Brownian motion and Ricci curvature in sub-Riemannian geometry

Anton Thalmaier Université du Luxembourg

(Joint work with Li-Juan Cheng and Erlend Grong)

Journée Analyse et Probabilité

Institut de Mathématiques, Université de Bordeaux

Nov 28, 2019

Outline

- Sub-Riemannian structures
- Ricci curvature bounds and gradient estimates
- Icci curvature and analysis on path space
- Analysis on path space over sub-Riemannian manifolds
- 8 Ricci curvature bounds in sub-Riemannian geometry

- (M, H, g_H) where
 - M smooth manifold, dim M = n
 - $H \subsetneq TM$ subbundle ("horizontal directions"), rank H = m
 - g_H fiberwise inner product on H

- (M, H, g_H) where
 - M smooth manifold, dim M = n
 - $H \subsetneq TM$ subbundle ("horizontal directions"), rank H = m
 - g_H fiberwise inner product on H

Sub-Riemannian geometry

 $\hat{=}$ geometry intrinsically associated to (M, H, g_H) .

- (M, H, g_H) where
 - M smooth manifold, dim M = n
 - $H \subsetneq TM$ subbundle ("horizontal directions"), rank H = m
 - g_H fiberwise inner product on H

Sub-Riemannian geometry

 $\hat{=}$ geometry intrinsically associated to (M, H, g_H) .

Let

$$d_{H}(x,y) = \inf_{\gamma} \left\{ \int_{0}^{1} |\dot{\gamma}(t)| dt \colon \gamma(0) = x, \ \gamma(1) = y, \ \dot{\gamma}(t) \in H_{\gamma(t)} \ \forall t \right\}$$

- (M, H, g_H) where
 - M smooth manifold, dim M = n
 - $H \subsetneq TM$ subbundle ("horizontal directions"), rank H = m
 - g_H fiberwise inner product on H

Sub-Riemannian geometry

 $\hat{=}$ geometry intrinsically associated to (M, H, g_H) .

Let

$$d_{H}(x,y) = \inf_{\gamma} \left\{ \int_{0}^{1} |\dot{\gamma}(t)| \, dt \colon \gamma(0) = x, \ \gamma(1) = y, \ \dot{\gamma}(t) \in H_{\gamma(t)} \ \forall \, t \right\}$$

• *H* bracket generating (i.e. $\text{Lie}(H)(x) = T_x M$ for each $x \in M$) $\implies (M, d_H)$ metric space

$$\Delta^{H} = \sum_{i=1}^{m} A_{i}^{2} + Z \quad \text{(locally)}$$

 A_1, \ldots, A_m local orthonormal frame of H, Z first order term (horizontal vector field)

$$\Delta^{H} = \sum_{i=1}^{m} A_{i}^{2} + Z \quad \text{(locally)}$$

 A_1, \ldots, A_m local orthonormal frame of H, Z first order term (horizontal vector field) In general, no canonical choice for Z!

$$\Delta^{H} = \sum_{i=1}^{m} A_{i}^{2} + Z \quad \text{(locally)}$$

 A_1, \ldots, A_m local orthonormal frame of H, Z first order term (horizontal vector field) In general, no canonical choice for Z!

• Some notation:

Consider

 $\sharp^{H}: T^{*}M \to H \subset TM, \quad \langle \sharp^{H}\alpha, v \rangle_{g_{H}} := \alpha(v),$ for $\alpha \in T_{x}^{*}M, v \in H_{x}, x \in M.$ Note that ker $\sharp^{H} = \text{Ann } H.$

$$\Delta^{H} = \sum_{i=1}^{m} A_{i}^{2} + Z \quad \text{(locally)}$$

 A_1, \ldots, A_m local orthonormal frame of H, Z first order term (horizontal vector field) In general, no canonical choice for Z!

• Some notation:

Consider

$$\sharp^{H}: T^{*}M \to H \subset TM, \quad \langle \sharp^{H}\alpha, v \rangle_{g_{H}} := \alpha(v),$$

for $\alpha \in T_x^*M$, $v \in H_x$, $x \in M$.

Note that ker $\sharp^H = Ann H$.

2 The map $\#^{H}$ induces a (degenerate) co-metric g_{H}^{*} on $T^{*}M$ via

$$\langle \alpha, \beta \rangle_{g_H^*} = \langle \sharp^H \alpha, \sharp^H \beta \rangle_{g_H}.$$

Let L be a second order partial differential operator on M.
 Its symbol σ(L) is the symmetric, bilinear 2-tensor on T*M determined by the relation

$$\sigma(L)(df,dh) = \frac{1}{2}(L(fh) - fLh - hLf), \quad f,h \in C^{\infty}(M).$$

Let L be a second order partial differential operator on M.
 Its symbol σ(L) is the symmetric, bilinear 2-tensor on T*M determined by the relation

$$\sigma(L)(df,dh) = \frac{1}{2}(L(fh) - fLh - hLf), \quad f,h \in C^{\infty}(M).$$

 A second order PDO L (without constant term) is called sub-Laplacian with respect to (M, H, g_H) if

$$\sigma(\mathsf{L})=\mathsf{g}_{\mathsf{H}}^{*}.$$

We write $L = \Delta^H$.

() Example 1 Let μ be a (smooth) volume measure on *M*. Then

 $\Delta^H f = \operatorname{div}_{\mu} \sharp^H df$

is a sub-Laplacian.

① Example 1 Let μ be a (smooth) volume measure on *M*. Then

 $\Delta^H f = \operatorname{div}_{\mu} \sharp^H df$

is a sub-Laplacian.

2 Example 2 Assume \exists Riemannian metric g on M such that $g|H = g_H$

Let

 $TM = H \oplus V$, $g = g_H \oplus g_V$ (where $V := H^{\perp}$).

5 Example 1 Let μ be a (smooth) volume measure on *M*. Then

 $\Delta^H f = \operatorname{div}_{\mu} \sharp^H df$

is a sub-Laplacian.

2 Example 2 Assume \exists Riemannian metric g on M such that $g|H = g_H$

Let

 $TM = H \oplus V$, $g = g_H \oplus g_V$ (where $V := H^{\perp}$).

Define

$$\nabla^H f = \mathrm{pr}_H \nabla f \equiv \ \sharp^H \, df$$

and let Δ^H be the generator of the Dirichlet form

$$\mathcal{E}(f,h) := -\int_{M} \langle \nabla^{H} f, \nabla^{H} h \rangle_{H} d\mathrm{vol}_{g}.$$

Then $\Delta^H := -(\nabla^H)^* \nabla^H = \operatorname{trace}_H \nabla^2$ is a sub-Laplacian.

In the situation of the last example:

• Canonical variation of the metric

$$\varepsilon > 0: \quad g_{\varepsilon} := g_H \oplus \frac{1}{\varepsilon} g_V$$

 $\varepsilon \downarrow 0$: sub-Riemannian limit

 $d_{\varepsilon} \rightarrow d_o = d_H$ (sub-Riemannian distance)

In the situation of the last example:

• Canonical variation of the metric

$$\begin{split} \varepsilon > 0: \quad g_{\varepsilon} &:= g_{H} \oplus \frac{1}{\varepsilon} g_{V} \\ \varepsilon \downarrow 0: \quad \text{sub-Riemannian limit} \\ \quad d_{\varepsilon} \to d_{o} &= d_{H} \quad (\text{sub-Riemannian distance}) \end{split}$$

In the limit only horizontal curves have finite length.

In the situation of the last example:

• Canonical variation of the metric

$$\begin{split} \varepsilon > 0: \quad g_{\varepsilon} &:= g_{H} \oplus \frac{1}{\varepsilon} g_{V} \\ \varepsilon \downarrow 0: \quad \text{sub-Riemannian limit} \\ d_{\varepsilon} &\to d_{o} = d_{H} \quad (\text{sub-Riemannian distance}) \end{split}$$

In the limit only horizontal curves have finite length.

Observation

 $\operatorname{Ric}^{g_{\varepsilon}}(u,u) \xrightarrow{\varepsilon \downarrow 0} -\infty$ for any horizontal unit vector u

Natural connections on a sub-Riemannian manifold (M, H, g_H)

• Would like to have a connection ∇ on M which is horizontally compatible with (H, g_H) in the sense that the horizontal subbundle H is preserved under parallel transport, as well as its metric g_H

Natural connections on a sub-Riemannian manifold (M, H, g_H)

- Would like to have a connection ∇ on M which is horizontally compatible with (H, g_H) in the sense that the horizontal subbundle H is preserved under parallel transport, as well as its metric g_H
- Actually, a metric partial connection

 $\nabla \colon \Gamma(H) \times \Gamma(H) \to \Gamma(H), \quad (A,B) \mapsto \nabla_A B,$

will be sufficient.

Natural connections on a sub-Riemannian manifold (M, H, g_H)

- Would like to have a connection ∇ on M which is horizontally compatible with (H, g_H) in the sense that the horizontal subbundle H is preserved under parallel transport, as well as its metric g_H
- Actually, a metric partial connection

 $\nabla \colon \Gamma(H) \times \Gamma(H) \to \Gamma(H), \quad (A,B) \mapsto \nabla_A B,$

will be sufficient.

• In terms of the corresponding horizontal Hessian,

 $\nabla^2 f \equiv \operatorname{Hess} f \in \Gamma(H^* \otimes H^*), \quad (\nabla^2 f)(A, B) = ABf - (\nabla_A B)f,$

the associated sub-Laplacian Δ^H is given by

$$\Delta^H f = \operatorname{trace}_H \nabla^2 f, \quad f \in C^\infty(M)$$

the associated sub-Laplacian.

 $\nabla_A B - \nabla_B A - [A, B] = \mathbf{T}(A, B), \quad A, B \in \Gamma(H).$

 $\nabla_A B - \nabla_B A - [A, B] = \mathbf{T}(A, B), \quad A, B \in \Gamma(H).$

The map (A, B) → T(A, B) mod H does not depend on the choice of ∇.

 $\nabla_A B - \nabla_B A - [A, B] = \mathbf{T}(A, B), \quad A, B \in \Gamma(H).$

- The map (A, B) → T(A, B) mod H does not depend on the choice of ∇.
- A horizontally compatible connection ∇ is uniquely determined by its torsion **T**.

 $\nabla_A B - \nabla_B A - [A, B] = \mathbf{T}(A, B), \quad A, B \in \Gamma(H).$

- The map (A, B) → T(A, B) mod H does not depend on the choice of ∇.
- A horizontally compatible connection ∇ is uniquely determined by its torsion **T**.
- Let *V* be a choice of complement to *H*. There exists a unique horizontally compatible partial connection ∇ with

 $\mathbf{T}(H,H)\subseteq V$

Example Let again (M, g) and $g_H = g | H$. Then $TM = H \oplus_{\perp} V$ and

 $g = g_H \oplus g_V$

Denote by ∇^g the Levi-Civita connection on M, g.

 (Bott connection) There is a canonical connection ∇ preserving the decomposition TM = H⊕V:

$$\nabla_X Y = \begin{cases} \operatorname{pr}_H(\nabla_X^g Y), & X, Y \in \Gamma(H), \\ \operatorname{pr}_H([X, Y]), & X \in \Gamma(V), Y \in \Gamma(H), \\ \operatorname{pr}_V([X, Y]), & X \in \Gamma(H), Y \in \Gamma(V), \\ \operatorname{pr}_V(\nabla_X^g Y), & X, Y \in \Gamma(V), \end{cases}$$

Example Let again (M,g) and $g_H = g|H$. Then $TM = H \oplus_{\perp} V$ and

 $g = g_H \oplus g_V$

Denote by ∇^g the Levi-Civita connection on M, g.

 (Bott connection) There is a canonical connection ∇ preserving the decomposition TM = H⊕V:

$$\nabla_X Y = \begin{cases} \operatorname{pr}_H(\nabla_X^g Y), & X, Y \in \Gamma(H), \\ \operatorname{pr}_H([X, Y]), & X \in \Gamma(V), Y \in \Gamma(H), \\ \operatorname{pr}_V([X, Y]), & X \in \Gamma(H), Y \in \Gamma(V), \\ \operatorname{pr}_V(\nabla_X^g Y), & X, Y \in \Gamma(V), \end{cases}$$

• $\nabla g = 0$

its torsion T[∇](X, Y) is vertical for X and Y horizontal, and zero if either X or Y is vertical

Assumptions

Let V be a choice of a complement to H in (M, H, g_H).
 Let pr_H and pr_V be the corresponding projections. Write ∇ for the unique partial connection with T(H, H) ⊆ V.

Assumptions

- Let V be a choice of a complement to H in (M, H, g_H).
 Let pr_H and pr_V be the corresponding projections. Write ∇ for the unique partial connection with T(H, H) ⊆ V.
- We shall extend

 $\nabla_X Y$, $X, Y \in \Gamma(H)$,

to an affine connection on *M* as follows:

$$\nabla_X \mathbf{Y} = \begin{cases} \operatorname{pr}_H[X, \mathbf{Y}] & \text{if } X \in \Gamma(V), \mathbf{Y} \in \Gamma(H) \\ \operatorname{pr}_V[X, \mathbf{Y}] & \text{if } X \in \Gamma(H), \mathbf{Y} \in \Gamma(V) \end{cases}$$

while ∇ on *V* can be an arbitrary partial connection on *V* in the direction of *V*.

Assumptions

- Let V be a choice of a complement to H in (M, H, g_H).
 Let pr_H and pr_V be the corresponding projections. Write ∇ for the unique partial connection with T(H, H) ⊆ V.
- We shall extend

 $\nabla_X Y$, $X, Y \in \Gamma(H)$,

to an affine connection on *M* as follows:

$$\nabla_X Y = \begin{cases} \operatorname{pr}_H[X, Y] & \text{if } X \in \Gamma(V), Y \in \Gamma(H) \\ \operatorname{pr}_V[X, Y] & \text{if } X \in \Gamma(H), Y \in \Gamma(V) \end{cases}$$

while ∇ on *V* can be an arbitrary partial connection on *V* in the direction of *V*.

• Connections of this form satisfy the following properties:

both H and V are parallel with respect to ∇

$$\mathbf{T}(H,H) \subseteq \mathbf{V}$$

$$\mathbf{T}(H,\mathbf{V}) = \mathbf{0}.$$

Conversely, any connection satisfying (i)-(iii) is of this form.

• (Metric preserving complement V) For simplicity, assume that

 $(L_Z \operatorname{pr}^*_H g_H)(X, X) = 0$ for all $Z \in \Gamma(V)$ and $X \in \Gamma(H)$

where L_Z denotes the Lie derivative with respect to Z.

• (Metric preserving complement V) For simplicity, assume that

 $(L_Z \operatorname{pr}^*_H g_H)(X, X) = 0$ for all $Z \in \Gamma(V)$ and $X \in \Gamma(H)$

where L_Z denotes the Lie derivative with respect to Z.

• Let Ric: $TM \rightarrow TM$ be the Ricci tensor with respect to ∇ :

 $\operatorname{Ric}(v) = \operatorname{trace}_{H} R^{\nabla}(v, \times) \times$

The object of our interest is

 $\operatorname{Ric}^{H} \in \Gamma(H^{*} \otimes H), \quad \operatorname{Ric}^{H} := \operatorname{Ric}|H \quad (\text{horizontal Ricci})$

• (Metric preserving complement V) For simplicity, assume that

 $(L_Z \operatorname{pr}^*_H g_H)(X, X) = 0$ for all $Z \in \Gamma(V)$ and $X \in \Gamma(H)$

where L_Z denotes the Lie derivative with respect to Z.

• Let Ric: $TM \rightarrow TM$ be the Ricci tensor with respect to ∇ :

 $\operatorname{Ric}(v) = \operatorname{trace}_{H} R^{\nabla}(v, \times) \times$

The object of our interest is

 $\operatorname{Ric}^{H} \in \Gamma(H^{*} \otimes H), \quad \operatorname{Ric}^{H} := \operatorname{Ric}|H \quad (\text{horizontal Ricci})$

• We have

 $\operatorname{Ric}(v) = \operatorname{pr}_{H}\operatorname{Ric}^{H}\operatorname{pr}_{H}v, \quad v \in TM,$

where $pr_H: TM \rightarrow H$ is the projection with kernel V.

Example

Let (M,g) be a Riemannian manifold and $g_H = g|H$ such that $TM = H \oplus V$, and

$$g = g_H \oplus g_V$$
 and $g_\varepsilon = g_H \oplus \frac{1}{\varepsilon} g_V$, $\varepsilon > 0$.
Then

$$\operatorname{Ric}_{g_{\varepsilon}}(X,X) = \operatorname{Ric}^{H}(X,X) + \frac{1}{2\varepsilon} \langle J^{2}X,X \rangle_{H}, \quad X \in \Gamma(H),$$

where for $Z \in \Gamma(V)$, $J_Z \in \Gamma(\text{End}TM)$ is defined by

$$\langle J_Z X, Y \rangle_{g_H} = \langle Z, T^{\nabla}(X, Y) \rangle_{g_V},$$

and, for Z_1, \ldots, Z_r any local vertical frame,

$$J^2 := \sum_{i=1}^r J_{Z_i} J_{Z_i}.$$

• (Laplacian) For a compatible connection ∇ as above let

 $\Delta^{H} = \text{trace}_{H} \nabla^{2}_{\times,\times}$

be the subelliptic Laplacian (the trace of the Hessian ∇^2 is taken over *H* with respect to the inner product g_H)

• (Laplacian) For a compatible connection ∇ as above let

 $\Delta^{H} = \text{trace}_{H} \nabla^{2}_{\times,\times}$

be the subelliptic Laplacian (the trace of the Hessian ∇^2 is taken over *H* with respect to the inner product g_H)

• (Sub-Riemannian Brownian) A sub-Riemannian Brownian motion is a diffusion process X_t with generator Δ^H
• (Laplacian) For a compatible connection ∇ as above let

 $\Delta^{H} = \text{trace}_{H} \nabla^{2}_{\times,\times}$

be the subelliptic Laplacian (the trace of the Hessian ∇^2 is taken over *H* with respect to the inner product g_H)

- (Sub-Riemannian Brownian) A sub-Riemannian Brownian motion is a diffusion process X_t with generator Δ^H
- (Stochastic development) Let $X_0 = x$ then

 $dX_t = //_{0,t} \circ dB_t$ or $dB_t = //_{0,t}^{-1} \circ dX_t$

where B_t is a (classical) Brownian motion in H_x and

 $//_{0,t} := U_t \circ U_0^{-1} : H_x M \to H_{X_t} M$

is *stochastic parallel transport along* of horizontal vectors along *X* (by construction isometries with respect to g_H). Here U_t is the horizontal lift of X_t to the orthonormal frame bundle O(H) over *M*.

Functional inequalities

• Consider the semigroup generated by Δ^{H} :

$$P_t f = e^{t\Delta^H} f$$

We have

 $P_t f(x) = \mathbb{E}[f(X_t^x) \mathbf{1}_{\{t < \zeta(x)\}}], \quad x \in M.$

Functional inequalities

• Consider the semigroup generated by Δ^{H} :

$$P_t f = e^{t\Delta^H} f$$

We have

$$P_t f(x) = \mathbb{E}[f(X_t^x) \mathbb{1}_{\{t < \zeta(x)\}}], \quad x \in M.$$

• Question: How is Ric^{H} related to functional inequalities for P_t ?

II. Ricci curvature bounds and gradient estimates

II. Ricci curvature bounds and gradient estimates

• Let (M,g) be a complete Riemannian manifold and

 $L = \Delta + Z$ with $Z \in \Gamma(TM)$

II. Ricci curvature bounds and gradient estimates

• Let (M,g) be a complete Riemannian manifold and

 $L = \Delta + Z$ with $Z \in \Gamma(TM)$

• (Bakry-Émery Ricci tensor)

 $\operatorname{Ric}^{Z} = \operatorname{Ric} - \nabla Z$

where $\operatorname{Ric}^{Z}(X, Y) := \operatorname{Ric}(X, Y) - \langle \nabla_{X} Z, Y \rangle$

Theorem (classical probabilistic representations)

Let $f \in \mathscr{B}_b(M)$ and $u(x, t) = P_t f(x)$ be the (minimal) solution to $\frac{\partial}{\partial t} u = Lu, \ u|_{t=0} = f.$ Theorem (classical probabilistic representations)

Let $f \in \mathscr{B}_b(M)$ and $u(x,t) = P_t f(x)$ be the (minimal) solution to $\frac{\partial}{\partial t}u = Lu, \ u|_{t=0} = f.$

• (Semigroup formula) Then $P_t f(x) = \mathbb{E}[f(X_t^x) \mathbf{1}_{\{t < \zeta(x)\}}].$

Theorem (classical probabilistic representations)

Let $f \in \mathscr{B}_b(M)$ and $u(x,t) = P_t f(x)$ be the (minimal) solution to $\frac{\partial}{\partial t} u = Lu, \ u|_{t=0} = f.$

- (Semigroup formula) Then $P_t f(x) = \mathbb{E}[f(X_t^x) \mathbf{1}_{\{t < \zeta(x)\}}].$
- (Derivative formula) If $f \in C_b^1(M)$ and Ric^Z bounded below,

$$(\nabla P_t f)(x) = \mathbb{E}\Big[Q_t / / t^{-1} \nabla f(X_t^x)\Big]$$

where the random transformations $Q_t \in \text{Hom}(T_x M, T_x M)$ are defined as solution to the pathwise ODE

$$dQ_t = -Q_t \operatorname{Ric}_{I/_t}^Z dt, \quad Q_0 = \operatorname{id}_{T_x M}.$$

Here

$$\operatorname{Ric}_{//_t}^Z := //_t^{-1} \circ \operatorname{Ric}_{X_t}^Z \circ //_t \in \operatorname{End}(T_x M)$$

is the equivariant representation of Ric^Z.

• In particular, if

$$\operatorname{CD}(K,\infty)$$
 $\operatorname{Ric}^{Z}(v,v) \geq K|v|^{2}, v \in TM,$

for some constant K, then

 $|Q_t| \le e^{-Kt}$

and

(gradient estimate) $|\nabla P_t f| \le e^{-Kt} P_t |\nabla f|, \quad f \in C_b^1(M).$

• In particular, if

$$\operatorname{CD}(K,\infty)$$
 $\operatorname{Ric}^{Z}(v,v) \geq K|v|^{2}, v \in TM,$

for some constant K, then

$$|Q_t| \le e^{-Kt}$$

and

(gradient estimate) $|\nabla P_t f| \le e^{-\kappa t} P_t |\nabla f|, \quad f \in C_b^1(M).$

- Actually, for $K \in \mathbb{R}$ the following two conditions are equivalent:
 - $\operatorname{CD}(K,\infty)$ $\operatorname{Ric}(v,v) \ge K|v|^2, v \in TM.$
 - (gradient estimate) $|\nabla P_t f| \le e^{-Kt} P_t |\nabla f|, \quad f \in C_b^1(M).$

• (Bakry-Émery lower curvature bound)

 $\operatorname{CD}(K,\infty)$ $\operatorname{Ric}^{Z}(X,X) \geq K|X|^{2}, X \in TM;$

• (Bakry-Émery lower curvature bound)

 $\operatorname{CD}(K,\infty)$ $\operatorname{Ric}^{Z}(X,X) \geq K|X|^{2}, X \in TM;$

• (gradient estimate) for $p \in [1, \infty[$ and all $f \in C_c^{\infty}(M)$,

 $|\nabla P_t f|^p \le e^{-\rho K t} P_t |\nabla f|^p;$

• (Bakry-Émery lower curvature bound)

 $\operatorname{CD}(K,\infty)$ $\operatorname{Ric}^{Z}(X,X) \geq K|X|^{2}, X \in TM;$

- (gradient estimate) for $p \in [1, \infty[$ and all $f \in C_c^{\infty}(M)$, $|\nabla P_t f|^p \le e^{-pKt} P_t |\nabla f|^p$;
- (Poincaré inequality) for $p \in (1,2]$ and all $f \in C_c^{\infty}(M)$,

$$\frac{p}{4(p-1)} \left(P_t f^2 - (P_t f^{2/p})^p \right) \le \frac{1 - e^{-2Kt}}{2K} P_t |\nabla f|^2;$$

• (Bakry-Émery lower curvature bound)

 $\operatorname{CD}(K,\infty)$ $\operatorname{Ric}^{Z}(X,X) \geq K|X|^{2}, X \in TM;$

- (gradient estimate) for $p \in [1, \infty[$ and all $f \in C_c^{\infty}(M)$, $|\nabla P_t f|^p \le e^{-pKt} P_t |\nabla f|^p$;
- (Poincaré inequality) for $p \in (1,2]$ and all $f \in C_c^{\infty}(M)$,

$$\frac{p}{4(p-1)} \left(P_t f^2 - (P_t f^{2/p})^p \right) \le \frac{1 - e^{-2Kt}}{2K} P_t |\nabla f|^2;$$

• (log-Sobolev inequality) for all $f \in C_c^{\infty}(M)$,

$$P_t(f^2 \log f^2) - (P_t f^2) \log(P_t f^2) \le \frac{2(1 - e^{-2Kt})}{K} P_t |\nabla f|^2$$

• (Bakry-Émery lower curvature bound)

 $\operatorname{CD}(K,\infty)$ $\operatorname{Ric}^{Z}(X,X) \geq K|X|^{2}, X \in TM;$

- (gradient estimate) for $p \in [1, \infty[$ and all $f \in C_c^{\infty}(M)$, $|\nabla P_t f|^p \le e^{-pKt} P_t |\nabla f|^p$;
- (Poincaré inequality) for $p \in (1,2]$ and all $f \in C_c^{\infty}(M)$,

$$\frac{p}{4(p-1)} \Big(P_t f^2 - (P_t f^{2/p})^p \Big) \le \frac{1 - e^{-2Kt}}{2K} P_t |\nabla f|^2;$$

• (log-Sobolev inequality) for all $f \in C_c^{\infty}(M)$,

$$P_t(f^2 \log f^2) - (P_t f^2) \log(P_t f^2) \le \frac{2(1 - e^{-2Kt})}{K} P_t |\nabla f|^2.$$

Many other equivalent statements, e.g., transportation-cost inequalities; convexity properties of the entropy; Wang's dimension-free Harnack inequalities; Wang's log-Harnack inequalities, ...

Comparison with the sub-Riemannian case

• Example (Heisenberg group
$$\mathbb{H}$$
)
 $X, Y, Z \in \Gamma(\mathbb{H}), \quad [X, Y] = Z, \quad [X, Z] = [Y, Z] = 0$
 $\mathbb{H} = \operatorname{span}(X, Y), \quad V = \mathbb{R} \cdot Z$
Let
 $\Delta^H := X^2 + Y^2 \quad \text{and} \quad P_t f = (e^{t\Delta^H})f$

Comparison with the sub-Riemannian case

• Example (Heisenberg group
$$\mathbb{H}$$
)
 $X, Y, Z \in \Gamma(\mathbb{H}), \quad [X, Y] = Z, \quad [X, Z] = [Y, Z] = 0$
 $\mathbb{H} = \operatorname{span}(X, Y), \quad V = \mathbb{R} \cdot Z$
Let
 $\Delta^{H} := X^{2} + Y^{2} \text{ and } P_{t}f = (e^{t\Delta^{H}})f$

Theorem (Hong-Quan Li, 2006)

 $\exists C > 0, \quad |\nabla^{H} P_{t} f|_{g_{H}} \leq C P_{t} |\nabla^{H} f|_{g_{H}}, \quad \forall f \in C^{\infty}_{c}(\mathbb{H}),$

where $\nabla^{H} f = \text{pr}_{H} \nabla f$.

The constant C must be strictly larger than 1!

Riemannian geometry

Boundedness of Ric

The problem of characterizing boundedness of Ric in Riemannian geometry has been solved by A. Naber via analysis on path space:

 $|\text{Ric}| \le K$ (i.e. $-K \le \text{Ric} \le K$ for some constant $K \ge 0$)

⇐⇒ certain functional inequalities on path space

III. Ricci curvature and analysis on path space

۲

For fixed
$$T > 0$$
, let $W^T = C([0, T]; M)$ and
 $\mathscr{F}C_{0,T}^{\infty} = \{W^T \ni \gamma \mapsto f(\gamma_{t_1}, \dots, \gamma_{t_n}):$
 $0 < t_1 < \dots < t_n \le T, \ f \in C_c^{\infty}(M^n)\}.$

be the class of smooth cylindrical functions on W^{T} .

III. Ricci curvature and analysis on path space

• For fixed
$$T > 0$$
, let $W^T = C([0, T]; M)$ and
 $\mathscr{F}C_{0,T}^{\infty} = \{W^T \ni \gamma \mapsto f(\gamma_{t_1}, \dots, \gamma_{t_n}):$
 $0 < t_1 < \dots < t_n \le T, \ f \in C_c^{\infty}(M^n)\}.$

be the class of smooth cylindrical functions on W^{T} .

Denote

 $X_{[0,T]} = \{X_t: 0 \le t \le T\}.$

III. Ricci curvature and analysis on path space

• For fixed
$$T > 0$$
, let $W^T = C([0, T]; M)$ and
 $\mathscr{F}C^{\infty}_{0,T} = \left\{ W^T \ni \gamma \mapsto f(\gamma_{t_1}, \dots, \gamma_{t_n}) : 0 < t_1 < \dots < t_n \le T, \ f \in C^{\infty}_c(M^n) \right\}$

be the class of smooth cylindrical functions on W^{T} .

Denote

$$X_{[0,T]} = \{ X_t : 0 \le t \le T \}.$$

For F ∈ ℱC[∞]_{0,T} with F(γ) = f(γ_{t1},...,γ_{tn}), the intrinsic gradient is defined as

$$D_t^{//}F(X_{[0,T]}) = \sum_{i=1}^n \mathbf{1}_{\{t < t_i\}} / / _{t,t_i}^{-1} \nabla^i f(X_{t_1}, \ldots, X_{t_n}), \quad t \in [0,T],$$

where ∇^i denotes the gradient with respect to the *i*-th component.

Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)]

Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)] The following conditions are equivalent ($K \ge 0$):

• $|\operatorname{Ric}^{Z}| \leq K$;

Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)] The following conditions are equivalent ($K \ge 0$):

- $|\operatorname{Ric}^{Z}| \leq K;$
- (Gradient inequality on path space) for $F \in \mathcal{F}C_0^{\infty}$,

$$\Big|\nabla_{x}\mathbb{E}[F(X_{[0,T]}^{x})]\Big| \leq \mathbb{E}^{x}\bigg[|D_{0}^{//}F| + K\int_{0}^{T}e^{Kr}|D_{r}^{//}F|\,dr\bigg].$$

Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)] The following conditions are equivalent ($K \ge 0$):

- $|\operatorname{Ric}^{Z}| \leq K;$
- (Gradient inequality on path space) for $F \in \mathcal{F}C_0^{\infty}$,

$$\left| \nabla_{\mathbf{x}} \mathbb{E}[F(X_{[0,T]}^{\mathbf{x}})] \right| \leq \mathbb{E}^{\mathbf{x}} \left[|D_0^{\prime/F}| + K \int_0^T e^{Kr} |D_r^{\prime/F}| dr \right].$$

• (L^2 gradient inequality on path space) for $F \in \mathcal{F}C_0^{\infty}$,

$$\left| \nabla_{x} \mathbb{E}[F(X_{[0,T]}^{x})] \right|^{2} \leq e^{KT} \mathbb{E}^{x} \left[|D_{0}^{//}F|^{2} + K \int_{0}^{T} e^{K(r-T)} |D_{r}^{//}F|^{2} dr \right].$$

Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)] The following conditions are equivalent ($K \ge 0$):

- $|\operatorname{Ric}^{Z}| \leq K;$
- (Gradient inequality on path space) for $F \in \mathcal{F}C_0^{\infty}$,

$$\left| \nabla_{\mathbf{x}} \mathbb{E}[F(X_{[0,T]}^{\mathbf{x}})] \right| \leq \mathbb{E}^{\mathbf{x}} \left[|D_0^{//}F| + K \int_0^T e^{Kr} |D_r^{//}F| dr \right].$$

• (L^2 gradient inequality on path space) for $F \in \mathcal{F}C_0^{\infty}$,

$$\left| \nabla_{\mathbf{X}} \mathbb{E}[F(X_{[0,T]}^{\mathsf{X}})] \right|^2 \le e^{\kappa T} \mathbb{E}^{\mathsf{X}} \left[|D_0^{//}F|^2 + \kappa \int_0^T e^{\kappa(r-T)} |D_r^{//}F|^2 dr \right].$$

Important observation It is sufficient to check the estimates for very special $F \in \mathcal{F}C_0^{\infty}$. Namely:

Theorem [A. Naber (2015) and R. Haslhofer and A. Naber (2018)] The following conditions are equivalent ($K \ge 0$):

- $|\operatorname{Ric}^{Z}| \leq K;$
- (Gradient inequality on path space) for $F \in \mathcal{F}C_0^{\infty}$,

$$\left| \nabla_{\mathbf{x}} \mathbb{E}[F(X_{[0,T]}^{\mathbf{x}})] \right| \leq \mathbb{E}^{\mathbf{x}} \left[|D_0^{//}F| + K \int_0^T e^{Kr} |D_r^{//}F| dr \right].$$

• (L^2 gradient inequality on path space) for $F \in \mathcal{F}C_0^{\infty}$,

$$\left| \nabla_{\mathbf{X}} \mathbb{E}[F(X_{[0,T]}^{\mathbf{X}})] \right|^2 \le e^{KT} \mathbb{E}^{\mathbf{X}} \left[|D_0^{//}F|^2 + K \int_0^T e^{K(r-T)} |D_r^{//}F|^2 dr \right].$$

Important observation It is sufficient to check the estimates for very special $F \in \mathcal{F}C_0^{\infty}$. Namely:

(i) for $F(X_{[0,T]}^x) = f(X_t^x)$, and (ii) for 2-point cylindrical functions of the form $F(X_{[0,T]}^x) = f(x) - \frac{1}{2}f(X_t^x)$ From this observation, equivalence of the following two items follows:

(i) $|\operatorname{Ric}^{Z}| \leq K$ for $K \geq 0$; (ii) for $f \in C_{c}^{\infty}(M)$ and t > 0, $|\nabla P_{t}f|^{2} \leq e^{2Kt}P_{t}|\nabla f|^{2}$ and $\left|\nabla f - \frac{1}{2}\nabla P_{t}f\right|^{2} \leq e^{Kt}\mathbb{E}\left[\left|\nabla f - \frac{1}{2}//_{0,t}^{-1}\nabla f(X_{t})\right|^{2} + \frac{1}{4}\left(e^{Kt} - 1\right)|\nabla f|^{2}(X_{t})\right].$

Path space characterization of pinched curvature

Let $F \in \mathscr{F}C_{0,T}^{\infty}$ with $F(\gamma) = f(\gamma_{t_1}, \dots, \gamma_{t_n})$. Consider the gradients: • (*intrinsic gradient*)

$$D_t^{//}F(X_{[0,T]}^x) = \sum_{i=1}^n \mathbb{1}_{\{t < t_i\}} / / _{t,t_i}^{-1} \nabla_i f(X_{t_1}^x, \dots, X_{t_n}^x);$$

Path space characterization of pinched curvature

Let $F \in \mathscr{F}C_{0,T}^{\infty}$ with $F(\gamma) = f(\gamma_{t_1}, \dots, \gamma_{t_n})$. Consider the gradients: • (*intrinsic gradient*)

$$D_t^{//}F(X_{[0,T]}^x) = \sum_{i=1}^n \mathbf{1}_{\{t < t_i\}} / / _{t,t_i}^{-1} \nabla_i f(X_{t_1}^x, \dots, X_{t_n}^x);$$

• (damped gradient)

$$D_t F(X_{[0,T]}^x) = \sum_{i=1}^n \mathbf{1}_{\{t < t_i\}} Q_{t,t_i} / / {}^{-1}_{t,t_i} \nabla_i f(X_{t_1}^x, \dots, X_{t_n}^x)$$

where $Q_{t,r}$ takes values in the linear automorphisms of $T_{X_t^x}M$ satisfying for fixed $t \ge 0$:

$$\frac{dQ_{t,r}}{dr} = -Q_{t,r} \operatorname{Ric}^{Z}_{//_{t,r}}, \quad Q_{t,t} = \operatorname{id}; \quad r \ge t$$

Path space characterization of pinched curvature

Let $F \in \mathscr{F}C_{0,T}^{\infty}$ with $F(\gamma) = f(\gamma_{t_1}, \dots, \gamma_{t_n})$. Consider the gradients: • (*intrinsic gradient*)

$$D_t^{//}F(X_{[0,T]}^x) = \sum_{i=1}^n \mathbf{1}_{\{t < t_i\}} / / _{t,t_i}^{-1} \nabla_i f(X_{t_1}^x, \dots, X_{t_n}^x);$$

• (damped gradient)

$$D_t F(X_{[0,T]}^x) = \sum_{i=1}^n \mathbb{1}_{\{t < t_i\}} Q_{t,t_i} / / \mathbb{1}_{\{t_i\}} \nabla_i f(X_{t_1}^x, \dots, X_{t_n}^x)$$

where $Q_{t,r}$ takes values in the linear automorphisms of $T_{X_t^x}M$ satisfying for fixed $t \ge 0$:

$$\frac{dQ_{t,r}}{dr} = -Q_{t,r} \operatorname{Ric}^{Z}_{//_{t,r}}, \quad Q_{t,t} = \operatorname{id}; \quad r \ge t$$

• (balanced gradient) For constants $k_1 \le k_2$ let

$$\bar{D}_t^{//}F(X_{[0,T]}^x) = \sum_{i=1}^n \mathbf{1}_{\{t \le t_i\}} e^{-\frac{k_1+k_2}{2}(t_i-t)} / / \frac{1}{t_i} \nabla_i f(X_{t_1}^x, \dots, X_{t_n}^x).$$

Theorem (Path space characterization of pinched curvature)

The following conditions are equivalent:

 $k_1 \leq \operatorname{Ric}^Z \leq k_2;$

(11)

(Gradient estimate) for any $F \in \mathscr{F}C_{0,T}^{\infty}$, $\left|\nabla_{x}\mathbb{E}F(X_{[0,T]}^{x})\right| \leq \mathbb{E}|\bar{D}_{0}^{//}F| + \frac{k_{2}-k_{1}}{2}\int_{0}^{T}e^{-k_{1}s}\mathbb{E}|\bar{D}_{s}^{//}F|ds;$

Theorem (Path space characterization of pinched curvature)

The following conditions are equivalent:

- $k_1 \leq \operatorname{Ric}^Z \leq k_2;$
 - (Gradient estimate) for any $F \in \mathscr{F}C_{0,T}^{\infty}$, $\left|\nabla_{x}\mathbb{E}F(X_{[0,T]}^{x})\right| \leq \mathbb{E}|\bar{D}_{0}^{//}F| + \frac{k_{2}-k_{1}}{2}\int_{0}^{T}e^{-k_{1}s}\mathbb{E}|\bar{D}_{s}^{//}F|\,ds;$

(Log-Sobolev inequality) for any $F \in \mathscr{F}C_{0,T}^{\infty}$ and $t_1 < t_2$ in [0, T],

$$\begin{split} & \mathbb{E}\Big[\mathbb{E}[F^{2}(X_{[0,T]})|\mathscr{F}_{t_{2}}]\log\mathbb{E}[F^{2}(X_{[0,T]})|\mathscr{F}_{t_{2}}]\Big] \\ & -\mathbb{E}\Big[\mathbb{E}[F^{2}(X_{[0,T]})|\mathscr{F}_{t_{1}}]\log\mathbb{E}[F^{2}(X_{[0,T]})|\mathscr{F}_{t_{1}}]\Big] \\ & \leq 2\int_{t_{1}}^{t_{2}}\left(1+\frac{k_{2}-k_{1}}{2}\int_{t}^{T}e^{-k_{1}(s-t)}ds\right) \\ & \times \left(\mathbb{E}|\bar{D}_{t}^{//}F|^{2}+\frac{k_{2}-k_{1}}{2}\int_{t}^{T}e^{-k_{1}(s-t)}\mathbb{E}|\bar{D}_{s}^{//}F|^{2}ds\right)dt. \end{split}$$

Theorem (continuation)

(iv) (Poincaré type inequality) for $F \in \mathscr{F}C_{0,T}^{\infty}$ and $t_1 < t_2$ in [0, T],

$$\mathbb{E}\Big[\mathbb{E}[F(X_{[0,T]})|\mathscr{F}_{t_2}]^2\Big] - \mathbb{E}\Big[\mathbb{E}[F(X_{[0,T]})|\mathscr{F}_{t_1}]^2\Big]$$

$$\leq \int_{t_1}^{t_2} \left(1 + \frac{k_2 - k_1}{2} \int_t^T e^{-k_1(s-t)} ds\right)$$

$$\times \left(\mathbb{E}|\bar{D}_t^{//}F|^2 + \frac{k_2 - k_1}{2} \int_t^T e^{-k_1(s-t)} \mathbb{E}|\bar{D}_s^{//}F|^2 ds\right) dt.$$

The theorem allows to characterize

- Einstein manifolds (Ric is a multiple of the metric g)
- Ricci solitons (Ric + Hessf = c g)
- manifolds such that $\operatorname{Ric} = \nabla Z$
- etc
• Let *L* be the Ornstein-Uhlenbeck operator defined as generator associated to the Dirichlet form

$$\mathcal{E}(F,F) = \mathbb{E}\left[\int_0^T |D_t^{//}F|^2(X_{[0,T]})\,dt\right].$$

• Let *L* be the Ornstein-Uhlenbeck operator defined as generator associated to the Dirichlet form

$$\mathcal{E}(F,F) = \mathbb{E}\left[\int_0^T |D_t^{//}F|^2(X_{[0,T]})\,dt\right].$$

 The log-Sobolev inequality or Poincaré inequality on path space can be used to derive spectral gap-lower bounds for the operator *L*. • Let *L* be the Ornstein-Uhlenbeck operator defined as generator associated to the Dirichlet form

$$\mathcal{E}(F,F) = \mathbb{E}\bigg[\int_0^T |D_t^{//}F|^2(X_{[0,T]})\,dt\bigg].$$

- The log-Sobolev inequality or Poincaré inequality on path space can be used to derive spectral gap-lower bounds for the operator *L*.
- It is well-known that a log-Sobolev inequality

 $\mathbb{E}[F^2 \log F^2] - \mathbb{E}[F^2] \log \mathbb{E}[F^2] \le 2H(T, k_1, k_2) \int_0^T |D_t^{//}F|^2(X_{[0,T]}) dt$

or a Poincaré inequality

$$\mathbb{E}[(F - \mathbb{E}[F])^2] \le H(T, k_1, k_2) \int_0^T |D_t^{//}F|^2(X_{[0,T]}) dt$$

for some explicit bound $H(T, k_1, k_2)$, give the spectral gap lower bound $H(T, k_1, k_2)^{-1}$ for the operator \mathcal{L} .

IV. Analysis on path space over sub-Riemannian manifolds

(cf. also F. Baudoin, Qi Feng, M. Gordina, J. Funct. Anal. 277 (2019))

Let again ∇ be a partial connection on *H*, extended as above to a compatible connection on *M*.

Weitzenböck formula

• Consider the corresponding rough sub-Laplacian

 $L(\nabla) := \operatorname{trace}_{H} \nabla^{2}$

(on functions and 1-forms).

IV. Analysis on path space over sub-Riemannian manifolds

(cf. also F. Baudoin, Qi Feng, M. Gordina, J. Funct. Anal. 277 (2019))

Let again ∇ be a partial connection on *H*, extended as above to a compatible connection on *M*.

Weitzenböck formula

• Consider the corresponding rough sub-Laplacian

 $L(\nabla) := \operatorname{trace}_{H} \nabla^{2}$

(on functions and 1-forms).

 Would like to have a Weitzenböck type commutation formula of the form:

 $dLf = (L - \mathscr{R})df, \quad L = L(\nabla),$

where $\mathscr{R} \in \Gamma(\operatorname{End}(T^*M))$.

• Let $\hat{\nabla}$ be the adjoint connection to $\nabla,$ i.e.

 $\hat{\nabla}_X Y = \nabla_X Y - \mathbf{T}(X, Y).$

• Let $\hat{\nabla}$ be the adjoint connection to ∇ , i.e. $\hat{\nabla}_X Y = \nabla_X Y - \mathbf{T}(X, Y).$

• **Proposition** Let *L* be a rough sub-Laplacian of a connection on *M*. There exists a vector bundle endomorphism

 $\mathscr{R}:T^*M\to T^*M$

such that

 $(L-\mathscr{R})df = dLf, \quad f \in C^{\infty}(M),$

if and only if $L = L(\hat{\nabla})$ for some adjoint $\hat{\nabla}$ of a connection ∇ that is compatible with (H, g_H) .

• Let $\hat{\nabla}$ be the adjoint connection to ∇ , i.e. $\hat{\nabla}_X Y = \nabla_X Y - \mathbf{T}(X, Y).$

• **Proposition** Let *L* be a rough sub-Laplacian of a connection on *M*. There exists a vector bundle endomorphism

 $\mathscr{R}:T^*M\to T^*M$

such that

$$(L-\mathscr{R})df = dLf, \quad f \in C^{\infty}(M),$$

if and only if $L = L(\hat{\nabla})$ for some adjoint $\hat{\nabla}$ of a connection ∇ that is compatible with (H, g_H) .

In this case,

$$\mathscr{R} = \operatorname{Ric}^{\nabla}$$

where for $(\alpha, \nu) \in T^*M \oplus TM$,

 $\operatorname{Ric}^{\nabla}(\alpha)(\mathbf{v}) = \operatorname{trace}_{H} R^{\nabla}(\cdot, \mathbf{v}) \alpha(\cdot)$

• **Proposition** (Weitzenböck formula) Then, for all $f \in C^{\infty}(M)$,

$$\left(L(\hat{\nabla}) - \mathscr{R}\right)$$
df = dL $(\hat{\nabla})$ f = dL (∇) f = d Δ^{H} f

Derivative formula

• Define
$$\hat{Q}_t = \hat{Q}_t(x) \in \text{End}(T_xM)$$
 by

$$\frac{d}{dt}\hat{Q}_t = -\mathscr{R}_{\hat{I}_t}\hat{Q}_t, \quad \hat{Q}_0 = \mathrm{id}_{\mathcal{T}_x\mathcal{M}},$$

where $\mathscr{R} = \operatorname{Ric}^{\nabla}$ and $\mathscr{R}_{\hat{I}_t} = /\hat{I}_t^{-1} \mathscr{R}/\hat{I}_t$.

Derivative formula

• Define
$$\hat{Q}_t = \hat{Q}_t(x) \in \text{End}(T_x M)$$
 by

$$\frac{d}{dt}\hat{Q}_t = -\mathscr{R}_{\hat{I}_t}\hat{Q}_t, \quad \hat{Q}_0 = \mathrm{id}_{\mathcal{T}_x\mathcal{M}},$$

where $\mathscr{R} = \operatorname{Ric}^{\nabla}$ and $\mathscr{R}_{\hat{l}_t} = \hat{l}_t^{-1} \mathscr{R} \hat{l}_t$.

• (Derivative formula) For $P_t = e^{t\Delta_H}$ and $f \in C^{\infty}(M)$, we have

 $dP_t f(x) = \mathbb{E}[\hat{Q}_t^* / \hat{I}_t^{-1} df_{X_t(x)}]$

Integration by parts on path space over a sub-Riemannian manifold

Let (*M*, *H*, *g_H*) be a sub-Riemannian manifold equipped with a compatible connection ∇ and let

 $L = \text{trace}_H \nabla^2_{\times,\times}$

be defined as the trace of the Hessian ∇^2 over *H* with respect to the inner product g_H .

Integration by parts on path space over a sub-Riemannian manifold

 $L = \text{trace}_H \nabla^2_{\times,\times}$

be defined as the trace of the Hessian ∇^2 over *H* with respect to the inner product g_H .

• Assume that there is a decomposition $TM = H \oplus V$ such that

Integration by parts on path space over a sub-Riemannian manifold

 $L = \text{trace}_H \nabla^2_{\times,\times}$

be defined as the trace of the Hessian ∇^2 over *H* with respect to the inner product g_H .

• Assume that there is a decomposition $TM = H \oplus V$ such that

No choice of a Riemannian metric g on M satisfying $g|_H = g_H$ is required.

Assume again that the complement V metric preserving.

• Let $X_t(x) \equiv X_t^x$ be the sub-Riemannian Brownian motion with generator *L* such that $X_0(x) = x$ and

$$dB_t^{x} = //_t^{-1} \circ dX_t(x), \quad B_0 = 0 \in H_x$$

Recall that B_t^{χ} is a standard Brownian motion in H_{χ} .

• Let $X_t(x) \equiv X_t^x$ be the sub-Riemannian Brownian motion with generator *L* such that $X_0(x) = x$ and

$$dB_t^x = //_t^{-1} \circ dX_t(x), \quad B_0 = 0 \in H_x$$

Recall that B^x_t is a standard Brownian motion in H_x.
(Cameron-Martin space) Let

$$\mathbb{H} = \left\{ h : [0, T] \to H_x \text{ abs. cont. } \left| \int_0^T |\dot{h}(t)|_{g_H}^2 dt < \infty \right\}$$

which becomes a Hilbert space with inner product

$$\langle h_1, h_2 \rangle_{\mathbb{H}} = \int_0^T \langle \dot{h}_1(t), \dot{h}_2(t) \rangle_{g_H} dt.$$

• Let $X_t(x) \equiv X_t^x$ be the sub-Riemannian Brownian motion with generator *L* such that $X_0(x) = x$ and

$$dB_t^x = //_t^{-1} \circ dX_t(x), \quad B_0 = 0 \in H_x$$

Recall that B^x_t is a standard Brownian motion in H_x.
(Cameron-Martin space) Let

$$\mathbb{H} = \left\{ h : [0, T] \to H_x \text{ abs. cont. } \left| \int_0^T |\dot{h}(t)|_{g_H}^2 dt < \infty \right\}$$

which becomes a Hilbert space with inner product

$$\langle h_1, h_2 \rangle_{\mathbb{H}} = \int_0^T \langle \dot{h}_1(t), \dot{h}_2(t) \rangle_{g_H} dt.$$

As usual, we write $\langle h, B^{x} \rangle_{\mathbb{H}} = \int_{0}^{t} \langle \dot{h}_{s}, dB_{s}^{x} \rangle_{g_{H}}$.

Derivatives on path space of sub-Riemannian manifolds

• For fixed T > 0, let $W^T = C([0, T]; M)$ and

$$\mathscr{F}C_{0,T}^{\infty} = \left\{ W^T \ni \gamma \mapsto f(\gamma_{t_1}, \dots, \gamma_{t_n}) : \\ 0 < t_1 < \dots < t_n \le T, \ f \in C_c^{\infty}(M^n) \right\}$$

be the class of smooth cylindrical functions on W^{T} .

Derivatives on path space of sub-Riemannian manifolds

• For fixed
$$T > 0$$
, let $W^T = C([0, T]; M)$ and

$$\mathscr{F}C_{0,T}^{\infty} = \left\{ W^T \ni \gamma \mapsto f(\gamma_{t_1}, \dots, \gamma_{t_n}) : \\ 0 < t_1 < \dots < t_n \le T, \ f \in C_c^{\infty}(M^n) \right\}$$

be the class of smooth cylindrical functions on W^{T} .

• Let the operator $A_t : T_x M \to T_x M$ be given by

$$\mathbf{A}_t = \int_0^t \mathbf{T}_{//_t} (\circ d\mathbf{B}_t^x, \cdot)$$

(Note that $A_t(H_x) \subseteq V_x$ and $A_t(V_x) = 0$)

• For an adapted process h with paths in $\mathbb H$ let

$$S(h)_t = h_t + \int_0^t \mathbf{T}_{//s}(\circ dB_s^x, h_s)$$
$$= h_t + \int_0^t dA_s h_s = \int_0^t (\mathrm{id} + A_t + A_s) dh_s$$

• (Derivative operator on path space) For $F \in \mathscr{F}C_{0,T}^{\infty}$ with $F(\gamma) = f(\gamma_{t_1}, \dots, \gamma_{t_n})$ and $h \in \mathbb{H}$, let

$$D_h F(\gamma) = \sum_{i=1}^n \left\langle //_{t_i}^{-1} d_i f(\gamma_{t_1}, \ldots, \gamma_{t_n}), S(h)_{t_i} \right\rangle$$

• (Derivative operator on path space) For $F \in \mathscr{F}C_{0,T}^{\infty}$ with $F(\gamma) = f(\gamma_{t_1}, \dots, \gamma_{t_n})$ and $h \in \mathbb{H}$, let

$$D_h F(\gamma) = \sum_{i=1}^n \left\langle //_{t_i}^{-1} d_i f(\gamma_{t_1}, \ldots, \gamma_{t_n}), S(h)_{t_i} \right\rangle$$

• Motivation For any horizontal curve γ on M (starting from x) with anti-development $u = \text{Dev}^{-1}(\gamma)$ in H_x , we have that

$$\left\{\frac{d}{d\varepsilon}\Big|_{\varepsilon=0}\operatorname{Dev}(u+\varepsilon k)\colon k\in\mathbb{H}\right\} = \left\{D_h|_{\gamma}\colon h\in\mathbb{H}\right\}$$

where the vector field D_h on path space is defined by

$$D_h|_{\gamma} = //{t^{-1}} \left(h_t + \int_0^t \mathbf{T}_{//s} (du_s, h_s) \right) = //{t^{-1}} \left(h_t + \int_0^t dA_s h_s \right)$$

with $A_t = \int_0^t \mathbf{T}_{1/s}(du_s, h_s)$.

• Defining $D_t F \in H_x$ by

$$D_t F := \sum_{i=1}^n \mathbb{1}_{\{t \le t_i\}} \#^H (\mathrm{id} + A_{t_i} - A_t)^* / / _{t_i}^{-1} d_i f(\gamma_{t_1}, \ldots, \gamma_{t_n}),$$

we have

$$D_h F = \int_0^t \langle D_t F, \dot{h}_t \rangle_{g_H} dt.$$

• The gradient DF is then defined by the relation

 $\langle DF,h\rangle_{\mathbb{H}} = D_hF$

Proposition (Integration by parts formula)

For *F* ∈ 𝔅 *C*[∞]_{0,T} and any adapted process *h*^t with paths in ℍ, we have

$$\mathbb{E}[\langle DF,h\rangle_{\mathbb{H}}] = \mathbb{E}\bigg[F\int_0^T \langle \dot{h}_t + \operatorname{Ric}_{//t}h_t, dB_t\rangle_{g_H}\bigg].$$

• In particular, for $f \in C^{\infty}(M)$,

$$\mathbb{E}\left[\langle //_{t}^{-1}df_{X_{t}(x)}, S(h)_{t}\rangle\right] = \mathbb{E}\left[f(X_{t}(x))\int_{0}^{t}\langle \dot{h}_{s} + \operatorname{Ric}_{//_{s}}h_{s}, dB_{s}\rangle_{g_{H}}\right].$$

Damped gradients

• For
$$F \in \mathscr{F}C_{0,T}^{\infty}$$
 with $F(\gamma) = f(\gamma_{t_1}, \dots, \gamma_{t_n})$, define

$$\tilde{D}_{t}F(\gamma) := \sum_{i=1}^{n} \mathbf{1}_{\{t \leq t_{i}\}} \sharp^{H} / / t^{-1} \hat{Q}_{t,t_{i}}^{*} / \hat{f}_{t,t_{i}}^{-1} d_{i}f(\gamma_{t_{1}}, \ldots, \gamma_{t_{n}})$$

and

$$\tilde{D}_h F = \langle \tilde{D}F, h \rangle_{\mathbb{H}} = \int_0^T \tilde{D}_t F \, dh_t$$

Damped gradients

• For
$$F \in \mathscr{F}C^{\infty}_{0,T}$$
 with $F(\gamma) = f(\gamma_{t_1}, \ldots, \gamma_{t_n})$, define

$$\tilde{D}_{t}F(\gamma) := \sum_{i=1}^{n} \mathbf{1}_{\{t \leq t_{i}\}} \#^{H} / / t^{-1} \hat{Q}_{t,t_{i}}^{*} / \hat{f}_{t,t_{i}}^{-1} d_{i}f(\gamma_{t_{1}}, \ldots, \gamma_{t_{n}})$$

and

$$ilde{D}_h F = \langle ilde{D}F, h
angle_{\mathbb{H}} = \int_0^T ilde{D}_t F \, dh_t$$

• (Quasi-invariance) For adapted process *h* with paths in \mathbb{H} one has

$$\mathbb{E}_{\mathsf{X}}[\langle \tilde{D}F,h\rangle_{\mathbb{H}}] = \lim_{\varepsilon \to 0} \mathbb{E}\left[\frac{F(X_{[0,T]}^{\varepsilon}) - F(X_{[0,T]})}{\varepsilon}\right]$$

where

$$dX_t^{\varepsilon} = //{}_t^{\varepsilon} \circ dB_t + \varepsilon //{}_t^{\varepsilon} dh_t, \quad X_0^{\varepsilon} = x$$

• Let $Q_t : T_X M \to T_X M$ be the solution of

 $Q_0 = \mathrm{id}_{T_x M}, \quad dQ_t = -\mathrm{Ric}_{H_t} Q_t dt$

• Let $Q_t : T_X M \to T_X M$ be the solution of

 $Q_0 = \mathrm{id}_{T_xM}, \quad dQ_t = -\mathrm{Ric}_{H_t}Q_t dt$

• For any adapted process h_t with paths in \mathbb{H} , we then have

$$\langle \tilde{D}F,h \rangle_{\mathbb{H}} = \langle DF,k \rangle_{\mathbb{H}}, \quad k_t = Q_t \int_0^t Q_s^{-1} dh_s$$

and hence

$$\mathbb{E}[\langle \tilde{D}F,h
angle_{\mathbb{H}}] = \mathbb{E}\left[F\int_{0}^{T}\langle h,B^{\mathsf{x}}
angle_{\mathbb{H}}
ight]$$

V. Ricci curvature bounds in sub-Riemannian geometry

• (Derivative formula on path space)

For $F \in \mathscr{F}C_{0,T}^{\infty}$ and t > 0, we have

 $D_t \mathbb{E}[F|\mathscr{F}_t] = \mathbb{E}[\tilde{D}_t F|\mathscr{F}_t]$

V. Ricci curvature bounds in sub-Riemannian geometry

• (Derivative formula on path space) For $F \in \mathscr{F}C^{\infty}_{0,T}$ and t > 0, we have

 $D_t \mathbb{E}[F|\mathscr{F}_t] = \mathbb{E}[\tilde{D}_t F|\mathscr{F}_t]$

• (Semigroup derivative formula)

$$dP_t f(\mathbf{v}) = \mathbb{E}\left[\left\langle //{t \choose t} df_{X_t(\mathbf{x})}, Q_t \mathbf{v} + \int_0^t dA_r Q_r \mathbf{v} \right\rangle \right], \quad \mathbf{v} \in T_{\mathbf{x}} M.$$

Theorem (Characterization of horizontal Ricci curvature)

Assume that V is metric preserving. For a non-negative constant K the following conditions are equivalent:

● (Bounded Ricci curvature) the horizontal Ricci curvature $Ric^{H} = Ric|_{H} \in End(H)$ is bounded by K, i.e.

 $-K \leq Ric^H \leq K$

2 (Gradient estimate) for any $F \in \mathscr{F}C_0^{\infty}$,

$$|D_0\mathbb{E}_x[F]|_{g_H} \leq \mathbb{E}_x\Big[|D_0F|_{g_H} + K\int_0^T e^{Ks}|D_sF|_{g_H}\,ds\Big]$$

3 (L² gradient estimate) for any $F \in \mathscr{F}C_0^{\infty}$,

$$|D_0 \mathbb{E}_x[F]|_{g_H}^2 \le e^{-KT} \mathbb{E}_x \Big[|D_0 F|_{g_H}^2 + K \int_0^T e^{Ks} |D_s F|_{g_H}^2 \, ds \Big]$$

Theorem (continuation)

(Log-Sobolev inequality) for any $F \in \mathscr{F}C_0^{\infty}$ and t > 0 in [0, T],

$$\begin{split} & \mathbb{E}_{X}\Big[\mathbb{E}_{X}[F^{2}|\mathscr{F}_{t}]\log\mathbb{E}_{X}[F^{2}|\mathscr{F}_{t}]\Big] - \mathbb{E}_{X}[F^{2}]\log\mathbb{E}_{X}[F^{2}]\\ & \leq 2\int_{0}^{t}e^{K(T-r)}\left(\mathbb{E}_{X}|D_{r}F|_{g_{H}}^{2} + \frac{K}{2}\int_{r}^{T}e^{K(s-r)}\mathbb{E}_{X}|D_{s}F|_{g_{H}}^{2}ds\right)dr; \end{split}$$

(Poincaré inequality) for any $F \in \mathscr{F}C_0^{\infty}$ and t > 0 in [0, T],

$$\mathbb{E}_{x}\left[\mathbb{E}_{x}[F|\mathscr{F}_{t}]^{2}\right] - \mathbb{E}_{x}[F]^{2}$$

$$\leq \int_{0}^{t} e^{K(T-r)} \left(\mathbb{E}_{x}|D_{r}F|_{g_{H}}^{2} + \frac{K}{2}\int_{r}^{T} e^{K(s-r)}\mathbb{E}_{x}|D_{s}F|_{g_{H}}^{2} ds\right) dr.$$

• For non-symmetric bounds, i.e. $K_1 \le \text{Ric}^H \le K_2$, one can give similar equivalent conditions redefining $\overline{D}_t F$ by

$$\bar{D}_t F = \sum_{i=1}^n \mathbf{1}_{\{t \le t_i\}} e^{-\frac{K_1 + K_2}{2} (t_i - t)} \sharp^H (\mathrm{id} + A_{t_i} - A_t)^* / / \frac{1}{t_i} d_i F$$

• (Ornstein-Uhlenbeck operator)

For $F, G \in \mathscr{F}C^{\infty}_{0,T}$ let

$$\mathscr{E}(F,G) = \mathbb{E}\langle DF, DG \rangle_{\mathbb{H}} = \mathbb{E}\left[\int_0^T \langle D_t F, D_t G \rangle_{g_H} dt\right].$$

Integration by parts formula implies the closability of the form.

• For non-symmetric bounds, i.e. $K_1 \le \text{Ric}^H \le K_2$, one can give similar equivalent conditions redefining $\overline{D}_t F$ by

$$\bar{D}_t F = \sum_{i=1}^n \mathbf{1}_{\{t \le t_i\}} e^{-\frac{K_1 + K_2}{2} (t_i - t)} \sharp^H (\mathrm{id} + A_{t_i} - A_t)^* / / \frac{1}{t_i} d_i F$$

• (Ornstein-Uhlenbeck operator)

For $F, G \in \mathscr{F}C^{\infty}_{0,T}$ let

$$\mathscr{E}(F,G) = \mathbb{E}\langle DF, DG \rangle_{\mathbb{H}} = \mathbb{E}\left[\int_{0}^{T} \langle D_{t}F, D_{t}G \rangle_{g_{H}} dt\right].$$

Integration by parts formula implies the closability of the form.

 $\bullet\,$ Let ${\mathscr L}$ be the generator of the the Dirichlet form

$$\mathscr{E}(F,F) = \mathbb{E}\bigg[\int_0^T |D_t F|_{g_H}^2 dt\bigg].$$

Let $gap(\mathscr{L})$ denote its spectral gap.

Theorem Suppose there exists a constant $K \ge 0$ such that

 $|\operatorname{Ric}^{H}| \leq K.$

Then

(i) (Poincaré inequality) for any $F \in \text{dom}(\mathscr{E})$ with $\mathbb{E}[F] = 0$,

$$\mathbb{E}[F^2] \leq \frac{1}{2}(e^{KT}+1)\mathscr{E}(F,F)$$

(ii) (Log-Sobolev inequality) for any $F \in \text{dom}(\mathscr{E})$ with $\mathbb{E}[F^2] = 1$, $\mathbb{E}[F^2 \log F^2] \le (e^{KT} + 1)\mathscr{E}(F, F)$

(iii) (Spectral gap estimate) the following estimate holds:

$$\operatorname{gap}(\mathscr{L})^{-1} \leq \frac{1}{2} (e^{KT} + 1)$$