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Outline

@ Sub-Riemannian structures

@ Ricci curvature bounds and gradient estimates

@ Ricci curvature and analysis on path space

© Analysis on path space over sub-Riemannian manifolds
© Ricci curvature bounds in sub-Riemannian geometry
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@ (M,H,gn) where
e M smooth manifold, dimM = n
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I. Sub-Riemannian structures

@ (M,H,gn) where
e M smooth manifold, dimM = n
e H & TM subbundle (“horizontal directions”), rank H=m
e gy fiberwise inner product on H

Sub-Riemannian geometry
= geometry intrinsically associated to (M, H,gn).
o Let

dH(XJ):if;f{fo y(Dldt: ¥(0) =x, y(1) =y, ¥(t) € Hyy Vl‘}

@ H bracket generating (i.e. Lie(H)(x) = TxM for each x € M)
— (M, dy) metric space
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@ Canonical sub-Riemannian Laplacian?
m
AP =" AZ+Z (locally)
i=1

A1, ...,An local orthonormal frame of H,
Z first order term (horizontal vector field)
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m
AP =" AZ+Z (locally)
£

I

A1, ...,An local orthonormal frame of H,
Z first order term (horizontal vector field)

In general, no canonical choice for Z!

Some notation:
@ Consider

. "M > Hc ™™, Ma, V)g, = a(v),

forae T;M, veHy, xeM.
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@ Canonical sub-Riemannian Laplacian?

m
AP =" AZ+Z (locally)
£

I

A1, ...,An local orthonormal frame of H,
Z first order term (horizontal vector field)

In general, no canonical choice for Z!

@ Some notation:
@ Consider

. "M > Hc ™™, Ma, V)g, = a(v),

forae T;M, veHy, xeM.

Note that ker f = Ann H.
© The map #" induces a (degenerate) co-metric gy, 0n T"Mvia

(@Pyg, = # . 8"B)g,-
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@ Let L be a second order partial differential operator on M.
Its symbol (L) is the symmetric, bilinear 2-tensor on T*M
determined by the relation

o(L)(df,dh) = %(L(fh) —~fLh—hLf), f,he C™(M).
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@ Let L be a second order partial differential operator on M.
Its symbol (L) is the symmetric, bilinear 2-tensor on T*M

determined by the relation

o(L)(df,dh) = %(L(fh) —~fLh—hLf), f,he C™(M).

@ A second order PDO L (without constant term) is called
sub-Laplacian with respect to (M, H, gn) if

We write L = AH,
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©@ Example 1 Let u be a (smooth) volume measure on M. Then
APf = div, #7df

is a sub-Laplacian.
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is a sub-Laplacian.
© Example 2 Assume 3 Riemannian metric g on M such that
9IH=gn
Let
TM=He&V, g=gy®gy (whereV:=H").
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©@ Example 1 Let u be a (smooth) volume measure on M. Then
AP = div, " df
is a sub-Laplacian.
© Example 2 Assume 3 Riemannian metric g on M such that
9IH=gn
Let
TM=He&V, g=gy®gy (whereV:=H").

Define
VHf = pryVf = M df

and let A" be the generator of the Dirichlet form
&(f.h) f<va V"hy,, dvolg.

Then A" := —(V")*VH = trace,,V? is a sub-Laplacian.
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In the situation of the last example:
@ Canonical variation of the metric

1
€>0: gei=0n®_gv
] 0: sub-Riemannian limit

d. —» d, =dy (sub-Riemannian distance)
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In the situation of the last example:
@ Canonical variation of the metric

1
e>0: 9e = 0gH®_Qv
] 0: sub-Riemannian limit

d. —» do, =dy (sub-Riemannian distance)

In the limit only horizontal curves have finite length.
@ Observation

el0
Ric% (u,u) — —oco for any horizontal unit vector u
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Natural connections on a sub-Riemannian manifold (M, H, gy)

@ Would like to have a connection V on M which is horizontally
compatible with (H, gw) in the sense that the horizontal
subbundle H is preserved under parallel transport, as well as
its metric gy
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Natural connections on a sub-Riemannian manifold (M, H, gy)

@ Would like to have a connection V on M which is horizontally
compatible with (H, gw) in the sense that the horizontal
subbundle H is preserved under parallel transport, as well as
its metric gy

@ Actually, a metric partial connection
V:T(H)xI'(H)—>T(H), (A,B)~ VaB,

will be sufficient.
@ In terms of the corresponding horizontal Hessian,

V2f=Hessfe [(H*®H*), (V2f)(A,B)= ABf—(VaB)f,
the associated sub-Laplacian A" is given by
AHf = traceHsz, fe C*(M)

the associated sub-Laplacian.
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@ Note that horizontally compatible connections V will always
have torsion T:

VaB-VgA-[A,B]=T(A.B), A,Bel(H).
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@ Note that horizontally compatible connections V will always
have torsion T:

VaB-VgA-[A,B]=T(A.B), A,Bel(H).

@ The map (A,B) — T(A,B) mod H does not depend on the
choice of V.

@ A horizontally compatible connection V is uniquely determined
by its torsion T.

@ Let V be a choice of complement to H. There exists a unique
horizontally compatible partial connection V with

T(H,H) Cc V
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Example Let again (M,g) and gy = g|H. Then TM = H&, V and

9=9gH® gy

Denote by V9 the Levi-Civita connection on M, g.

@ (Bott connection) There is a canonical connection V
preserving the decomposition TM = He V:

(
VyY = r”g
(
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Example Let again (M,g) and gy = g|H. Then TM = H&, V and

g=9gHogv
Denote by V9 the Levi-Civita connection on M, g.

@ (Bott connection) There is a canonical connection V
preserving the decomposition TM = He V:

pry(VYY),  X,Y€eTl(H),
ooy _ IPr(IX YD) X eT(V), Y eT(H).
T e (IX.Y]), X eT(H), Yer(V),
pry(V3Y), X,Yel(V),

@ Vg=0

e its torsion TV(X, Y) is vertical for X and Y horizontal, and zero
if either X or Y is vertical

10/46



Assumptions

@ Let V be a choice of a complement to Hin (M, H, gn).
Let pry and pry, be the corresponding projections. Write V for
the unique partial connection with T(H,H) C V.
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the unique partial connection with T(H,H) C V.

@ We shall extend
VxY, X,Yel(H),

to an affine connection on M as follows:

[ prulX.Y] it Xel(V),Yel(H)
VXY{ grc[x,y] if Xel(H),Yel(V)

while V on V can be an arbitrary partial connection on V in
the direction of V.
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Assumptions
@ Let V be a choice of a complement to Hin (M, H, gn).
Let pry and pry, be the corresponding projections. Write V for
the unique partial connection with T(H,H) C V.

@ We shall extend
VxY, X,Yel(H),

to an affine connection on M as follows:

[ prulX.Y] it Xel(V),Yel(H)
VXY{ grc[x,y] if Xel(H),Yel(V)

while V on V can be an arbitrary partial connection on V in
the direction of V.
@ Connections of this form satisfy the following properties:

@ Dboth H and V are parallel with respect to V
Q@ T(H.H)cV
@ T(H,V)=0.

Conversely, any connection satisfying (i)-(iii) is of this form.
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@ (Metric preserving complement V) For simplicity, assume that
(Lzprygn)(X,X) =0 forallZel(V)and X el (H)

where Lz denotes the Lie derivative with respect to Z.

12/46



@ (Metric preserving complement V) For simplicity, assume that
(Lzprygn)(X,X) =0 forallZel(V)and X el (H)
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Ric(v) = tracey R¥ (v, »)x
The object of our interest is
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@ (Metric preserving complement V) For simplicity, assume that
(Lzprygn)(X,X) =0 forallZel(V)and X el (H)

where Lz denotes the Lie derivative with respect to Z.
@ Let Ric: TM — TM be the Ricci tensor with respect to V:

Ric(v) = tracey R¥ (v, »)x
The object of our interest is
Ric e F((H*®H), RicM :=Ric|H (horizontal Ricci)
@ We have
Ric(v) = pryRiclpryv, veTM,

where pry: TM — H is the projection with kernel V.
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@ Example

Let (M, g) be a Riemannian manifold and gy = g|H such that
TM=HeV, and

1
g=9gH®gy and g.=9gH®—-9gv, £>0.
Then €

’
Ricg, (X, X) = Ric" (X, X) + 2—<J2X,X>H, X eT(H),
E
where for Z € [(V), Jz € [(EndTM) is defined by
(JzX, Vg, =(Z. T (X, Y))yg,

and, for Zy,...,Z; any local vertical frame,
r
Po=" Jzds.
i=1
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@ (Laplacian) For a compatible connection V as above let
AP = traceHViX

be the subelliptic Laplacian (the trace of the Hessian V2 is
taken over H with respect to the inner product gy)
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@ (Laplacian) For a compatible connection V as above let
AP = traceHViX

be the subelliptic Laplacian (the trace of the Hessian V2 is
taken over H with respect to the inner product gy)

@ (Sub-Riemannian Brownian) A sub-Riemannian Brownian
motion is a diffusion process X; with generator A"

@ (Stochastic development) Let Xy = x then
dXi = /[y, 0dBr or dBr= //5} o dX;
where B; is a (classical) Brownian motion in Hy and
/o= UroUy": HM — Hx,M

is stochastic parallel transport along of horizontal vectors
along X (by construction isometries with respect to gy).

Here U; is the horizontal lift of X; to the orthonormal frame
bundle O(H) over M.
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Functional inequalities

@ Consider the semigroup generated by A":
Pif = o2t

We have

Ptf(X) = E[f(XtX) 1{1‘<_{(X)}]’ xeM.
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Functional inequalities

@ Consider the semigroup generated by A":
Pif = e!2"f
We have

Ptf(X) = E[f(XtX) 1{1‘<_{(X)}]’ xeM.

@ Question: How is Ric' related to functional inequalities for P;?
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Il. Ricci curvature bounds and gradient estimates
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Il. Ricci curvature bounds and gradient estimates

@ Let (M,g) be a complete Riemannian manifold and

L=A+Z with Zel(TM)
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Il. Ricci curvature bounds and gradient estimates

@ Let (M,g) be a complete Riemannian manifold and

L=A+Z with Zel(TM)

@ (Bakry-Emery Ricci tensor)
Ric? = Ric-VZ

where Ric?(X,Y) :=Ric(X,Y)—-(VxZ,Y)
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Theorem (classical probabilistic representations)
Let f € Zp(M) and u(x,t) = P:f(x) be the (minimal) solution to
Ju=Lu, ul,_,=".
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Theorem (classical probabilistic representations)
Let f € Zp(M) and u(x,t) = P:f(x) be the (minimal) solution to
Ju=Lu, ul,_,=".
® (Semigroup formula) Then Pyif(x) = BIf(X}) 1<z (x)]-
e (Derivative formula) If f € C}(M) and Ric® bounded below,

(VPi)(x) =E[Q//7 V(X))

where the random transformations Q; € Hom(T, M, T,M) are
defined as solution to the pathwise ODE

th = _Qt RiC/Z/t dt, Qo = ideM

Here
Ricf :=//;" oRicg, o //; € End(TxM)

is the equivariant representation of Ric?.
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@ In particular, if
CD(K,)  Ric?(v,v) 2 K|V, veTM,
for some constant K, then
Qi< e
and

(gradient estimate) |VP:f| < e_KtPt|Vf|, fe C;(M)
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@ In particular, if
CD(K,c0)  Ric?(v,v) = K|vP, veTM,
for some constant K, then

Q< e X

and

(gradient estimate) IVPif| < e KtPy|Vf|, fe CA(M)

@ Actually, for K € R the following two conditions are equivalent:
e CD(K, o) Ric(v,v) > K|v]?, veTM.

o (gradientestimate)  |VPif|<e XPVf|, feCl(M).
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Well-known and classical: Let K be a real constant.
The following conditions are equivalent:
@ (Bakry-Emery lower curvature bound)

CD(K,)  Ric?(X,X)=KIX]?, XeTM;
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o (gradient estimate) for p € [1,c0[ and all f € CZ(M),

VPP < e PKLp, V[P
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Well-known and classical: Let K be a real constant.
The following conditions are equivalent:
@ (Bakry-Emery lower curvature bound)

CD(K,)  Ric?(X,X)=KIX]?, XeTM;
o (gradient estimate) for p € [1,c0[ and all f € CZ(M),
VPP < e P Py VHP;
@ (Poincaré inequality) for p € (1,2] and all f € CZ°(M),
_ g2kt

]
—— PV,

(PP (PPP) <

-1
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Well-known and classical: Let K be a real constant.
The following conditions are equivalent:
@ (Bakry-Emery lower curvature bound)

CD(K,)  Ric?(X,X)=KIX]?, XeTM;
o (gradient estimate) for p € [1,c0[ and all f € CZ(M),
VPP < e P Py VHP;

@ (Poincaré inequality) for p € (1,2] and all f € CZ°(M),

P (Pif2 = (P ?/P)P) < 1ot PV ;
4(p-1) 2K
@ (log-Sobolev inequality) for all f € CZ°(M),
2(1-e72H)

Py(f2log f2) — (P;2) log(P:f?) < AN

19/46



Well-known and classical: Let K be a real constant.
The following conditions are equivalent:
@ (Bakry-Emery lower curvature bound)

CD(K,)  Ric?(X,X)=KIX]?, XeTM;
o (gradient estimate) for p € [1,c0[ and all f € CZ(M),
VPP < e PRt PV 1P;

@ (Poincaré inequality) for p € (1,2] and all f € CZ°(M),

1- —2Kt
= Py

B (P (P2IP)P) < e

4(p—1)
@ (log-Sobolev inequality) for all f € CZ°(M),
21 o f2 2 2 2(1-e7%) 2
P:(f<log <) — (P:f<)log(P:f7) < P VT©.
Many other equivalent statements, e.g., transportation-cost inequalities;
convexity properties of the entropy; Wang'’s dimension-free Harnack
inequalities; Wang’s log-Harnack inequalities, ...
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Comparison with the sub-Riemannian case

@ Example (Heisenberg group H)
X, Y, Zel(H), [X,Y]=2, [X,Z]=[Y,Z]=0
H=span(X,Y), V=R-Z
Let
AP :=X24+ Y2 and Pif = (e2")f
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Comparison with the sub-Riemannian case

@ Example (Heisenberg group H)
X, Y, Zel(H), [X,Y]=2, [X,Z]=[Y,Z]=0
H=span(X,Y), V=R-Z
Let
AP :=X24+ Y2 and Pif = (e2")f

Theorem (Hong-Quan Li, 2006)
AC>0, |VAPiflg, < CPV g, VfeCX(H),

where VHf = pr, Vf.

The constant C must be strictly larger than 1!

20/46



Riemannian geometry

Boundedness of Ric
The problem of characterizing boundedness of Ric in Riemannian
geometry has been solved by A. Naber via analysis on path space:

[Ric| < K (i.e. =K < Ric < K for some constant K > 0)
<= certain functional inequalities on path space
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lll. Ricci curvature and analysis on path space
@ Forfixed T >0, let WT = C([0, T]; M) and
FCor = {WT Sy f(Yyse sy,

O<t<..<th<T, feCf;"(M”)}.

be the class of smooth cylindrical functions on WT.
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be the class of smooth cylindrical functions on WT.
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X[O,T] = {Xti 0 <t< T}
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lil. Ricci curvature and analysis on path space
@ Forfixed T >0, let WT = C([0, T]; M) and
FCor = {WT 3y (Y, ov):
O<th<..<th<T,fe Cg"(M”)}.

be the class of smooth cylindrical functions on WT.

@ Denote
X[O,T] = {Xti 0 <t< T}

@ For Fe ZCyr with F(y) = f(yy.....1,), the intrinsic gradient
is defined as

D{'F(Xjo.1) ZIM,,//”W(XH,.,xtn), te0.7],

where V' denotes the gradient with respect to the i-th
component.
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Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)]
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Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)]
The following conditions are equivalent (K > 0):

@ |Ric?| < K;

@ (Gradient inequality on path space) for F € ¥ Cy°,

-
( [OT])]|5EX[|D(§/F|+K[0 eK’|D,//F|dr}.
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@ (Gradient inequality on path space) for F € ¥ Cy°,

.
VLEFOG )| SEX[IDé/FHKfo "'/’ F| dr}.
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Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)]
The following conditions are equivalent (K > 0):

@ |Ric?| < K;

@ (Gradient inequality on path space) for F € ¥ Cy°,

.
VLEFOG )| SEX[IDé/FIJrKfO "'/’ F| dr}.

@ (L2 gradient inequality on path space) for F € FCo s

2 T
VE[FOG )| seKTEX[ng/FFM j; eK(’_T)ID,//FIZdr}.

Important observation It is sufficient to check the estimates for
very special F € #C;°. Namely:

(i) for F(XX ) = f(X}), and

[0.7]
(i) for 2-point cylindrical functions of the1form
F(XG5.1) = 100) = 510X
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From this observation, equivalence of the following two items
follows:

(i) |Ric?| < K for K > 0;
(i) for fe CZ(M) andt >0,

VP2 < e? PV and
’Vf 9P f i
D) t

2
1
< erEHVf— > /ot VE(X)

+ %(e’“— 1)|Vf|2(xt)}.
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Path space characterization of pinched curvature
Let F e 7 Cy°r with F(y) = f(yt,,...,71,). Consider the gradients:
@ (intrinsic gradient)

n

D/ (X5 1) = > Vitety Mg Vif (K- X
i=1
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Path space characterization of pinched curvature
Let F e 7 Cy°r with F(y) = f(yt,,...,71,). Consider the gradients:
@ (intrinsic gradient)

D/'F(X5 ) Zl,<,,,//”vrxx XX);

@ (damped gradient)
n
DiF (XS 77) = D Tty Qua g Vif (OG-, X))
[O,T] {t<tj} .t t,t; 1 t° s N,
i=1

where Q;, takes values in the linear automorphisms of TthM
satisfying for fixed t > O:
th,r
ar

——o,,,Ric/Z/t, Qii=id; r>t
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Path space characterization of pinched curvature
Let F e 7 Cy°r with F(y) = f(yt,,...,71,). Consider the gradients:
@ (intrinsic gradient)

D/'F(X5 ) Zl,<,,,//”vrxx XX);

@ (damped gradient)
n
DiF (XS 77) = D Tty Qua g Vif (OG-, X))
[O,T] {t<tj} .t t,t; 1 t° s N,
i=1

where Q;, takes values in the linear automorphisms of TthM
satisfying for fixed t > O:
th,r
ar

——o,,,Ric/Z/t, Qii=id; r>t

@ (balanced gradient) For constants kq < ko let
n
_kitke p 4y
D//F(X[)E) T]) Zl{tst,-}e 7 (0 t)//t,tj Vif(th""’Xt);)'

i=1 25/46



Theorem (Path space characterization of pinched curvature)

The following conditions are equivalent:
Q@ ki < Ric? < ko;

@ (Gradient estimate) for any F € ECO .

.
VAEF (X% 1) )| < BIDJ/ F|+ gk "1f e MSE|D!/F|ds;
0
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Theorem (Path space characterization of pinched curvature)
The following conditions are equivalent:
Q@ ki < Ric? < ko;

@ (Gradient estimate) for any F € ECO .

.
VAEF (X% 1) )| < BIDJ/ F|+ gk "1f e MSE|D!/F|ds;
0

@ (Log-Sobolev inequality) for any F € #Cgr and ty <tz in [0, T],
E[BIF (X0} Zel log BLF# (X, 1)1 7

B[ B[P (Xo. 1)1 74 ] Iog ELF2 (X0l 74

o T
<2 f (1 + R f e"“(s")ds)
t t

.
(E|D//F|2 + Rl f e—k1(s—’)E|Dg/F|2ds)dt
t
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Theorem (continuation)

(iv) (Poincaré type inequality) for F € FCy’r and ty <t in [0, T],

E[E[F( x[oﬂ)%g]z] —E[E[F(X[o,n)lﬂfr1 ]2]

t T
[ [ ea)
ty 2 t

_ ko—ky (T _
x(]ElDt// FF+ =5 f eh(s-NE|DY F|2ds) ot.
t
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The theorem allows to characterize
@ Einstein manifolds (Ric is a multiple of the metric g)
@ Ricci solitons (Ric+ Hessf = c Q)
@ manifolds such that Ric = VZ
@ etc
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@ Let £ be the Ornstein-Uhlenbeck operator defined as
generator associated to the Dirichlet form

E(F.F) = U D} F(Xjo.7) dit |-

29/46



@ Let £ be the Ornstein-Uhlenbeck operator defined as
generator associated to the Dirichlet form

-
&(F.F) = EU D} F(Xjo.7) dit |-
0

@ The log-Sobolev inequality or Poincaré inequality on path
space can be used to derive spectral gap-lower bounds for
the operator L.
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@ Let £ be the Ornstein-Uhlenbeck operator defined as
generator associated to the Dirichlet form

E(F.F) = U D} F(Xjo.7) dit |-

@ The log-Sobolev inequality or Poincaré inequality on path
space can be used to derive spectral gap-lower bounds for
the operator L.

@ It is well-known that a log-Sobolev inequality
E[F?log F?] - E[F?]logE[F?] < 2 H(T ki, ko) fo T|D{/ FP(Xjo,7) it
or a Poincaré inequality
E|(F-E[F])?] < H(T,k1,kz)f0T|D{/F|2(X[O,T])dt

for some explicit bound H(T, ky, k), give the spectral gap
lower bound H(T, ki, ko)~ for the operator L.
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IV. Analysis on path space over sub-Riemannian manifolds
(cf. also F. Baudoin, Qi Feng, M. Gordina, J. Funct. Anal. 277 (2019))

Let again V be a partial connection on H, extended as above to a
compatible connection on M.

Weitzenbdck formula
@ Consider the corresponding rough sub-Laplacian

L(V) := traceyV?

(on functions and 1-forms).
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IV. Analysis on path space over sub-Riemannian manifolds
(cf. also F. Baudoin, Qi Feng, M. Gordina, J. Funct. Anal. 277 (2019))

Let again V be a partial connection on H, extended as above to a
compatible connection on M.

Weitzenbdck formula
@ Consider the corresponding rough sub-Laplacian

L(V) := traceyV?

(on functions and 1-forms).

@ Would like to have a Weitzenbéck type commutation formula

of the form:
dLf = (L-Z)df, L=L(V),

where % € ['(End(T*M)).
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@ Let V be the adjoint connectionto V, i.e.
VxY =VxY-T(X,Y).
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@ Let V be the adjoint connectionto V, i.e.
VxY =VxY-T(X,Y).

@ Proposition Let L be a rough sub-Laplacian of a connection
on M. There exists a vector bundle endomorphism

X T'M—-TM

such that
(L-2)df =dLf, feC™(M),

if and only if L = L (V) for some adjoint V of a connection V
that is compatible with (H, gn).
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@ Let V be the adjoint connectionto V, i.e.
VxY =VxY-T(X,Y).

@ Proposition Let L be a rough sub-Laplacian of a connection
on M. There exists a vector bundle endomorphism

X T'M—-TM

such that
(L-2)df =dLf, feC™(M),

if and only if L = L (V) for some adjoint V of a connection V
that is compatible with (H, gn).
@ In this case,

# = Ric¥
where for (a,v) € T*"M& TM,
Ric¥(a)(v) = traceyRY (-, v)a(-)
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@ Proposition (Weitzenbdck formula)
Then, for all f € C*(M),

(L(V)-2)df = dL(V)f = dL(V)f = dAHf
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Derivative formula
o Define Q; = Qy(x) € End(TxM) by

d . ~ A .
EQT = —%/7, Q, Q= idr,m,

where Z = Ric" and Ry, = /7;15?/71.
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Derivative formula
o Define Q; = Qy(x) € End(TxM) by

d 4 a oA
EQtZ—%ﬁ,Qt, Qo = id7,m,

where Z = Ric" and Ry, = /7;19?/7t.

@ (Derivative formula) For P; = e!®+ and f € C*(M), we have

dPif(x) = E[Q} /];  dfy,(x)]

33/46



Integration by parts on path space over a sub-Riemannian
manifold

@ Let (M,H,gy) be a sub-Riemannian manifold equipped with a
compatible connection V and let

L= traceHViX

be defined as the trace of the Hessian V2 over H with respect
to the inner product gy.
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Integration by parts on path space over a sub-Riemannian
manifold

@ Let (M,H,gy) be a sub-Riemannian manifold equipped with a
compatible connection V and let

L= traceHViX

be defined as the trace of the Hessian V2 over H with respect
to the inner product gy.
@ Assume that there is a decomposition TM = H& V such that
@ Dboth H and V are parallel with respect to V
Q T(H.H)cV
Q@ T(H.V)=o0.
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Integration by parts on path space over a sub-Riemannian
manifold

@ Let (M,H,gy) be a sub-Riemannian manifold equipped with a
compatible connection V and let

L= traceHViX

be defined as the trace of the Hessian V2 over H with respect
to the inner product gy.
@ Assume that there is a decomposition TM = H& V such that
@ both H and V are parallel with respect to V
Q T(HHcV
Q@ T(H.V)=o0.
No choice of a Riemannian metric g on M satisfying gln = gn
is required.
Assume again that the complement V metric preserving.
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@ Let X;(x) = X} be the sub-Riemannian Brownian motion with
generator L such that Xp(x) = x and

dBY = //;" odXi(x), By =0e Hy

Recall that B} is a standard Brownian motion in Hy.
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@ Let X;(x) = X} be the sub-Riemannian Brownian motion with
generator L such that Xp(x) = x and

dBY = //;" odXi(x), By =0e Hy

Recall that B} is a standard Brownian motion in Hy.

fOT|h(t)|§Hdt< oo}

which becomes a Hilbert space with inner product

@ (Cameron-Martin space) Let

H= {h: [0, T] = Hy abs. cont.

.
<h1,h2>H—f0 (hy (1), ha(t))y, dt.
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@ Let X;(x) = X} be the sub-Riemannian Brownian motion with
generator L such that Xp(x) = x and

dBY = //;" odXi(x), By =0e Hy

Recall that B} is a standard Brownian motion in Hy.

fOT|h(t)|§Hdt< oo}

which becomes a Hilbert space with inner product

@ (Cameron-Martin space) Let

H= {h: [0, T] = Hy abs. cont.

.
<h1,h2>H—fo (hy (1), ha(t))y, dt.

As usual, we write (h,B¥)z = [ (hs,dB)g,.
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Derivatives on path space of sub-Riemannian manifolds

@ Forfixed T >0, let WT = C([0, T]; M) and

(o)

Sr={WT sy f(y..vm):
O<t<.<thy<T, fe cg°(M”)}

be the class of smooth cylindrical functions on WT.
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Derivatives on path space of sub-Riemannian manifolds
@ Forfixed T >0, let WT = C([0, T]; M) and
FCr ={WT sy f(yy..om,):

O<t<.<thy<T, fe cg°(M”)}
be the class of smooth cylindrical functions on WT.
@ Let the operator A; : TyM — T,M be given by

t
A :fo Ty, (odBf, )

(Note that A;(Hx) € Vi and A¢(Vyx) =0)
@ For an adapted process h with paths in H let

t
S(h)t = ht+f T//S(Ong,hs)
0

t t
0 0
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o (Derivative operator on path space) For F e .7 Cg’ with
F(y) = f(yt,....yt,) and h € H, let

n

DhF(y) = > (/13 df (vt 71,), S(h)1)

i=1
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o (Derivative operator on path space) For F e .%Cy’; with
F(y) = f(yt,....yt,) and h € H, let

n

DhF(y) = > (/13 df (vt 71,), S(h)1)

i=1

@ Motivation For any horizontal curve y on M (starting from x)
with anti-development u = Dev™' () in Hy, we have that

d
de

where the vector field Dy, on path space is defined by

_ Dev(utek): k EH} ={Dnly: heH)}

Daly = //7" (ht+f0tT//s(dus,hs)): s (ht+fotdAshs)

with A = [T, (dug, hs).
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@ Defining D;F € Hy by

DtFZ:

i

Ly 87Gd+ Ay = A1 dif (- 71,)

n
=1

we have .
DhF:f<DtF,ht>ngt.
0

@ The gradient DF is then defined by the relation

(DF,h)u = DnF
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Proposition (Integration by parts formula)

@ ForFe 7 Cgf’T and any adapted process h; with paths in H,
we have

T
E[(DF,h)H]_E[Ff <ht+RiC//tht,dBt>gH]‘
0

@ In particular, for f € C*(M),

t .
E[(//7 " dfx(x-S())] = E[f(Xt(x)) fo (hs +Ric//shs,st)gH].

39/46



Damped gradients
@ For Fe ZCyr with F(y) = f(vy,....7t,), define

Dt 21 {t<tj} ﬁH//[ Qt*t,//tt, dl (ytw-

and r
DnF = (DF,h)y = f D:F dh;
0

"7/h1)
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Damped gradients
@ For Fe ZCyr with F(y) = f(vy,....7t,), define

DiF( 21 B QLT (e v)

and r
DnF = (DF,h)y = f D:F dh;
0

@ (Quasi-invariance) For adapted process h with paths in H one

has .
F(X[O’T]) - F(X[O,T])

Ex[(DF,h)] = lim B .

where
de = //fo dB; +s//‘fdht, Xg =X
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@ Let @;: TyM — T, M be the solution of

Q= ideM, dQ; = —RiC//r Qdt
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@ Let @;: TyM — T, M be the solution of

Q= ideM, dQ; = —RiC//r Qdt

@ For any adapted process h; with paths in H, we then have
t
(BF.hy = (DF. Kz k=0 [ Q5'd,
0

and hence ;
E[(DF,h)x] ZE[Ff (h, BX)g
0
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V. Ricci curvature bounds in sub-Riemannian geometry

@ (Derivative formula on path space)
For Fe #Cg’r and t > 0, we have

D{E[F|.%;] = E[D;F|.%]
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V. Ricci curvature bounds in sub-Riemannian geometry

@ (Derivative formula on path space)
For Fe #Cg’r and t > 0, we have

D{E[F|.%;] = E[D;F|.%]

@ (Semigroup derivative formula)

t
dPtf(v):E[<//t—1dfxt(x),0tv~|—f dA,Q,v>], ve T,M.
0
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Theorem (Characterization of horizontal Ricci curvature)

Assume that V is metric preserving. For a non-negative
constant K the following conditions are equivalent:

@ (Bounded Ricci curvature) the horizontal Ricci curvature
Ric" = Ric|y € End(H) is bounded by K, i.e.

-K <Rict <K
© (Gradient estimate) for any F € # Co’s
-
IDeEx(Flg, < Ex[1DoFg + K [ 61D, Fig, ]
0
© (L2 gradient estimate) for any F € #C2,

.
|DoEx[FII5, < e—KTEX[moF@H +K f e"°|DsF3,, dS]
0
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Theorem (continuation)
@ (Log-Sobolev inequality) for any F € #Cy° andt>0in[0,T],

BB (P21 log Al F¥1 71]| ~ Ex[F2] log B[]
t K T o 5
<2 fo ek(T=") (EX|D,F|§H +5 fr eXE,IDFRR, ds) dr;
@ (Poincaré inequality) for any F € #Cy° andt>0in[0,T],

By |Ex[FI[? |- BAlF?

t T
< f A (ExlD,FlgH + g f eK(s-NE, D, FI5., ds) ar.
0 r

V.
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@ For non-symmetric bounds, i.e. Ky < RicM < K>, one can give
similar equivalent conditions redefining D;F by

n
_ Ky +K:
DiF = Y ueye™ 2 0 gM(id+ Ay - A /17 diF

i=1

@ (Ornstein-Uhlenbeck operator)
For F,G € 7 Cy’; let

.
&(F,G) = E(DF,DG)y = E[ f (DiF.D;G)g, dt}.
0

Integration by parts formula implies the closability of the form.
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@ For non-symmetric bounds, i.e. Ky < RicM < K>, one can give
similar equivalent conditions redefining D;F by

n
_ Ky +K:
DiF = Y ueye™ 2 0 gM(id+ Ay - A /17 diF

i=1

@ (Ornstein-Uhlenbeck operator)
For F,G € 7 Cy’; let

.
&(F,G) = E(DF,DG)y = E[ f (DiF.D;G)g, dt}.
0

Integration by parts formula implies the closability of the form.
@ Let .Z be the generator of the the Dirichlet form

;
&(F,F)= EU D¢FI5,, dt}.
0

Let gap(-Z’) denote its spectral gap.
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Theorem Suppose there exists a constant K > 0 such that
|RicH| <K.

Then
(i) (Poincaré inequality) for any F € dom(&’) with E[F] =0,

E[F?] < %(eKTJr 1)&(F.F)
(i) (Log-Sobolev inequality) for any F € dom(&’) with E[F?] = 1,
E[F?log F?] < (e"T +1)&(F,F)
(iii) (Spectral gap estimate) the following estimate holds:

gap(L) 7" < ~(e"T +1)

N —
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