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Abstract

We construct conjugate operators for the real part of a completely non
unitary isometry and we give applications to the spectral and scattering the-
ory of a class of operators on (complete) Fock spaces, natural generalizations
of the Schrödinger operators on trees. We considerC∗-algebras generated by
such Hamiltonians with certain types of anisotropy at infinity, we compute
their quotient with respect to the ideal of compact operators, and give formu-
las for the essential spectrum of these Hamiltonians.

1 Introduction

The Laplace operator on a graph Γ acts on functions f : Γ → C according to the
relation

(∆f)(x) =
∑

y↔x

(f(y) − f(x)), (1.1)

where y ↔ x means that x and y are connected by an edge. The spectral analysis
and the scattering theory of the operators on `2(Γ) associated to expressions of the
form L = ∆+V , where V is a real function on Γ, is an interesting question which
does not seem to have been much studied (we have in mind here only situations
involving non trivial essential spectrum).

1



Our interest on these questions has been aroused by the work of C. Allard and
R. Froese [All, AlF] devoted to the case when Γ is a binary tree: their main results
are the construction of a conjugate operator for L under suitable conditions on the
potential V and the proof of the Mourre estimate. As it is well known, this allows
one to deduce various non trivial spectral properties of L, for example the absence
of the singularly continuous spectrum.

The starting point of this paper is the observation that if Γ is a tree then `2(Γ)
can be naturally viewed as a Fock space1 over a finite dimensional Hilbert space
and that the operator L has a very simple interpretation in this framework. This
suggests the consideration of a general class of operators, abstractly defined only
in terms of the Fock space structure. Our purpose then is twofold: first, to construct
conjugate operators for this class of operators, hence to point out some of their
basic spectral properties, and second to reconsider the kind of anisotropy studied
in [Gol] in the present framework.

It seems interesting to emphasize the non technical character of our approach:
once the correct objects are isolated (the general framework, the notion of number
operator associated to an isometry, the C∗-algebras of anisotropic potentials), the
proofs are very easy, of a purely algebraic nature, the arguments needed to justify
some formally obvious computations being very simple.

We recall the definition of a ν-fold tree with origin e, where ν is a positive
integer and ν = 2 corresponds to a binary tree (see [Gol]). LetA be a set consisting
of ν elements and let

Γ =
⋃

n≥0

An (1.2)

where An is the n-th Cartesian power of A. If n = 0 then A0 consists of a single
element that we denote e. An element x = (a1, a2, . . . , an) ∈ An is written
x = a1a2 . . . an and if y = b1b2 . . . bm ∈ Am then xy = a1a2 . . . anb1b2 . . . bn ∈
An+m with the convention xe = ex = x. This provides Γ with a monoïd structure.
The graph structure on Γ is defined as follows: x↔ y if and only if there is a ∈ A
such that y = xa or x = ya.

We embed Γ in `2(Γ) by identifying x ∈ Γ with the characteristic function
of the set {x}. Thus Γ becomes the canonical orthonormal basis of `2(Γ). In
particular, linear combinations of elements of Γ are well defined elements of `2(Γ),
for example

∑
a∈A a belongs to `2(Γ) and has norm equal to

√
ν.

Due to the monoïd structure of Γ, each element v of the linear subspace gen-
erated by Γ in `2(Γ) defines two bounded operators λv and ρv on `2(Γ), namely
the operators of left and right multiplication by v. It is then easy to see that if

1 Note that we use the notion of Fock space in a slightly unusual sense, since no symmetrization
or anti-symmetrization is involved in its definition. Maybe we should say “Boltzmann-Fock space”.
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v =
∑

a∈A a then the adjoint operator ρ∗v acts as follows: if x ∈ Γ then ρ∗vx = x′,
where x′ = 0 if x = e and x′ is the unique element in Γ such that x = x′a for some
a ∈ A otherwise. Thus the Laplace operator defined by (1.1) can be expressed as
follows:

∆ = ρv + ρ∗v + e− (ν + 1)

In the rest of this paper we shall not include in ∆ the terms e − (ν + 1) because
e is a function on Γ with support equal to {e}, hence can be considered as part of
the potential, and ν+1 is a number, so has a trivial contribution to the spectrum. It
will also be convenient to renormalize ∆ by replacing v by a vector of norm 1/2,
hence by v/(2

√
ν) if v =

∑
a∈A a.

We shall explain now how to pass from trees to Fock spaces. We use the fol-
lowing equality (or, rather, canonical isomorphism): if A,B are sets, then

`2(A×B) = `2(A) ⊗ `2(B).

Thus `2(An) = `2(A)⊗n if n ≥ 1 and clearly `2(A0) = C. Then, since the union
in (1.2) is disjoint, we have

`2(Γ) =
∞⊕

n=0

`2(An) =
∞⊕

n=0

`2(A)⊗n

which is the Fock space constructed over the “one particle” Hilbert space H =
`2(A). Thus we are naturally led to the following abstract framework. Let H be a
complex Hilbert space and let H be the Fock space associated to it:

H =

∞⊕

n=0

H⊗n. (1.3)

Note that H could be infinite dimensional, but this is not an important point here
and in the main applications we assume it finite dimensional. We choose an arbi-
trary vector u ∈ H with ‖u‖ = 1 and consider the operator U ≡ ρu : H → H

defined by Uf = f ⊗ u if f ∈ H⊗n. It is clear that U is an isometry on H and
the self-adjoint operator of interest for us is

∆ = Re U =
1

2
(U + U∗), (1.4)

our purpose being to study perturbations L = ∆ + V where the conditions on V
are suggested by the Fock space structure of H . In the second part of the paper we
shall replace ∆ by an arbitrary self-adjoint operator in the C ∗-algebra generated
by U .
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Translating the problem into a Fock space language does not solve it. The
main point of the first part of our paper is that we treat a more general problem.
The question is: given an arbitrary isometry on a Hilbert space H and defining ∆
by (1.4), can one construct a conjugate operator for it? We also would like that this
conjugate operator be relatively explicit and simple, because we should be able to
use it also for perturbations L of ∆.

If U is unitary, there is no much hope to have an elegant solution to this prob-
lem. Indeed, for most unitary U the spectrum of ∆ will be purely singular. On the
other hand, we show that in the opposite case of completely non unitary U , there is
a very simple prescription for the construction of a ”canonical” conjugate operator.
Sections 2 and 3 are devoted to this question in all generality and in Section 4 we
give applications in the Fock space framework.

The construction is easy and elementary. Let U be an isometry on a Hilbert
space H . We call number operator associated to U a self-adjoint operator N
on H such that UNU ∗ = N − 1. The simplest examples of such operators are
described in Examples 2.5 and 2.6. It is trivial then to check that, if S is the
imaginary part of U , the operator A := (SN +NS)/2, satisfies [∆, iA] = 1−∆2,
hence we have a (strict) Mourre estimate on [−a, a] for each a ∈]0, 1[.

The intuition behind this construction should be immediate for people using
the positive commutator method: in Examples 2.5 and 2.6 the operator ∆ is the
Laplacian on Z or N respectively and S is the operator of derivation, the analog
of P = −i d

dx on R, so it is natural to look after something similar to the position
operator Q and then to consider the analog of (PQ + QP )/2. Note that we got
such a simple prescription because we did not make a Fourier transform in order to
realize ∆ as a multiplication operator, as it is usually done when studying discrete
Laplacians (e.g. in [AlF]). Note also that the relation UNU ∗ = N − 1 is a discrete
version of the canonical commutation relations, cf. (2) of Lemma 2.4.

In the unitary case the existence of N is a very restrictive condition, see Ex-
ample 2.5. The nice thing is that in the completely non unitary case N exists and
is uniquely defined. This is an obvious fact: the formal solution of the equation
N = 1 + UNU ∗ obtained by iteration N = 1 + UU ∗ + U2U∗2 + . . . exists as a
densely defined self-adjoint operator if and only if U ∗n → 0 strongly on H , which
means that U is completely non unitary. Finally, observe that the operators ρu on
the Fock space are completely non unitary, so we can apply them this construction.

Our notation N should not be confused with that used in [AlF]: our N is
proportional to their R − N + 1, in our notations R being the particle number
operator N (see below). We could have used the notation Q for our N , in view of
the intuition mentioned above. We have preferred not to do so, because the number
operator associated to U in the tree case has no geometric interpretation, as we
explain below.
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There is no essential difference between the tree model and the Fock space
model, besides the fact that we tend to emphasize the geometric aspects in the first
representation and the algebraic aspects in the second one. In fact, if H is a finite
dimensional Hilbert space equipped with an orthonormal basisA ⊂ H then the tree
Γ associated to A can be identified with the orthonormal basis of H canonically
associated to A, namely the set of vectors of the form a1⊗a2 · · ·⊗an with ak ∈ A.
In other terms, giving a tree is equivalent with giving a Fock space over a finite
dimensional Hilbert space equipped with a certain orthonormal basis. However,
this gives more structure than usual on a Fock space: the notions of positivity and
locality inherent to the space `2(Γ) are missing in the pure Fock space situation,
there is no analog of the spaces `p(Γ), etc. But our results show that this structure
specific to the tree is irrelevant for the spectral and scattering properties of L.

We stress, however, that an important operator in the Fock space setting has a
simple geometric interpretation in any tree version. More precisely, let N be the
particle number operator defined on H by the condition Nf = nf if f belongs
to H⊗n. Clearly, if H is represented as `2(Γ), then N becomes the operator of
multiplication by the function d, where d(x) ≡ d(x, e) is the distance from the
point x to the origin e (see [Gol]).

On the other hand, the number operator N associated to an isometry of the
form U = ρu is quite different from N , it has not a simple geometrical meaning
and is not a local operator in the tree case, unless we are in rather trivial situations
like the case ν = 1 (see Example 2.6). For this reason we make an effort in
Section 4 to eliminate the conditions from Section 3 involving the operator N and
to replace them by conditions involving N . This gives us statements like that of
the Theorem 1.1 below, a particular case of our main result concerning the spectral
and scattering theory of the operators L.

We first have to introduce some notations. Let 1n and 1≥n be the orthogonal
projections of H onto the subspaces H⊗n and

⊕
k≥nH

⊗k respectively. For real
s let H(s) be the Hilbert space defined by the norm

‖f‖2 = ‖10f‖2 +
∑

n≥1

n2s‖1nf‖2.

If T is an operator on a finite dimensional space E then 〈T 〉 is its normalized trace:
〈T 〉 = Tr(T )/dimE. We denote by σess(L) and σp(L) the essential spectrum and
the set of eigenvalues of L. As a consequence of Theorem 4.6, we have:

Theorem 1.1 Assume that H is finite dimensional, choose u ∈ H with ‖u‖ =
1, and let us set ∆ = (ρu + ρ∗u)/2. Let V be a self-adjoint operator of the
form V =

∑
n≥0 Vn1n, with Vn ∈ B(H⊗n), limn→∞ ‖Vn‖ = 0, and such that

‖Vn − 〈Vn〉‖ + ‖Vn+1 − Vn ⊗ 1H‖ ≤ δ(n) where δ is a decreasing function
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such that
∑

n δ(n) < ∞. Let W be a bounded self-adjoint operator satisfying∑
n ‖W1≥n‖ <∞. We set L0 = ∆ + V and L = L0 +W . Then:

(1) σess(L) = [−1,+1];
(2) the eigenvalues of L distinct from ±1 are of finite multiplicity and can accumu-
late only toward ±1;
(3) if s > 1/2 and λ /∈ κ(L) := σp(L)∪{±1}, then limµ→0(L−λ− iµ)−1 exists
in norm in B(H(s),H(−s)), locally uniformly in λ ∈ R \ κ(L);
(4) the wave operators for the pair (L,L0) exist and are complete.

These results show a complete analogy with the standard two body problem
on an Euclidean space, the particle number operator N playing the rôle of the
position operator. Note that V,W are the analogs of the long range and short range
components of the potential. See Proposition 4.4 for a result of a slightly different
nature, covering those from [AlF]. Our most general results in the Fock space
setting are contained in Theorem 4.6.

The second part of the paper (Section 5) is devoted to a problem of a completely
different nature. Our purpose is to compute the essential spectrum of a general class
of operators on a Fock space in terms of their “localizations at infinity”, as it was
done in [GeI] for the case when Γ is an abelian locally compact group.

The basic idea of [GeI] is very general and we shall use it here too: the first step
is to isolate the class of operators we want to study by considering the C ∗-algebra
C generated by some elementary Hamiltonians and the second one is to compute
the quotient of C with respect to the ideal C0 = C ∩ K(H ) of compact operators
belonging to C . Then, if L ∈ C the projection L̂ of L in the quotient C /C0 is
the localization of L at infinity we need (or the set of such localizations, depending
on the way the quotient is represented). The interest of L̂ comes from the relation
σess(L) = σ(L̂). In all the situations studied in [GeI] these localizations at infinity
correspond effectively with what we would intuitively expect.

We stress that both steps of this approach are non trivial in general. The algebra
C must be chosen with care, if it is too small or too large then the quotient will
either be too complicated to provide interesting information, or the information
we get will be less precise than expected. Moreover, there does not seem to be
many techniques for the effective computation of the quotient. One of the main
observations in [GeI] is that in many situations of interest in quantum mechanics
the configuration space of the system is an abelian locally compact group and then
the algebras of interest can be constructed as crossed products; in such a case there
is a systematic procedure for computing the quotient.

The techniques from [GeI] cannot be used in the situations of interest here,
because the monoïd structure of the tree is not rich enough and in the Fock space
version the situation is even worse. However, a natural C ∗-algebra of anisotropic
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operators associated to the hyperbolic compactification of a tree has been pointed
out in [Gol]. This algebra contains the compact operators on `2(Γ) and an embed-
ding of the quotient algebra into a tensor product, which allows the computation of
the essential spectrum, has also been described in [Gol]. In Section 5 and in the Ap-
pendix we shall improve these results in two directions: we consider more general
types of anisotropy and we develop new abstract techniques for the computation of
the quotient algebra. To clarify this, we give an example below.

We place ourselves in the Fock space setting with H finite dimensional and we
fix a vector u ∈ H and the isometry U associated to it. We are interested in self-
adjoint operators of the form L = D+V where D is a “continuous function” of U
and U∗, i.e. it belongs to the C∗-algebra D generated by U , and V is of the form∑
Vn1n where Vn are bounded operators on H⊗n and are asymptotically constant

in some sense (when n→ ∞). In order to get more precise results, we make more
specific assumptions on the operators Vn.

Let A ⊂ B(H) be a C∗-algebra with 1H ∈ A. Let Avo be the set of operators
V as above such that Vn ∈ A⊗n, sup ‖Vn‖ < ∞ and ‖Vn − Vn−1 ⊗ 1H‖ → 0 as
n→ ∞. If ν = 1, i.e. in the setting of Example 2.6, Avo is the algebra of bounded
sequences of vanishing oscillation at infinity. We mention that the C ∗-algebra of
bounded continuous functions with vanishing oscillation at infinity on a group has
first been considered in the context of [GeI] in [Man] (cf. also references therein).

Observe that the algebras A⊗n are embedded in the infinite tensor product
C∗-algebra A⊗∞. Thus we may also introduce the C∗-subalgebra A∞ of Avo

consisting of the operators V such that V∞ := limVn exists in norm in A⊗∞.
Note that the subset A0 of operators V such that limVn = 0 is an ideal of Avo.

The algebras of Hamiltonians of interest for us can now be defined as the C ∗-
algebras Cvo and C∞ generated by the operators of the form L = D + V where
D is a polynomial in U,U ∗ and V ∈ Avo or V ∈ A∞ respectively. Let us denote
C0 = Cvo ∩ K(H ). Below we assume H of dimension at least 2, see Proposition
A.5 for the one dimensional case.

Theorem 1.2 There are canonical isomorphisms

Cvo/C0 ' (Avo/A0) ⊗ D , C∞/C0 ' A⊗∞ ⊗ D . (1.5)

For applications in the computation of the essential spectrum, see Propositions
5.15 and 5.16. For example, if D ∈ D and V ∈ A∞ are self-adjoint operators and
L = D + V , then

σess(L) = σ(D) + σ(V∞). (1.6)

The localization of L at infinity in this case is L̂ = 1 ⊗D + V∞ ⊗ 1.
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To cover perturbations of the Laplacian on a tree by functions V , it suffices to
consider an abelian algebra A, see Example 5.13. In this case, if A is the spectrum
of A, then A⊗∞ = C(A∞) where A∞ = AN is a compact topological space with
the product topology, and then we can speak of the set of localizations at infinity
of L. Indeed, we have then

A⊗∞ ⊗ D ' C(A∞,D),

hence L̂ is a continuous map L̂ : A∞ → D and we can say that L̂(x) is the
localization of L at the point x ∈ A∞ on the boundary at infinity of the tree (or in
the direction x). More explicitly, if L = D+V as above, then L̂(x) = D+V∞(x).

Plan of the paper: The notion of number operator associated to an isometry is
introduced and studied in Section 2. The spectral theory of the operators L is stud-
ied via the Mourre estimate in Section 3: after some technicalities in the first two
subsections, our main abstract results concerning these matters can be found in
Subsection 3.3 and the applications in the Fock space setting in Subsection 4.2.
Section 5 is devoted to the study of several C∗-algebras generated by more general
classes of anisotropic Hamiltonians on a Fock space. Subsections 5.1 and 5.2 con-
tain some preparatory material which is used in Subsection 5.3 in order to prove
our main result in this direction, Theorem 5.10. The Appendix, concerned with the
representability of some C∗-algebras as tensor products, is devoted to an important
ingredient of this proof. The case ν = 1, which is simpler but not covered by the
techniques of Section 5, is treated at the end of the Appendix.

Notations: B(H ), K(H ) are the spaces of bounded or compact operators on
a Hilbert space H . If S, T are operators such that S − T ∈ K(H ), we write
S ≈ T . If S, T are quadratic forms with the same domain and S−T is continuous
for the topology of H , we write S ∼ T . D(T ) is the domain of the operator T .
We denote by 1 the identity of a unital algebra, but for the clarity of the argument
we sometimes adopt a special notation, e.g. the identity operator on H could be
denoted 1H . A morphism between two C∗-algebras is a ∗-homomorphism and an
ideal of a C∗-algebra is a closed bilateral ideal.

Acknowledgments: We are grateful to George Skandalis for a very helpful conver-
sation related to the questions we treat in the Appendix (see the comments before
Proposition A.2 and in its proof).
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2 Number operator associated to an isometry

2.1 Definition and first examples

Let U be an isometry on a Hilbert space H . Thus U ∗U = 1 and UU ∗ is the
(orthogonal) projection onto the closed subspace ranU = UH , hence P0 :=
[U∗, U ] = 1 − UU ∗ is the projection onto (ranU)⊥ = kerU∗.

Definition 2.1 A number operator associated to U is a self-adjoint operator N
satisfying UNU ∗ = N − 1.

In fact, N is a number operator for U if and only if U ∗D(N) ⊂ D(N) and
UNU∗ = N − 1 holds on D(N). Indeed, this means N − 1 ⊂ UNU ∗ and N − 1
is a self-adjoint operator, so it cannot have a strict symmetric extension.

In this section we discuss several aspects of this definition. If the operator U
is unitary (situation of no interest in this paper), then U kNU−k is a well defined
self-adjoint operator for each k ∈ Z and the equality UNU ∗ = N−1 is equivalent
to UkNU−k = N − k for all k ∈ Z. In particular, a number operator associated
to a unitary operator cannot be semibounded. Example 2.5 allows one to easily
understand the structure of a unitary operator which has an associated number ope-
rator.

Note that if U is unitary, than N does not exist in general and if it exists, then it
is not unique, since N + λ is also a number operator for each real λ. On the other
hand, we will see in the Subsection 2.2 that N exists, is positive and is uniquely
defined if U is a completely non unitary isometry.

In order to express Definition 2.1 in other, sometimes more convenient, forms,
we recall some elementary facts. If A,B are linear operators on H then the do-
main of AB is the set of f ∈ D(B) such that Bf ∈ D(A). It is then clear that if A
is closed and B is bounded, then AB is closed, but in general BA is not. However,
if B is isometric, then BA is closed. Thus, if N is self-adjoint and U is isometric,
then UNU ∗ is a closed symmetric operator.

Lemma 2.2 Let N be a number operator associated to U . Then D(N) is stable
under U and U ∗ and we haveNU = U(N+1) andNU ∗ = U∗(N−1). Moreover,
ranP0 ⊂ ker(N − 1) and NP0 = P0N = P0.

Proof: From UNU ∗ = N − 1 and U ∗U = 1 we get U ∗D(N) ⊂ D(N) and
NU∗ = U∗(N − 1) on the domain on N . Moreover, since U ∗P0 = 0, we have
P0H ⊂ D(UNU ∗) = D(N) and (N − 1)P0 = 0, so NP0 = P0, which clearly
implies P0N = P0. If f, g ∈ D(N) then

〈(N − 1)f, Ug〉 = 〈U ∗(N − 1)f, g〉 = 〈NU ∗f, g〉 = 〈f, UNg〉
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hence Ug ∈ D(N ∗) = D(N) and UNg = (N − 1)Ug. Thus UD(N) ⊂ D(N)
and NU = U(N + 1) on the domain on D(N). If f ∈ H and Uf ∈ D(N)
then f = U ∗Uf ∈ D(N), so we have NU = U(N + 1) as operators. If f ∈ H

and U∗f ∈ D(N) then UU ∗f ∈ D(N) and P0f ∈ D(N), so f = UU ∗f + P0f
belongs to D(N), hence NU ∗ = U∗(N − 1) as operators.

Note that the relation NU = U(N + 1) can also be written [N,U ] = U .
Reciprocally, we have:

Lemma 2.3 If a self-adjoint operator N satisfies [N,U ] = U in the sense of forms
on D(N) and P0N = P0 on D(N), then N is a number operator associated to U .

Proof: The first hypothesis means 〈Nf,Ug〉 − 〈U ∗f,Ng〉 = 〈f, Ug〉 for all f, g
in D(N). But this clearly implies U ∗f ∈ D(N) and NU ∗f = U∗(N − 1)f for all
f ∈ D(N). Then we get

UNU∗f = UU∗(N − 1)f = (N − 1)f − P0(N − 1)f = (N − 1)f

for all such f , so N is a number operator by the comment after Definition 2.1.

Observe that by induction we get [N,Un] = nUn, hence ‖[N,Un]‖ = n if
U 6= 0. In particular, N is not a bounded operator.

Lemma 2.4 If N is a self-adjoint operator, then the condition [N,U ] = U in the
sense of forms on D(N) is equivalent to each of the following ones:

(1) UD(N) ⊂ D(N)and [N,U ] = U as operators on D(N);

(2) eitNUe−itN = eitU for all t ∈ R;

(3) ϕ(N)U = Uϕ(N + 1) for all ϕ : R → C bounded and Borel.

Proof: The implications (3) ⇒ (2) and (1) ⇒ (0) are immediate, condition (0)
being that [N,U ] = U in the sense of forms on D(N). If (0) holds, then for all
f, g ∈ D(N) one has 〈Nf,Ug〉 − 〈f, UNg〉 = 〈f, Ug〉. This gives us Ug ∈
D(N∗) = D(N), hence we get (1). If (2) is satisfied then 〈e−itNf, Ue−itNg〉 =
eit〈f, Ug〉 for all f, g ∈ D(N), so by taking the derivatives at t = 0, we get (0). If
(1) holds then by using NU = U(N +1) we get (N + z)−1U = U(1 +N − z)−1

for all z ∈ C \ R, hence by standard approximation procedures we obtain (3).

It is easy to check that the map U defined by S 7→ USU ∗ is a morphism
of B(H ) onto B(UH ). We identify B(UH ) with the C∗-subalgebra of B(H )
consisting of the operators T such that TP0 = P0T = 0; note that P⊥

0 is the
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identity of the algebra B(UH ) and that the linear positive map T 7→ U ∗TU is a
right-inverse for U . Clearly

Uϕ(N)U ∗ = ϕ(N − 1)P⊥
0 for all bounded Borel functions ϕ : R → C. (2.1)

By standard approximation procedures we now see that each of the following con-
ditions is necessary and sufficient in order that N be a number operator associ-
ated to U : (i) UeitNU∗ = e−iteitNP⊥

0 for all t ∈ R; (ii) U(N − z)−1U∗ =
(N − 1 − z)−1P⊥

0 for some z ∈ C \ R.
We now give the simplest examples of number operators.

Example 2.5 Let H = `2(Z) and (Uf)(x) = f(x− 1). If {en} is the canonical
orthonormal basis of H then Uen = en+1. It suffices to define N by the condition
Nen = nen. Any other number operator is of the form N +λ for some real λ. It is
an easy exercise to show that if (U,N) is an abstract irreducible couple consisting
of a unitary operator U and a self-adjoint operator N such that [N,U ] = U in
the sense of forms on D(N), then there is a unique real λ such that this couple is
unitarily equivalent to the couple (U,N + λ) constructed above.

Example 2.6 Let H = `2(N) and U as above. Then U ∗en = en−1 with e−1 = 0,
so P0 = |e0〉〈e0|. We obtain a number operator by defining Nen = (n + 1)en

and it is easy to see that this is the only possibility. We shall prove this in a more
general context below.

2.2 Completely non unitary isometries

An isometry U is called completely non unitary if s–limk→∞U∗k = 0. This is
equivalent to the fact that the only closed subspace K such that UK = K is
K = {0}. We introduce below several objects naturally associated to such an
isometry, see [Bea].

Consider the decreasing sequence H = U 0H ⊃ U1H ⊃ U2H ⊃ . . . of
closed subspaces of H . Since U k is an isometric operator with range U kH , the
operator P k := UkU∗k is the orthogonal projection of H onto U kH and we have
1 = P 0 ≥ P 1 ≥ P 2 . . . and s–limk→∞ P k = 0, because ‖P kf‖ = ‖U∗kf‖ → 0.

Recall that P0 = 1 − UU∗ = 1 − P 1 is the projection onto kerU ∗. More
generally, let Hk be the closed subspace

Hk = kerU∗k+1 	 kerU∗k = ranUk 	 ranUk+1 = Uk(kerU∗)

and let Pk be the projection onto it, so

Pk = P k − P k+1 = UkU∗k − Uk+1U∗k+1 = UkP0U
∗k

11



Notice that Pk+1 = UPkU
∗, hence UPk = Pk+1U , and

PkPm = 0 if k 6= m and
∞∑

k=0

Pk = 1. (2.2)

We have dimHk = dimH0 6= 0 for all k ∈ N. Indeed, it suffices to show that
Uk := U |Hk

: Hk → Hk+1 is a bijective isometry with inverse equal to U ∗|Hk+1
.

In fact, from UPk = Pk+1U we get UHk ⊂ Hk+1 so Uk is isometric from Hk

to Hk+1. To prove surjectivity, note that U ∗Pk+1 = PkU
∗, hence U ∗Hk+1 ⊂ Hk

and UU∗Pk+1 = UPkU
∗ = Pk+1. Thus Uk : Hk → Hk+1 is bijective and its

inverse is U ∗|Hk+1
.

Proposition 2.7 If U is a completely non unitary isometry then there is a unique
number operator associated to it, and we have

N ≡ NU =
∞∑

k=0

P k =
∞∑

k=0

(k + 1)Pk, (2.3)

the sums being interpreted in form sense. Thus each k + 1, with k ∈ N, is an
eigenvalue of NU of multiplicity equal to dimkerU ∗ and Hk is the corresponding
eigenspace.

Proof: Since Pk = P k − P k+1, the two sums from (2.3) are equal and define
a self-adjoint operator NU with N + 1 as spectrum and Hk as eigenspace of the
eigenvalue k + 1. Since UPk = Pk+1U , condition (3) of Lemma 2.4 is clearly
verified, hence NU is a number operator for U by Lemma 2.3. Of course, one can
also check directly that the conditions of the Definition 2.1 are satisfied. It remains
to show uniqueness.

It is clear that an operator N is a number operator if and only if it is of the form
N = M + 1 where M is a self-adjoint operator such that M = UU ∗ + UMU∗.
With a notation introduced above, this can be written M = UU ∗ + U (M) hence
we get a unique formal solution by iteration: M =

∑
k≥0 U k(UU∗) =

∑
k≥1 P

k

which gives (2.3). In order to make this rigorous, we argue as follows.
Recall that, by Lemma 2.2, U and U ∗ leave invariant the domain of M . Hence

by iteration we have on D(M):

M = P 1+UMU∗ = P 1+UP 1U∗+U2MU∗2 = P 1+P 2+. . .+P n+UnMU∗n

for all n ∈ N. It is clear that PmD(M) ⊂ D(M) for all m and (1 − P n)Un =
U∗n(1 − P n) = 0, hence

M(1 − P n) = (1 − P n)M =
∑

1≤k≤n−1

P k(1 − P n) =
∑

1≤k≤n−1

kP k

Then MPk = PkM = kPk for all k ∈ N, hence M =
∑

k kPk.

12



3 The Mourre estimate

3.1 The free case

Our purpose in this section is to construct a conjugate operator A and to establish
a Mourre estimate for the “free” operator

∆ := Re (U) =
1

2
(U + U∗) (3.1)

where U is an isometry which admits a number operator N on a Hilbert space H .
The operator A will be constructed in terms of N and of the imaginary part of U :

S := Im (U) =
1

2
(U − U∗). (3.2)

More precisely, we define A as the closure of the operator

A0 =
1

2
(SN +NS), D(A0) = D(N). (3.3)

We shall prove below that A0 is essentially self-adjoint and we shall determine the
domain of A. That A0 is not self-adjoint is clear in the situations considered in
Examples 2.5 and 2.6. Note that in these examples S is an analog of the derivation
operator. Before, we make some comments concerning the operators introduced
above.

We have U = ∆ + iS and ‖∆‖ = ‖S‖ = 1. In fact, by using [Mur, Theorem
3.5.17] in case U is not unitary and (2) of Lemma 2.4 if U is unitary, we see that
σ(∆) = σ(S) = [−1, 1]. By Lemma 2.2 the polynomials in U,U ∗ (hence in ∆, S)
leave invariant the domain of N . If not otherwise mentioned, the computations
which follow are done on D(N) and the equalities are understood to hold on D(N).
The main relations

NU = U(N + 1) and NU ∗ = U∗(N − 1) (3.4)

will be frequently used without comment. In particular, this gives us

[N,S] = −i∆ and [N,∆] = iS (3.5)

These relations imply that ∆ and S are of class C∞(N) (we use the terminology
of [ABG]). We also have

[U,∆] = −P0/2, [U∗,∆] = P0/2, [S,∆] = iP0/2. (3.6)

A simple computation gives then:

∆2 + S2 = 1 − P0/2. (3.7)

13



It follows that we have on the domain of N :

A0 = NS +
i

2
∆ = SN − i

2
∆ =

1

2i

(
(N − 1

2
)U − U∗(N − 1

2
)
)
. (3.8)

Remark: If we denote a = iU ∗(N − 1/2) then on the domain of N we have
A = (a + a∗)/2. Note that a looks like a bosonic annihilation operator (the nor-
malization with respect to N being, however, different) and that

aa∗ = (N + 1/2)2, a∗a = (N − 1/2)2P⊥
0 , [a, a∗] = 2N + P0/4, [N, a] = a.

Lemma 3.1 A is self-adjoint with D(A) = D(NS) = {f ∈ H | Sf ∈ D(N)}.

Proof: Note that NS is closed on the specified domain and that D(N) ⊂ D(NS),
because SD(N) ⊂ D(N). Let us show that D(N) is dense in D(NS) (i.e. NS is
the closure of NS|D(N)). Let f ∈ D(NS), then fε = (1 + iεN)−1f ∈ D(N)
and ‖fε − f‖ → 0 when ε→ 0. Then, since S ∈ C1(N):

NSfε = NS(1 + iεN)−1f

= N(1 + iεN)−1[iεN, S](1 + iεN)−1f +N(1 + iεN)−1Sf

= εN(1 + iεN)−1∆(1 + iεN)−1f + (1 + iεN)−1NSf.

The last term converges to NSf as ε tends to 0. So it suffices to observe that
εN(1 + iεN)−1 → 0 strongly as ε→ 0.

Let A0 = SN − i∆/2, D(A0) = D(N). It is trivial to prove that A∗
0 = NS +

i∆/2, D(A∗
0) = D(NS). By what we proved and the fact that A∗

0|D(N) = A0, we
see that A∗

0 is the closure of A0. So A0 is essentially self-adjoint.

The next proposition clearly implies the Mourre estimate for ∆ outside ±1.

Proposition 3.2 ∆ ∈ C∞(A) and [∆, iA] = 1 − ∆2 = S2 + P0/2.

Proof: On D(N) we have

[∆, iA] = [∆, iNS] = [∆, iN ]S +N [∆, iS]

= S2 +NP0/2 = S2 + P0/2 = 1 − ∆2,

which implies ∆ ∈ C∞(A) by an obvious induction argument.

We mention two other useful commutation relations:

[iA, S] = Re (S∆) and [iA,N ] = −Re (N∆). (3.9)

Indeed:

[iA, S] = [iSN +
1

2
∆, S] = iS[N,S] +

1

2
[∆, S] = S∆ +

1

2
[∆, S]

and

[iA,N ] = [iSN +
1

2
∆, N ] = [iS,N ]N +

1

2
[∆, N ] = −∆N +

1

2
[∆, N ].
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3.2 Commutator bounds

The following abbreviations will be convenient. For T ∈ B(H ) we set Ṫ ≡ T · =
[iN, T ], interpreted as a form on D(N), and T ′ = [S, T ], T∆ = [∆, T ], which are
bounded operators on H . Iterated operations like T̈ ≡ T ··, T ′· or Ṫ ′ ≡ T ·′ are
obviously defined. Note that

Ṫ ′ − T ′· = [S, [iN, T ]] − [iN, [S, T ]] = [T, [iN, S]]] = −T∆ (3.10)

because of the Jacobi identity [X, [Y,Z]]+ [Y, [Z,X]]+ [Z, [X,Y ]] = 0 and (3.5).
If T is a bounded operator then both NT and TN are well defined quadratic

forms with domain D(N). We write ‖NT‖ = ∞, for example, if NT is not
continuous for the topology of H . If NT is continuous, then TD(N) ⊂ D(N)
and the operator NT with domain D(N) extends to a unique bounded operator on
H which will also be denoted NT and whose adjoint is the continuous extension
of T ∗N to H . If T ∗ = ±T then the continuity of NT is equivalent to that of TN .
Such arguments will be used without comment below.

Proposition 3.3 For each V ∈ B(H ) we have, in the sense of forms on D(N),

[iA, V ] = V̇ S + iNV ′ − 1

2
V∆. (3.11)

In particular

‖[iA, V ]‖ ≤ ‖V̇ ‖ + ‖NV ′‖ +
1

2
‖V ‖. (3.12)

Moreover, for the form [iA, [iA, V ]] with domain D(N 2), we have

1

4
‖ [iA, [iA, V ]] ‖ ≤ ‖V ‖ + ‖V̇ ‖ + ‖V̈ ‖ + ‖V ′‖ (3.13)

+ ‖NV ′‖ + ‖NV∆‖ + ‖NV̇ ′‖ + ‖N2V ′′‖.
Proof: The relation (3.11) follows immediately from A = iNS − 1

2∆. For the
second commutator, note that AD(N 2) ⊂ D(N), hence in the sense of forms on
D(N2) we have:

[iA, [iA, V ]] = [iA, V̇ S] + [iA, iNV ′] − 1

2
[iA, V∆]

= [iA, V̇ ]S + V̇ [iA, S] + [iA, iN ]V ′ + iN [iA, V ′] − 1

2
[iA, V∆].

By (3.9) we have ‖V̇ [iA, S]‖ ≤ ‖V̇ ‖ and then (3.5) gives

[iA, iN ]V ′ = −iRe (N∆)V ′ = − i

2
(N∆V ′ + ∆NV ′)

= − i

2
[N,∆]V ′ − i∆NV ′ =

1

2
SV ′ − i∆NV ′
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Thus, we have

‖[iA, [iA, V ]]− [iA, V̇ ]S− iN [iA, V ′]+
1

2
[iA, V∆]‖ ≤ ‖V̇ ‖+‖V ′‖/2+‖NV ′‖.

We now apply (3.11) three times with V replaced successively by V̇ , V ′ and V∆.
First, we get

‖[iA, V̇ ]S‖ = ‖V̈ S2 + iNV̇ ′S − V̇∆S/2‖ ≤ ‖V̈ ‖ + ‖NV̇ ′‖ + ‖V̇ ‖.
Then, by using also (3.10) and the notation V ′

∆ = (V ′)∆, we get

N [iA, V ′] = NV ′·S + iN2V ′′ −NV ′
∆/2 = N(V̇ ′ + V∆)S + iN2V ′′ −NV ′

∆/2.

Now (3.5) gives

NV ′
∆ = N∆V ′ −NV ′∆ = [N,∆]V ′ + [∆, NV ′] = iSV ′ + [∆, NV ′]

hence

‖N [iA, V ′]‖ ≤ ‖NV̇ ′‖ + ‖NV∆‖ + ‖N2V ′′‖ + ‖V ′‖/2 + ‖NV ′‖.
Then

[iA, V∆] = (V∆)· + iN(V∆)′ − (1/2)V∆∆.

The first two terms on the right hand side are estimated as follows:

(V∆)· = [iN, [∆, V ]] = −[∆, [V, iN ]] − [V, [iN,∆]] = [∆, V̇ ] + [V, S]

and

N(V∆)′ = N [S, [∆, V ]] = −N [∆, [V, S]] −N [V, [S,∆]] = N [∆, V ′]

− i

2
N [V, P0] = [N,∆]V ′ + ∆NV ′ −NV ′∆ − i

2
N [V, P0]

= iSV ′ + [∆, NV ′] − i

2
N [V, P0].

Since NP0 = P0 we have

N [V, P0] = NV P0 −NP0V = [N,V ]P0 + V NP0 −NP0V = −iV̇ + [V, P0].

hence we get

‖[iA, V∆]‖ ≤ 5‖V ‖ + (5/2)‖V̇ ‖ + ‖V ′‖ + ‖NV ′‖.
Adding all these estimates we get a more precise form of the inequality (3.13).

The following result simplifies later computations. The notation X ∼ Y means
that X,Y are quadratic forms on the domain of N or N 2 and X − Y extends to
a bounded operator. From now on we suppose 0 /∈ σ(N). In fact, in the case of
interest for us we have N ≥ 1.
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Lemma 3.4 Let V be a bounded self-adjoint operator. If [U, V ]N is bounded,
then [U ∗, V ]N is bounded, so ‖NV ′‖ + ‖NV∆‖ < ∞. If [U, V ]N is compact,
then [U ∗, V ]N is compact, so NV ′ is compact. If V̇ and [U, V̇ ]N are bounded,
then ‖NV̇ ′‖ <∞. If [U, [U, V ]]N 2 is bounded, then ‖N 2V ′′‖ <∞.

Proof: We have

N = UU∗N + P0N = U(N + 1)U ∗ + P0 (3.14)

hence
[U∗, V ]N = U ∗[V,U ](N + 1)U ∗ + [U∗, V ]P0, (3.15)

which proves the first two assertions. The assertion involving V̇ is a particular case,
because V̇ is self-adjoint if it is bounded.

For the rest of the proof we need the following relation:

N = P0 + 2P1 + U2(N + 2)U ∗2. (3.16)

This follows easily directly from the definition of N :

N = 1 + UNU ∗ = 1 + U(1 + UNU ∗)U∗ = 1 + UU∗ + U2NU∗2

= (1 − UU ∗) + 2(UU ∗ − U2U∗2) + U2(N + 2)U ∗2.

Since PkU
2 = U∗2Pk = 0 for k = 0, 1, we get from (3.17):

N2 = P0 + 4P1 + U2(N + 2)2U∗2. (3.17)

We clearly have:

−4N2V ′′ = N2[U∗, [U∗, V ]] +N 2[U, [U, V ]] −N 2([U∗, [U, V ]] + [U, [U ∗, V ]]

We shall prove that the three terms from the right hand side are bounded. Since
N2[U∗, [U∗, V ]] = ([U, [U, V ]]N 2)∗, this is trivial for the first one. The second
term is the adjoint of [U ∗, [U∗, V ]]N2 and due to (3.17) we have

[U∗, [U∗, V ]]N2 = (U∗2V − 2U∗V U∗ + V U∗2)N2

∼ (U∗2V − 2U∗V U∗ + V U∗2)U2(N + 2)2U∗2

= U∗2[U, [U, V ]](N + 2)2U∗2,

hence we have the required boundedness. Finally, the third term is the adjoint of
([U, [U ∗, V ]] + [U ∗, [U, V ]])N 2 and by a simple computation this is equal to

2(V − UV U ∗ − U∗V U + V UU ∗)N2 ∼ −2U∗[U, [U, V ]](N + 1)2U∗
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where we used N 2 = UU∗N2 + P0N
2 = U(N + 1)2U∗ + P0.

If the right hand side of the relation (3.12) or (3.13) is finite, then the operator
V is of class C1(A) or C2(A) respectively. We shall now point out criteria which
are less general than (3.12), (3.13) but are easier to check.

Proposition 3.5 Let Λ ∈ B(H ) be a self-adjoint operator such that [Λ, N ] = 0
and [U,Λ]N ∈ B(H ). Let V be a bounded self-adjoint operator.
(1) If (V − Λ)N is bounded, then V ∈ C1(A).
(2) If [U, [U,Λ]]N 2 and (V − Λ)N 2 are bounded, then V ∈ C2(A).
(3) If [U,Λ]N, [∆, V ] and (V − Λ)N are compact, then [iA, V ] is compact.

Proof: We have −iV̇ = [N,V ] = [N,V − Λ] = N(V − Λ) − (V − Λ)N so this
is a bounded (or even compact) operator under the conditions of the proposition.
Then by using (3.5) we get

NV ′ = N [S,Λ] +N [S, V − Λ] = N [S,Λ] +NS(V − Λ) −N(V − Λ)S

= N [S,Λ] − i∆(V − Λ) + [S,N(V − Λ)]

hence NV ′ is bounded (or compact). Now in order to get (1) and (3) it suffices to
use (3.11) and (3.12) and Lemma 3.4 with V replaced by Λ.

Now we prove (2). We have V ∈ C1(A) by what we have shown above.
The assumption ‖(V − Λ)N 2‖ < ∞ implies ‖N 2(V − Λ)‖ < ∞ and then by
interpolation ‖N(V − Λ)N‖ <∞. Thus

−V̈ = [N, [N,V ]] = [N, [N,V − Λ]]

= N2(V − Λ) − 2N(V − Λ)N + (V − Λ)N 2

is bounded. Moreover,

−iNV̇ ′ = N [S, [N,V ]] = N [S, [N,V − Λ]] = NSN(V − Λ)

− NS(V − Λ)N −N 2(V − Λ)S +N(V − Λ)NS,

is bounded by (3.5). Lemma 3.4 shows that [U ∗,Λ]N is a bounded operator.
Hence, by using again (3.5),

NV∆ = N [∆, V − Λ] +N [∆,Λ] ∼ N [∆, V − Λ]

= N∆(V − Λ) −N(V − Λ) ∼ ∆N(V − Λ) + iS(V − Λ).

So NV∆ is bounded. At last N 2V ′′ = N2[S, [S, V ]] ∼ N 2[S, [S, V − Λ]] by
Lemma 3.4 applied to Λ, and this is a bounded operator.
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3.3 Spectral and scattering theory

We shall now study the spectral theory of abstract self-adjoint operators of the form
L = ∆ + V with the help of the theory of conjugate operators initiated in [Mou]
and the estimates. We first give conditions which ensure that a Mourre estimate
holds. Recall that U is an arbitrary isometry on a Hilbert space H which admits
a number operator N such that 0 /∈ σ(N) and ∆ = Re U . In this subsection
the operator V is assumed to be at least self-adjoint and compact. We recall the
notation: S ≈ 0 if S ∈ K(H ).

Definition 3.6 We say that the self-adjoint operator L has normal spectrum if
σess(L) = [−1,+1] and the eigenvalues of L different from ±1 are of finite multi-
plicity and can accumulate only toward ±1. Let σp(L) be the set of eigenvalues of
L; then κ(L) = {−1,+1} ∪ σp(L) is the set of critical values of L.

Theorem 3.7 Let V be a compact self-adjoint operator on H such that [N,V ]
and [U, V ]N are compact operators. Then L has normal spectrum and if J is a
compact subset of ] − 1,+1[, then there are a real number a > 0 and a compact
operator K such that E(J)[L, iA]E(J) ≥ aE(J) + K , where E is the spectral
measure of L.

Proof: We have σess(L) = σess(∆) = [−1,+1] because V is compact. This also
implies that ϕ(L) − ϕ(∆) is compact if ϕ is a continuous function. From (3.11)
and Lemma 3.4 it follows that [V, iA] is a compact operator, so V is of class C 1(A)
in the sense of [ABG]. Then, if supp ϕ is a compact subset of ] − 1,+1[ we have

ϕ(L)∗[L, iA]ϕ(L) ≈ ϕ(∆)∗[∆, iA]ϕ(∆) ≥ a|ϕ(∆)|2 ≈ a|ϕ(L)|2

because [∆, iA] = 1 − ∆2 ≥ a on ϕ(∆)H . This clearly implies the Mourre
estimate, which in turn implies the the assertions concerning the eigenvalues, see
[Mou] or [ABG, Corollary 7.2.11].

The next result summarizes the consequences of the Mourre theorem [Mou],
with an improvement concerning the regularity of the boundary values of the re-
solvent, cf. [GGM] and references there. If s is a positive real number we denote
by Ns the domain of |N |s equipped with the graph topology and we set N−s :=
(Ns)

∗, where the adjoint spaces are defined such as to have Ns ⊂ H ⊂ N−s. If J
is a real set then J± is the set of complex numbers of the form λ± iµ with λ ∈ J
and µ > 0.

Theorem 3.8 Let V be a compact self-adjoint operator on H such that [N,V ]
and [U, V ]N are compact operators. Assume also that [N, [N,V ]], [U, [N,V ]]N
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and [U, [U, V ]]N 2 are bounded operators. Then L has no singularly continuous
spectrum. Moreover, if J is a compact real set such that J ∩ κ(L) = ∅, then for
each real s ∈]1/2, 3/2[ there is a constant C such that for all z1, z2 ∈ J±

‖(L− z1)
−1 − (L− z2)

−1‖B(Ns ,N−s) ≤ C|z1 − z2|s−1/2. (3.18)

We have used the obvious fact that Ns ⊂ D(|A|s) for all real s > 0 (for our
purposes, it suffices to check this for s = 2). The theorem can be improved by
using [ABG, Theorem 7.4.1], in the sense that one can eliminate the conditions
on the second order commutators, replacing them with the optimal Besov type
condition V ∈ C 1,1(A), but we shall consider this question only in particular
cases below.

With the terminology of [ABG], the rôle of the conditions on the second order
commutators imposed in Theorem 3.8 is to ensure that V (hence L) is of class
C2(A). We shall now consider more general operators, which admit short and
long range type components which are less regular. We also make a statement
concerning scattering theory under short range perturbations.

Definition 3.9 Let W be a bounded self-adjoint operator. We say that W is short
range with respect to N , or N -short range, if

∫ ∞

1
‖Wχ0(|N |/r)‖dr <∞, (3.19)

where χ0 is the characteristic function of the interval [1, 2] in R. We say that W
is long range with respect to N , or N -long range, if [N,W ] and [U,W ]N are
bounded operators and

∫ ∞

1

(
‖[N,W ]χ(|N |/r)‖ + ‖[U,W ]Nχ(|N |/r)‖

)dr
r
<∞, (3.20)

where χ is the characteristic function of the interval [1,∞[ in R.

The condition (3.19) is obviously satisfied if there is ε > 0 such that

‖W |N |1+ε‖ <∞. (3.21)

Similarly, (3.20) is a consequence of

‖[N,W ] |N |ε‖ + ‖[U,W ] |N |1+ε‖ <∞. (3.22)

Lemma 3.10 If W is compact and N -short range, then WN is a compact opera-
tor. If W is N -long range, then

∫ ∞

1 ‖[U∗,W ]Nχ(|N |/r)‖dr/r <∞.
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Proof: Let ϕ be a smooth function on R such that ϕ(x) = 0 if x < 1 and
ϕ(x) = 1 if x > 2 and let θ(x) = xϕ(x). Then

∫ ∞

0 θ(x)dx/x = 1 hence∫ ∞

0 θ(|N |/r)dr/r = 1 in the strong topology. If θ1(x) = xθ(x) then we get∫ ∞

0 Wθ0(|N |/r)dr = W |N | on the domain of N , which clearly proves the first
part of the lemma. The second part follows from (3.15) and (3) of Lemma 2.4.

Theorem 3.11 Let V be a compact self-adjoint operator such that [N,V ] and
[U, V ]N are compact. Assume that we can decompose V = Vs + V` + Vm where
Vs is compact and N -short range, V` is N -long range, and Vm is such that

[N, [N,Vm]], [U, [N,Vm]]N and [U, [U, Vm]]N2

are bounded operators. Then L = ∆ + V has normal spectrum and no singu-
larly continuous spectrum. Moreover, limµ→0(L − λ − iµ)−1 exists in norm in
B(Ns,N−s) if s > 1/2 and λ /∈ κ(L), and the convergence is locally uniform in
λ outside κ(L). Let L0 = ∆ + V` + Vm and let Π0,Π be the projections onto
the subspaces orthogonal to the set of eigenvectors of L0, L respectively. Then the
wave operators

Ω± := s– lim
t→±∞

eitLe−itL0Π0

exist and are complete, i.e. Ω±H = ΠH .

Proof: From the Lemma 3.10 it follows easily that [N,Vs] and [U, Vs]N are com-
pact operators, hence the potentials V and V` + Vm satisfy the hypotheses of The-
orem 3.7, so the Mourre estimate holds for L and L0 on each compact subset of
] − 1,+1[. From [ABG, Theorem 7.5.8] it follows that the operator Vs is of class
C 1,1(A). By using (3.11), the second part of Lemma 3.10 and [ABG, Proposition
7.5.7] we see that [iA, V`] is of class C 0,1(A), hence V` is of class C 1,1(A). Fi-
nally, Vm is of class C2(A) by Proposition 3.3 and Lemma 3.4. Thus, L0 and L are
of class C 1,1(A). Then an application of [ABG, Theorem 7.4.1] gives the spectral
properties of L and the existence of the boundary values of the resolvent. Finally,
the existence and completeness of the wave operators is a consequence of [ABG,
Proposition 7.5.6] and [GeM, Theorem 2.14].

4 A Fock space model

4.1 The Fock space

Let H be a complex Hilbert space and let H =
⊕∞

n=0H
⊗n be the (complete)

Fock space associated to it. We make the conventions H⊗0 = C and H⊗n = {0}
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if n < 0. We fix u ∈ H with ‖u‖ = 1. Let U = ρu be the right multiplication by
u. More precisely:

ρuh1 ⊗ . . .⊗ hn = h1 ⊗ . . .⊗ hn ⊗ u

ρ∗uh1 ⊗ . . .⊗ hn =

{
h1 ⊗ . . .⊗ hn−1〈u, hn〉 if n ≥ 1
0 if n = 0.

Clearly ρ∗uρu = 1, so U is an isometric operator. Then ∆ = (U + U ∗)/2 acts as
follows:

∆h1 ⊗ . . . ⊗ hn = h1 ⊗ . . .⊗ hn−1 ⊗ (hn ⊗ u+ 〈u, hn〉)

if n ≥ 1 and ∆h = hu if h ∈ C = H⊗0. We have

UH⊗n ⊂ H⊗n+1, U∗H⊗n ⊂ H⊗n−1. (4.1)

In particular U ∗nH⊗m = 0 if n > m, hence we have s–limn→∞U∗n = 0.
Thus U is a completely non unitary isometry, hence there is a unique number

operator NU ≡ N associated to it. We shall keep the notations P k = ρk
uρ

∗
u

k and
Pk = ρk

u[ρ∗u, ρu]ρ∗u
k introduced in the general setting of Subsection 2.2.

Let us denote by pu = |u〉〈u| the orthogonal projection in H onto the subspace
Cu. Then it is easy to check that

P k|H⊗n =

{
0 if 0 ≤ n < k
1n−k ⊗ p⊗k

u if n ≥ k.
(4.2)

Here 1n is the identity operator in H⊗n and the tensor product refers to the natural
factorization H⊗n = H⊗n−k ⊗ H⊗k. In particular, we get P kH⊗n ⊂ H⊗n or
[P k, 1n] = 0 for all k, n ∈ N and similarly for the Pk.

Lemma 4.1 N leaves stable each H⊗n. We have

Nn := N |H⊗n =

n∑

k=0

(k + 1)Pk|H⊗n (4.3)

and σ(Nn) = {1, 2, . . . n+ 1}, hence 1 ≤ Nn ≤ n+ 1 and ‖Nn‖ = n+ 1.

Proof: The first assertion is clear because each spectral projection Pk of N leaves
H⊗n invariant. We obtain (4.3) from Pk = P k − P k+1 and the relations (2.3) and
(4.2). To see that each k + 1 is effectively an eigenvalue, one may check that

Nnw ⊗ v ⊗ u⊗k = (k + 1)w ⊗ v ⊗ u⊗k
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if k < n, w ∈ Hn−k−1 and v ∈ H with v ⊥ u, and Nnu
⊗n = (n+ 1)u⊗n.

The following more explicit representations of Nn can be proved without dif-
ficulty. Let p⊥u be the projection in H onto the subspace K orthogonal to u. Then:

Nn = 1n + 1n−1 ⊗ pu + 1n−2 ⊗ p⊗2
u + · · · + p⊗n

u

= 1n−1 ⊗ p⊥u + 21n−2 ⊗ p⊥u ⊗ pu + 31n−3 ⊗ p⊥u ⊗ p⊗2
u + . . .

+ (n+ 1)p⊗n
u .

The last representation corresponds to the following orthogonal decomposition:

H⊗n = ⊕n
k=0(H

⊗n−k−1 ⊗K ⊗ u⊗k)

where the term corresponding to k = n must be interpreted as Cu⊗n.
The number operator N associated to U should not be confused with the parti-

cle number operator N acting on the Fock space according to the rule Nf = nf
if f ∈ H⊗n. In fact, while N counts the total number of particles, N − 1 counts
(in some sense, i.e. after a symmetrization) the number of particles in the state u.
From (4.3) we get a simple estimate of N in terms of N :

N ≤ N + 1. (4.4)

It is clear that an operator V ∈ B(H ) commutes with N if and only if it is of
the form

V =
∑

n≥0

Vn1n, with Vn ∈ B(H⊗n) and sup
n

‖Vn‖ <∞. (4.5)

Note that we use the same notation 1n for the identity operator in H⊗n and for the
orthogonal projection of H onto H⊗n. For each operator V of this form we set
V−1 = 0 and then we define

δ(V ) =
∑

n≥0

(Vn−1 ⊗ 1H − Vn)1n, (4.6)

which is again a bounded operator which commutes with N . We have:

[U, V ] = δ(V )U. (4.7)

Indeed, if f ∈ H⊗n then

UV f = UVnf = (Vnf) ⊗ u = (Vn ⊗ 1H)(f ⊗ u) = (Vn ⊗ 1H)Uf.

On the other hand, since Uf ∈ H⊗n+1, we have V Uf = Vn+1Uf and δ(V )Uf =
(Vn ⊗ 1H − Vn+1)Uf , which proves the relation (4.7).
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Lemma 4.2 If V is a bounded self-adjoint operator which commutes with N then
the quadratic forms V̇ and V̈ are essentially self-adjoint operators. With the nota-
tions from (4.5), the closures of these operators are given by the direct sums

V̇ =
∑

n≥0

[iNn, Vn]1n ≡
∑

n≥0

V̇n1n, (4.8)

V̈ =
∑

n≥0

[iNn[iNn, Vn]]1n ≡
∑

n≥0

V̈n1n. (4.9)

The proof is easy and will not be given. In particular: V̇ is bounded if and only if
supn ‖[Nn, Vn]‖ <∞ and V̈ is bounded if and only if supn ‖[Nn[Nn, Vn]]‖ <∞.

4.2 The Hamiltonian

In this subsection we assume that H is finite dimensional and we apply the general
theory of Section 3 to the Hamiltonian of the form L = ∆ + V where V is a
compact self-adjoint operator on H such that [V,N ] = 0, so V preserves the
number of particles (but V does not commute with N in the cases of interest for
us). Equivalently, this means that V has the form

V =
∑

n≥0

Vn1n, with Vn ∈ B(H⊗n) and lim
n→∞

‖Vn‖ = 0. (4.10)

We shall also consider perturbations of such an L by potentials which do not com-
mute with N but satisfy stronger decay conditions.

The following results are straightforward consequences of the theorems proved
in Subsection 3.3, of the remarks at the end of Subsection 4.1, and of the relation
(4.7). For example, in order to check the compactness of [U, V ]N , we argue as
follows: we have [U, V ]N = δ(V )UN = δ(V )(N − 1)U and (N + 1)−1N is
bounded, hence the compactness of δ(V )N suffices. Note also the relations

[U, [U, V ]] = [U, δ(V )U ] = [U, δ(V )]U = δ2(V )U2 (4.11)

δ2(V ) =
∑

n≥0

(Vn−2 ⊗ 1H⊗2 − 2Vn−1 ⊗ 1H + Vn)1n. (4.12)

Proposition 4.3 Assume that H is finite dimensional and let V be a self-adjoint
operator of the form (4.10) and such that ‖V̇n‖ + n‖Vn−1 ⊗ 1H − Vn‖ → 0 when
n→ ∞. Then the spectrum of L is normal and the Mourre estimate holds on each
compact subset of ] − 1,+1[.
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Proposition 4.4 Assume that H is finite dimensional and let V be a self-adjoint
operator of the form (4.10) and such that
(1) ‖V̇n‖ + n‖Vn−1 ⊗ 1H − Vn‖ → 0 when n→ ∞
(2) ‖V̈n‖+n‖V̇n−1⊗1H − V̇n‖+‖(Vn−2⊗1H⊗2 −2Vn−1⊗1H +Vn‖ ≤ C <∞
Then L has normal spectrum and no singularly continuous spectrum.

This result is of the same nature as those of C. Allard and R. Froese. To see
this, we state a corollary with simpler and explicit conditions on the potential. If T
is a linear operator on a finite dimensional Hilbert space E, we denote by 〈T 〉 its
normalized trace:

〈T 〉 =
1

dimE
Tr T (4.13)

Observe that |〈T 〉| ≤ ‖T‖.

Corollary 4.5 Let H be finite dimensional and let V be as in (4.10) and such that:
(1) ‖Vn − 〈Vn〉‖ = O(1/n2),
(2) 〈Vn+1〉 − 〈Vn〉 = o(1/n),
(3) 〈Vn+1〉 − 2〈Vn〉 + 〈Vn−1〉 = O(1/n2).
Then L has normal spectrum and no singularly continuous spectrum, the Mourre
estimate holds on each compact subset of ] − 1,+1[, and estimates of the form
(3.18) are valid.

This follows easily from Proposition 3.5 with Λ =
∑

n≥0〈Vn〉1n. In the case
when V is a function on a tree, the conditions (1)-(3) of the corollary are equivalent
to those of Lemma 7 and Theorem 8 in [AlF]. Note, however, that even in the tree
case we do not assume that the Vn are functions. Now we improve these results.

Let 1≥n =
∑

k≥n 1k be the orthogonal projection of H onto
⊕

k≥nH
⊗k.

Theorem 4.6 Let H be finite dimensional and let V be a self-adjoint operator of
the form (4.10) and such that

∑

k≥0

sup
n≥k

‖Vn − 〈Vn〉‖ <∞ and 〈Vn+1〉 − 〈Vn〉 = o(1/n). (4.14)

Furthermore, assume that 〈Vn〉 = λn + µn where {λn}, {µn} are sequences of
real numbers which converge to zero and such that:
(1) λn+1 − λn = o(1/n) and λn+1 − 2λn + λn−1 = O(1/n2),
(2)

∑
n≥0 supm≥n |µm+1 − µm| <∞.

Finally, let W be a bounded self-adjoint operator satisfying
∑

n ‖W1≥n‖ < ∞.
Then the operators L0 = ∆ + V and L = L0 +W have normal spectrum and no
singularly continuous spectrum, and the wave operators for the pair (L,L0) exist
and are complete.
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Proof: Let Λ =
∑
λn1n and M =

∑
µn1n. We shall apply Theorem 3.11 to L

with the following identifications: Vs = V +W − (Λ+M), V` = M and Vm = Λ.
Note that the condition imposed on W implies that W is a compact N -short range
operator (in fact, the condition says that W is N -short range). Moreover, the first
condition in (4.14) is of the same nature, so it implies that V − (Λ+M) is N -short
range. Hence Vs is compact and N -short range. The fact that M is N -long range
is an easy consequence of [M,N ] = 0 and of the condition (2) (which says, in
fact, that M is N -long range). Finally, the fact that Vm satisfies the conditions
required in Theorem 3.11 is obvious, by (1) and by what we have seen before. The
compactness of [N,V ] and [U, V ]N is proved as follows. Since V − (Λ +M) is
N -short range and due to Lemma 3.10, it suffices to show the compactness of the
operators [N,Λ+M ] and [U,Λ+M ]N . But the first one is zero and for the second
one we use the first part of condition (1) and condition (2). In the case of V +W
one must use again Lemma 3.10

Under the conditions of the preceding theorem, we also have the following
version of the ”limiting absorption principle”, cf. Theorem 3.11. For real s let
H(s) be the Hilbert space defined by the norm

‖f‖2 = ‖10f‖2 +
∑

n≥1

n2s‖1nf‖2.

Then, if s > 1/2 and λ /∈ κ(L), the limit limµ→0(L− λ− iµ)−1 exists in norm in
the space B(H(s),H(−s)), the convergence being locally uniform on R \ κ(L).

5 The anisotropic tree algebra

5.1 The free algebra

Our purpose now is to study more general operators of the form L = D + V ,
where D is a function of U and U ∗ (in the sense that it belongs to the C∗-algebra
generated by U ) and V has the same structure as in Subsection 4.2, i.e. is a direct
sum of operators Vn acting in H⊗n, but Vn does not vanish as n → ∞, so V is
anisotropic in a sense which will be specified later on.

In this section we keep the assumptions and notations of Subsection 4.1 but
assume that H is of dimension ν ≥ 2 (possibly infinite). Then both the range of
U and the kernel of U ∗ are infinite dimensional. It follows easily that each Pk is a
projection of infinite rank.

The free algebra D is the C∗-algebra of operators on H generated by the
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isometry U . Since U ∗U = 1 on H , the set D0 of operator of the form

D =
∑

n,m≥0

αnmU
nU∗m (5.1)

with αnm ∈ C and αnm 6= 0 only for a finite number of n,m, is a ∗-subalgebra of
D , dense in D . Observe that the projections P k = UkU∗k and Pk = P k − P k+1

belong to D0. In the tree case the elements of D are interpreted as “differential”
operators on the tree, which justifies our notation.

We introduce now a formalism needed for the proof of Lemma 5.4, a result
important for what follows. For each operator S ∈ B(H ) we define

S◦ =

∞∑

n=0

1nS1n. (5.2)

It is clear that the series is strongly convergent and that ‖S◦‖ ≤ ‖S‖. Thus S 7→ S◦

is a linear contraction of B(H ) into itself such that 1◦ = 1. This map is also
positive and faithful in the following sense:

S ≥ 0 and S 6= 0 ⇒ S◦ ≥ 0 and S◦ 6= 0 (5.3)

Indeed, S◦ ≥ 0 is obvious and if S◦ = 0 then (
√
S1n)∗(

√
S1n) = 1nS1n = 0

hence
√
S1n = 0 for all n, so

√
S = 0 and then S = 0.

We need one more property of the map S 7→ S◦:

S ∈ K(H ) ⇒ S◦ ∈ K(H ). (5.4)

In fact, this follows from

‖S◦ −
∑

0≤m≤n

1mS1m‖ ≤ sup
m>n

‖1mS1m‖

because ‖1nS1n‖ → 0 as n→ 0 if S is compact.

Lemma 5.1 The restriction to D of the map S 7→ S◦ is a map θ : D → D whose
range is equal to the (abelian, unital) C∗-algebra P generated by the projections
P k, k ≥ 0. Moreover, θ is a norm one projection of D onto its linear subspace P ,
i.e. θ(D) = D if and only if D ∈ P .

Proof: Since UnU∗mH⊗k ⊂ H⊗(k−m+n), we have 1kU
nU∗m1k 6= 0 only if

n = m. Thus, if D ∈ D0 is as in (5.1), then

1kD1k =
∑

n

αn,n1kU
nU∗n1k =

∑

n

αn,nP
n1k,
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because [P n, 1k] = 0. Thus we get D◦ =
∑

n αn,nP
n ∈ P . Since D 7→ D◦ is

a linear contraction and D0 is dense in D , we get that D◦ ∈ P for all D ∈ D .
To finish the proof, note that (P n)◦ = P n for all n and P is the closed linear
subspace of D generated by the operators P n, hence D◦ = D for all D ∈ P .

The pairwise orthogonal projections Pn belong to P but the C∗-algebra (equal
to the norm closed subspace) generated by them is strictly smaller than P . On the
other hand, the Von Neumann algebra Pw generated by P (i.e. the strong closure
of P) coincides with that generated by {Pn}n≥0. Indeed, for each n ≥ 0 we have
P n =

∑
m≥n Pm the series being strongly convergent.

Lemma 5.2 For each D ∈ D there is a unique bounded sequence {αn}n≥0 of
complex numbers such that D◦ =

∑
n≥0 αnPn. If D ≥ 0 then αn ≥ 0 for all n.

If D ∈ D , D ≥ 0 and D 6= 0, one has D◦ ≥ αPn for some real α > 0 and some
n ∈ N.

Proof: Since PnPm = 0 if n 6= m and
∑

k≥0 Pk = 1, each element of the Von
Neumann algebra generated by {Pn}n≥0 can be written as

∑
n≥0 αnPn for some

unique bounded sequence of comples numbers αn. If D ≥ 0, then D◦ ≥ 0 and
this is equivalent to αn ≥ 0 for all n. If D ≥ 0 and D 6= 0, then D◦ 6= 0 by (5.3)
hence αn > 0 for some n.

Corollary 5.3 D ∩ K(H ) = {0}.

Proof: D ∩ K(H ) is a C∗-algebra, so that if the intersection is not zero, then it
contains some D with D ≥ 0 and D 6= 0. But then D◦ is a compact operator by
(5.4) and we have D◦ ≥ αPn for some α > 0 and n ∈ N.

We note that if 0 ≤ S ≤ K and K ≈ 0 then S ≈ 0. Indeed, for each ε > 0
there is a finite range projection F such that ‖F ′KF ′‖ ≤ ε, where F ′ = 1 − F .
Thus 0 ≤ F ′SF ′ ≤ ε and so S = FS + F ′SF + F ′SF ′ is the sum of a finite
range operator and of an operator of norm ≤ ε. Hence S ≈ 0.

Thus Pn is compact, or Pn is an infinite dimension projection.

Finally, we are able to prove the result we need.

Lemma 5.4 Let V ∈ B(H ) such that V = V ◦ and [V,U ] ∈ K(H ). If there is
D ∈ D , D 6= 0, such that V D ∈ K(H ), then V P0 ∈ K(H ).

Proof: From V D ≈ 0 it follows that V DD∗V ∗ ≈ 0. Then (5.4) gives

V (DD∗)◦V ∗ = (V DD∗V ∗)◦ ≈ 0.
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By Lemma 5.2, since DD∗ ∈ D is positive and not zero, we have DD∗ ≥ αPn for
some n ≥ 0, with α > 0. Thus 0 ≤ V PnV

∗ ≤ α−1V DD∗V ∗. Or V DD∗V ∗ ≈ 0
so V PnV

∗ ≈ 0 and since V Pn =
√
V PnV ∗J for some partial isometry J we see

that V Pn ≈ 0. But Pn = UnP0U
∗n and U∗U = 1 so V UnP0 ≈ 0. If n ≥ 1

then UV Un−1P0 = [U, V ]Un−1P0 + V UnP0 ≈ 0 and since U ∗U = 1 we get
V Un−1P0 ≈ 0. Repeating, if necessary, the argument, we obtain that V P0 ≈ 0.

5.2 The interaction algebra

The classes of interaction operators V ∈ B(H ) we isolate below must be such
that V = V ◦ and V P0 ≈ 0 ⇒ V ≈ 0. We shall use the embedding (n ≥ 0)

B(H⊗n) ↪→ B(H⊗n+1) defined by S 7→ S ⊗ 1H . (5.5)

Let us set A0 = C and for each n ≥ 1 let An be a C∗-algebra of operators on H⊗n

such that
An ⊗ 1H ⊂ An+1. (5.6)

Note that this implies 1n ∈ An. The convention (5.5) gives us natural embeddings

A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . (5.7)

and we can define A∞ as the completion of the ∗-algebra ∪∞
n=0An under the unique

C∗-norm we have on it (note that An+1 induces on An the initial norm of An).
Thus A∞ is a unital C∗-algebra, each An is a unital subalgebra of A∞ and we can
write:

A∞ =
⋃

n≥0

An (norm closure). (5.8)

We emphasize that A∞ has not a natural realization as algebra of operators on H .
On the other hand, the following is a unital C∗-algebra of operators on H :

A =
∏

n≥0

An =
{
V = (Vn)n≥0 | Vn ∈ An and ‖V ‖ := sup

n≥0
‖Vn‖ <∞

}
. (5.9)

Indeed, if f = (fn)n≥0 ∈ H and V is as above, we set V f = (Vnfn)n≥0. In
other terms, we identify

V =

∞∑

n=0

Vn1n (5.10)

the right hand side being strongly convergent on H . Observe that

A0 =
⊕

n≥0

An =
{
V ∈ A | lim

n→∞
‖Vn‖ = 0

}
. (5.11)

is an ideal in A .
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Lemma 5.5 We have A ∩ K(H ) ⊂ A0 and the inclusion becomes an equality if
H is finite dimensional.

Proof: We have 1n → 0 strongly on H if n → ∞, hence if V is compact then
‖V 1n‖ → 0. In the finite dimensional case, note that

∑n
m=0 Vm1m is compact for

all n and converges in norm to V if V ∈ A0.

Let τ : A → A be the morphism defined by:

τ(V0, V1, V2, . . .) = (0, V01H , V1 ⊗ 1H , V2 ⊗ 1H , . . .),

or τ(V )n = Vn−1 ⊗ 1H , where V−1 = 0. Clearly τn(V ) → 0 as n→ ∞ strongly
on H , for each V ∈ A . Observe that the map δ = τ − Id coincides with that
defined in (4.6), because

δ(V )n = Vn−1 ⊗ 1H − Vn.

Since δ(V ′V ′′) = δ(V ′)τ(V ′′)+V ′δ(V ′′) and since A0 is an ideal of A , the space

Avo = {V ∈ A | δ(V ) ∈ A0} (5.12)

is a C∗-subalgebra of A which contains A0. This algebra is an analog of the
algebra of bounded continuous functions with vanishing oscillation at infinity on
R, or that of bounded functions with vanishing at infinity derivative on Z or N.

Proposition 5.6 Assume that H is finite dimensional and let V ∈ Avo. If D ∈ D ,
D 6= 0, and V D ∈ K(H ), then V ∈ K(H ).

Proof: We have δ(V ) ≈ 0 and [U, V ] ≈ 0 by (4.7) and Lemma 5.5. Now according
to Lemma 5.4, it remains to prove that V ≈ 0 follows from V P0 ≈ 0. Since
1n → 0 strongly as n → ∞ and since [1n, P0] = 0 and V 1n = Vn1n, we get
‖VnP01n‖ → 0 as n→ ∞. By using P0 = 1 − P 1 we get

P01n = 1n − 1n−1 ⊗ pu = 1n−1 ⊗ p′u,

where p′u = 1H−pu is the projection ofH onto the subspace orthogonal to u, hence
‖p′u‖ = 1 (recall that dimH = ν ≥ 2). Thus we have ‖Vn · 1n−1 ⊗ p′u‖ → 0. But
δ(V ) ∈ A0 means ‖Vn − Vn−1 ⊗ 1H‖ → 0. So

‖Vn−1‖ = ‖Vn−1 ⊗ p′u‖ ≤ ‖(Vn − Vn−1 ⊗ 1H) · 1n−1 ⊗ p′u‖ + ‖Vn · 1n−1 ⊗ p′u‖

converges to 0 as n→ ∞.
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We are mainly interested in the particular class of algebras An constructed as
follows. Let A be a C∗-algebra of operators on H such that 1H ∈ A and let us set:

A0 = A⊗0 = C and An = A⊗n if n ≥ 1. (5.13)

Then A∞ is just the infinite tensor product A⊗∞. Note that the embedding A⊗n ⊂
A⊗∞ amounts now to identify Vn ∈ A⊗n with Vn ⊗ 1H ⊗ 1H ⊗ . . . ∈ A⊗∞.
We summarize the preceeding notations and introduce new ones specific to this
situation:

A =
∏

n≥0

A⊗n = {V = (Vn)n≥0 | Vn ∈ A⊗n, ‖V ‖ = sup
n≥0

‖Vn‖ <∞}

A0 =
⊕

n≥0

A⊗n = {V ∈ A | lim
n→∞

‖Vn‖ = 0}

Avo = {V ∈ A | δ(V ) ∈ A0}
A∞ = {V ∈ A | V∞ := lim

n→∞
Vn exists in A⊗∞}

Af = {V ∈ A | ∃N such that Vn = VN if n ≥ N}.

Note that Vn = VN means Vn = VN ⊗ 1n−N if n > N . The space of main interest
for us is the C∗-algebra A∞. Clearly, A0 is a closed self-adjoint ideal in A∞ and

V ∈ A∞ ⇒ δ(V ) ∈ A0, (5.14)

in other terms A∞ ⊂ Avo.

Proposition 5.7 The map V 7→ V∞ is a surjective morphism of the C∗-algebra
A∞ onto A⊗∞ whose kernel is A0. Thus, we have a canonical isomorphism

A∞/A0 ' A⊗∞. (5.15)

Moreover, Af is a dense ∗-subalgebra of A∞ and we have

Af =
{
V ∈ A∞ | V∞ ∈

⋃

n≥0

A⊗n
}
. (5.16)

Proof: That V 7→ V∞ is a morphism and is obvious. Af is clearly a ∗-subalgebra.
If V ∈ A∞ and if we set V N

n = Vn for n ≤ N , V N
n = VN for n > N , then

V N ∈ Af and ‖V − V N‖ = supn>N ‖Vn − VN‖ → 0 as N → ∞. Thus Af is
dense in A∞.

If W ∈ A⊗N and if we define V ∈ A by Vn = 0 for n < N , Vn = W if
n ≥ N , then V ∈ Af and V∞ = W . Thus the range of the morphism V 7→ V∞
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contains the dense subset ∪n≥0A⊗n of A⊗∞. Since the range of a morphism is
closed, the morphism is surjective.

The following remarks concerning the linear map B(H ) → B(H ) defined by
S 7→ U∗SU will be needed below (see also the comments after Lemma 2.4). If we
use the natural embedding B(H⊗n) ↪→ B(H ) then we clearly have

U∗B(H⊗n+1)U ⊂ B(H⊗n)

and if S′ ∈ B(H⊗n) and S′′ ∈ B(H) then

U∗(S′ ⊗ S′′)U = S′〈u, S′′u〉.
Of course, U ∗SU = 0 if S ∈ B(H⊗0). It is clear then that ω(V ) := U ∗V U defines
a linear positive contraction ω : A → A which leaves invariant the subalgebras
A0 and Af , hence A∞ too. From (4.7) we then get for all V ∈ A :

UV = [V + δ(V )]U and U ∗V = [V − ω ◦ δ(V )]U ∗. (5.17)

We make two final remarks which are not needed in what follows. First, note
that the map ω could be defined with the help of [Tak, Corollary 4.4.25]. Then,
observe that for S ∈ B(H⊗n) we have USU ∗ = S ⊗ pu. Thus in general the
morphism S 7→ USU ∗ does not leave invariant the algebras we are interested in.

5.3 The anisotropic tree algebra

In this subsection we study C∗-algebras of operators on the Fock space H gener-
ated by self-adjoint Hamiltonians of the form L = D+V , whereD is a polynomial
in U and U ∗ and V belongs to a C∗-subalgebra of A . We are interested in comput-
ing the quotient of such an algebra with respect to the ideal of compact operators.
The largest algebra for which this quotient has a rather simple form is obtained
starting with Avo and the quotient becomes quite explicit if we start with A∞.

More precisely, we fix a vector u ∈ H with ‖u‖ = 1 and a C ∗-algebra A of
operators on H containing 1H . Recall that H is a Hilbert space of dimension ν ≥
2. Throughout this subsection we assume that H is finite dimensional, although
part of the results hold in general. Then we define U = ρu as in Section 4 and we
consider the C∗-algebras on H

A0 ⊂ A∞ ⊂ Avo ⊂ A

associated to A as in Subsection 5.2. Then we define

Cvo = norm closure of Avo · D ,
C∞ = norm closure of A∞ · D ,
C0 = norm closure of A0 · D .
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We recall the notation: if A,B are subspaces of an algebra C , then A · B is the
linear subspace of C generated by the products ab with a ∈ A and b ∈ B. Observe
that, D and Avo being unital algebras, we have and D ∪Avo ⊂ Cvo and, similarly,
D ∪ A∞ ⊂ C∞. Clearly C0 ⊂ C∞ ⊂ Cvo.

Lemma 5.8 Cvo and C∞ are C∗-algebras and C0 is an ideal in each of them.

Proof: Indeed, from (5.17) it follows easily that for each V ∈ A∞ there are
V ′, V ′′ ∈ A∞ such that UV = V ′U and U∗V = V ′′U∗ and similarly in the
case of Avo. This proves the first part of the lemma. Then note that V ′, V ′′ ∈ A0

if V ∈ A0 and use (5.14).

It is not difficult to prove that Cvo is the C∗-algebra generated by the operators
L = D + V , where D and V are self-adjoint elements of D and Avo respectively,
and similarly for C∞ (see the proof of Proposition 4.1 from [GeI]). Since only the
obvious fact that such operators belong to the indicated algebras matters here, we
do not give the details.

Lemma 5.9 If H finite dimensional, then C0 = K(H ) ∩C∞ = K(H ) ∩Cvo. If,
moreover, u is a cyclic vector for A in H , then we have C0 = K(H ).

Proof: Since H is finite dimensional, we have A0 ⊂ K(H ), hence C0 ⊂ K(H ).
Reciprocally, let S ∈ Cvo be a compact operator. Let πn be the projection of H

onto
⊕

0≤m≤nH
⊗m. Then πn =

∑
0≤m≤n 1m ∈ A0 and πn → 1H strongly

when n → ∞. Since S is compact, we get πnS → S in norm, so it suffices to
show that πnS ∈ C0 for each n. We prove that this holds for any S ∈ C = norm
closure of A ·D : it suffices to consider the case S = V D with V ∈ A andD ∈ D ,
and then the assertion is obvious.

Since H is finite dimensional, u is cyclic for A if and only if Au = H . If
this is the case, then u⊗n is cyclic for A⊗n on H⊗n for each n. Let n,m ∈ N

and f ∈ H⊗n, g ∈ H⊗m. Then there are V ∈ A⊗n and W ∈ A⊗m such that
f = V u⊗n = V Une and g = Wu⊗m = WUme, where e = 1 ∈ C = H⊗0.
So we have |f〉〈g| = V Un|e〉〈e|U ∗W ∗. Clearly V,W and |e〉〈e| belong to A0, so
|f〉〈g| ∈ C0. An easy approximation argument gives then K(H ) ⊂ C0.

We can now describe the quotient Cvo/C0 of the algebra Cvo with respect to
the ideal of compact operators which belong to it.

Theorem 5.10 Assume that H is finite dimensional. Then there is a unique mor-
phism Φ : Cvo → (Avo/A0) ⊗ D such that Φ(V D) = V̂ ⊗ D for all V ∈ Avo

and D ∈ D , where V 7→ V̂ is the canonical map Avo → Avo/A0. This morphism
is surjective and ker Φ = C0, hence we get a canonical isomorphism

Cvo/C0 ' (Avo/A0) ⊗ D . (5.18)
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Proof: We shall check the hypotheses of Corollary A.4 with the choices:

u ≡ U, B = Avo, C = Cvo, C0 = C0 = Cvo ∩ K(H ).

Thus A = D . From Corollary 5.3 we get A0 = {0} and then

B0 = Avo ∩ C0 = Avo ∩ Cvo ∩ K(H ) = Avo ∩ K(H ) = A0

by Lemma 5.5. Then we use Proposition 5.6 and the fact that [V,U ] ∈ K(H ) if
V ∈ Avo (see (4.7) and note that δ(V ) ∈ A0 ∈ K(H )).

The quotient C∞/C0 has a more explicit form. This follows immediately from
Theorem 5.10 and Proposition 5.7.

Corollary 5.11 If H is finite dimensional, then there is a unique morphism Φ :
C∞ → A⊗∞⊗D such that Φ(V D) = V∞⊗D for all V ∈ A∞ and D ∈ D . This
morphism is surjective and ker Φ = C0, hence we have a canonical isomorphism

C∞/C0 ' A⊗∞ ⊗ D . (5.19)

Example 5.12 The simplest choice is A = C1H . Then A⊗n = C1n and A∞ is
the set of operators V ∈ B(H ) of the form V =

∑
n≥0 Vn1n, where {Vn} is a

convergent sequence of complex numbers, and V∞ = limn→∞ Vn. In this case,
Theorem 5.10 gives us a canonical isomorphism C∞/C0 ' D . On the other hand,
Avo corresponds to the bounded sequences {Vn} such that lim |Vn+1 − Vn| = 0,
and the quotient Avo/A0 is quite complicated (it can be described in terms of the
Stone-Cech compactification of N).

Example 5.13 In order to cover the tree case considered in [Gol] (see the Intro-
duction) it suffices to choose A an abelian algebra. Since H is finite dimensional,
the spectrum of A is a finite set A and we have A ' C(A) hence A⊗n ' C(An)
canonically. If A∞ ≡ AN

∗

equipped with the product topology, then we get a na-
tural identification A⊗∞ ' C(A∞). Let Γ :=

⋃
n≥0A

n, then A can be identified
with the set of bounded functions V : Γ → C and A0 is the subset of functions
which tend to zero at infinity. The embedding (5.6) is obtained by extending a
function ϕ : An → C to a function on An+1 by setting ϕ(a1, . . . , an, an+1) =
ϕ(a1, . . . , an). Thus V ∈ Avo if and only if

lim
n→∞

sup
a∈An, b∈A

|V (a, b) − V (a)| = 0.

Let πn : A∞ → An be the projection onto the n first factors. Then V ∈ A∞ if and
only if there is V∞ ∈ C(A∞) such that

lim
n→∞

sup
a∈A∞

|V ◦ πn(a) − V∞(a)| = 0.
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This means that the function Ṽ defined on the space Γ̃ = Γ∪A∞ equipped with the
natural hyperbolic topology (see [Gol]) by the conditions Ṽ |Γ = V and Ṽ |A∞ =
V∞ is continuous. And reciprocally, each continuous function Ṽ : Γ̃ → C defines
by Ṽ |Γ = V an element of A∞. This shows that our results cover those of [Gol].

We mention that in order to have a complete equivalence with the tree model as
considered in [Gol] the vector u must be a cyclic vector of A, in particular A must
be maximal abelian. Indeed, in this case A can be identified with an orthonormal
basis of H diagonalizing A (the vectors a are uniquely determined modulo a factor
of modulus 1 and the associated character of A is V 7→ 〈a, V a〉). Then u =∑

a∈A caa is cyclic for A if and only if ca 6= 0 for all a. If ca = |A|−1/2 with |A|
the number of elements of A, we get the standard tree case.

Example 5.14 Another natural choice is A = B(H). Then u is a cyclic vector for
A because u 6= 0, so C0 = K(H ). In this case we have

C∞/K(H ) ' B(H)⊗∞ ⊗ D

and B(H)⊗∞ is a simple C∗-algebra.

We give an application to the computation of the essential spectrum. Note that

if L =
∑n

k=1 V
kDk, with V k ∈ Avo and Dk ∈ D , then Φ(L) =

∑n
k=1 V̂

k ⊗Dk.
In particular, we get

Proposition 5.15 Let L = D + V with D ∈ D and V ∈ Avo self-adjoint. Then

σess(L) = σ(D) + σ(V̂ ). (5.20)

If V ∈ A∞, then
σess(L) = σ(D) + σ(V∞). (5.21)

Proof: It suffices to note that Φ(L) = 1⊗D+ V̂ ⊗1 and to use the general relation:
if A,B are self-adjoint then σ(A⊗ 1 + 1 ⊗B) = σ(A) + σ(B).

In the abelian case the result is more general and more explicit.

Proposition 5.16 Assume that we are in the framework of Example 5.13 and let
L =

∑n
k=1 V

kDk be a self-adjoint operator with V k ∈ A∞ and Dk ∈ D . Then

σess(L) =
⋃

a∈A∞

σ
( ∑

k

V k
∞(a)Dk

)
. (5.22)

35



For the proof, observe that a 7→ ∑
k V

k
∞(a)Dk is a norm continuous map on

the compact space A∞, which explains why the right hand side above is a closed
set. A formula similar to (5.22) holds if A∞ is replaced by Avo, the only difference
being that A∞ must be replaced with the spectrum of the abelian algebra Avo/A0.

Remarks: We shall make some final comments concerning various natural gener-
alizations of the algebras considered above. Assume that An are C∗-algebras as at
the beginning of Subsection 5.2 and let A be given by (5.9). Then

Arc =
{
V = (Vn)n≥0 | Vn ∈ An and {Vn | n ≥ 0} is relatively compact in A∞

}

is aC∗-subalgebra of A which contains Avo. Interesting subalgebras of Arc can be
defined as follows (this is the analog of a construction from [GeI]): let α be a filter
on N finner than the Fr échet filter and let Aα be the set of V = (Vn) ∈ A such
that limα Vn exists in A∞, where limα means norm limit along the filter α. Note
that Aα = Arc if α is an ultrafilter. Now it is natural to consider the C ∗-algebra
Crc generated by the Hamiltonians with potentials V ∈ Arc, so the C∗-algebra
generated by Arc∪D , and the similarly defined algebras Cα. It would be interesting
to describe the quotient Cα/C0, but neither the techniques of the Appendix nor
those from [GeI] do not seem to be of any use for this. Indeed, the main ingredients
of our proof where Proposition 5.6 and the fact that the commutator of a potential
with U is compact, or these properties will not hold in general. Moreover, the
examples treated in [GeI], more precisely the Klaus (or bumps) algebra, which has
an obvious analog here, show that we cannot expect a simple embedding of the
quotient into a tensor product. Note that “localizations at infinity” in the sense of
[GeI] can be defined for the elements of Crc by using iterations of the operators
λv of left multiplication by elements v ∈ H in the Fock space H , a technique
already used in [GeI, Gol], and this could be used in order to define the canonical
morphism which describes the quotient.

A Appendix

Let us consider two C∗-subalgebras A and B of a C∗-algebra C satisfying the
following conditions:

• A or B is nuclear,

• ab = ba if a ∈ A and b ∈ B.

We denote by A ⊗ B the minimal C∗-algebra tensor product of the two algebras
A and B. Since, by the nuclearity assumption, A ⊗ B is also the maximal tensor
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product of A and B, there is a unique morphism φ : A ⊗ B → C such that
φ(a⊗ b) = ab, see [Mur, Theorem 6.3.7].

Our purpose is to find conditions which ensure that φ is injective. Then φ is
isometric and so it gives a canonical identification of the tensor product A⊗B with
the C∗-subalgebra of C generated by A and B. The following simple observation
is useful.

Lemma A.1 The morphism φ is injective if and only if the following condition is
satisfied: if b1, . . . , bn is a linearly independent family of elements of B, then

a1, . . . , an ∈ A and a1b1 + · · · + anbn = 0 ⇒ a1 = · · · = an = 0. (A.1)

Proof: This condition is clearly necessary. Reciprocally, letA�B be the algebraic
tensor product of A and B, identified with a dense subspace of A⊗ B. Then each
x ∈ A � B can be written x =

∑
ai ⊗ bi for some linearly independent family

b1, . . . , bn of elements of B and then φ(x) =
∑
aibi. It follows immediately that

x 7→ ‖φ(x)‖ is a C∗-norm on A � B. But the nuclearity of A or B ensures that
there is only one such norm, hence ‖φ(x)‖ = ‖x‖, so that φ extends to an isometry
on A⊗B.

The condition (A.1) is not easy to check in general, so it would be convenient
to replace it with the simpler:

a ∈ A, b ∈ B, b 6= 0 and ab = 0 ⇒ a = 0. (A.2)

Exercise 2 in [Tak, Sec. 4.4] treats the case when A is abelian. The following
result, which was suggested to us by a discussion with Georges Scandalis, is more
suited to our purposes.

Let us say that a self-adjoint projection p in a C ∗-algebra K is minimal if p 6= 0
and if the only projections q ∈ K such that q ≤ p are 0 and p. We say that the
algebra is generated by minimal projections if for each positive non zero element
a ∈ K there is a minimal projection p and a real α > 0 such that a ≥ αp.

We also recall that an ideal K of A is called essential if for a ∈ A the relation
aK = 0 implies a = 0.

Proposition A.2 If (A.2) is fulfilled and if A contains an essential ideal K which
is generated by its minimal projections, then φ is injective.

Proof: The following proof of the proposition in the caseA = D , which is the only
case of interest in this paper, is due to Georges Scandalis: since D is isomorphic to
the Toeplitz algebra, D contains a copy K of the algebra of compact operators on
`2(N) as an essential ideal. Then it is clear that it suffices to assume that A = K

37



and in this case the assertion is essentially obvious, because ker(ϕ⊗ψ) is an ideal
ofK⊗B. These ideas are certainly sufficient to convince an expert inC ∗-algebras,
but since we have in mind a rather different audience, we shall develop and give
the details of the preceding argument. We also follow a different idea in the last
part of the proof.

(i) We first explain why it suffices to consider the case A = K . Note that one
can identify K ⊗B with the closed subspace of A⊗B generated by the elements
of the form a⊗ b with a ∈ K, b ∈ B (see [Mur, Theorem 6.5.1]) and so K ⊗B is
an ideal in A⊗B. Let us show that this is an essential ideal.

We can assume that K and B are faithfully and non-degenerately represented
on Hilbert spaces E ,F . Since K is essential in A, the representation of K extends
to a faithful and non-degenerate representation of A on E (this is an easy exercise).
Thus we are in the situation K ⊂ A ⊂ B(E ), B ⊂ B(F ), the action of K on E

being non-degenerate. Let {kα} be an approximate unit of K . Then s–lim kα = 1
on E , because ‖kα‖ ≤ 1 and the linear subspace generated by the vectors ke,
with k ∈ K and e ∈ E , is dense in E (in fact KE = E ). Similarly, if {bβ} is an
approximate unit forB then s–lim bβ = 1 on F and then clearly s–limα,β kα⊗bβ =
1 on E ⊗ F . From our assumptions (the tensor products are equal to the minimal
ones) we getK⊗B ⊂ A⊗B ⊂ B(E ⊗F ). Let x ∈ A⊗B such that x·K⊗B = 0.
Then x ·kα⊗ bβ = 0 for all α, β, hence x = s–limα,β x ·kα⊗ bβ = 0. Thus K⊗B
is an essential ideal in A⊗B.

Now it is obvious that a morphism A⊗B → C whose restriction to K ⊗B is
injective, is injective. Thus it suffices to show that the restriction of φ to K ⊗B is
injective, so from now on we may, and we shall, assume that A = K .

(ii) We make a preliminary remark: let P be the set of minimal projections in
A; then for each p ∈ P we have pAp = Cp. Note that this is equivalent to the fact
that for each p ∈ P there is a state τp of A such that pap = τp(a)p for all a ∈ A.

Since pAp is the C∗-subalgebra of A consisting of the elements a such that
ap = pa = a, it suffices to show that each a ∈ pAp with a ≥ 0, a 6= 0, is of the
form λp for some real λ. Let q ∈ P such that a ≥ εq for some real ε > 0. Then
εq ≤ a = pap ≤ ‖a‖p from which it is easy to deduce that q ≤ p, hence q = p
(p and q being minimal). Let λ be the largest positive number such that a ≥ λp.
If a − λp 6= 0, then there is r ∈ P and a real ν > 0 such that a − λp ≥ νr. In
particular a ≥ νr and so r = p by the preceding argument. Hence a ≥ (λ+ ν)p,
which contradicts the maximality of λ. Thus a = λp.

(iii) Finally, we check (A.1). Let b1, . . . , bn be a linearly independent family of
elements of B and a1, . . . , an ∈ A such that

∑
aibi = 0. Then for all a ∈ A and

p ∈ P we have

p
(∑

τp(aai)bi

)
=

∑
paaipbi = pa

(∑
aibi

)
p = 0.
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Since p ∈ A, p 6= 0, and
∑
τp(aai)bi ∈ B, we must have

∑
τp(aai)bi = 0.

But τp(aai) are complex numbers, so τp(aai) = 0 for each i and all a ∈ A. In
particular, we have τp(a∗i ai) = 0, which is equivalent to pa∗i aip = 0 for all p ∈ P .
If a∗i ai 6= 0, then there are α > 0 and q ∈ P such that a∗i ai ≥ αq. By taking
p = q, we get 0 = qa∗i aiq ≥ αq, which is absurd. Thus a∗i ai = 0, i.e. ai = 0.

The next proposition is a simple extension of the preceding one. We recall
that a C∗-algebra is called elementary if it is isomorphic with the C ∗-algebra of all
compact operators on some Hilbert space.

Proposition A.3 Let A,B be C∗-subalgebras of a C∗-algebra C , let C0 be an
ideal of C , and let A0 = A ∩ C0 and B0 = B ∩ C0 be the corresponding ideals
of A and B respectively. Denote by Â = A/A0, B̂ = B/B0 and Ĉ = C/C0 the
associated quotient algebras and assume that:

• Â contains an essential ideal K which is an elementary algebra and such
that Â/K is nuclear (e.g. abelian)

• if a ∈ A, b ∈ B then [a, b] ∈ C0

• if a ∈ A, b ∈ B and ab ∈ C0 then either a ∈ C0 or b ∈ C0.

• C is the C∗-algebra generated by A ∪B

Then there is a unique morphism Φ : C → Â⊗ B̂ such that Φ(ab) = â⊗ b̂ for all
a ∈ A, b ∈ B. This morphism is surjective and has C0 as kernel. In other terms,
we have a canonical isomorphism

C/C0 ' (A/A0) ⊗ (B/B0). (A.3)

Proof: It is clear that an elementary algebra is generated by minimal projections
and is nuclear hence, by [Mur, Theorem 6.5.3], the conditions we impose on A
imply the nuclearity of Â. Note that Â and B̂ are C∗-subalgebras of Ĉ and that
they generate Ĉ . Moreover, we have âb̂ = b̂â for all a ∈ A, b ∈ B and if âb̂ = 0
then â = 0 or b̂ = 0. By Proposition A.2 the natural morphism Â⊗ B̂ → Ĉ is an
isomorphism. Denote ψ its inverse, let π : C → Ĉ be the canonical map, and let
Φ = ψ ◦ π. This proves the existence of a morphism with the required properties.
Its uniqueness is obvious.

Now we summarize the facts needed in this paper.

Corollary A.4 Let C be a C∗-algebra, C0 an ideal of C ,B aC∗-subalgebra of C ,
B0 = B ∩ C0, and u ∈ C a non unitary isometry such that B ∪ {u} generates C .
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Let A be the C∗-subalgebra generated by u and let us assume that A ∩ C0 = {0}
and that [u, b] ∈ C0 for all b ∈ B. Finally, assume that:

a ∈ A, b ∈ B and ab ∈ C0 ⇒ a ∈ C0 or b ∈ C0.

Then there is a unique morphism Φ : C → A⊗ (B/B0) such that Φ(ab) = a⊗ b̂
for all a ∈ A, b ∈ B (where b̂ is the image of b in B/B0). This morphism is
surjective and has C0 as kernel. In other terms, we have a canonical isomorphism

C/C0 ' A⊗ (B/B0). (A.4)

Proof: The assumption [u, b] ∈ C0 for all b ∈ B clearly implies [a, b] ∈ C0 for
all a ∈ A, b ∈ B. Moreover, the algebra A = Â is isomorphic with the Toeplitz
algebra, see [Mur, Theorem 3.5.18], and so all the conditions imposed on it in
Proposition A.3 are satisfied, see [Mur, Example 6.5.1].

We shall now study a more elementary situation which is relevant in the context
of Section 5. Our purpose is to treat the case when the Hilbert space H is of
dimension 1 (this situation, although much simpler, is not covered by the arguments
from Section 5).

This is in fact the case considered in Example 2.6, namely we take H =
`2(N) and define the isometry U by Uen = en+1. Then the C∗-algebra D(N)
generated by U is just the Toeplitz algebra [Mur, Section 3.5]. We also consider
the situation of Example 2.5, where H = `2(Z) and U acts in the same way, but
now it is a unitary operator and the C∗-algebra D(Z) generated by it is isomorphic
to the algebra C(T ) of continuous functions on the unit circle T (make a Fourier
transformation). Let K (N) := K(`2(N)) and K (Z) := K(`2(Z)) be the ideals of
compact operators on `2(N) and `2(Z) respectively.

It is clear that D(Z)∩K (Z) = {0} and it is easily shown that K (N) ⊂ D(N).
From [Mur, Theorem 3.5.11] it follows that we have a canonical isomorphism
D(N)/K (N) ' D(Z). This isomorphism is uniquely defined by the fact that it
sends the shift operator U on N into the the shift operator U on Z, cf. the Coburn
theorem [Mur, Theorem 3.5.18]).

We identify `∞(N) with the set of bounded multiplication operators on `2(N).

Proposition A.5 Let A be a unital C∗-subalgebra of `∞(N) such that for each
V ∈ A the operator [U, V ] is compact. Let C be the C ∗-algebra generated by
A ∪ {U} and let us denote A0 = A ∩ K (N) and C0 = C ∩ K (N). Then

C /C0 ' (A /A0) ⊗ D(Z). (A.5)

This relation holds also if N is replaced with Z.
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Proof: Clearly [D,V ] ∈ K (N) for all D ∈ D(N) and V ∈ A , hence we have
a natural surjective morphism (A /A0) ⊗ D(Z) → C /C0. It remains to show
that this is an injective map. According to [Tak, Sec. 4.4, Exercice 2], it suffices
to prove the following: if D ∈ D(N) is not compact and if V ∈ `∞(N) has the
property V D ∈ K (N), then V is compact. We may assume that D ≥ 0, otherwise
we replace it by DD∗.

To each α ∈ C with |α| = 1 we associate a unitary operator Sα on `2(N) by the
rule Sαen = αnen. We clearly have SαUS

∗
α = αU , thusA 7→ Aα := SαAS

∗
α is an

automorphism of B(`2(N)) which leaves invariant the algebra D(N) and the ideal
K (N) and reduces to the identity on `∞(N). Thus V Dα ∈ K (N) for each such
α. We shall prove the following: there are α1, . . . , αn such that

∑
Dαi

= A+K ,
where A is an invertible operator and K is compact. Then V A is compact and
V = V AA−1 too, which finishes the proof of the proposition.

We shall denote by Ŝ the image of an operator S ∈ B(`2(N)) in the Calkin
algebra B(`2(N))/K(`2(N)). Thus we have D̂ ≥ 0, D̂ 6= 0. As explained before
the proof, we have D(N)/K (N) ' D(Z) ' C(T ). Let θα be the automorphism
of C(T ) defined by θα(ϕ)(z) = ϕ(zα). Then we have D̂α = θα(D̂) (because this
holds for U , hence for all the elements of the C∗-algebra generated by U ). But
D̂ is a positive continuous function on T which is strictly positive at some point,
hence the sum of a finite number of translates of the function is strictly positive,
thus invertible in C(T ). So there are α1, . . . , αn such that the image of

∑
Dαi

be
invertible in the Calkin algebra and this is exactly what we need.
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