C^*-algebras of anisotropic Schrödinger operators on trees

Sylvain Golénia*

May 19, 2004

Abstract

We study a C^*-algebra generated by differential operators on a tree. We give a complete description of its quotient with respect to the compact operators. This allows us to compute the essential spectrum of self-adjoint operators affiliated to this algebra. The results cover Schrödinger operators with highly anisotropic, possibly unbounded potentials.

1 Introduction

Given a ν-fold tree Γ of origin e with its canonical metric d, we write $x \sim y$ when x and y are connected by an edge and we set $|x| = d(x, e)$. For each $x \in \Gamma \setminus \{e\}$, we denote by $x' \equiv x^{(1)}$ the unique element $y \sim x$ such that $|y| = |x| - 1$ and we set $x^{(p)} = (x^{(p-1)})'$ for $1 \leq p \leq |x|$. Let $x\Gamma = \{y \in \Gamma \mid |y| \geq |x| \text{ and } y^{(|y|-|x|)} = x\}$, where the convention $x^{(0)} = x$ has been used.

On $\ell^2(\Gamma)$ we define the bounded operator ∂ given by $(\partial f)(x) = \sum_{y' = x} f(y)$. Its adjoint is given by $(\partial^\ast f)(e) = 0$ and $(\partial^\ast f)(x) = f(x')$ for $|x| \geq 1$. Let \mathcal{D} be the C^*-algebra generated by ∂.

*Département de Mathématiques, Université de Cergy-Pontoise, 2, avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France. E-mail: Sylvain.Golenia@math.u-cergy.fr
In order to obtain our algebra of potentials, we consider the “hyperbolic” compactification \(\hat{\Gamma} = \Gamma \cup \partial \Gamma \) of \(\Gamma \) constructed as follows. An element \(x \) of the boundary at infinity \(\partial \Gamma \) is a \(\Gamma \)-valued sequence \(x = (x_n)_{n \in \mathbb{N}} \) such that \(|x_n| = n \) and \(x_{n+1} \sim x_n \) for all \(n \in \mathbb{N} \). We set \(|x| = \infty \) for \(x \in \partial \Gamma \). The space \(\hat{\Gamma} \) is equipped with a natural ultrametric space structure.

For \(x \in \partial \Gamma \) and \((y_n)_{n \in \mathbb{N}} \) a sequence in \(\Gamma \) we have \(\lim_{n \to \infty} y_n = x \) if for each \(m \in \mathbb{N} \) there is \(N \in \mathbb{N} \) such that for each \(n \geq N \) we have \(y_n \in x_m \Gamma \).

We denote by \(C(\hat{\Gamma}) \) the set of complex-valued continuous functions defined on \(\hat{\Gamma} \). Since \(\Gamma \) is dense in \(\hat{\Gamma} \), we can view \(C(\hat{\Gamma}) \) as a \(C^* \)-subalgebra of \(C_b(\Gamma) \), the algebra of bounded complex-valued functions defined on \(\Gamma \).

For \(V \in C(\hat{\Gamma}) \), we denote by \(V(Q) \) the operator of multiplication by \(V \) in \(\ell^2(\Gamma) \).

Let us now denote by \(\mathcal{C}(\hat{\Gamma}) \) the \(C^* \)-algebra generated by \(\mathcal{D} \) and \(C(\hat{\Gamma}) \). It contains the compact operators of \(\ell^2(\Gamma) \). Following the strategy exposed in [6], we shall first compute its quotient with respect to the ideal of compact operators. We stress that the crossed product technique introduced in [6] in order to compute quotients cannot be used in our case. Instead, we shall use the Theorem 4.5 in order to calculate the essential spectrum of self-adjoint operators related to \(\mathcal{C}(\hat{\Gamma}) \). In this introduction we consider only the most important case, when \(\nu > 1 \).

Theorem 1.1 Let \(\nu > 1 \). There is a unique morphism \(\Phi : \mathcal{C}(\hat{\Gamma}) \to \mathcal{D} \otimes C(\partial \Gamma) \) such that \(\Phi(D) = D \otimes 1 \) for all \(D \in \mathcal{D} \) and \(\Phi(\varphi(Q)) = 1 \otimes (\varphi|_{\partial \Gamma}) \).

This morphism is surjective and its kernel is \(\mathbb{K}(\Gamma) \).

The rest of this introduction is devoted to some applications of this theorem to spectral analysis. Let \(\nu > 1 \) and \(H = \sum_{\alpha,\beta} a_{\alpha,\beta}(Q) \partial^{\alpha} \partial^{\beta} + K \), where \(K \) is a compact operator, \(a_{\alpha,\beta} \in C(\hat{\Gamma}) \) and \(a_{\alpha,\beta} = 0 \) for all \((\alpha, \beta) \in \mathbb{N}^2 \) but a finite number of pairs. Clearly \(H \in \mathcal{C}(\hat{\Gamma}) \). As a consequence of the Theorem 1.1, there is \(\Phi \) such that \(\Phi(H) = \sum_{\alpha,\beta} \partial^{\alpha} \partial^{\beta} \otimes (a_{\alpha,\beta}|_{\partial \Gamma}) \), and, if \(H \) self-adjoint, its essential spectrum is:

\[
\sigma_{\text{ess}}(H) = \bigcup_{\gamma \in \partial \Gamma} \sigma \left(\sum_{\alpha,\beta} a_{\alpha,\beta}(\gamma) \partial^{\alpha} \partial^{\beta} \right).
\]

This result can be made quite explicit in the particular case of a Schrödinger operator.
\(H = \Delta + V(Q) \) with potential \(V \) in \(C(\hat{\Gamma}) \). Since \(\Delta \) is a bounded operator on \(\ell^2(\Gamma) \) defined by \((\Delta f)(x) = \sum_{y \sim x} (f(y) - f(x))\), it belongs to \(\mathscr{C}(\hat{\Gamma}) \). We then set \(\Delta_0 = \partial + \partial^* - \nu \text{Id} \) (which belongs to \(\mathscr{D} \)) and notice that \(\Delta - \Delta_0 \) is compact. One then gets (see [1] for instance):

\[
\sigma_{\text{ess}}(\partial + \partial^*) = \sigma_{\text{ac}}(\partial + \partial^*) = \sigma(\partial + \partial^*) = [-2\sqrt{\nu}, 2\sqrt{\nu}],
\]

where \(\sigma_{\text{ac}}(T) \) denotes the absolute continuous part of the spectrum of a given self-adjoint operator \(T \). On the other hand, Theorem 1.1 gives us directly \(\sigma_{\text{ess}}(\partial^* + \partial) = \sigma(\partial^* + \partial) \). We thus get

\[
\sigma_{\text{ess}}(\Delta + V(Q)) = \sigma(\Delta_0) + V(\partial \Gamma) = [-\nu - 2\sqrt{\nu}, -\nu + 2\sqrt{\nu}] + V(\partial \Gamma).
\]

In fact this result holds (and is trivial) in the case of \(\nu = 1 \), i.e. when \(\Gamma = \mathbb{N} \).

Given a continuous function on \(\partial \Gamma \), the Tietze theorem allows us to extend it to a continuous function on \(\hat{\Gamma} \), so one may construct a large class of Hamiltonians with given essential spectra. Nevertheless, we are able to point out a concrete class of non-trivial potentials \(V \in C(\hat{\Gamma}) \) with uniform behaviour at infinity which form a dense family of \(C(\hat{\Gamma}) \). Namely, for each bounded function \(f : \Gamma \to \mathbb{R} \) and each real \(\alpha > 1 \) let

\[
V(x) = \sum_{k=1}^{\lvert x \rvert} \frac{f(x_k)}{k^\alpha}, \tag{1.1}
\]

where \(x_k = x^{\lvert x \rvert - k} \) for \(x \in \Gamma \) (\(V \) belongs to \(C(\hat{\Gamma}) \) because of Proposition 2.3).

Concerning finer spectral features, based mainly on the Mourre estimate, we mention that in the case \(H = \Delta + V(Q) \), with \(V \) as in (1.1) where \(\alpha \geq 3 \) and such that \(V(\partial \Gamma) = 0 \), the results of [1] can be applied (the hypotheses of the Lemmas 6 and 7 from [1] are verified since \(V(x) = O(|x|^{-\alpha+1}) \) when \(|x| \to \infty \)). The aim of our work in preparation [8] is to prove that the Mourre estimate holds for more general classes of Hamiltonians affiliated to \(\mathscr{C}(\hat{\Gamma}) \) and to develop a scattering theory for them. Theorem 1.1 remains the key technical point for these purposes.

The preceding results on trees allow us to treat more general graphs. We recall that a graph is said to be connected if two of its elements can
be joined by a sequence of neighbours. Let \(G = \bigcup_{i=1}^{n} \Gamma_i \cup G_0 \) be a finite disjoint union of \(\Gamma_i \), each \(\Gamma_i \) being a \(\nu_i \)-fold branching tree with \(\nu_i \geq 1 \) and of \(G_0 \), a compact connected graph. We endow \(G \) with a connected graph structure that respects the graph structure of each \(\Gamma_i \) and the one of \(G_0 \), such that \(\Gamma_i \) is connected to \(\Gamma_j \) \((i \neq j)\) only through \(G_0 \) and such that \(\Gamma_i \) is connected to \(G_0 \) only through \(e_i \), the origin of \(\Gamma_i \). The graph \(G \) is hyperbolic and its boundary at infinity \(\partial G \) is the disjoint union \(\bigcup_{i=1}^{n} \partial \Gamma_i \).

We now choose \(V \in C(G \cup \partial G) \). One has \(V|_{\Gamma_i} \in C(\hat{\Gamma}_i) \) for all \(i = 1, \ldots, n \) and we easily obtain:

\[
\sigma_{ess}(\Delta + V(Q)) = \bigcup_{i=1}^{n} \left([-\nu_i - 2\sqrt{\nu_i}, -\nu_i + 2\sqrt{\nu_i}] + V(\partial \Gamma_i) \right).
\]

This covers in particular the case of the Cayley graph of a free group with finite system of generators. We recall that the Cayley graph of a group \(G \) with a system of generators \(S \) is the graph defined on the set \(G \) with the relation \(x \sim y \) if \(xy^{-1} \in S \) or \(yx^{-1} \in S \). Let \(G \) be a free group with a system of generators \(S \) such that \(S = S^{-1} \). We denote by \(e \) its neutral element and we set \(|S| = \nu + 1 \). One may associate the restriction of the Cayley graph to the set of words starting with a given generator with a \(\nu \)-fold branching tree having as origin the generator. Hence, the Cayley graph of \(G \) will be \(\bigcup_{i=1}^{\nu} \Gamma_i \cup \{e\} \) where \(\Gamma_i \) is a \(\nu \)-fold branching tree with the above graph structure.

We now go further by taking \(V \in C(\hat{\Gamma}, \mathbb{R}) \) such that \(V(\Gamma) \subset \mathbb{R} \) (here \(\mathbb{R} = \mathbb{R} \cup \{\infty\} \) is the Alexandrov compactification of \(\mathbb{R} \)). More precisely, \(V \in C(\hat{\Gamma}, \mathbb{R}) \) if and only if for each \(\gamma \in \partial \Gamma \) we have either \(\lim_{x \to \gamma} V(x) = l \) where \(l \in \mathbb{R} \) or for each \(M \geq 0 \) there is \(N \in \mathbb{N} \) such that \(|V(x)| \geq M \) for all \(n \geq N \) and \(x \in \gamma_n \Gamma \) (see Proposition 2.3). We set

\[
D(V) = \{ f \in \ell^2(\Gamma) \mid \|V(Q)f\|^2 < \infty \}.
\]

Let \(T \in \mathcal{D} \) and \(T_0 = \Phi(T) \). Since \(T \) is bounded, the operator \(H = T + V(Q) \) with domain \(D(V) \) is self-adjoint and it is affiliated to \(\mathcal{C}(\hat{\Gamma}) \) (i.e. its resolvent belongs to \(\mathcal{C}(\hat{\Gamma}) \)). Indeed, we have \((V(Q) + z)^{-1} \in C(\hat{\Gamma})\) for each \(z \in \mathbb{C} \setminus \mathbb{R} \), and for large such \(z \),

\[
(H + z)^{-1} = (V(Q) + z)^{-1} \sum_{n \geq 0} \langle T(V(Q) + z)^{-1} \rangle^n,
\]
where the series is norm convergent. Now, with the same z, we use Theorem 1.1 and the fact that $\mathcal{D} \otimes C(\partial \Gamma) \simeq C(\partial \Gamma, \mathcal{D})$ to obtain

$$
\Phi_\gamma((H+z)^{-1}) \equiv \Phi((H+z)^{-1})(\gamma) = (V(\gamma)+z)^{-1} \sum_{n \geq 0} (T_0(V(\gamma)+z)^{-1})^n.
$$

Note that $(V(\gamma)+z)^{-1} = 0$ if $V(\gamma) = \infty$. By analytic continuation we get

$$
\Phi_\gamma((T + V(Q) + z)^{-1}) = (T_0 + V(\gamma) + z)^{-1}, \text{ for all } z \in \mathbb{C} \setminus \mathbb{R}. \text{ We used the convention } (T_0 + V(\gamma) + z)^{-1} = 0 \text{ if } V(\gamma) = \infty.
$$

We now compute the essential spectrum of H. If $V(\gamma) = \infty$ then $\sigma(\Phi_\gamma(H)) = \emptyset$. Otherwise, one has $\sigma(\Phi_\gamma(H)) = \sigma(T_0 + V(\gamma)) = \sigma(T_0) + V(\gamma)$. Hence we obtain:

$$
\sigma_{\text{ess}}(T + V(Q)) = \sigma(T_0) + V(\partial \Gamma_0),
$$

where $\partial \Gamma_0$ is the set of $\gamma \in \partial \Gamma$ such that $V(\gamma) \in \mathbb{R}$.

Remark: We mention an interesting question which has not been studied in this paper. In fact, one could replace the algebra \mathcal{D} by the (much bigger) C^*-algebra generated by all the right translations ρ_a (see Subsection 3.4 for notations) and consider the corresponding algebra $C(\hat{\Gamma})$. This is a natural object, since it contains all the “right-differential” operators acting on the tree (not only polynomials in ∂ and ∂^*. A combination of the techniques that we use and that of [9, 10] could allow one to compute the quotient in this case too. We also note that in [9, 10] a certain connection with the notion of crossed-product is pointed out, and this could be useful in further investigations. I would like to thank the referee for bringing to my attention the two papers of A. Nica quoted above.

2 Trees and related objects

2.1 The free monoid Γ

Let \mathcal{A} be a finite set consisting of ν objects. Let Γ be the free monoid over \mathcal{A}; its elements are *words* and those of \mathcal{A} *letters*. We refer to [3, Chapter I, §7] for a detailed discussion of these notions, but we recall that a word x is an \mathcal{A}-valued map defined on a set of the form\(^1\) $[1, n]$ with $n \in \mathbb{N}$, $x(i)$

\(^1\)We use the notation $[1, n] = [1, n] \cap \mathbb{N}$ where \mathbb{N} is the set of integers ≥ 0 and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$.
being the \(i \)-th letter of the word \(x \). The integer \(n \) (the number of letters of \(x \)) is the length of the word and will be denoted \(|x| \). There is a unique word \(e \) of length 0, its domain being the empty set. This is the neutral element of \(\Gamma \). We will also identify \(A \) with the set of words of length 1.

The monoid \(\Gamma \) will be endowed with the discrete topology. If \(x \in \Gamma \), we denote \(x\Gamma \) and \(\Gamma x \) the right and left ideals generated by \(x \). We have on \(\Gamma \) a canonical order relation which is by definition:

\[x \leq y \iff y \in x\Gamma. \]

We recall some terminology from the theory of ordered sets. If \(\Gamma \) is an arbitrary ordered set and \(x, y \in \Gamma \), then one says that \(y \) covers \(x \) if \(x < y \) and if \(x \leq z \leq y \Rightarrow z = x \) or \(z = y \). If \(x \in \Gamma \), we denote \(\tilde{x} = \{ y \in \Gamma \mid y \text{ covers } x \} \)

In our case, \(y \) covers \(x \) if \(x \leq y \) and \(|y| = |x| + 1 \). Notice that each element \(x \in \Gamma \setminus \{ e \} \) covers a unique element \(x' \), its father, and each element \(x \in \Gamma \) is covered by \(\nu \) elements, its sons. The set of sons of \(x \) clearly is \(\tilde{x} = \{ x \varepsilon \mid \varepsilon \in A \} \). Hence:

\[y \text{ covers } x \iff y' = x \iff y \in \tilde{x}. \]

For \(|x| \geq n \), we define \(x^{(n)} \) inductively by setting \(x^{(0)} = x \) and \(x^{(m+1)} = (x^{(m)})' \) for \(m \leq n - 1 \). One may also notice that: \(|x^{(\alpha)}| = |x| - \alpha \), if \(\alpha \leq |x| \), and for \(\alpha \leq |ab| \):

\[(ab)^{(\alpha)} = \begin{cases}
ab^{(\alpha)}, & \text{if } \alpha \leq |b| \\
(a^{(\alpha-|b|)}, & \text{if } \alpha \geq |b|.
\end{cases} \]

We remark that if \(\nu = 1 \) then \(\Gamma = \mathbb{N} \) and if \(\nu > 1 \) then \(\Gamma \) is the set of monoms of \(\nu \) non-commutative variables.

2.2 The tree \(\Gamma \) and the extended tree associated to \(A \)

Recall that a graph is a couple \(G = (V, E) \), where \(V \) is a set (of vertices) and \(E \) is a set of pairs of elements of \(V \) (the edges). If \(x \) and \(y \) are joined by an edge, one says that they are neighbours and one abbreviates \(x \sim y \). The graph structure allows one to endow \(V \) with a canonical metric \(d \), where \(d(x, y) \) is the length of the shortest path in \(G \) joining \(x \) to \(y \).
The graph G associated to the free monoid Γ is defined as follows: $V = \Gamma$ and $x \sim y$ if x covers y or y covers x. It is usual to identify Γ and G, the so-called ν-fold branching tree. For all $x \in \Gamma$, we have $|x| = d(e, x)$. We set $B(x, r) = \{y \in \Gamma \mid d(x, y) < r\}$ and $S^n = \{x \in \Gamma \mid |x| = n\}$.

We shall now define an extended tree by mimicking the definition of a free monoid over A. We choose $o \in A$; this element will be fixed from now on. For each integer r, we set $Z_r = \{i \in \Z \mid i \leq r\}$. The extended tree $\tilde{\Gamma}$ associated to A is the set of A-valued maps x defined on sets of the form Z_r such that $\{i \mid x(i) \neq o\}$ is finite. For $x \in \tilde{\Gamma}$, the unique $r \in \Z$ such that x is a map $Z_r \to A$ will be denoted $|x|$ and will be called length of x.

We shall identify Γ with the set $\{x \mid |x| \geq 0 \text{ and } x(i) = o \text{ if } i \leq 0\}$ as follows: if $x \in \Gamma$ then we associate to it the element of $\tilde{\Gamma}$ defined on $\Z_{|x|}$ by extending x with $x(i) = o$ if $i \leq 0$. The element e will be identified with the map $e \in \tilde{\Gamma}$ such that $|e| = 0$ and $e(i) = o, \forall i \leq 0$. Notice that the two notions of length are consistent on Γ.

There is a natural right action of Γ on $\tilde{\Gamma}$ by concatenation, i.e. for $x \in \tilde{\Gamma}$ and $y \in \Gamma$, xy will be the function z defined on $\Z_{|x|+|y|}$ such that $z(i) = x(i)$, for $i \in \Z_{|x|}$ and $z(|x| + i) = y(i)$ for $i \in \Z_{|y|}$. Then we equip $\tilde{\Gamma}$ with an order relation by setting:

$$x \leq y \iff y \in x\Gamma.$$

As before, y covers x if and only if $x \leq y$ and $|y| = |x| + 1$. Now, each $x \in \tilde{\Gamma}$ covers a unique $x' \in \tilde{\Gamma}$ and each $x \in \tilde{\Gamma}$ is covered by ν elements, namely those of $\tilde{x} = \{x \epsilon \mid \epsilon \in A\}$. We still have: y covers x \iff $y' = x \Leftrightarrow y \in \tilde{x}$. Observe that $x' = x|_{\Z_{|x|-1}}$. We will set $x(\alpha) = x|_{\Z_{|x|-\alpha}}$ for all $\alpha \in \Z$. As we did it for Γ, we shall indentify the graph $G_\tilde{\Gamma}$ with $\tilde{\Gamma}$. This justifies the notion of extended tree used for $\tilde{\Gamma}$.

2.3 The boundary at infinity of Γ

We shall see in the ending remark of this subsection that the boundary at infinity of Γ can be thought as the boundary of a 0-hyperbolic space in the sense of Gromov. We prefer, however, to give a simpler presentation that
is closer to the theory of p-adic numbers (see [11] for instance). In fact, if ν is prime the boundary will be the set of ν-adic integers.

Definition 2.1 The boundary at infinity of Γ is the set $\partial \Gamma = \{ x : \mathbb{N}^* \to \mathbb{A} \}$. For $x \in \partial \Gamma$, we set $|x| = \infty$.

Let $\hat{\Gamma}$ be $\Gamma \cup \partial \Gamma$. For $x \in \hat{\Gamma}$, we define the sequence $(x_n)_{n \in [0,|x|]}$ with values in Γ by setting $x_0 = e$ and $x_n = x|_{[1,n]}$ for $n \geq 1$. Observe that the map $x \mapsto (x_n)_{n \in [0,|x|]}$ is injective. There is a natural left action of Γ on $\hat{\Gamma}$. For $x \in \Gamma$ and $y \in \hat{\Gamma}$, xy will be defined on the set $[1,|x| + |y|]$ by $x(i)$ for $i \leq |x|$ and by $y(i - |x|)$ for $i > |x|$.

We will now equip $\hat{\Gamma}$ with a structure of ultrametric space. We define a kind of valuation v on $\hat{\Gamma}$ by

$$v(x, y) = \begin{cases} \max \{ n \mid x_n = y_n \} & \text{if } x \neq y \\ \infty & \text{if } x = y. \end{cases} \quad (2.1)$$

If $x, y, z \in \hat{\Gamma}$ it is easy to see that:

$$v(x, y) \geq \min(v(x, z), v(z, y)). \quad (2.2)$$

Let us set on $\hat{\Gamma}$:

$$\hat{d}(x, y) = \exp(-v(x, y)).$$

The relation (2.2) clearly implies that $(\hat{\Gamma}, \hat{d})$ is an ultrametric space, i.e. a metric space such that $\hat{d}(x, y) \leq \max(\hat{d}(x, z), \hat{d}(z, y))$, for $x, y, z \in \hat{\Gamma}$. We will denote, for $r > 0$, $\hat{B}(x, r) = \{ y \in \hat{\Gamma} \mid \hat{d}(x, y) < r \}$. Notice that ultrametricity implies that $\hat{B}(x, r)$ is closed for all $x \in \hat{\Gamma}$ and $r > 0$.

The topology induced by $\hat{\Gamma}$ on Γ coincides with the initial topology of Γ, the discrete one. For $x \in \partial \Gamma$ and $n \in \mathbb{N}$,

$$x_n = \{ y \in \hat{\Gamma} \mid v(x, y) \geq n \} = \hat{B}(x, \exp(-n + 1))$$

which is the closure of $x_n \Gamma$ in $\hat{\Gamma}$. Hence for each $x \in \partial \Gamma$, $\{ x_n \} \in \mathbb{N}$ is a basis of neighbourhoods of x in $\hat{\Gamma}$. Observe that if $x \in \Gamma$ then $x \partial \Gamma = x\hat{\Gamma} \cap \partial \Gamma$.

\footnote{We use the convention $[1, \infty] = \mathbb{N}^* \cup \{ \infty \}$.}
Proposition 2.2 $\hat{\Gamma}$ and $\partial \Gamma$ are compact spaces. $\hat{\Gamma}$ is a compactification of Γ.

Proof: $\partial \Gamma = \mathcal{A}^N$, thus the set $\partial \Gamma$ endowed with the product topology is compact. This topology coincides with the one induced by the restriction of \hat{d} on $\partial \Gamma$ (for $x \in \partial \Gamma$, the product topology gives us the same basis of neighbourhoods $\{x_n \partial \Gamma\}_{n \in \mathbb{N}}$ as $\hat{d}|_{\partial \Gamma}$).

Since $\partial \Gamma$ is compact, in order to show that $\hat{\Gamma}$ is compact, it suffices to remark that $\cup_{x \in \partial \Gamma} B(x, \exp(-k)) = \{y \hat{\Gamma} \mid |y| = k + 1\}$ has a finite complementary in $\hat{\Gamma}$, for all $k \in \mathbb{N}$. Since Γ is dense in $\hat{\Gamma}$, $\hat{\Gamma}$ is a compactification of Γ. □

Notice also that if $\nu > 1$, the topological space $\partial \Gamma$ is perfect.

The C^*-algebra $C(\hat{\Gamma})$ of continuous complex-valued functions on $\hat{\Gamma}$ plays an important rôle. The dense embedding $\Gamma \subset \hat{\Gamma}$ gives a canonical inclusion $C(\hat{\Gamma}) \subset C_b(\Gamma)$ ($C_b(\Gamma)$ is the space of bounded complex-valued functions on Γ). Moreover, we have

$$C_0(\Gamma) = \{f \in C(\hat{\Gamma}) \mid f|_{\partial \Gamma} = 0\}, \quad \text{(2.3)}$$

where $C_0(\Gamma) = \{f : \Gamma \to \mathbb{C} \mid \forall \varepsilon > 0, \exists M > 0 \mid |x| > M \Rightarrow |f(x)| < \varepsilon\}$. We shall often abbreviate $C_0(\Gamma)$ by C_0.

The following proposition gives us a better understanding of the functions in $C(\hat{\Gamma})$.

Proposition 2.3 Let E be a metrisable topological space. A function $V : \Gamma \to E$ extends to a continuous function $\hat{V} : \hat{\Gamma} \to E$ if and only if for each $x \in \partial \Gamma$ the limit of $V(y)$, when $y \in \Gamma$ converges to x, exists.

Proof: Let $x \in \partial \Gamma$ and $\hat{V}(x)$ be the above limit. Let F be a closed neighbourhood of $\hat{V}(x)$ in E; there is k such that $V(x_k \Gamma) \subset F$. Then $x_k \hat{\Gamma}$ is a neighbourhood of x in $\hat{\Gamma}$ and, since F is closed, we have $\hat{V}(x_k \hat{\Gamma}) \subset F$. □

Later on, we will need the next ultrametricity result. We will say that $\mathcal{U} = \{x_i \Gamma\}$ is a covering of $\partial \Gamma$ if $\mathcal{U} = \{x_i \hat{\Gamma}\}$ is a covering of $\partial \Gamma$.

Proposition 2.4 For each open covering $\{\mathcal{O}_i\}_{i \in I}$ of $\partial \Gamma$, there is a disjoint and finite covering $\{x_j \Gamma\}_{j \in J}$ of $\partial \Gamma$ such that for each $j \in J$ there is $i \in I$ such that $x_j \hat{\Gamma} \subset \mathcal{O}_i$.
Proof: For each $x \in \partial \Gamma$ there is i such that x belongs to the open set \mathcal{O}_i and there is $n = n(x, i)$ such that $x_n \Gamma \subset \mathcal{O}_i$. Since $\partial \Gamma$ is compact, there is a finite sub-covering of $\partial \Gamma$ made by sets $\{y_j \Gamma\}_{j \in [1,m]}$ such that each of its elements is a subset of some \mathcal{O}_i. But in ultrametric spaces two balls are either disjoint or one of them is included in the other one. Since $\{y_j \Gamma\}$ are balls, we get the result. One may also choose $\{y \Gamma \mid |y| = \max_{j \in [1,m]} |y_j|\}$ as the required covering. □

Remark: As we said previously, this section could be presented from the perspective of hyperbolicity in the sense of Gromov, see [2, Chapter V] (a deeper investigation can be found in [4] and [7]). Let (M, d) be a metric space. For $x, y \in M$ and a given $O \in M$, we define the Gromov product as:

$$((x, y)O = \frac{1}{2}(d(O, x) + d(O, y) - d(x, y)).$$

The space (M, d) is called δ-hyperbolic if there is δ such that for all $x, y, z, O \in M$,

$$(x, y)O \geq \min((x, z)O, (z, y)O) - \delta.$$ \hfill (2.5)

A metric space is hyperbolic if it is δ-hyperbolic for a certain δ. In fact, if there is δ such that (2.5) holds for all $x, y, z \in M$ and a given O then (M, d) is 2δ-hyperbolic. Classical examples of 0-hyperbolic spaces are trees (connected graphs with no cycle) and real trees (see [7] for this notion). Cartan-Hadamard manifolds, the Poincaré half-plane and, more generally, complete simply connected manifolds with sectional curvature bounded by $\kappa < 0$ are δ-hyperbolic spaces with $\delta > 0$.

We equip the set of sequences with values in M with an equivalence relation between (u_n) and (v_n) defined by the condition

$$\lim_{(n,m) \to \infty} (u_n, v_m)_O = \infty.$$ The boundary at infinity ∂M is the set of equivalence classes. A basis of open sets of ∂M is given by

$$\tilde{\mathcal{O}} = \{\gamma \in \partial M \mid \gamma \text{ is not associated to any sequence of } M \setminus \mathcal{O}\},$$

where \mathcal{O} is an open set of M. The boundary of a 0-hyperbolic space is ultrametric.

In our context, if we drop the convention $v(x, x) = \infty$, our valuation (2.1) is exactly (2.4). Hence (2.2) implies that Γ is 0-hyperbolic. We define a geodesic ray as being $\gamma : \mathbb{N} \to \Gamma$ such that $|\gamma(n)| = n$ and $\gamma(n + 1) \sim$
\(\gamma(n) \). Geodesic rays are representative elements of the above equivalence classes. The two notions of boundary at infinity are identified by setting \(x_n = \gamma(n) \).

3 Operators in \(\ell^2(\Gamma) \)

3.1 Bounded and compact operators

We are interested in operators acting on the Hilbert space \(\ell^2(\Gamma) = \{ f : \Gamma \to \mathbb{C} \mid \sum_{x \in \Gamma} |f(x)|^2 < \infty \} \) endowed with the inner product:
\[
\langle f, g \rangle = \sum_{x \in \Gamma} f(x)g(x).
\]
We embed \(\Gamma \subset \ell^2(\Gamma) \) by identifying \(x \) with \(\chi_{\{x\}} \), where \(\chi_A \) is the characteristic function of the set \(A \). Observe that \(\Gamma \) is the canonical orthonormal basis in \(\ell^2(\Gamma) \) and each \(f \in \ell^2(\Gamma) \) writes as
\[
f = \sum_{x \in \Gamma} f(x)x.
\]
We denote by \(\mathbb{B}(\Gamma), \mathbb{K}(\Gamma) \) the sets of bounded, respectively compact operators in \(\ell^2(\Gamma) \). For \(T \in \mathbb{B}(\Gamma) \), we will denote by \(T^* \) its adjoint. Given \(A \subset \Gamma \) we denote by \(1_A \) the operator of multiplication by \(\chi_A \) in \(\ell^2(\Gamma) \).

The orthogonal projection associated to \(\{ x \in \Gamma \mid |x| \geq r \} \) is denoted by \(1_{\geq r} \). For \(T \in \Gamma \), we have the following compacity criterion for bounded operators \(T \) in \(\ell^2(\Gamma) \):

Proposition 3.1 \(T \in \mathbb{K}(\Gamma) \iff \|1_{\geq r}T\| \rightarrow_{r \to \infty} 0 \iff \|T 1_{\geq r}\| \rightarrow_{r \to \infty} 0 \).

Proof: If one has for example \(\|1_{\geq r}T\| \rightarrow 0 \), then \(T \) is the norm limit of the sequence of finite rank operators \(1_{B(\varepsilon,r)}T \), hence is compact. \(\square \)

3.2 The operator \(\partial \)

We now extend \(x \mapsto x' \) to a map \(\ell^2(\Gamma) \to \ell^2(\Gamma) \). We set \(e' = 0 \) and define the derivative of any \(f \in \ell^2(\Gamma) \) as:
\[
(\partial f)(x) \equiv f'(x) = \sum_{y' = x} f(y)y'(x) = \sum_{y' \in \Gamma} f(y) = \sum_{y \in \Gamma} f(y).
\]
Thus \(\partial \in \mathbb{B}(\Gamma) \). Indeed, \(\|f'\|^2 = \sum_{x \in \Gamma} |f'(x)|^2 \leq \nu \sum_{x \in \Gamma} \sum_{y \in \Gamma} |f(y)|^2 \leq \nu \|f\|^2 \). The adjoint \(\partial^* \) acts on each \(f \in \ell^2(\Gamma) \) as follows:
\[
\partial^* f(x) = \chi_{\Gamma \setminus \{e\}}(x)f(x').
\]
Indeed, \(\langle \partial f, f \rangle = \sum_{x \in \Gamma} \sum_{y \in \bar{x}} f(y)f(x) = \sum_{x \in \Gamma} \tilde{f}(x) \chi_{\Gamma \setminus \{e\}}(x)f(x') = \langle f, \partial^* f \rangle \). Moreover, \(\|\partial^* f\|^2 = \sum_{x \in \Gamma \setminus \{e\}} |f(x')|^2 = \nu \sum_{x \in \Gamma} |f(x)|^2 = \nu \|f\|^2 \) shows that \(\partial \partial^* = \nu \text{Id.} \) (3.1)

Thus \(\partial^*/\sqrt{\nu} \) is isometric on \(\ell^2(\Gamma) \) and \(\|\partial\| = \|\partial^*\| = \sqrt{\nu} \).

For \(\alpha \in \mathbb{N} \) we set \(f^{(\alpha)} = \partial^\alpha f \). Thus for each \(x \in \Gamma \), \(x^{(\alpha)} \) is well defined in \(\ell^2(\Gamma) \) and \(x^{(\alpha)} = 0 \Leftrightarrow \alpha > |x| \). For \(|x| \geq \alpha \) the notation is consistent with our old definition.

3.3 \(C^* \)-algebras of energy observables related to \(\Gamma \)

We first summarize the method used in [6] to study the essential spectrum of large families of operators. Let \(\mathcal{H} \) be a Hilbert space and \(H \) a bounded self-adjoint operator on \(\mathcal{H} \). If \(C(\mathcal{H}) = B(\mathcal{H})/K(\mathcal{H}) \) is the Calkin \(C^* \)-algebra, we denote by \(S \mapsto \hat{S} \) the canonical surjection of \(B(\mathcal{H}) \) onto \(C(\mathcal{H}) \) and we recall that \(\sigma_{\text{ess}}(H) = \sigma(\hat{H}) \) (this is a version of Weyl’s Theorem). If \(\mathcal{C} \) is a \(C^* \)-subalgebra of \(B(\mathcal{H}) \) which contains the compact operators, then one has a canonical embedding \(\mathcal{C}/K(\mathcal{H}) \subset C(\mathcal{H}) \). Thus, in order to determine the essential spectrum of an operator \(H \in \mathcal{C} \) it suffices to give a good description of the quotient \(\mathcal{C}/K(\mathcal{H}) \) and to compute \(\hat{H} \) as element of it. As explained in [6], we can actually go further by taking \(H \) as an unbounded operator over \(\mathcal{H} \) such that \((H + i)^{-1} \in \mathcal{C} \). We shall apply this strategy in our context.

Let \(\mathcal{D}_{\text{alg}} \) be the \(\ast \)-algebra of operators in \(\ell^2(\Gamma) \) generated by \(\partial \) and \(\mathcal{D} \) the \(C^* \)-algebra of operators in \(\ell^2(\Gamma) \) generated by \(\partial \). Because of (3.1), \(\mathcal{D}_{\text{alg}} \) is unital. We denote by \(\varphi(Q) \) the operator of multiplication by \(\varphi \) on \(\ell^2(\Gamma) \). If \(C \) is a \(C^* \)-subalgebra of \(\ell^\infty(\Gamma) \) then we embed \(C \) in \(B(\Gamma) \) by \(\varphi \mapsto \varphi(Q) \). Let \((\mathcal{D}, C) \) be the \(C^* \)-algebra generated by \(\mathcal{D} \cup C \). In this paper we shall take \(\mathcal{C} = (\mathcal{D}, C) \). This algebra contains many Hamiltonians of physical interest, for instance Schrödinger operators with potentials in \(C \). We recall that given a graph \(G \) the Laplace operator acts on \(\ell^2(G) \) as follows:

\[(\Delta f)(x) = \sum_{y \sim x} (f(y) - f(x)). \]
With our definitions $\Delta = \partial + \partial^* - \nu \Id + \chi_\{e\}$. Notice that if $\nu > 1$ then \mathcal{D} does not contain compact operators (see below), so $\Delta \notin \mathcal{D}$. On the other hand, if $C \supseteq C_0$ and $V \in C$ then the Schrödinger operator $\Delta + V(Q)$ clearly belongs to $\langle \mathcal{D}, C \rangle$.

We now give a new description of $\mathbb{K}(\Gamma)$.

Proposition 3.2 If \mathcal{C}_0 be the C^*-algebra generated by $\mathcal{D} \cdot C_0$ then $\mathcal{C}_0 = \mathbb{K}(\Gamma)$.

Proof: For each $\varphi \in C_0$, Proposition 3.1 shows $\varphi(Q) \in \mathbb{K}(\Gamma)$. Hence $\mathcal{C}_0 \subset \mathbb{K}(\Gamma)$. For the opposite inclusion, let $T \in \mathbb{K}(\Gamma)$ and fix $\varepsilon > 0$. Proposition 3.1, shows that there is an operator T' with compactly supported kernel such that $\|T - T'\| \leq \varepsilon$. Define $\delta_{x,y} \in \mathbb{K}(\Gamma)$ by $\langle \delta_{x,y}, f \rangle(z) = f(y)$ if $z = x$ and 0 elsewhere. We have $\delta_{x,x} = \chi_x(Q) \in C_0$. As T' is a linear combination of $\delta_{x,y}$, it suffices to show that $\delta_{x,y}$ is in \mathcal{C}_0. But this follows from $\delta_{x,y} = \delta_{x,x}(\partial^*|\partial|\nu|\delta_{y,y})$. □

If C is a C^*-subalgebra of $\ell^\infty(\Gamma)$ that contains C_0, then $\mathbb{K}(\Gamma) \subset \langle \mathcal{D}, C \rangle$. Hence, in order to apply the technique described above, we have to give a sufficiently explicit description of the quotient $\langle \mathcal{D}, C \rangle / \mathbb{K}(\Gamma)$. In this paper we concentrate on the case $\mathcal{C} \equiv C(\hat{\Gamma})$ which is, geometrically speaking, the most interesting one (see the last Remark in §2.3). The C^*-algebra generated by ∂ and $C(\hat{\Gamma})$ will be denoted by $\mathcal{C}(\hat{\Gamma})$ and the $*$-subalgebra generated by ∂ and $C(\hat{\Gamma})$ will be denoted by $\mathcal{C}(\hat{\Gamma})_{\text{alg}}$. We will need the next fundamental property.

Proposition 3.3 $[\partial, C(\hat{\Gamma})] \subset \mathbb{K}(\Gamma)$.

Proof: For each $\varphi \in C(\hat{\Gamma})$ one has $[\partial, \varphi(Q)]f(x) = \sum_{y' = x} (\varphi(y) - \varphi(x)) f(y) = (\partial \circ \psi(Q))f(x)$, where ψ belongs to $C(\hat{\Gamma})$ and is defined by $\psi(y) = \varphi(y) - \varphi(y')$ when $|y| \geq 1$ and $\psi(e) = 0$. Observe that for $\gamma \in \partial \Gamma$ we have $\psi(\gamma) = \varphi(\gamma) - \varphi(\gamma) = 0$. Hence by (2.3), $\psi \in C_0$. Proposition 3.2 implies $\psi(Q) \in \mathbb{K}(\Gamma)$. □

Remark: The algebra \mathcal{D} is the tree analogous of the algebra generated by the momentum operator on the real line. However, these algebras are rather different: \mathcal{D} is not commutative and the spectrum and the essential spectrum of the operators from \mathcal{D} are not connected sets in general. For instance, one has $\sigma(\partial^* \partial) = \sigma_{\text{ess}}(\partial^* \partial) = \{0, \nu\}$ if $\nu > 1$. Indeed, we remind
that if \(A, B \) are elements of a Banach algebra we have \(\sigma(AB) \cup \{0\} = \sigma(BA) \cup \{0\} \) and, as noticed below, \(\dim \ker \partial \) is infinite for \(\nu > 1 \).

3.4 Translations in \(\ell^2(\Gamma) \)

\(\Gamma \) acts on itself to the left and to the right: for each \(a \in \Gamma \) we may define \(\lambda_a, \rho_a : \Gamma \to \Gamma \) by \(\lambda_a(x) = ax \) and \(\rho_a(x) = xa \) respectively. Clearly, for \(a, b \in \Gamma \), \(\lambda_a \rho_b = \rho_b \lambda_a \) and for any \(x \in a \Gamma \) we define \(a^{-1}x \) as being the \(y \) for which \(x = ay \). For each \(x \in \Gamma a = \{ y \in \Gamma \mid \exists z \in \Gamma \text{ s.t. } y = za \} \), we define \(y = xa^{-1} \) by \(x = ya \). We extend now these translations to \(\ell^2(\Gamma) \). The translation \(\lambda_a \) acts on each \(f \in \ell^2(\Gamma) \) as \(\sum_{x \in \Gamma} f(x)ax \), i.e. \((\lambda_a f)(x) = \chi_{a \Gamma}(x)f(a^{-1}x) \). In the same manner, we define \((\rho_a f)(x) = \chi_{\Gamma a}(x)f(xa^{-1}) \).

The operators \(\lambda_a \) and \(\rho_a \) are isometries:

\[
\lambda_a^* \lambda_a = \text{Id} \quad \text{and} \quad \rho_a^* \rho_a = \text{Id}.
\]

It is easy to check that the adjoints act on any \(f \in \ell^2(\Gamma) \) as \((\lambda_a^* f)(x) = f(ax) \) and \((\rho_a^* f)(x) = f(xa) \). Moreover,

\[
\lambda_a \lambda_a^* = 1_{a \Gamma} \quad \text{and} \quad \rho_a \rho_a^* = 1_{\Gamma a}.
\]

Note also that \(\partial^* = \sum_{|a|=1} \rho_a \) and \(\partial = \sum_{|a|=1} \rho_a^* \).

3.5 Localizations at infinity

In order to study \(\mathcal{C}(\widehat{\Gamma})/\mathbb{K}(\Gamma) \) we have to define the localizations at infinity of \(T \in \mathcal{C}(\widehat{\Gamma}) \) by looking at the behavior of the translated operator \(\lambda_a^* T \lambda_a \) as \(a \) converges to \(\gamma \) in \(\widehat{\Gamma} \) (abbreviated \(a \to \gamma \)), for each \(\gamma \in \partial \Gamma \).

If \(T \in \mathbb{K}(\Gamma) \) then \(u\lim_{a \to \gamma} \lambda_a^* T \lambda_a = 0 \), where \(u\lim \) means convergence in norm. Indeed, by (3.2), (3.3) and Proposition 3.1 we get

\[
\|\lambda_a^* T \lambda_a\| = \|1_{a \Gamma} T 1_{a \Gamma}\| \to 0, \quad \text{as} \quad a \to \gamma.
\]

Now, we compute the uniform limit of \(\lambda_a^* T \lambda_a \) when \(T \in \mathcal{C}(\widehat{\Gamma})_{\text{alg}} \). There is \(P \), a non-commutative complex polynomial in \(m + 2 \) variables, and functions \(\varphi_i \in C(\widehat{\Gamma}) \) for \(i = [1, m] \), such that \(T = P(\varphi_1, \varphi_2, \ldots, \varphi_m, \partial, \partial^*) \). We set \(T(\gamma) = P(\varphi_1(\gamma), \varphi_2(\gamma), \ldots, \varphi_m(\gamma), \partial, \partial^*) \).
Lemma 3.4 There is \(a_0 \in \Gamma \) such that \(u \)-\(\lim_{u \to \gamma} \lambda_a^* T \lambda_a = \lambda_{a_0}^* T(\gamma) \lambda_{a_0} \).

Proof: The Proposition 3.3 and (3.1) give some \(\phi_k \in C(\tilde{\Gamma}) \), \(K \in \mathbb{K}(\Gamma) \) and \(\alpha_k, \beta_k \in \mathbb{N} \) such that \(T = \sum_{k=1}^n \phi_k(Q) \partial^{\alpha_k} \partial^{\beta_k} + K \) and \(T(\gamma) = \sum_{k=1}^n \phi_k(\gamma) \partial^{\alpha_k} \partial^{\beta_k} \). Thus, it suffices to compute a limit of the form \(u \)-\(\lim_{u \to \gamma} \lambda_a^* \varphi(Q) \partial^{\alpha} \partial^{\beta} \lambda_a \) with \(\varphi \in C(\tilde{\Gamma}) \). We suppose \(|a| \geq \alpha \) and take \(f \in \ell^2(\Gamma) \). We first show the result for \(\varphi = 1 \). Since

\[
(\lambda_a^* \partial^{\alpha} \partial^{\beta} \lambda_a f)(x) = \sum_{y | (ay)^{(\beta)} = (ax)^{(\alpha)}} (\lambda_a f)(y) = \sum_{y | (ay)^{(\beta)} = (ax)^{(\alpha)}} f(y), \tag{3.4}
\]

it suffices to show that the set \(\{ y | (ay)^{(\beta)} = (ax)^{(\alpha)} \} \) is independent of \(a \) if \(|a| \geq \alpha \). But this is precisely what asserts the Lemma 3.5 below.

We now treat the general case \(\varphi \in C(\tilde{\Gamma}) \). The identity \((\lambda_a^* \varphi(Q) \partial^{\alpha} \partial^{\beta} \lambda_a f)(x) = \varphi(ax)(\lambda_a^* \partial^{\alpha} \partial^{\beta} \lambda_a f)(x) \) gives us that \(\| \lambda_a^* \varphi(Q) \partial^{\alpha} \partial^{\beta} \lambda_a - \varphi(\gamma) \lambda_a^* \partial^{\alpha} \partial^{\beta} \lambda_a \| \leq \| \varphi(aQ) - \varphi(\gamma) \| \cdot \| \partial^{\alpha} \partial^{\beta} \| \to 0 \) as \(a \to \gamma \). On the other hand, by the Lemma 3.5, \(\varphi(\gamma) \lambda_a^* \partial^{\alpha} \partial^{\beta} \lambda_a \) is constant for \(|a| \geq \alpha \). Thus, it suffices to choose \(|a_0| \geq \max \{ \alpha_k | k = 1, \ldots, n \} \) in the statement of the lemma to end the proof. \(\square \)

Lemma 3.5 For \(|a| \geq \alpha \) we have:

\[
\{ y | (ay)^{(\beta)} = (ax)^{(\alpha)} \} = \begin{cases} \emptyset & \text{for } |x| + \beta - \alpha < 0, \\ S^{[x]} - \alpha - \beta & \text{for } |x| < \alpha \text{ and } |x| + \beta - \alpha \geq 0, \\ x^{(\alpha)} S^{\beta} & \text{for } |x| \geq \alpha \text{ and } |x| + \beta - \alpha \geq 0. \end{cases} \tag{3.5}
\]

Proof: Let \(J_x = \{ y | (ay)^{(\beta)} = (ax)^{(\alpha)} \} \). Then

\[
aJ_x = \{ ay | (ay)^{(\beta)} = (ax)^{(\alpha)} \} = \{ y | y^{(\beta)} = (ax)^{(\alpha)} \} \cap a\Gamma
= ((\alpha x)^{(\alpha)} S^{\beta}(\Gamma)) \cap a\Gamma.
\]

We first notice that \((\alpha x)^{(\alpha)} S^{\beta} \subset S^{[x]+|x| - \alpha, \beta} \). If \(|x| - \alpha + \beta < 0 \) then \((\alpha x)^{(\alpha)} S^{\beta} \cap a\Gamma = \emptyset \), so \(aJ_x = \emptyset \). This implies \(J_x = \emptyset \). If \(|x| - \alpha + \beta \geq 0 \) then \((\alpha x)^{(\alpha)} S^{\beta} \cap a\Gamma \neq \emptyset \). If we suppose that \(|x| < \alpha \), i.e. \(|(ax)^{(\alpha)}| < |a| \), we have \(a \in (ax)^{(\alpha)} \Gamma \). Let \(b \) such that \(a = (ax)^{(\alpha)} b \). Thus

\[
((ax)^{(\alpha)} S^{\beta}) \cap a\Gamma
= ((ax)^{(\alpha)} S^{\beta}) \cap (ax)^{(\alpha)} b\Gamma
= (ax)^{(\alpha)} (S^{\beta} \cap b\Gamma)
= (ax)^{(\alpha)} b S^{\beta - |b|}
= a S^{\beta - |b|}
= a S^{\beta + |x| - \alpha},
\]

15
so we have $aJ_x = aS^{\beta+|x|^{-\alpha}}$, hence $J_x = S^{\beta+|x|^{-\alpha}}$.

Finally, if $|x| \geq \alpha$, i.e. $|(ax)^{(\alpha)}| \geq |a|$, one has $(ax)^{(\alpha)} \in a\Gamma$. Thus we obtain $aJ_x = (ax)^{(\alpha)}S^{\beta} = ax^{(\alpha)}S^{\beta}$, hence $J_x = x^{(\alpha)}S^{\beta}$.

□

Remark: As seen in the proof of lemma 3.4, one may choose any a_0 such that $|a_0| \geq \deg(P)$. On the other hand, we stress that the limit is not a multiplicative function of T. Indeed,

$$u \lim_{a \to \gamma} \lambda_\alpha^* \partial^* \partial \lambda_a \neq (u \lim_{a \to \gamma} \lambda_\alpha^* \partial^* \lambda_a) \cdot (u \lim_{a \to \gamma} \lambda_\alpha^* \partial \lambda_a).$$

Therefore, in order to describe the morphism of the algebra $\mathcal{C}(\tilde{\Gamma})$ onto its quotient $\mathcal{C}(\tilde{\Gamma})/K(\Gamma)$ we have to improve our definition of the localizations at infinity.

3.6 Extensions to $\tilde{\Gamma}$

The space $\ell^2(\tilde{\Gamma})$ is defined similarly to $\ell^2(\Gamma)$. Since $\Gamma \subset \tilde{\Gamma}$, we have $\ell^2(\Gamma) \hookrightarrow \ell^2(\tilde{\Gamma})$. As before, we embed $\tilde{\Gamma}$ in $\ell^2(\tilde{\Gamma})$ by sending x on $\chi_{(x)}$ and we notice that $\tilde{\Gamma}$ is an orthonormal basis of $\ell^2(\tilde{\Gamma})$. We define $\tilde{\partial} : \ell^2(\tilde{\Gamma}) \rightarrow \ell^2(\tilde{\Gamma})$ by

$$(\tilde{\partial} f)(x) = f'(x) = \sum_{y' = x} f(y).$$

For $\alpha \in \mathbb{N}$, we set $f^{(\alpha)} = \tilde{\alpha}^* f$, notation which is consistent with our old definition of $x^{(\alpha)}$ as the restriction of x to $\mathbb{Z}_{|x|^{-\alpha}}$. Obviously $\tilde{\partial} \in \mathcal{B}(\Gamma)$, its adjoint $\tilde{\partial}^*$ acts as $(\tilde{\partial}^* f)(x) = f(x')$, $\tilde{\partial}^*/\sqrt{\nu}$ is an isometry on $\ell^2(\tilde{\Gamma})$:

$$\tilde{\partial} \tilde{\partial}^* = \nu 1\Gamma,$$

thus $||\tilde{\partial}|| = ||\tilde{\partial}^*|| = \nu$. We denote by $\tilde{\mathcal{D}}$ the C^*-algebra generated by $\tilde{\partial}$ and by $\tilde{\mathcal{D}}_{\text{alg}}$ the $*$-algebra generated by $\tilde{\partial}$. Both of them are unital.

We now make the connection between \mathcal{D}_{alg} and $\tilde{\mathcal{D}}_{\text{alg}}$.

Lemma 3.6 For $|a| \geq \alpha$, one has: $\lambda_\alpha^* \partial^* \partial \lambda_a = 1\Gamma \tilde{\partial}^* \alpha \tilde{\partial} \beta 1\Gamma$.

Proof: For any $f \in \ell^2(\tilde{\Gamma})$, one has $(1\Gamma \tilde{\partial}^* \alpha \tilde{\partial} \beta 1\Gamma f)(x) = 1\Gamma(x) \sum_{|y| = (\beta)} 1\Gamma(y) f(y)$. Using the same arguments as in the proof
of the Lemma 3.5, one shows that for each \(x \in \Gamma \) the set \(\{ y \in \Gamma \mid y^{(j)} = x^{(\alpha)} \} \) equals the r.h.s. of (3.5). Thus the above sum is the same as that of the r.h.s. of (3.4).\(\square \)

We will also need a result concerning the localization of the norm on \(\mathcal{D}_{alg} \).

Lemma 3.7 If \(\tilde{T} \in \mathcal{D}_{alg} \), then \(\| \tilde{T} \| = \| 1_\Gamma \tilde{T} 1_\Gamma \| . \)

Proof: Because of (3.6), we can suppose that \(\tilde{T} = \sum_{k=1}^{n} c_k \partial^{\alpha_k} \tilde{x}^{\beta_k} \). We denote by \(\beta \) the integer \(\max \{ \beta_k \mid k \in \{1, n\} \} \). For each \(\varepsilon > 0 \), there is some \(g \in \ell^2(\Gamma) \) with compact support such that \(\|g\| = 1 \) and \(\| \tilde{T} g \| \geq \| \tilde{T} \| - \varepsilon \). Note that if \(y_1, y_2, \ldots, y_m \) are distinct points of \(\Gamma \), \(a_1, a_2, \ldots, a_m \) are complex numbers and \(x_1, x_2 \in \Gamma \), we have

\[
\| \sum_{i=1}^{m} a_i x_i y_i \|^2 = \sum_{i=1}^{m} |a_i|^2 = \sum_{i=1}^{m} a_i x_i y_i \|^2. \tag{3.7}
\]

Thus, since \(g \) has compact support, there are \(x \in \Gamma \), \(m \in \mathbb{N}^* \) and \(y_i \in \Gamma \), \(|y_i| \geq \beta \), \(a_i \in \mathbb{C} \), for all \(i \in \{1, m\} \) such that \(g = \sum_{k=1}^{m} a_i x_i y_i \). We set \(f = \sum_{k=1}^{m} a_i e y_i \). Then (3.7) gives us \(\|f\| = \|g\| = 1 \). Using \(|y_i| \geq \beta \), we get \(f \in \ell^2(\Gamma) \) and \(\tilde{T} f \in \ell^2(\Gamma) \). Also with (3.7) we obtain for \(z \in \Gamma \),

\[
\| \tilde{T} g \| = \left\| \sum_{k=1}^{n} \sum_{i=1}^{m} c_k a_i \partial^{\alpha_k} \tilde{x}^{\beta_k} x_i y_i \right\| = \left\| \sum_{k=1}^{n} \left(\sum_{i=1}^{m} \left(\sum_{|z| = \alpha_k} c_k a_i (x(y_i))^{(\beta_k)} z \right) \right) \right\| \\
= \| \sum_{k=1}^{n} \sum_{i=1}^{m} \left(\sum_{|z| = \alpha_k} c_k a_i x(y_i)^{(\beta_k)} z \right) \| = \| \sum_{k=1}^{n} \sum_{i=1}^{m} \left(\sum_{|z| = \alpha_k} c_k a_i e(y_i)^{(\beta_k)} z \right) \| \\
= \| \sum_{k=1}^{n} \sum_{i=1}^{m} \left(\sum_{|z| = \alpha_k} c_k a_i (e(y_i))^{(\beta_k)} z \right) \| = \| \sum_{k=1}^{n} \sum_{i=1}^{m} c_k a_i \partial^{\alpha_k} \tilde{x}^{\beta_k} e y_i \| = \| \tilde{T} f \|.
\]

Hence, there is \(f \in \ell^2(\Gamma) \) such that \(\| 1_\Gamma \tilde{T} 1_\Gamma f \| = \| \tilde{T} f \| = \| \tilde{T} g \| \geq \| \tilde{T} \| - \varepsilon. \square \)
4 The main results

4.1 The morphism

In the sequel, a morphism will be understood as a morphism of C^*-algebras. To describe the quotient $\mathcal{C}(\hat{\Gamma})/\mathbb{K}(\Gamma)$, we need to find an adapted morphism.

Theorem 4.1 For each $\gamma \in \partial \Gamma$ there is a unique morphism $\Phi_\gamma : \mathcal{C}(\hat{\Gamma}) \to \tilde{\mathcal{D}}$ such that $\Phi_\gamma(\partial) = \partial$ and $\Phi_\gamma(\varphi(Q)) = \varphi(\gamma)$, for all $\varphi \in \mathcal{C}(\hat{\Gamma})$. One has $\mathbb{K}(\Gamma) \subset \text{Ker} \Phi_\gamma$.

Proof: We use the notations from §3.5. If $T \in \mathcal{C}(\hat{\Gamma})_{\text{alg}}$ then by Lemma 3.4 we have $\lim_{a \to \gamma} \lambda_a^* T \lambda_a = \lambda_{a_0}^* T(\gamma) \lambda_{a_0}$. Let $\tilde{T}(\gamma)$ be $P(\varphi_1(\gamma), \varphi_2(\gamma), \ldots, \varphi_m(\gamma), \partial, \tilde{\partial}^*)$. By Lemma 3.6 and (3.6) one can choose a_0 such that $\lambda_{a_0}^* T(\gamma) \lambda_{a_0} = 1_{\Gamma} \tilde{T}(\gamma) 1_{\Gamma}$. Lemma 3.7 implies

$$\|\tilde{T}(\gamma)\| = \|1_{\Gamma} \tilde{T}(\gamma) 1_{\Gamma}\| = \|\lambda_{a_0}^* T(\gamma) \lambda_{a_0}\| = \|\lim_{a \to \gamma} \lambda_a^* T \lambda_a\| \leq \|T\|.$$

Thus there is a linear multiplicative contraction $\Phi_0^\gamma : \mathcal{C}(\hat{\Gamma})_{\text{alg}} \to \tilde{\mathcal{D}}$, $\Phi_0^\gamma(T) = T(\gamma)$. The density of $\mathcal{C}(\hat{\Gamma})_{\text{alg}}$ in $\mathcal{C}(\hat{\Gamma})$ allows us to extend Φ_0^γ to a morphism $\Phi_\gamma : \mathcal{C}(\hat{\Gamma}) \to \tilde{\mathcal{D}}$ which clearly satisfies the conditions of the theorem. The uniqueness of Φ_γ is obvious and the last assertion of the theorem follows from the Proposition 3.2. □

4.2 The case $\nu > 1$

In this case, we are able to improve the Theorem 4.1. We recall first that an isometry is said to be *proper* if it is not unitary. The operators ∂^* and $\tilde{\partial}^*$ are proper isometries and the dimensions of the kernels of ∂ and $\tilde{\partial}$ are infinite: in the case of ∂, if one lets a, b be two different letters of \mathcal{A}, and one chooses $g \in \ell^2(\Gamma a)$ and $h \in \ell^2(\Gamma b)$ such that $h(xb) = g(xa)$ for all $x \in \Gamma$, then $g - h$ is in $\text{Ker} \partial$.

Let T be the unit circle of \mathbb{R}^2 and H^2 the closure of the subspace spanned by $\{e^{inQ}, n \in \mathbb{N}\}$ in $\ell^2(T)$. For $g \in L^\infty(T)$, we define the *Toeplitz operator* T_g on H^2 by $T_g h = P_{H^2} gh$, where P_{H^2} is the projection on H^2.

18
For each \(z \in \mathbb{C} \setminus \{0\} \), we denote by \(\mathcal{F}\) the \(C^*\)-algebra generated by \(T_z \). The next theorem is due to Coburn (see [5] for a proof).

Theorem 4.2 If \(S \) is a proper isometry, then there is a unique isomorphism \(\mathcal{F}\) of \(\mathcal{F}\) onto \(\mathcal{F}\), the \(C^*\)-algebra generated by \(S \), such that \(\mathcal{F}(T_z) = S \).

Thus there is a unique isomorphism \(\mathcal{F}\) of \(\mathcal{D}\) onto \(\mathcal{D}\) such that \(\mathcal{F}(\partial) = \mathcal{F}(\partial)\), so in the case \(\nu > 1 \) we can rewrite our Theorem 4.1 as follows.

Theorem 4.3 Let \(\gamma \in \partial \Gamma \). There is a unique morphism \(\Phi_\gamma : \mathcal{C}(\hat{\Gamma}) \to \mathcal{D}\) such that \(\Phi_\gamma(\varphi(Q)) = \varphi(\gamma)\) for all \(\varphi \in \mathcal{C}(\hat{\Gamma}) \) and \(\Phi_\gamma(D) = D \) for all \(D \in \mathcal{D} \).

Remark: When \(\nu = 1 \), there is no isomorphism \(\mathcal{F} : \mathcal{D} \to \mathcal{D}\) such that \(\mathcal{F}(\partial) = \partial\) because \(\mathcal{D}\) is commutative. Thus, in this case, one cannot hope in a result as above. There is another way of proving Theorem 4.3 which uses the next proposition.

Proposition 4.4 If \(\nu \geq 1 \) then \(\{\partial^\alpha \partial^\beta\}_{\alpha, \beta \in \mathbb{N}}\) is a basis of the vector space \(\mathcal{D}_{\text{alg}}\). One has \(\nu > 1\) if and only if \(\{\tilde{\partial}^\alpha \tilde{\partial}^\beta\}_{\alpha, \beta \in \mathbb{N}}\) is a basis of space \(\mathcal{D}_{\text{alg}}\).

Proof: Let \(\lambda_i \neq 0 \) for all \(i \in [1, n] \). Assume that \(\sum_{i=1}^{n} \lambda_i \partial^\alpha_i \partial^\beta_i = 0\), where \((\alpha_i, \beta_i)\) are distinct couples. We set \(\alpha = \min\{\alpha_i \mid i \in [1, n]\} \) and \(I = \{ i \mid \alpha_i = \alpha \} \). We take \(x \in \Gamma \) such that \(|x| = \alpha \) and we obtain \(\sum_{i \in I} \lambda_i(\partial^\beta_i f)(e) = 0\). Notice that \(\{\beta_i\}_{i \in I}\) are pairwise distinct by hypothesis. Now, by taking \(i_0 \in I \) and \(f \) the characteristic function of \(S_{\beta_{i_0}} \), we get that \(\lambda_{i_0} = 0\) which is a contradiction. Hence \(\sum_{i=1}^{n} \lambda_i \partial^\alpha_i \partial^\beta_i \neq 0\), i.e. the family is free. Let now \(\nu > 1 \) and \(\lambda_i \neq 0 \) for all \(i \in [1, n] \). We suppose \(\sum_{i=1}^{n} \lambda_i \partial^\alpha_i \partial^\beta_i = 0\), with \((\alpha_i, \beta_i)\) pairwise distinct. We fix \(x \in \hat{\Gamma} \) and set \(\alpha = \max\{\alpha_i, i \in [1, n]\}\). One has \(\sum_{i=1}^{n} \lambda_i \partial^\alpha_i \partial^\beta_i f(x) = \sum_{i=1}^{n} \lambda_i \sum_{y \in x(\alpha_i) S_{\beta_i}} f(y) = 0\). Notice that \(x(\alpha) S_{\beta} \cap x(\alpha') S_{\beta'} = \emptyset \) if and only if \(\alpha' - \alpha \neq \beta' - \beta\). Taking \(f \in L^2(S_{x-\alpha+\beta}) \), we see that one can reduce oneself to the case when there is some \(k \) such that \(\alpha_i - \beta_i = k\) for all \(i \in [1, n] \). Since \(x(\alpha-l) S_{\alpha-k-l} \subset x(\alpha-l) S_{\alpha-k-l} \subset x(\alpha) S_{\alpha-k} \) for all \(l \in [1, (\alpha - k)] \), there is some \(y_0 \in x(\alpha) S_{\alpha-k} \setminus \cup_{\alpha_i \neq \alpha} x(\alpha_i) S_{\beta_i} \). Then, taking \(f = \chi_{(y_0)} \), we get some \(i_0 \) such that \(\lambda_{i_0} = 0\), which is a contradiction. Hence \(\sum_{i=1}^{n} \lambda_i \partial^\alpha_i \partial^\beta_i \neq 0\). Finally, since when \(\nu = 1 \) one has \(\tilde{\partial} \partial^* = \tilde{\partial} \tilde{\partial} = \text{Id}\), \(\{\tilde{\partial}^\alpha \tilde{\partial}^\beta\}_{\alpha, \beta \in \mathbb{N}}\) is obviously not a basis. □
4.3 Description of $\mathcal{C}(\hat{\Gamma})/\mathbb{K}(\Gamma)$

Theorem 4.5

i) For any $\nu \geq 1$, there is a unique morphism $\Phi : \mathcal{C}(\hat{\Gamma}) \to \mathcal{T}$ such that $\Phi(\partial) = \mathcal{T}$ and $\Phi(\varphi(Q)) = 1 \otimes (\varphi|_{\partial\Gamma})$. This morphism is surjective and its kernel is $\mathbb{K}(\Gamma)$.

ii) For $\nu > 1$, there is a unique surjective morphism $\Phi : \mathcal{C}(\hat{\Gamma}) \to \mathcal{T}$ such that $\Phi(\partial) = \mathcal{T}$ and $\Phi(\varphi(Q)) = 1 \otimes (\varphi|_{\partial\Gamma})$ and $\text{Ker} \Phi = \mathbb{K}(\Gamma)$.

Once again, as in Remark 4.2, the statement (ii) of the theorem is false if $\nu = 1$. As a corollary of Theorem 4.5 we obtain the following result.

Proposition 4.6 If $\nu > 1$ then $\mathcal{T} \cap \mathbb{K}(\Gamma) = \{0\}$ and if $\nu = 1$ one has $\mathbb{K}(\Gamma) \subset \mathcal{T}$.

Proof: Let $\nu > 1$ and $T \in \mathcal{T} \cap \mathbb{K}(\Gamma)$. Theorem 4.5 gives us both $\Phi(T) = T$ and $\Phi(T) = 0$ (since T is compact). For $\nu = 1$, as in the proof of Proposition 3.2, it suffices to prove that $\delta_{x,x}$ is in \mathcal{T}. But this is clear since $\delta_{x,x} = \partial_{x}[x+1]\partial_{x}[x+1] - \partial_{x}[x]\partial_{x}[x]$.

We devote the rest of the section to the proof of the Theorem 4.5.

Proof: By Theorem 4.1 there is a morphism $\Phi : \mathcal{C}(\hat{\Gamma}) \to \mathcal{T}$ such that $(\Phi(\partial))(\gamma) = \mathcal{T}$ and $(\Phi(\varphi(Q)))(\gamma) = \varphi(\gamma)$, for all $\gamma \in \partial\Gamma$, $\varphi \in \mathcal{C}(\hat{\Gamma})$. Since the images of ∂ and $\varphi(Q)$ through Φ belong to the C^*-subalgebra $\mathcal{C}(\partial\Gamma, \mathcal{T})$, and since $\mathcal{C}(\hat{\Gamma})$ is generated by ∂ and such $\varphi(Q)$, it follows that the range of Φ is included in $\mathcal{C}(\partial\Gamma, \mathcal{T})$. We have $\mathcal{C}(\partial\Gamma, \mathcal{T}) \cong \mathcal{T} \otimes \mathcal{C}(\partial\Gamma)$, so we get the required morphism $\Phi : \mathcal{C}(\hat{\Gamma}) \to \mathcal{T} \otimes \mathcal{C}(\partial\Gamma)$. Now since $\Phi(\partial) = \mathcal{T} \otimes 1$ and $\Phi(\varphi(Q)) = 1 \otimes (\varphi|_{\partial\Gamma})$, and since any function in $\mathcal{C}(\partial\Gamma)$ is the restriction of some function from $\mathcal{C}(\hat{\Gamma})$, it follows that Φ is surjective. Its uniqueness is clear. It remains to compute the kernel.

As seen in the Theorem 4.1, $\mathbb{K}(\Gamma) \subset \text{Ker} \Phi$. In the remainder of this section we shall prove the reverse inclusion. For this we need some preliminary lemmas.

Lemma 4.7 Let $R = \varphi(Q)\partial^\alpha \partial^\beta$ and $\mathcal{U} = \{a_i\}_{i \in [1,n]}$ be a disjoint covering of $\partial\Gamma$. For each $\varepsilon > 0$ there are $c_1, c_2, \ldots, c_m \in \text{Ran}(\varphi)$ and there is a disjoint covering $\mathcal{U}' = \{b_j\}_{j \in [1,m]}$ of $\partial\Gamma$ finer than \mathcal{U} such that $\|1_{U'} R - R'\| \leq \varepsilon$, where $R' = \sum_{j=1}^m b_j c_j \partial^\alpha \partial^\beta$ and $U' = \bigcup_{j=1}^m b_j \Gamma$.

20
Proof: Let $\varepsilon > 0$ and denote $\varepsilon/\|\partial^x \partial^y\|$ by ε'. Since $\varphi(\partial \Gamma)$ is compact, there are $\gamma_1, \gamma_2, \ldots, \gamma_N \subset \partial \Gamma$ such that $\varphi(\partial \Gamma) \subset \bigcup_{k=1}^{N} D(\varphi(\gamma_k), \varepsilon')$, where $D(z, r)$ is the complex open disk of center z and ray r. The open sets $\mathcal{O}_{i,k} = a_i \Gamma \cap \varphi^{-1}(D(\varphi(\gamma_k), \varepsilon'))$ cover $\partial \Gamma$. The Proposition 2.4 gives us a disjoint covering $\{b_j \Gamma\}_{j \in \{1, m\}}$ of $\partial \Gamma$ such that for each $j \in \{1, m\}$ there are i and k such that $b_j \Gamma \subset \mathcal{O}_{i,k}$. To simplify the notations, we will denote by γ_j those γ_k associated to $b_j \Gamma$. We set $\mathcal{U}' = \{b_j \Gamma\}_{j \in \{1, m\}}$ and $R' = \sum_{j=1}^{m} b_j \Gamma \varphi(\gamma_j) \partial^x \partial^y$. Recall that $\sup_{x \in b_j \Gamma} |\varphi(\gamma_j) - \varphi(x)| \leq \varepsilon'$, so

$$
\|(R' - 1_{\mathcal{U}'} R)f\|^2 = \sum_{x \in \Gamma} \left| \sum_{j=1}^{m} b_j \Gamma(x)(\varphi(\gamma_j) - \varphi(x))(\partial^x \partial^y f)(x) \right|^2
$$

$$
= \sum_{j=1}^{m} \sum_{x \in b_j \Gamma} \left| (\varphi(\gamma_j) - \varphi(x))(\partial^x \partial^y f)(x) \right|^2
$$

$$
\leq \sum_{j=1}^{m} \sup_{x \in b_j \Gamma} |\varphi(\gamma_j) - \varphi(x)|^2 \sum_{x \in b_j \Gamma} \left| (\partial^x \partial^y f)(x) \right|^2
$$

$$
\leq \varepsilon'^2 \sum_{j=1}^{m} \sum_{x \in b_j \Gamma} \left| (\partial^x \partial^y f)(x) \right|^2
$$

$$
\leq \varepsilon'^2 \|\partial^x \partial^y\|^2 \cdot \|\partial^x \partial^y\|^2 \cdot \|f\|^2 = \varepsilon'^2 \|f\|^2.
$$

Denoting $\varphi(\gamma_j)$ by c_j we obtain the result. \Box

Lemma 4.8 Let $T = \sum_{k=1}^{n} \varphi_k(Q) \partial^x \partial^y a_k$ with $\varphi_k \in C(\hat{\Gamma})$ and let $\varepsilon > 0$. There are a compact operator K, a disjoint covering $\{a_j \Gamma\}_{j \in \{1, m\}}$ of $\partial \Gamma$ and $S = \sum_{k=1}^{n} \sum_{j=1}^{m} a_j \Gamma \varphi_k(\gamma_j, k) \partial^x \partial^y a_k$, with $\max_{j \in \{1, m\}} a_j \geq \max_{k \in \{1, n\}} (\alpha_k$ and $\gamma_j,k) \in \partial \Gamma$ such that $\|T - S - K\| \leq \varepsilon$.

Proof: We denote by $\alpha = \max\{\alpha_k \mid k \in \{1, n\}\}$. Let T_k be $\varphi_k(Q) \partial^x \partial^y a_k$. Setting $\mathcal{U}_0 = \bigcup_{\{a_k \mid k \in \{1, n\}\}} \{a_i \Gamma\}$, we apply the Lemma 4.7 inductively for $k \in \{1, n\}$ with ε/n instead of ε, $\mathcal{U} = \mathcal{U}_{k-1}$ and $R = T_k$, denoting \mathcal{U}' by \mathcal{U}_k and R' by S_k. Then, for $k \in \{1, n\}$ we get $\|1_{U_k} T_k - S_k\| \leq \varepsilon/k$. Since \mathcal{U}_{k+1} is finer than \mathcal{U}_k for $k \in \{1, n - 1\}$, we obtain $\|1_{U_k} \sum_{k=1}^{n} (T_k - S_k)\| \leq \varepsilon$, hence $\|T - 1_{U_n} T - 1_{U_n} \sum_{k=1}^{n} S_k\| \leq \varepsilon$. To finish the proof, we denote the compact operator $1_{U_n} T$ by \hat{K}, $1_{U_n} \sum_{k=1}^{n} S_k$ by S and \mathcal{U}_n by $\{a_j \Gamma\}_{j \in \{1, m\}}$. \Box
We now go back to the proof of Theorem 4.5. Let $T \in \text{Ker } \Phi$. For each $\varepsilon > 0$ there is $T' \in \mathcal{C}(\hat{\Gamma})_{\text{alg}}$ such that $\|T - T'\| \leq \varepsilon/4$. By relation (3.1) and Proposition 3.3, we can write $T' = \sum_{k=1}^{n} \varphi_k(Q) \partial^{*\alpha_k} \partial^{\beta_k} + K$, where $K \in \mathbb{K}(\Gamma)$ and $\varphi_k \in C(\hat{\Gamma})$. Thus $\|\Phi(T')\| \leq \varepsilon/4$. Using Lemma 4.8, we get an operator S and a compact operator K_1 such that $\|T' - S - K_1\| \leq \varepsilon/4$. This implies that $\|\Phi(S)\| \leq \varepsilon/2$.

Lemma 4.9 There is $K_2 \in \mathbb{K}(\Gamma)$ such that $\|S - K_2\| \leq \|\Phi(S)\|$.

Before proving the lemma, let us remark that it implies

$$\|T - K_1 - K_2\| \leq \|T - T'\| + \|T' - S - K_1\| + \|S - K_2\| \leq \varepsilon.$$

Hence $T \in \mathbb{K}(\Gamma)$. Thus Theorem 4.5 is proved.\square

Proof of Lemma 4.9. First, we remark that for each $a \in \Gamma$ and $\alpha, \beta \geq 0$, the Proposition 3.3 gives us that $1_{a\Gamma} \partial^{*\alpha} \partial^{\beta} - 1_{a\Gamma} \partial^{*\alpha} \partial^{\beta} 1_{a\Gamma}$ is a compact operator. We define $S' = \sum_{j=1}^{m} \sum_{j=1}^{n} (1_{a_j \Gamma} \varphi_k(\gamma_{j,k}) \partial^{*\alpha_k} \partial^{\beta_k} 1_{a_j \Gamma} f)(x)^2$

$$= \sum_{j=1}^{m} \sum_{j' \in \Gamma} \sum_{k=1}^{n} (1_{a_{j'} \Gamma} \varphi_k(\gamma_{j,k}) \partial^{*\alpha_k} \partial^{\beta_k} 1_{a_{j'} \Gamma} f)(x)^2$$

$$\leq \sum_{j=1}^{m} \sum_{j' \in \Gamma} \sum_{k=1}^{n} \left\| 1_{a_{j'} \Gamma} \varphi_k(\gamma_{j,k}) \partial^{*\alpha_k} \partial^{\beta_k} 1_{a_{j'} \Gamma} \right\|^2 \cdot \left\| 1_{a_{j'} \Gamma} f \right\|^2.$$

Now we use (3.2) and (3.3) and get:

$$\left\| 1_{a_{j'} \Gamma} \left(\sum_{k=1}^{n} \varphi_k(\gamma_{j,k}) \partial^{*\alpha_k} \partial^{\beta_k} \right) 1_{a_{j'} \Gamma} \right\| = \left\| \lambda_{a_{j'}} \left(\sum_{k=1}^{n} \varphi_k(\gamma_{j,k}) \partial^{*\alpha_k} \partial^{\beta_k} \right) \lambda_{a_{j'}} \right\|.$$

Since $|a_{j'}| \geq \max\{a_k \mid k \in [1, n]\}$, the Lemmas 3.6 and 3.7 give us:

$$\left\| \lambda_{a_{j'}} \left(\sum_{k=1}^{n} \varphi_k(\gamma_{j,k}) \partial^{*\alpha_k} \partial^{\beta_k} \right) \lambda_{a_{j'}} \right\| = \left\| 1_{\Gamma} \left(\sum_{k=1}^{n} \varphi_k(\gamma_{j,k}) \partial^{*\alpha_k} \partial^{\beta_k} \right) 1_{\Gamma} \right\|$$

$$= \left\| \sum_{k=1}^{n} \varphi_k(\gamma_{j,k}) \partial^{*\alpha_k} \partial^{\beta_k} \right\|.$$
For each j we choose $\gamma_j \in a_j \partial \Gamma$. The family $\{a_j \Gamma\}_{j \in \{1, m\}}$ is a disjoint covering of $\partial \Gamma$, so we have $\lim_{x \to \gamma_j} \chi_{a_j \Gamma}(x) = 1$ and $\lim_{x \to \gamma_i} \chi_{a_i \Gamma}(x) = 0$ for $i \neq j$. Hence $\Phi_{\gamma_j}(S') = \sum_{k=1}^{n} \varphi_k(\gamma_{j,k}) \overline{\partial}_{a_k} \overline{\partial}_{\beta_k}$. We obtain

$$\|S'f\|^2 \leq \sum_{j=1}^{m} \|\Phi_{\gamma_j}(S')\|^2 \cdot \|1_{a_j \Gamma}f\|^2 \leq \sup_{\gamma \in \partial \Gamma} \|\Phi_{\gamma}(S')\|^2 : \|f\|^2.$$

Finally, since $\mathbb{K}(\Gamma) \subset \text{Ker } \Phi$, $\|\Phi(S)\| = \|\Phi'(S')\| = \sup_{\gamma \in \partial \Gamma} \|\Phi_{\gamma}(S')\|$. □

Acknowledgment: I take this opportunity to express my gratitude to Vladimir Georgescu for suggesting me the subject of this work and for helpful discussions. I am also indebted to Andrei Iftimovici for comments and suggestions.

References

