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The Bernstein inequality (1912)

Let P(x) =
∑N

k=0 αk eikx with αk ∈ C. Then

‖P ′‖∞ ≤ N‖P‖∞.

This classical inequality is used in:
Approximation theory (see e.g. the book of G.G. Lorentz),
Random trigonometric series (see e.g. the book of J.P. Kahane),
Random Dirichlet series (see e.g. the book of H. Queffelec and M.
Queffelec),

More on the Bernstein inequality can be found in the survey paper:
- H. Queffelec and R. Zarrouf, Arxiv March 2019.
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Observation:
(−∆)(eikx ) = k2eikx .

One may ask whether the above inequality holds for eigenfunctions of the
Laplacian in a more general setting.

This question was considered by :
- Donnelly and Fefferman, 1990 . They prove localized estimates: −∆u = λ2u
then

sup
B(x,r)

|∇u| ≤ Cλ1+m/2

r
sup

B(x,r)

|u| (r < r0, m = dim M).

- Ortega-Cerdà and Pridhnani, 2013

‖∇u‖∞ ≤ Cλ‖u‖∞.

- F. Filbir and H.N. Mhaskar, 2010 for a more general setting. However, they
had to assume rather restrictive regularity assumptions on the semigroup et∆

(or the corresponding heat kernel).
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Notation and assumptions:

M Riemannian manifold, d and dx : Riemannian distance and measure,
v(x , r) the volume of the ball B(x , r),
∆ the negative Laplace-Beltrami operator,

et∆f (x) =

∫
M

gt (x , y)f (y)dy .

We make the following assumptions:
doubling condition:

v(x ,2r) ≤ Cv(x , r)

Gaussian upper bound:

|gt (x , y)| ≤ C
v(x ,

√
t)

e−c d2(x,y)
t .

Let 0 ≤ V ∈ L1
loc(M) and set L := −∆ + V .

e−tLf (x) =

∫
M

pt (x , y)f (y)dy .

Note that the heat kernel pt (x , y) satisfies the above Gaussian upper bound.
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First main results

The case p ∈ [1,2].

Theorem
Suppose L has discrete spectrum σ(L) = (λ2

k )k=0,1,...

Lϕk = λ2
kϕk .

ϕk ∈ L2(M), ‖ϕk‖2 = 1. Then for every p ∈ [1,2], there exists a constant C
such that for every N and αk ∈ C

‖∇
( N∑

k=0

αkϕk

)
‖p + ‖V 1/2

( N∑
k=0

αkϕk

)
‖p ≤ CλN ‖

( N∑
k=0

αkϕk

)
‖p (Bp)
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First main results

The case p ∈ (2,∞].

Theorem
Suppose L has discrete spectrum σ(L) = (λ2

k )k=0,1,...

Lϕk = λ2
kϕk .

ϕk ∈ L2(M), ‖ϕk‖2 = 1. Suppose in addition that

‖∇e−tL‖p→p + ‖V 1/2e−tL‖p→p ≤
C√

t
. (Rp)
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First main results

The case p ∈ (2,∞].
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Remark

The previous theorem hold also in other settings. For example:

L = −div (A(x)∇·)
an elliptic operator on L2(Ω), subject to Dirichlet boundary conditions,
A = (akl ),akl ∈ L∞(Ω,R), Ω is a bounded domain of Rn.Then:

‖∇
( N∑

k=0

αkϕk

)
‖p ≤ CλN ‖

( N∑
k=0

αkϕk

)
‖p (Bp)

for p ∈ [1,2].
For p ∈ [2,∞], (Bp) holds as well under the assumption that Ω is C1+ε and the
coefficients are Cε for some ε > 0. In this case, the regularity property

‖∇e−tL‖∞→∞ ≤
C√

t
holds since the gradient of the heat kernel has a Gaussian upper bound (with
1√

t
). This holds even for complex coefficients, see

A.F.M. ter Elst and E.M. O.: Dirichlet-to-Neumann and elliptic operators on
C1+κ domains: Poisson and Gaussian bounds (J. Diff Eqs 2019).
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Main ideas of proof

In order to prove the previous Bernstein type inequality (Bp) we introduce the
semi-classical Bernstein inequality (for a given φ ∈ C∞c ([0,∞)):

‖∇φ(hL)‖p→p + ‖V 1/2φ(hL)‖p→p ≤
Cφ√

h
. (scBp)

Note that

(scBp) is equivalent to (Bp).

For the direct implication, suppose σ(L) = (λ2
k )k and set

φ(λ) =

{
1 for λ ∈ [0,1]
0 for λ large

Then, for h = 1
λ2

N

φ(hL)
( N∑

k=0

αkϕk

)
=

N∑
k=0

αkφ
( λ2

k

λ2
N

)
ϕk =

N∑
k=0

αkϕk .
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Thus we reduce the proof of our (Bp) to (scBp).

Let φ ∈ C∞c ([0,∞)) and set
φe(λ) := φ(λ)e2λ. The inverse of the Fourier transform gives

φ(hL) =

∫
R

e−(2−iξ)hLφ̂e(ξ)dξ =

∫
R

e−hLe−(1−iξ)hLφ̂e(ξ)dξ (E)

Next,
I) ∇e−hL,V 1/2e−hL : L1(M)→ L1(M) with norm ≤ C√

h
. Indeed: there exists

ε > 0 s.t. ∫
M
|∇xph(x , y)|2eε

d2(x,y)
h dx ≤ C

h
v(y ,

√
h)−1.

This is due to A. Grigor’yan, 1995 when L = −∆ (the proof is the same for
L = −∆ + V ).
Similarly, ∫

M
|
√

V (x)ph(x , y)|2eε
d2(x,y)

h dx ≤ C
h

v(y ,
√

h)−1.

Thus (for Γ = ∇x or
√

V (x)),∫
M
|Γ ph(x , y)|dx ≤

(∫
M
|Γph(x , y)|2eε

d2(x,y)
h dx

)1/2

.

(∫
M

e−ε
d2(x,y)

h dx
)1/2

=
C√
h

v(y ,
√

h)−1/2v(y ,
√

h)1/2 =
C√
h
.
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II) e−zL : L1(M)→ L1(M) with norm ≤ C
[cos(arg(z))]

n
2 +ε

for all z ∈ C+.

This is a

consequence of the fact that the Gaussian bound extend from t ∈ R to z ∈ C+

with

|pz(x , y)| ≤ C
(|z|/<(z))−n√

v
(

x , |z|√
<(z)

)
v
(

y , |z|√
<(z)

) exp
(
−c
<(z)d(x , y)2

|z|2

)
.

Due to E.B. Davies 1989 if v(x , r) ∼ rn and G. Carron, Th. Coulhon, E.M.
O., 2002 for a more general setting of doubling metric spaces.
We insert I) and II) into (E) and we obtain

‖∇φ(hL)‖1→1 + ‖V 1/2φ(hL)‖1→1 ≤
C√
h
‖φ‖Hn/2+1

which is (scB1). This proves the first theorem (after interpolation for
p ∈ (1,2]).
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More on (scBp)

Theorem
Let p ∈ [1,+∞]. The following statements are equivalent:

i) there exists a non-trivial function ψ0 ∈ C∞c ([0,∞)) for which the
semi-classical Bernstein inequality (scBp) holds.

ii) for every ψ ∈ C∞c ([0,∞)), the semi-classical Bernstein inequality (scBp)
holds, i.e.,

‖∇φ(hL)‖p→p + ‖V 1/2φ(hL)‖p→p ≤
Cφ√

h
iii) the gradient estimate (Rp) is satisfied, i.e.,

‖∇e−tL‖p→p + ‖V 1/2e−tL‖p→p ≤
C√

t

iii) =⇒ i) is based on (E).
i) =⇒ ii): we first enlarge the support of ψ0 (by dilation) so that we can write
ψ = ψ0φ for some ψ ∈ C∞c ([0,∞)).
ii) =⇒ iii) is based on the following facts:
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- Set ψ0(λ) := (1− λ)a
+ and take φ ∈ C∞c ([0,∞)) such that ψ0 = φψ0.

- ∇ψ0(hL) = ∇φ(hL)ψ0(hL). Thus, we only need ψ0(hL) : Lp → Lp bounded
uniformly in h (this is the Bochner-Riesz mean).

Theorem (Hebisch if M = Rd , X.T. Duong-EM. O.- A. Sikora,
2002 for a more general version)
Let F : [0,∞)→ C bounded such that

sup
t>0
‖F (t .)η(.)‖W s,∞ <∞

for some non-trivial η ∈ C∞c (0,∞) and some s > n/2. Then:
- suph>0 ‖F (hL)‖p→p <∞ for all p ∈ [1,∞] for F compactly supported.
- F (L) is weak type (1,1) and bounded on Lp for all p ∈ (1,∞).

- Finally, use

e−x = Γ(a)−1
∫ ∞

0
e−s(s − x)a

+ds

for some a > n/2.
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Link to the Riesz transform

- ∇(−∆)−1/2 : Lp → Lp bounded =⇒ (Rp) =⇒ (scBp).

- Take V = 0 and suppose that the manifold satisfies the L2-Poincaré
inequality:

1
|B|

∫
B

∣∣∣f − 1
|B|

∫
B

f
∣∣∣2dx ≤ Cr2 1

|B|

∫
B
|∇f |2dx

for all ball B with radius r . Then by a theorem of P. Auscher-Th. Coulhon-X.T.
Duong-S. Hofmann, 2004 (see also F. Bernicot-D. Frey, 2016):

(Rp) =⇒ ∇(−∆)−1/2 : Lr → Lr bounded ∀r ∈ (2,p).

The previous theorem shows that the semi-classical Bernstein inequality
(scBp) for p > 2 is related to the boundedness of the Riesz transform. In
particular, counter-examples for the boundedness of the Riesz transform on
Lp(M) for p > 2 are counter-examples to (scBp).
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inequality:

1
|B|

∫
B

∣∣∣f − 1
|B|

∫
B

f
∣∣∣2dx ≤ Cr2 1

|B|

∫
B
|∇f |2dx

for all ball B with radius r .

Then by a theorem of P. Auscher-Th. Coulhon-X.T.
Duong-S. Hofmann, 2004 (see also F. Bernicot-D. Frey, 2016):

(Rp) =⇒ ∇(−∆)−1/2 : Lr → Lr bounded ∀r ∈ (2,p).

The previous theorem shows that the semi-classical Bernstein inequality
(scBp) for p > 2 is related to the boundedness of the Riesz transform. In
particular, counter-examples for the boundedness of the Riesz transform on
Lp(M) for p > 2 are counter-examples to (scBp).



Link to the Riesz transform

- ∇(−∆)−1/2 : Lp → Lp bounded =⇒ (Rp) =⇒ (scBp).

- Take V = 0 and suppose that the manifold satisfies the L2-Poincaré
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A ”reverse” Bernstein inequality

Y. Shi-B. Xu, 2010 proved on a compact manifold without boundary: if
∆ϕλ = λ2ϕλ with λ ≥ 1 then

C1λ ‖ϕλ‖∞ ≤ ‖∇ϕλ‖∞ ≤ C2λ ‖ϕλ‖∞

Under the sole assumptions of doubling and Gaussian upper bound for the
heat kernel of ∆ we have

Theorem
Let L = −∆ + V and suppose σ(L) = (λ2

k )k , Lϕk = λ2
kϕk with ‖ϕk‖2 = 1. Then

for every p ∈ [2,∞], N and αk ∈ C:

‖∇
( ∞∑

k=N

αkϕk

)
‖p + ‖V 1/2

( ∞∑
k=N

αkϕk

)
‖p ≥ CpλN ‖

( ∞∑
k=N

αkϕk

)
‖p (RBp)
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Ideas of Proof for p =∞

A reverse semi-classical Bernstein inequality

‖∇φ(hL)u‖∞ + ‖V 1/2φ(hL)u‖∞ ≥
C√
h
‖φ(hL)u‖∞ (scRBp)

for φ ∈ C∞(0,∞), φ = 0 near 0 and 1 near∞
∇L−1/2,V 1/2L−1/2 : H1

L → L1 (due to X.T. Duong-EM. O.-L. Yan, 2006 for
M = Rn)
By duality

‖∇u‖∞ + ‖V 1/2u‖∞ ≥ C‖L1/2u‖BMOL

Need boundedness of φ(hL) from L1 into H1
L with norm uniformly bounded

in h > 0 (for a class of functions φ). We do this first for φ ∈ C∞c (0,∞)

For non compactly supported φ we need a weak factorization for
f ∈ L1 ∩ C∞(R) function (based on J. Dixmier-P. Malliavin, 1978 ):

f = ψ1 ∗ g1 + ψ2 ∗ g2, ψi ∈ C∞c (R), gi ∈ L1
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Proposition
Let φ ∈ C∞c (0,∞). Then φ(L) : L1 → H1

L is bounded and

sup
h>0
‖φ(hL)‖L1→H1

L
<∞.

The Hardy space H1
L is defined by the square function SL as follows. Set

SLf (x) :=
(∫ ∞

0

∫
ρ(x,y)<t

|t2Le−t2Lf (y)|2 dµ(y)

v(x , t)
dt
t

) 1
2
, (1)

and D :=
{

f ∈ R(L) : SLf ∈ L1(X )
}

. Then H1
L is the completion of the space

D with respect to the norm

‖f‖H1
L

:= ‖SLf‖L1(M).

Molecular decomposition for φ(L)g: there exist m and ε, a ball B = B(xB, rB)
and a function b such that φ(L)g = Lmb and

‖(rB
2L)k b‖L2(Uj (B)) ≤ rB

2m2−jεVol(2jB)−1/2

for k = 0,1, ...,m and j = 0,1,2, .... Here Uj (B) := 2j+1B \ 2jB,
2jB := B(xB,2j rB), Vol(2jB) := Vol(xB,2j rB) for j ≥ 1 and U0(B) = B.



Thank you for your attention

Place à l’HDR de Michel !


