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@ Approximation theory (see e.g. the book of G.G. Lorentz),
@ Random trigonometric series (see e.g. the book of J.P. Kahane),

@ Random Dirichlet series (see e.g. the book of H. Queffelec and M.
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More on the Bernstein inequality can be found in the survey paper:
- H. Queffelec and R. Zarrouf, Arxiv March 2019.



Observation: _ '
(_A)(elkX) _ kZelkx.



Observation: ' '
(_A)(elkX) _ kze/kx.

One may ask whether the above inequality holds for eigenfunctions of the
Laplacian in a more general setting.



Observation: ' '
(_A)(elkX) _ kze/kx.

One may ask whether the above inequality holds for eigenfunctions of the
Laplacian in a more general setting.

This question was considered by :
- Donnelly and Fefferman, 1990 . They prove localized estimates: —Au = \2u

then
C)\1+m/2 ]
sup |Vu| < —— sup |u| (r<nr, m=dmM).
B(x,r) r B(x,r)



Observation: ' '

(_A)(elkX) _ kze/kx.
One may ask whether the above inequality holds for eigenfunctions of the
Laplacian in a more general setting.

This question was considered by :
- Donnelly and Fefferman, 1990 . They prove localized estimates: —Au = \2u

then
1+m/2

CX .
sup |Vu| < —— sup |u| (r<nr, m=dmM).
B(x,r) r Bxrn

- Ortega-Cerda and Pridhnani, 2013

IVUlleo < CAllUljco-



Observation: ' '

(_A)(elkX) _ kze/kx.
One may ask whether the above inequality holds for eigenfunctions of the
Laplacian in a more general setting.

This question was considered by :
- Donnelly and Fefferman, 1990 . They prove localized estimates: —Au = \2u

then
1+m/2

A .
sup |Vu| < —— sup |u| (r<nr, m=dmM).
B(x,r) r Bxrn

- Ortega-Cerda and Pridhnani, 2013
IVUllso < CAllu|so-

- F. Filbir and H.N. Mhaskar, 2010 for a more general setting. However, they
had to assume rather restrictive regularity assumptions on the semigroup e®
(or the corresponding heat kernel).
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Note that the heat kernel p;(x, y) satisfies the above Gaussian upper bound.
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The case p € (2, x].

Theorem
Suppose L has discrete spectrum o(L) = (A2)k=o.1...

Lok = Az k-
K € L2(M), ||okll2 = 1. Suppose in addition that

_ _ C
Ve lpmp + [IV'/2e | pmp < —. (Rp)

Vi

Then for every p € (2, x|, there exists a constant C such that for every N and
ag € C

||v(iam) o+ v”z(iam) o < Cow | (iam) lo (B
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L= —div(A(x)V:)
an elliptic operator on L2(Q), subject to Dirichlet boundary conditions,
A= (aw),ax € L°(Q,R), Q is a bounded domain of R".Then:

||v(iam)||p < Chw ||(iam)|p (Bo)
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forpe[1,2].
For p € [2, 0], (Bp) holds as well under the assumption that Q is C'*¢ and the
coefficients are C¢ for some e > 0. In this case, the regularity property

C
Ve oo < —
I lloo—s 7
holds since the gradient of the heat kernel has a Gaussian upper bound (with
%). This holds even for complex coefficients, see

A.EM. ter Elst and E.M. O.: Dirichlet-to-Neumann and elliptic operators on
C'** domains: Poisson and Gaussian bounds (J. Diff Eqs 2019).
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Note that
(scBp) is equivalent to (Bp).

For the direct implication, suppose o(L) = (A\2), and set

[ 1 for A€ [0,1]
o) = { 0 for A large

Then, for h = ;—IZV

N N \2 N
¢(hL)(Z Oékéﬁk) => Oék¢(/\7§>90k = akpx-
k=0 k=0 N k=0
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This is due to A. Grigor'yan, 1995 when L = —A (the proof is the same for
L=—-A+YV).
Similarly,

/A.ﬂ\/ V{X)pa(x, y)[Pe =5 —i (y.Vhy™!

Thus (for I = V or 1/ V(x)),

20 1/2 1/2
[ Ironxoylox < ( [ ontx e ) ( [ et dx)
M M M

_ C ~1/2y0y V12— ©
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) e=2t: L'(M) — L' (M) with norm < ——C—_forall z € C*. Thisis a
[cos(arg(2))] 2

consequence of the fact that the Gaussian bound extend from t e Rto z € C*
with

(I2]/R(z)) " R(2)d(x, y)?
p(xy) < C \/V<X7 ;(Z))Zv(y, Mlm) exp(ozzljy>.

Due to E.B. Davies 1989 if v(x,r) ~ r" and G. Carron, Th. Coulhon, E.M.
0., 2002 for a more general setting of doubling metric spaces.
We insert I) and Il) into (E) and we obtain

C
IVo(hL) 11 + [V 24(AL) 151 < \7hII¢IIHn/z+1

which is (scBy). This proves the first theorem (after interpolation for
pe(1,2]).
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- Set () := (1 — N\)3 and take ¢ € C°([0, 00)) such that 1o = ).
- Vipo(hL) = V¢(hL)yo(hL). Thus, we only need ¢y (hL) : LP — LP bounded
uniformly in h (this is the Bochner-Riesz mean).

Theorem (Hebisch if M = RY, X.T. Duong-EM. O.- A. Sikora,

2002 for a more general version)
Let F : [0,00) — C bounded such that

sup [|F(t.)n(.)lws. < oo
t>0

for some non-trivial n € C°(0,00) and some s > n/2. Then:
-8UPp~ |F(hL)||p—p < oo for all p € [1, 0] for F compactly supported.
- F(L) is weak type (1,1) and bounded on LP for all p € (1, 0).

- Finally, use
e X=r(a)”’ / e (s —x)3ds
0

for some a > n/2.



Link to the Riesz transform




Link to the Riesz transform

-V(=A)~"2: [P — [P bounded = (Rp) = (scB,).



Link to the Riesz transform

-V(=A)~"2: [P — [P bounded = (Rp) = (scB,).

- Take V = 0 and suppose that the manifold satisfies the L2-Poincaré

inequality:
i/ ]f-i/frdx< Cr2i/|w|2dx
1Bl Jg 1Bl Js B 1Bl Js

for all ball B with radius r.



Link to the Riesz transform

-V(=A)~"2: [P — [P bounded = (Rp) = (scB,).

- Take V = 0 and suppose that the manifold satisfies the L2-Poincaré

inequality:
i/ ]f-i/frdx< Cr2i/|w|2dx
1Bl Jg 1Bl Js B 1Bl Js

for all ball B with radius r. Then by a theorem of P. Auscher-Th. Coulhon-X.T.
Duong-S. Hofmann, 2004 (see also F. Bernicot-D. Frey, 2016):

(Rp) = V(~A)~"2. L" — L" bounded Vr € (2, p).



Link to the Riesz transform

-V(=A)~"2: [P — [P bounded = (Rp) = (scB,).

- Take V = 0 and suppose that the manifold satisfies the L2-Poincaré

inequality:
i/ ]f-i/frdx< Cr2i/|w|2dx
1Bl Jg 1Bl Js B 1Bl Js

for all ball B with radius r. Then by a theorem of P. Auscher-Th. Coulhon-X.T.
Duong-S. Hofmann, 2004 (see also F. Bernicot-D. Frey, 2016):

(Rp) = V(~A)~"2. L" — L" bounded Vr € (2, p).

The previous theorem shows that the semi-classical Bernstein inequality
(scBp) for p > 2 is related to the boundedness of the Riesz transform. In
particular, counter-examples for the boundedness of the Riesz transform on
LP(M) for p > 2 are counter-examples to (scBp).
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Y. Shi-B. Xu, 2010 proved on a compact manifold without boundary: if
A(p)\ = )\Zﬁp)\ with A > 1 then

Cix[ealle < [IVerlloo < CoAll@alloo

Under the sole assumptions of doubling and Gaussian upper bound for the
heat kernel of A we have

Let L= —A+ V and suppose o(L) = (\2)k, Lok = N2y with |pk|2 = 1. Then
forevery p € [2,00], N and o, € C:

V(3 aen)llo + ||v1/2(zaksok)np > Gowll( S awen)ls (A

k=N k=N
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for ¢ € C>*(0,0), ¢ = 0 near 0 and 1 near oo

o VL2 v1/2[=1/2 . H — [ (due to X.T. Duong-EM. O.-L. Yan, 2006 for
M = R")
@ By duality

IVé(hL)ulle + 1V 2S(AL) oo = —=lIé(AL)U|0 (scRBp)

IVullso + 1 V'2ulloc > CIIL2ull o,

@ Need boundedness of ¢(hL) from L' into H] with norm uniformly bounded
in h > 0 (for a class of functions ¢). We do this first for ¢ € C3°(0, o)

@ For non compactly supported ¢ we need a weak factorization for
f € L' n C>(R) function (based on J. Dixmier-P. Malliavin, 1978 ):

f=11%g1+ 2% g, ¥ € CC(R), gi € L



Proposition
Let ¢ € C°(0,00). Then ¢(L) : L' — H; is bounded and

Sup [|(hL) |1y < oo
h>0

The Hardy space H, is defined by the square function S; as follows. Set

([T _p du(y) dty?
st = ([ [ ieLe i BB )” (1

and D := {f € R(L): Sifel (X)}. Then H] is the completion of the space
D with respect to the norm

||f||Hg = ||3Lf||L1(M)-

Molecular decomposition for ¢(L)g: there exist m and ¢, a ball B = B(xg, g)
and a function b such that ¢(L)g = L™b and

1(rs®L)* bl 28y < r®m27 < Vol(2/B)~"/2

for k=0,1,....,mandj=0,1,2,... Here Uj(B) := 2B\ 2/B,
2/B := B(xg, 2/rg), Vol(2/B) := Vol(xg, 2 rg) for j > 1 and Uy(B) = B.
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