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I. Sub-Riemannian structures

(M,H,gH) where
M smooth manifold, dimM = n
H & TM subbundle (“horizontal directions”), rank H = m
gH fiberwise inner product on H

Sub-Riemannian geometry
=̂ geometry intrinsically associated to (M,H,gH).

Let

dH(x,y) = inf
γ

{∫ 1

0
|γ̇(t)|dt : γ(0) = x, γ(1) = y, γ̇(t) ∈ Hγ(t) ∀ t

}

H bracket generating (i.e. Lie(H)(x) = TxM for each x ∈M)
=⇒ (M,dH) metric space
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Canonical sub-Riemannian Laplacian?

∆H =
m∑

i=1

A2
i + Z (locally)

A1, . . . ,Am local orthonormal frame of H,
Z first order term (horizontal vector field)

In general, no canonical choice for Z !

Some notation:
1 Consider

]H : T∗M→ H ⊂ TM, 〈]Hα,v〉gH
:= α(v),

for α ∈ T∗x M, v ∈ Hx , x ∈M.

Note that ker ]H = Ann H.
2 The map ]H induces a (degenerate) co-metric g∗H on T∗M via

〈α,β〉g∗H = 〈]Hα,]Hβ〉gH .
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Let L be a second order partial differential operator on M.
Its symbol σ(L) is the symmetric, bilinear 2-tensor on T∗M
determined by the relation

σ(L)(df ,dh) =
1
2

(
L(fh)− fLh −hLf

)
, f ,h ∈ C∞(M).

A second order PDO L (without constant term) is called
sub-Laplacian with respect to (M,H,gH) if

σ(L) = g∗H .

We write L = ∆H.
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1 Example 1 Let µ be a (smooth) volume measure on M. Then

∆Hf = divµ ]Hdf

is a sub-Laplacian.

2 Example 2 Assume ∃ Riemannian metric g on M such that

g|H = gH

Let

TM = H⊕V , g = gH ⊕gV (where V := H⊥).

Define
∇Hf = prH∇f ≡ ]H df

and let ∆H be the generator of the Dirichlet form

E(f ,h) := −

∫
M
〈∇Hf ,∇Hh〉H dvolg.

Then ∆H := −(∇H)∗∇H = traceH∇
2 is a sub-Laplacian.
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In the situation of the last example:

Canonical variation of the metric

ε > 0 : gε := gH ⊕
1
ε

gV

ε ↓ 0 : sub-Riemannian limit

dε→ do = dH (sub-Riemannian distance)

In the limit only horizontal curves have finite length.

Observation

Ricgε(u,u)
ε ↓ 0

−−→ −∞ for any horizontal unit vector u
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Natural connections on a sub-Riemannian manifold (M,H,gH)

Would like to have a connection ∇ on M which is horizontally
compatible with (H,gH) in the sense that the horizontal
subbundle H is preserved under parallel transport, as well as
its metric gH

Actually, a metric partial connection

∇ : Γ(H)×Γ(H)→ Γ(H), (A ,B) 7→ ∇A B ,

will be sufficient.

In terms of the corresponding horizontal Hessian,

∇2f ≡ Hess f ∈ Γ(H∗⊗H∗), (∇2f)(A ,B) = ABf − (∇A B)f ,

the associated sub-Laplacian ∆H is given by

∆Hf = traceH∇
2f , f ∈ C∞(M)

the associated sub-Laplacian.
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Note that horizontally compatible connections ∇ will always
have torsion T:

∇A B −∇BA − [A ,B] = T(A ,B), A ,B ∈ Γ(H).

The map (A ,B) 7→ T(A ,B) mod H does not depend on the
choice of ∇.

A horizontally compatible connection ∇ is uniquely determined
by its torsion T.

Let V be a choice of complement to H. There exists a unique
horizontally compatible partial connection ∇ with

T(H,H) ⊆ V
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Example Let again (M,g) and gH = g|H. Then TM = H⊕⊥V and

g = gH ⊕gV

Denote by ∇g the Levi-Civita connection on M,g.

(Bott connection) There is a canonical connection ∇
preserving the decomposition TM = H⊕V :

∇X Y =


prH(∇

g
X Y), X ,Y ∈ Γ(H),

prH([X ,Y ]), X ∈ Γ(V), Y ∈ Γ(H),

prV ([X ,Y ]), X ∈ Γ(H), Y ∈ Γ(V),

prV (∇
g
X Y), X ,Y ∈ Γ(V),

∇g = 0

its torsion T∇(X ,Y) is vertical for X and Y horizontal, and zero
if either X or Y is vertical
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Assumptions

Let V be a choice of a complement to H in (M,H,gH).
Let prH and prV be the corresponding projections. Write ∇ for
the unique partial connection with T(H,H) ⊆ V .

We shall extend
∇X Y , X ,Y ∈ Γ(H),

to an affine connection on M as follows:

∇X Y =

{
prH[X ,Y ] if X ∈ Γ(V),Y ∈ Γ(H)
prV [X ,Y ] if X ∈ Γ(H),Y ∈ Γ(V)

while ∇ on V can be an arbitrary partial connection on V in
the direction of V .
Connections of this form satisfy the following properties:

i both H and V are parallel with respect to ∇
ii T(H,H) ⊆ V
iii T(H,V) = 0.

Conversely, any connection satisfying (i)-(iii) is of this form.
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(Metric preserving complement V ) For simplicity, assume that

(LZ pr∗HgH)(X ,X) = 0 for all Z ∈ Γ(V) and X ∈ Γ(H)

where LZ denotes the Lie derivative with respect to Z .

Let Ric : TM→ TM be the Ricci tensor with respect to ∇:

Ric(v) = traceH R∇(v , ×) ×

The object of our interest is

RicH ∈ Γ(H∗⊗H), RicH := Ric|H (horizontal Ricci)

We have
Ric(v) = prH RicH prHv , v ∈ TM,

where prH : TM→ H is the projection with kernel V .
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Example

Let (M,g) be a Riemannian manifold and gH = g|H such that
TM = H⊕V , and

g = gH ⊕gV and gε = gH ⊕
1
ε

gV , ε > 0.
Then

Ricgε(X ,X) = RicH(X ,X) +
1
2ε
〈J2X ,X〉H , X ∈ Γ(H),

where for Z ∈ Γ(V), JZ ∈ Γ(EndTM) is defined by

〈JZX ,Y〉gH
= 〈Z ,T∇(X ,Y)〉gV

,

and, for Z1, . . . ,Zr any local vertical frame,

J2 :=
r∑

i=1

JZi JZi .
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(Laplacian) For a compatible connection ∇ as above let

∆H = traceH∇
2
×,×

be the subelliptic Laplacian (the trace of the Hessian ∇2 is
taken over H with respect to the inner product gH)

(Sub-Riemannian Brownian) A sub-Riemannian Brownian
motion is a diffusion process Xt with generator ∆H

(Stochastic development) Let X0 = x then

dXt = //0,t ◦dBt or dBt = //−1
0,t ◦dXt

where Bt is a (classical) Brownian motion in Hx and

//0,t := Ut ◦U−1
0 : HxM→ HXt M

is stochastic parallel transport along of horizontal vectors
along X (by construction isometries with respect to gH).

Here Ut is the horizontal lift of Xt to the orthonormal frame
bundle O(H) over M.

14 / 46



(Laplacian) For a compatible connection ∇ as above let

∆H = traceH∇
2
×,×

be the subelliptic Laplacian (the trace of the Hessian ∇2 is
taken over H with respect to the inner product gH)
(Sub-Riemannian Brownian) A sub-Riemannian Brownian
motion is a diffusion process Xt with generator ∆H

(Stochastic development) Let X0 = x then

dXt = //0,t ◦dBt or dBt = //−1
0,t ◦dXt

where Bt is a (classical) Brownian motion in Hx and

//0,t := Ut ◦U−1
0 : HxM→ HXt M

is stochastic parallel transport along of horizontal vectors
along X (by construction isometries with respect to gH).

Here Ut is the horizontal lift of Xt to the orthonormal frame
bundle O(H) over M.

14 / 46



(Laplacian) For a compatible connection ∇ as above let

∆H = traceH∇
2
×,×

be the subelliptic Laplacian (the trace of the Hessian ∇2 is
taken over H with respect to the inner product gH)
(Sub-Riemannian Brownian) A sub-Riemannian Brownian
motion is a diffusion process Xt with generator ∆H

(Stochastic development) Let X0 = x then

dXt = //0,t ◦dBt or dBt = //−1
0,t ◦dXt

where Bt is a (classical) Brownian motion in Hx and

//0,t := Ut ◦U−1
0 : HxM→ HXt M

is stochastic parallel transport along of horizontal vectors
along X (by construction isometries with respect to gH).

Here Ut is the horizontal lift of Xt to the orthonormal frame
bundle O(H) over M.

14 / 46



Functional inequalities

Consider the semigroup generated by ∆H:

Pt f = et∆H
f

We have

Pt f(x) = E[f(Xx
t ) 1{t<ζ(x)}], x ∈M.

Question: How is RicH related to functional inequalities for Pt?
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II. Ricci curvature bounds and gradient estimates

Let (M,g) be a complete Riemannian manifold and

L = ∆ + Z with Z ∈ Γ(TM)

(Bakry-Émery Ricci tensor)

RicZ = Ric−∇Z

where RicZ (X ,Y) := Ric(X ,Y)−〈∇X Z ,Y〉
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Theorem (classical probabilistic representations)

Let f ∈Bb(M) and u(x, t) = Pt f(x) be the (minimal) solution to
∂
∂t u = Lu, u|t=0 = f .

(Semigroup formula) Then Pt f(x) = E[f(Xx
t )1{t<ζ(x)}].

(Derivative formula) If f ∈ C1
b (M) and RicZ bounded below,

(∇Pt f)(x) = E
[
Qt//

−1
t ∇f(Xx

t )
]

where the random transformations Qt ∈ Hom(TxM,TxM) are
defined as solution to the pathwise ODE

dQt = −Qt RicZ
//t

dt , Q0 = idTx M .

Here
RicZ

//t
:= //−1

t ◦RicZ
Xt
◦ //t ∈ End(TxM)

is the equivariant representation of RicZ .
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17 / 46



In particular, if

CD(K ,∞) RicZ (v ,v) ≥ K |v |2, v ∈ TM,

for some constant K , then

|Qt | ≤ e−Kt

and

(gradient estimate) |∇Pt f | ≤ e−KtPt |∇f |, f ∈ C1
b (M).

Actually, for K ∈ R the following two conditions are equivalent:

• CD(K ,∞) Ric(v ,v) ≥ K |v |2, v ∈ TM.

• (gradient estimate) |∇Pt f | ≤ e−KtPt |∇f |, f ∈ C1
b (M).
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Well-known and classical: Let K be a real constant.
The following conditions are equivalent:

(Bakry-Émery lower curvature bound)

CD(K ,∞) RicZ (X ,X) ≥ K |X |2, X ∈ TM;

(gradient estimate) for p ∈ [1,∞[ and all f ∈ C∞c (M),

|∇Pt f |p ≤ e−pKtPt |∇f |p;

(Poincaré inequality) for p ∈ (1,2] and all f ∈ C∞c (M),

p
4(p−1)

(
Pt f2− (Pt f2/p)p

)
≤

1−e−2Kt

2K
Pt |∇f |2;

(log-Sobolev inequality) for all f ∈ C∞c (M),

Pt (f2 log f2)− (Pt f2) log(Pt f2) ≤
2(1−e−2Kt )

K
Pt |∇f |2.

Many other equivalent statements, e.g., transportation-cost inequalities;
convexity properties of the entropy; Wang’s dimension-free Harnack
inequalities; Wang’s log-Harnack inequalities, ...
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Comparison with the sub-Riemannian case

Example (Heisenberg group H)

X ,Y ,Z ∈ Γ(H), [X ,Y ] = Z , [X ,Z ] = [Y ,Z ] = 0

H= span(X ,Y), V = R ·Z
Let

∆H := X2 + Y2 and Pt f = (et∆H
)f

Theorem (Hong-Quan Li, 2006)

∃C > 0, |∇HPt f |gH ≤ C Pt |∇
Hf |gH , ∀ f ∈ C∞c (H),

where ∇Hf = prH∇f .

The constant C must be strictly larger than 1!
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Riemannian geometry

Boundedness of Ric

The problem of characterizing boundedness of Ric in Riemannian
geometry has been solved by A. Naber via analysis on path space:

|Ric| ≤ K (i.e. −K ≤ Ric ≤ K for some constant K ≥ 0)
⇐⇒ certain functional inequalities on path space
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III. Ricci curvature and analysis on path space

For fixed T > 0, let WT = C([0,T ];M) and

FC∞0,T =
{
WT 3 γ 7→ f(γt1 , . . . ,γtn ) :

0 < t1 < . . . < tn ≤ T , f ∈ C∞c (Mn)
}
.

be the class of smooth cylindrical functions on WT .

Denote
X[0,T ] = {Xt : 0 ≤ t ≤ T }.

For F ∈FC∞0,T with F(γ) = f(γt1 , . . . ,γtn ), the intrinsic gradient
is defined as

D//
t F(X[0,T ]) =

n∑
i=1

1{t<ti } //
−1
t ,ti ∇

i f(Xt1 , . . . ,Xtn ), t ∈ [0,T ],

where ∇i denotes the gradient with respect to the i-th
component.
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Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)]

The following conditions are equivalent (K ≥ 0):

|RicZ | ≤ K ;
(Gradient inequality on path space) for F ∈ FC∞0 ,∣∣∣∣∇xE[F(Xx

[0,T ])]
∣∣∣∣ ≤ Ex

[
|D//

0 F |+ K
∫ T

0
eKr |D//

r F |dr
]
.

(L2 gradient inequality on path space) for F ∈ FC∞0 ,∣∣∣∣∇xE[F(Xx
[0,T ])]

∣∣∣∣2 ≤ eKTEx
[
|D//

0 F |2 + K
∫ T

0
eK(r−T)|D//

r F |2 dr
]
.

Important observation It is sufficient to check the estimates for
very special F ∈ FC∞0 . Namely:

(i) for F(Xx
[0,T ]

) = f(Xx
t ), and

(ii) for 2-point cylindrical functions of the form

F(Xx
[0,T ]) = f(x)−

1
2

f(Xx
t )
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From this observation, equivalence of the following two items
follows:

(i) |RicZ | ≤ K for K ≥ 0;

(ii) for f ∈ C∞c (M) and t > 0,

|∇Pt f |2 ≤ e2KtPt |∇f |2 and∣∣∣∣∣∇f −
1
2
∇Pt f

∣∣∣∣∣2 ≤ eKt E

[ ∣∣∣∣∣∇f −
1
2
//−1

0,t ∇f(Xt )

∣∣∣∣∣2
+

1
4

(
eKt −1

)
|∇f |2(Xt )

]
.
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Path space characterization of pinched curvature
Let F ∈FC∞0,T with F(γ) = f(γt1 , . . . ,γtn ). Consider the gradients:

(intrinsic gradient)

D//
t F(Xx

[0,T ]) =
n∑

i=1

1{t<ti } //
−1
t ,ti ∇i f(Xx

t1 , . . . ,X
x
tn );

(damped gradient)

DtF(Xx
[0,T ]) =

n∑
i=1

1{t<ti }Qt ,ti//
−1
t ,ti ∇i f(Xx

t1 , . . . ,X
x
tn )

where Qt ,r takes values in the linear automorphisms of TXx
t
M

satisfying for fixed t ≥ 0:
dQt ,r

dr
= −Qt ,r RicZ

//t ,r
, Qt ,t = id; r ≥ t

(balanced gradient) For constants k1 ≤ k2 let

D̄//
t F(Xx

[0,T ]) =
n∑

i=1

1{t≤ti }e
−

k1+k2
2 (ti−t)//−1

t ,ti ∇i f(Xx
t1 , . . . ,X

x
tn ).
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Theorem (Path space characterization of pinched curvature)

The following conditions are equivalent:
(i) k1 ≤ RicZ ≤ k2;

(ii) (Gradient estimate) for any F ∈FC∞0,T ,∣∣∣∇xEF(Xx
[0,T ])

∣∣∣ ≤ E|D̄//
0 F |+ k2−k1

2

∫ T

0
e−k1s E|D̄//

s F |ds;

(iii) (Log-Sobolev inequality) for any F ∈FC∞0,T and t1 < t2 in [0,T ],

E
[
E[F2(X[0,T ])|Ft2 ] logE[F2(X[0,T ])|Ft2 ]

]
−E

[
E[F2(X[0,T ])|Ft1 ] logE[F2(X[0,T ])|Ft1 ]

]
≤ 2

∫ t2

t1

(
1 + k2−k1

2

∫ T

t
e−k1(s−t)ds

)
×

(
E|D̄//

t F |2 + k2−k1
2

∫ T

t
e−k1(s−t)E|D̄//

s F |2ds
)
dt .
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Theorem (continuation)

(iv) (Poincaré type inequality) for F ∈FC∞0,T and t1 < t2 in [0,T ],

E
[
E[F(X[0,T ])|Ft2 ]2

]
−E

[
E[F(X[0,T ])|Ft1 ]2

]
≤

∫ t2

t1

(
1 +

k2−k1

2

∫ T

t
e−k1(s−t) ds

)
×

(
E|D̄//

t F |2 +
k2−k1

2

∫ T

t
e−k1(s−t)E|D̄//

s F |2 ds
)

dt .
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The theorem allows to characterize

Einstein manifolds (Ric is a multiple of the metric g)

Ricci solitons (Ric + Hessf = c g)

manifolds such that Ric = ∇Z

etc
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Let L be the Ornstein-Uhlenbeck operator defined as
generator associated to the Dirichlet form

E(F ,F) = E

[∫ T

0
|D//

t F |2(X[0,T ])dt
]
.

The log-Sobolev inequality or Poincaré inequality on path
space can be used to derive spectral gap-lower bounds for
the operator L.

It is well-known that a log-Sobolev inequality

E[F2 logF2]−E[F2] logE[F2] ≤ 2H(T ,k1,k2)

∫ T

0
|D//

t F |2(X[0,T ])dt

or a Poincaré inequality

E
[
(F −E[F ])2

]
≤ H(T ,k1,k2)

∫ T

0
|D//

t F |2(X[0,T ])dt

for some explicit bound H(T ,k1,k2), give the spectral gap
lower bound H(T ,k1,k2)−1 for the operator L.
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E[F2 logF2]−E[F2] logE[F2] ≤ 2H(T ,k1,k2)

∫ T

0
|D//

t F |2(X[0,T ])dt

or a Poincaré inequality

E
[
(F −E[F ])2

]
≤ H(T ,k1,k2)

∫ T

0
|D//

t F |2(X[0,T ])dt

for some explicit bound H(T ,k1,k2), give the spectral gap
lower bound H(T ,k1,k2)−1 for the operator L.
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IV. Analysis on path space over sub-Riemannian manifolds

(cf. also F. Baudoin, Qi Feng, M. Gordina, J. Funct. Anal. 277 (2019))

Let again ∇ be a partial connection on H, extended as above to a
compatible connection on M.

Weitzenböck formula

Consider the corresponding rough sub-Laplacian

L(∇) := traceH∇
2

(on functions and 1-forms).

Would like to have a Weitzenböck type commutation formula
of the form:

dLf = (L −R)df , L = L(∇),

where R ∈ Γ(End(T∗M)).
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Let ∇̂ be the adjoint connection to ∇, i.e.

∇̂X Y = ∇X Y −T(X ,Y).

Proposition Let L be a rough sub-Laplacian of a connection
on M. There exists a vector bundle endomorphism

R : T∗M→ T∗M

such that
(L −R)df = dLf , f ∈ C∞(M),

if and only if L = L(∇̂) for some adjoint ∇̂ of a connection ∇
that is compatible with (H,gH).
In this case,

R = Ric∇

where for (α,v) ∈ T∗M⊕TM,

Ric∇(α)(v) = traceHR∇(·,v)α(·)

31 / 46



Let ∇̂ be the adjoint connection to ∇, i.e.

∇̂X Y = ∇X Y −T(X ,Y).

Proposition Let L be a rough sub-Laplacian of a connection
on M. There exists a vector bundle endomorphism

R : T∗M→ T∗M

such that
(L −R)df = dLf , f ∈ C∞(M),

if and only if L = L(∇̂) for some adjoint ∇̂ of a connection ∇
that is compatible with (H,gH).

In this case,

R = Ric∇

where for (α,v) ∈ T∗M⊕TM,

Ric∇(α)(v) = traceHR∇(·,v)α(·)

31 / 46



Let ∇̂ be the adjoint connection to ∇, i.e.

∇̂X Y = ∇X Y −T(X ,Y).

Proposition Let L be a rough sub-Laplacian of a connection
on M. There exists a vector bundle endomorphism

R : T∗M→ T∗M

such that
(L −R)df = dLf , f ∈ C∞(M),

if and only if L = L(∇̂) for some adjoint ∇̂ of a connection ∇
that is compatible with (H,gH).
In this case,

R = Ric∇

where for (α,v) ∈ T∗M⊕TM,

Ric∇(α)(v) = traceHR∇(·,v)α(·)

31 / 46



Proposition (Weitzenböck formula)
Then, for all f ∈ C∞(M),(

L(∇̂)−R
)
df = dL(∇̂)f = dL(∇)f = d∆Hf
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Derivative formula

Define Q̂t = Q̂t (x) ∈ End(TxM) by

d
dt

Q̂t = −R/̂/t
Q̂t , Q̂0 = idTx M ,

where R = Ric∇ and R/̂/t
= /̂/−1

t R/̂/t .

(Derivative formula) For Pt = et∆H and f ∈ C∞(M), we have

dPt f(x) = E[Q̂∗t /̂/
−1
t dfXt (x)]
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Integration by parts on path space over a sub-Riemannian
manifold

Let (M,H,gH) be a sub-Riemannian manifold equipped with a
compatible connection ∇ and let

L = traceH∇
2
×,×

be defined as the trace of the Hessian ∇2 over H with respect
to the inner product gH.

Assume that there is a decomposition TM = H⊕V such that
a both H and V are parallel with respect to ∇
b T(H,H) ⊆ V
c T(H,V) = 0.

No choice of a Riemannian metric g on M satisfying g|H = gH

is required.

Assume again that the complement V metric preserving.
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Let Xt (x) ≡ Xx
t be the sub-Riemannian Brownian motion with

generator L such that X0(x) = x and

dBx
t = //−1

t ◦dXt (x), B0 = 0 ∈ Hx

Recall that Bx
t is a standard Brownian motion in Hx .

(Cameron-Martin space) Let

H=

{
h : [0,T ]→ Hx abs. cont.

∣∣∣∣∣∣
∫ T

0
|ḣ(t)|2gH

dt <∞
}

which becomes a Hilbert space with inner product

〈h1,h2〉H =

∫ T

0
〈ḣ1(t), ḣ2(t)〉gH

dt .

As usual, we write 〈h,Bx〉H =
∫ t

0 〈ḣs ,dBx
s 〉gH

.
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Derivatives on path space of sub-Riemannian manifolds

For fixed T > 0, let WT = C([0,T ];M) and

FC∞0,T =
{
WT 3 γ 7→ f(γt1 , . . . ,γtn ) :

0 < t1 < . . . < tn ≤ T , f ∈ C∞c (Mn)
}

be the class of smooth cylindrical functions on WT .

Let the operator At : TxM→ TxM be given by

At =

∫ t

0
T//t (◦dBx

t , ·)

(Note that At (Hx) ⊆ Vx and At (Vx) = 0)
For an adapted process h with paths in H let

S(h)t = ht +

∫ t

0
T//s (◦dBx

s ,hs)

= ht +

∫ t

0
dAshs =

∫ t

0
(id + At + As)dhs .
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(Derivative operator on path space) For F ∈FC∞0,T with
F(γ) = f(γt1 , . . . ,γtn ) and h ∈ H, let

DhF(γ) =
n∑

i=1

〈
//−1

ti di f(γt1 , . . . ,γtn ),S(h)ti

〉

Motivation For any horizontal curve γ on M (starting from x)
with anti-development u = Dev−1(γ) in Hx , we have that{

d
dε

∣∣∣∣
ε=0

Dev(u +εk) : k ∈ H
}

=
{
Dh |γ : h ∈ H

}
where the vector field Dh on path space is defined by

Dh |γ = //−1
t

(
ht +

∫ t
0 T//s (dus ,hs)

)
= //−1

t

(
ht +

∫ t
0 dAshs

)
with At =

∫ t
0 T//s (dus ,hs).
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Defining DtF ∈ Hx by

DtF :=
n∑

i=1

1{t≤ti } ]
H(id + Ati −At )

∗//−1
ti di f(γt1 , . . . ,γtn ),

we have

DhF =

∫ t

0
〈DtF , ḣt〉gH dt .

The gradient DF is then defined by the relation

〈DF ,h〉H = DhF
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Proposition (Integration by parts formula)

For F ∈FC∞0,T and any adapted process ht with paths in H,
we have

E [〈DF ,h〉H] = E

[
F

∫ T

0
〈ḣt + Ric//t ht ,dBt〉gH

]
.

In particular, for f ∈ C∞(M),

E
[
〈//−1

t dfXt (x),S(h)t〉
]

= E

[
f(Xt (x))

∫ t

0
〈ḣs + Ric//s hs ,dBs〉gH

]
.
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Damped gradients

For F ∈FC∞0,T with F(γ) = f(γt1 , . . . ,γtn ), define

D̃tF(γ) :=
n∑

i=1

1{t≤ti } ]
H//−1

t Q̂∗t ,ti /̂/
−1
t ,ti di f(γt1 , . . . ,γtn )

and

D̃hF = 〈D̃F ,h〉H =

∫ T

0
D̃tF dht

(Quasi-invariance) For adapted process h with paths in H one
has

Ex [〈D̃F ,h〉H] = lim
ε→0
E

F(Xε
[0,T ]

)−F(X[0,T ])

ε


where

dXε
t = //εt ◦dBt +ε//εt dht , Xε

0 = x
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Let Qt : TxM→ TxM be the solution of

Q0 = idTx M , dQt = −Ric//t Qtdt

For any adapted process ht with paths in H, we then have

〈D̃F ,h〉H = 〈DF ,k 〉H, kt = Qt

∫ t

0
Q−1

s dhs

and hence

E[〈D̃F ,h〉H] = E

[
F

∫ T

0
〈h,Bx〉H

]
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V. Ricci curvature bounds in sub-Riemannian geometry

(Derivative formula on path space)

For F ∈FC∞0,T and t > 0, we have

DtE[F |Ft ] = E[D̃tF |Ft ]

(Semigroup derivative formula)

dPt f(v) = E

[〈
//−1

t dfXt (x) ,Qtv +

∫ t

0
dAr Qrv

〉]
, v ∈ TxM.
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Theorem (Characterization of horizontal Ricci curvature)
Assume that V is metric preserving. For a non-negative
constant K the following conditions are equivalent:

1 (Bounded Ricci curvature) the horizontal Ricci curvature
RicH = Ric|H ∈ End(H) is bounded by K, i.e.

−K ≤ RicH ≤ K

2 (Gradient estimate) for any F ∈FC∞0 ,

|D0Ex [F ]|gH ≤ Ex

[
|D0F |gH + K

∫ T

0
eKs |DsF |gH ds

]
3 (L2 gradient estimate) for any F ∈FC∞0 ,

|D0Ex [F ]|2gH
≤ e−KTEx

[
|D0F |2gH

+ K
∫ T

0
eKs |DsF |2gH

ds
]
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Theorem (continuation)
iii (Log-Sobolev inequality) for any F ∈FC∞0 and t > 0 in [0,T ],

Ex

[
Ex [F2|Ft ] logEx [F2|Ft ]

]
−Ex [F2] logEx [F2]

≤ 2
∫ t

0
eK(T−r)

(
Ex |DrF |2gH

+
K
2

∫ T

r
eK(s−r)Ex |DsF |2gH

ds
)
dr ;

iv (Poincaré inequality) for any F ∈FC∞0 and t > 0 in [0,T ],

Ex

[
Ex [F |Ft ]

2
]
−Ex [F ]2

≤

∫ t

0
eK(T−r)

(
Ex |DrF |2gH

+
K
2

∫ T

r
eK(s−r)Ex |DsF |2gH

ds
)
dr .
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For non-symmetric bounds, i.e. K1 ≤ RicH ≤ K2, one can give
similar equivalent conditions redefining D̄tF by

D̄tF =
n∑

i=1

1{t≤ti }e
−

K1+K2
2 (ti−t) ]H(id + Ati −At )

∗//−1
ti diF

(Ornstein-Uhlenbeck operator)

For F ,G ∈FC∞0,T let

E (F ,G) = E〈DF ,DG〉H = E

[∫ T

0
〈DtF ,DtG〉gH dt

]
.

Integration by parts formula implies the closability of the form.

Let L be the generator of the the Dirichlet form

E (F ,F) = E

[∫ T

0
|DtF |2gH

dt
]
.

Let gap(L ) denote its spectral gap.
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Theorem Suppose there exists a constant K ≥ 0 such that∣∣∣RicH
∣∣∣ ≤ K .

Then

(i) (Poincaré inequality) for any F ∈ dom(E ) with E[F ] = 0,

E[F2] ≤
1
2

(eKT + 1)E (F ,F)

(ii) (Log-Sobolev inequality) for any F ∈ dom(E ) with E[F2] = 1,

E[F2 logF2] ≤ (eKT + 1)E (F ,F)

(iii) (Spectral gap estimate) the following estimate holds:

gap(L )−1 ≤
1
2

(eKT + 1)
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