi \in C_{c}^{\infty}\left([0, \infty)\right.$), the semi-classical Bernstein inequality $\left(s c B_{p}\right)$ holds, i.e.,

$$
\|\nabla \phi(h L)\|_{p \rightarrow p}+\left\|V^{1 / 2} \phi(h L)\right\|_{p \rightarrow p} \leq \frac{C_{\phi}}{\sqrt{h}}
$$

iii) the gradient estimate $\left(R_{p}\right)$ is satisfied, i.e.,

$$
\left\|\nabla e^{-t L}\right\|_{p \rightarrow p}+\left\|V^{1 / 2} e^{-t L}\right\|_{p \rightarrow p} \leq \frac{C}{\sqrt{t}}
$$

$i i i) \Longrightarrow i$ is based on (E).

More on $\left(s c B_{p}\right)$

Theorem

Let $p \in[1,+\infty]$. The following statements are equivalent:
i) there exists a non-trivial function $\psi_{0} \in C_{c}^{\infty}([0, \infty))$ for which the semi-classical Bernstein inequality ($s c B_{p}$) holds.
ii) for every $\psi \in C_{c}^{\infty}([0, \infty))$, the semi-classical Bernstein inequality $\left(s c B_{p}\right)$ holds, i.e.,

$$
\|\nabla \phi(h L)\|_{p \rightarrow p}+\left\|V^{1 / 2} \phi(h L)\right\|_{p \rightarrow p} \leq \frac{C_{\phi}}{\sqrt{h}}
$$

iii) the gradient estimate $\left(R_{p}\right)$ is satisfied, i.e.,

$$
\left\|\nabla e^{-t L}\right\|_{p \rightarrow p}+\left\|V^{1 / 2} e^{-t L}\right\|_{p \rightarrow p} \leq \frac{C}{\sqrt{t}}
$$

iii $\Longrightarrow i$) is based on (E).
$i) \Longrightarrow i i)$: we first enlarge the support of ψ_{0} (by dilation) so that we can write $\psi=\psi_{0} \phi$ for some $\psi \in C_{c}^{\infty}([0, \infty))$.

More on $\left(s c B_{p}\right)$

Theorem

Let $p \in[1,+\infty]$. The following statements are equivalent:
i) there exists a non-trivial function $\psi_{0} \in C_{c}^{\infty}([0, \infty))$ for which the semi-classical Bernstein inequality ($s c B_{p}$) holds.
ii) for every $\psi \in C_{c}^{\infty}([0, \infty))$, the semi-classical Bernstein inequality $\left(s c B_{p}\right)$ holds, i.e.,

$$
\|\nabla \phi(h L)\|_{p \rightarrow p}+\left\|V^{1 / 2} \phi(h L)\right\|_{p \rightarrow p} \leq \frac{C_{\phi}}{\sqrt{h}}
$$

iii) the gradient estimate $\left(R_{p}\right)$ is satisfied, i.e.,

$$
\left\|\nabla e^{-t L}\right\|_{p \rightarrow p}+\left\|V^{1 / 2} e^{-t L}\right\|_{p \rightarrow p} \leq \frac{C}{\sqrt{t}}
$$

iii $\Longrightarrow i$) is based on (E).
$i) \Longrightarrow i i)$: we first enlarge the support of ψ_{0} (by dilation) so that we can write $\psi=\psi_{0} \phi$ for some $\psi \in C_{c}^{\infty}([0, \infty))$.
$i i) \Longrightarrow i i i)$ is based on the following facts:

- Set $\psi_{0}(\lambda):=(1-\lambda)_{+}^{a}$ and take $\phi \in C_{c}^{\infty}([0, \infty))$ such that $\psi_{0}=\phi \psi_{0}$.
- Set $\psi_{0}(\lambda):=(1-\lambda)_{+}^{a}$ and take $\phi \in C_{c}^{\infty}([0, \infty))$ such that $\psi_{0}=\phi \psi_{0}$.
- $\nabla \psi_{0}(h L)=\nabla \phi(h L) \psi_{0}(h L)$. Thus, we only need $\psi_{0}(h L): L^{p} \rightarrow L^{p}$ bounded uniformly in h (this is the Bochner-Riesz mean).
- Set $\psi_{0}(\lambda):=(1-\lambda)_{+}^{a}$ and take $\phi \in C_{c}^{\infty}([0, \infty))$ such that $\psi_{0}=\phi \psi_{0}$.
- $\nabla \psi_{0}(h L)=\nabla \phi(h L) \psi_{0}(h L)$. Thus, we only need $\psi_{0}(h L): L^{p} \rightarrow L^{p}$ bounded uniformly in h (this is the Bochner-Riesz mean).

Theorem (Hebisch if $M=\mathbb{R}^{d}$, X.T. Duong-EM. O.- A. Sikora, 2002 for a more general version)

Let $F:[0, \infty) \rightarrow \mathbb{C}$ bounded such that

$$
\sup _{t>0}\|F(t .) \eta(.)\| w_{s, \infty}<\infty
$$

for some non-trivial $\eta \in C_{c}^{\infty}(0, \infty)$ and some $s>n / 2$. Then:

- $\sup _{h>0}\|F(h L)\|_{p \rightarrow p}<\infty$ for all $p \in[1, \infty]$ for F compactly supported.
- $F(L)$ is weak type $(1,1)$ and bounded on L^{p} for all $p \in(1, \infty)$.
- Finally, use

$$
e^{-x}=\Gamma(a)^{-1} \int_{0}^{\infty} e^{-s}(s-x)_{+}^{a} d s
$$

for some $a>n / 2$.

Link to the Riesz transform

$$
-\nabla(-\Delta)^{-1 / 2}: L^{p} \rightarrow L^{p} \text { bounded } \Longrightarrow\left(R_{p}\right) \Longrightarrow\left(s c B_{p}\right)
$$

Link to the Riesz transform

$-\nabla(-\Delta)^{-1 / 2}: L^{p} \rightarrow L^{p}$ bounded $\Longrightarrow\left(R_{p}\right) \Longrightarrow\left(s c B_{p}\right)$.

- Take $V=0$ and suppose that the manifold satisfies the L^{2}-Poincaré inequality:

$$
\frac{1}{|B|} \int_{B}\left|f-\frac{1}{|B|} \int_{B} f\right|^{2} d x \leq C r^{2} \frac{1}{|B|} \int_{B}|\nabla f|^{2} d x
$$

for all ball B with radius r.

Link to the Riesz transform

$-\nabla(-\Delta)^{-1 / 2}: L^{p} \rightarrow L^{p}$ bounded $\Longrightarrow\left(R_{p}\right) \Longrightarrow\left(s c B_{p}\right)$.

- Take $V=0$ and suppose that the manifold satisfies the L^{2}-Poincaré inequality:

$$
\frac{1}{|B|} \int_{B}\left|f-\frac{1}{|B|} \int_{B} f\right|^{2} d x \leq C r^{2} \frac{1}{|B|} \int_{B}|\nabla f|^{2} d x
$$

for all ball B with radius r. Then by a theorem of P. Auscher-Th. Coulhon-X.T. Duong-S. Hofmann, 2004 (see also F. Bernicot-D. Frey, 2016):

$$
\left(R_{p}\right) \Longrightarrow \nabla(-\Delta)^{-1 / 2}: L^{r} \rightarrow L^{r} \text { bounded } \forall r \in(2, p)
$$

Link to the Riesz transform

$-\nabla(-\Delta)^{-1 / 2}: L^{p} \rightarrow L^{p}$ bounded $\Longrightarrow\left(R_{p}\right) \Longrightarrow\left(s c B_{p}\right)$.

- Take $V=0$ and suppose that the manifold satisfies the L^{2}-Poincaré inequality:

$$
\frac{1}{|B|} \int_{B}\left|f-\frac{1}{|B|} \int_{B} f\right|^{2} d x \leq C r^{2} \frac{1}{|B|} \int_{B}|\nabla f|^{2} d x
$$

for all ball B with radius r. Then by a theorem of P. Auscher-Th. Coulhon-X.T. Duong-S. Hofmann, 2004 (see also F. Bernicot-D. Frey, 2016):

$$
\left(R_{p}\right) \Longrightarrow \nabla(-\Delta)^{-1 / 2}: L^{r} \rightarrow L^{r} \text { bounded } \forall r \in(2, p)
$$

The previous theorem shows that the semi-classical Bernstein inequality ($s c B_{p}$) for $p>2$ is related to the boundedness of the Riesz transform. In particular, counter-examples for the boundedness of the Riesz transform on $L^{p}(M)$ for $p>2$ are counter-examples to $\left(s c B_{p}\right)$.

A "reverse" Bernstein inequality

Y. Shi-B. Xu, 2010 proved on a compact manifold without boundary: if $\Delta \varphi_{\lambda}=\lambda^{2} \varphi_{\lambda}$ with $\lambda \geq 1$ then

$$
C_{1} \lambda\left\|\varphi_{\lambda}\right\|_{\infty} \leq\left\|\nabla \varphi_{\lambda}\right\|_{\infty} \leq C_{2} \lambda\left\|\varphi_{\lambda}\right\|_{\infty}
$$

A "reverse" Bernstein inequality

Y. Shi-B. Xu, 2010 proved on a compact manifold without boundary: if $\Delta \varphi_{\lambda}=\lambda^{2} \varphi_{\lambda}$ with $\lambda \geq 1$ then

$$
C_{1} \lambda\left\|\varphi_{\lambda}\right\|_{\infty} \leq\left\|\nabla \varphi_{\lambda}\right\|_{\infty} \leq C_{2} \lambda\left\|\varphi_{\lambda}\right\|_{\infty}
$$

Under the sole assumptions of doubling and Gaussian upper bound for the heat kernel of Δ we have

Theorem

Let $L=-\Delta+V$ and suppose $\sigma(L)=\left(\lambda_{k}^{2}\right)_{k}, L \varphi_{k}=\lambda_{k}^{2} \varphi_{k}$ with $\left\|\varphi_{k}\right\|_{2}=1$. Then for every $p \in[2, \infty], N$ and $\alpha_{k} \in \mathbb{C}$:

$$
\begin{equation*}
\left\|\nabla\left(\sum_{k=N}^{\infty} \alpha_{k} \varphi_{k}\right)\right\|_{p}+\left\|V^{1 / 2}\left(\sum_{k=N}^{\infty} \alpha_{k} \varphi_{k}\right)\right\|_{p} \geq C_{p} \lambda_{N}\left\|\left(\sum_{k=N}^{\infty} \alpha_{k} \varphi_{k}\right)\right\|_{p} \tag{p}
\end{equation*}
$$

Ideas of Proof for $p=\infty$

Ideas of Proof for $p=\infty$

- A reverse semi-classical Bernstein inequality

$$
\begin{equation*}
\|\nabla \phi(h L) u\|_{\infty}+\left\|V^{1 / 2} \phi(h L) u\right\|_{\infty} \geq \frac{C}{\sqrt{h}}\|\phi(h L) u\|_{\infty} \tag{p}
\end{equation*}
$$

for $\phi \in C^{\infty}(0, \infty), \phi=0$ near 0 and 1 near ∞

Ideas of Proof for $p=\infty$

- A reverse semi-classical Bernstein inequality

$$
\begin{equation*}
\|\nabla \phi(h L) u\|_{\infty}+\left\|V^{1 / 2} \phi(h L) u\right\|_{\infty} \geq \frac{C}{\sqrt{h}}\|\phi(h L) u\|_{\infty} \tag{p}
\end{equation*}
$$

for $\phi \in C^{\infty}(0, \infty), \phi=0$ near 0 and 1 near ∞

- $\nabla L^{-1 / 2}, V^{1 / 2} L^{-1 / 2}: H_{L}^{1} \rightarrow L^{1}$ (due to X.T. Duong-EM. O.-L. Yan, 2006 for $\left.M=\mathbb{R}^{n}\right)$

Ideas of Proof for $p=\infty$

- A reverse semi-classical Bernstein inequality

$$
\begin{equation*}
\|\nabla \phi(h L) u\|_{\infty}+\left\|V^{1 / 2} \phi(h L) u\right\|_{\infty} \geq \frac{C}{\sqrt{h}}\|\phi(h L) u\|_{\infty} \tag{p}
\end{equation*}
$$

for $\phi \in C^{\infty}(0, \infty), \phi=0$ near 0 and 1 near ∞

- $\nabla L^{-1 / 2}, V^{1 / 2} L^{-1 / 2}: H_{L}^{1} \rightarrow L^{1}$ (due to X.T. Duong-EM. O.-L. Yan, 2006 for $M=\mathbb{R}^{n}$)
- By duality

$$
\|\nabla u\|_{\infty}+\left\|V^{1 / 2} u\right\|_{\infty} \geq C\left\|L^{1 / 2} u\right\|_{B M O_{L}}
$$

Ideas of Proof for $p=\infty$

- A reverse semi-classical Bernstein inequality

$$
\begin{equation*}
\|\nabla \phi(h L) u\|_{\infty}+\left\|V^{1 / 2} \phi(h L) u\right\|_{\infty} \geq \frac{C}{\sqrt{h}}\|\phi(h L) u\|_{\infty} \tag{p}
\end{equation*}
$$

for $\phi \in C^{\infty}(0, \infty), \phi=0$ near 0 and 1 near ∞

- $\nabla L^{-1 / 2}, V^{1 / 2} L^{-1 / 2}: H_{L}^{1} \rightarrow L^{1}$ (due to X.T. Duong-EM. O.-L. Yan, 2006 for $M=\mathbb{R}^{n}$)
- By duality

$$
\|\nabla u\|_{\infty}+\left\|V^{1 / 2} u\right\|_{\infty} \geq C\left\|L^{1 / 2} u\right\|_{B M O_{L}}
$$

- Need boundedness of $\phi(h L)$ from L^{1} into H_{L}^{1} with norm uniformly bounded in $h>0$ (for a class of functions ϕ). We do this first for $\phi \in C_{c}^{\infty}(0, \infty)$

Ideas of Proof for $p=\infty$

- A reverse semi-classical Bernstein inequality

$$
\begin{equation*}
\|\nabla \phi(h L) u\|_{\infty}+\left\|V^{1 / 2} \phi(h L) u\right\|_{\infty} \geq \frac{C}{\sqrt{h}}\|\phi(h L) u\|_{\infty} \tag{p}
\end{equation*}
$$

for $\phi \in C^{\infty}(0, \infty), \phi=0$ near 0 and 1 near ∞

- $\nabla L^{-1 / 2}, V^{1 / 2} L^{-1 / 2}: H_{L}^{1} \rightarrow L^{1}$ (due to X.T. Duong-EM. O.-L. Yan, 2006 for $M=\mathbb{R}^{n}$)
- By duality

$$
\|\nabla u\|_{\infty}+\left\|V^{1 / 2} u\right\|_{\infty} \geq C\left\|L^{1 / 2} u\right\|_{B M O_{L}}
$$

- Need boundedness of $\phi(h L)$ from L^{1} into H_{L}^{1} with norm uniformly bounded in $h>0$ (for a class of functions ϕ). We do this first for $\phi \in C_{c}^{\infty}(0, \infty)$
- For non compactly supported ϕ we need a weak factorization for $f \in L^{1} \cap C^{\infty}(\mathbb{R})$ function (based on J. Dixmier-P. Malliavin, 1978):

$$
f=\psi_{1} * g_{1}+\psi_{2} * g_{2}, \psi_{i} \in C_{c}^{\infty}(\mathbb{R}), g_{i} \in L^{1}
$$

Proposition

Let $\phi \in C_{c}^{\infty}(0, \infty)$. Then $\phi(L): L^{1} \rightarrow H_{L}^{1}$ is bounded and

$$
\sup _{h>0}\|\phi(h L)\|_{L^{1} \rightarrow H_{L}^{1}}<\infty .
$$

The Hardy space H_{L}^{1} is defined by the square function S_{L} as follows. Set

$$
\begin{equation*}
S_{L} f(x):=\left(\int_{0}^{\infty} \int_{\rho(x, y)<t}\left|t^{2} L e^{-t^{2} L} f(y)\right|^{2} \frac{d \mu(y)}{v(x, t)} \frac{d t}{t}\right)^{\frac{1}{2}}, \tag{1}
\end{equation*}
$$

and $D:=\left\{f \in \overline{R(L)}: S_{L} f \in L^{1}(X)\right\}$. Then H_{L}^{1} is the completion of the space
D with respect to the norm

$$
\|f\|_{H_{L}^{1}}:=\left\|S_{L} f\right\|_{L^{1}(M)} .
$$

Molecular decomposition for $\phi(L) g$: there exist m and ϵ, a ball $B=B\left(x_{B}, r_{B}\right)$ and a function b such that $\phi(L) g=L^{m} b$ and

$$
\left\|\left(r_{B}^{2} L\right)^{k} b\right\|_{L^{2}\left(U_{j}(B)\right)} \leq r_{B}^{2 m} 2^{-j \epsilon} \operatorname{Vol}\left(2^{j} B\right)^{-1 / 2}
$$

for $k=0,1, \ldots, m$ and $j=0,1,2, \ldots$. Here $U_{j}(B):=2^{j+1} B \backslash 2^{j} B$, $2^{j} B:=B\left(x_{B}, 2^{j} r_{B}\right), \operatorname{Vol}\left(2^{j} B\right):=\operatorname{Vol}\left(x_{B}, 2^{j} r_{B}\right)$ for $j \geq 1$ and $U_{0}(B)=B$.

Thank you for your attention

Place à l'HDR de Michel !

