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Abstract. The number of self-adjoint extensions of a symmetric operator acting on a complex Hilbert
space is characterized by its deficiency indices. Given a locally finite unoriented simple tree, we prove that

the deficiency indices of any discrete Schrödinger operator are either null or infinite. We also prove that
all deterministic discrete Schrödinger operators which act on a random tree are almost surely selfadjoint.
Furthermore, we provide several criteria of essential self-adjointness. We also address some importance
to the case of the adjacency matrix and conjecture that, given a locally finite unoriented simple graph,

its deficiency indices are either null or infinite. Besides that, we consider some generalizations of trees
and weighted graphs.
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1. Introduction

The spectral theory of adjacency matrices acting on graphs is useful for the study, among others, of
some gelling polymers, of some electrical networks, and in number theory, e.g., [CDS, DS, DSV, MO]. In
quantum physics, proving that a symmetric operator is self-adjoint is a central problem. To characterize
all the possible extensions, one studies the so-called deficiency indices.

We start with some definitions to fix notation for graphs and refer to [CdV, Chu, MW] for surveys on
the matter. Let V be a countable set. We equip V with the discrete topology. Let E := V × V → [0,∞)
and assume that E(x, y) = E(y, x), for all x, y ∈ V . We say that G := (E, V ) is an unoriented weighted
graph with vertices V and weights E. In the setting of electrical networks, the weights correspond to
the conductances. We say that x, y ∈ V are neighbors if E(x, y) 6= 0 and denote it by x ∼ y. We say
there is a loop in x ∈ V if E(x, x) 6= 0. A graph G is simple if it has no loops and E has values in
{0, 1}. The set of neighbors of x ∈ E is denoted by NG(x) := {y ∈ E | x ∼ y}. Given X ⊆ V we write
NG(X) :=

⋃

x∈X NG(x). The degree of x ∈ V is by definition dG(x) := |NG(x)|, the number of neighbors
of x. The graph is of bounded degree, if supx∈V dG(x) is finite. A graph is locally finite if dG(x) is finite for
all x ∈ V . A graph is connected, if for all x, y ∈ V , there exists an x-y-path, i.e., there is a finite sequence
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(x1, . . . , xn) ∈ V N+1 such that x1 = x, xN+1 = y and xn ∼ xn+1, for all n ∈ {1, . . . , N}. In this case,
we endow V with the metric ρV defined by ρV (x, y) := inf{n ∈ N | there exists an x-y-path of length n}.
Note that in this paper we use N for the set of nonpositive integers, i.e., 0 ∈ N. In the sequel, all graphs
are supposed to be locally finite, with no loops and unoriented.

We associate to G the complex Hilbert space ℓ2(V ). We denote by 〈·, ·〉 and by ‖·‖ the scalar product
and the associated norm, respectively. By abuse of notation, we denote the space simply by ℓ2(G).
The set of complex functions with compact support in V is denoted by Cc(G). One often considers the
Laplacian defined by

(∆G,◦f)(x) :=
∑

y∼x

E(x, y)
(

f(x) − f(y)
)

, with f ∈ Cc(G)(1.1)

and the so-called adjacency matrix :

(AG,◦f)(x) :=
∑

y∼x

E(x, y)f(y), with f ∈ Cc(G).(1.2)

Both of them are symmetric and thus closable. We denote the closures by ∆G and AG, their domains by
D(∆G) and D(AG), and their adjoints by (∆G)∗ and (AG)∗, respectively. In [Woj], see also [Jor], it is
shown that the operator ∆G is essentially self-adjoint on Cc(G), when the graph is simple. In particular,
one has that ∆G = (∆G)∗. In contrast, even in the case of a locally finite tree G, AG may have many
self-adjoint extensions, see [MO, Mü, Gol] and Proposition 1.2 for concrete examples. We mention also
the work [Aom], where a characterization in terms of limit point – limit circle is given.

In this note, we are also interested in the discrete Schrödinger operators AG + V and ∆G + V with
potential V := V → R, where V also denotes the operator of multiplication with the function V. The
operators are defined as the closures of AG,◦ + V and of ∆G,◦ + V on Cc(G), respectively. Note that ∆G,
up to sign, is in fact a discrete Schrödinger operator formed with the help of AG:

∆G = V −AG, where V(x) :=
∑

y∼x

E(x, y).(1.3)

In the sequel, we investigate the number of possible self-adjoint extensions of discrete Schrödinger oper-
ators by computing their deficiency indices. Given a closed and densely defined symmetric operator T
acting on a complex Hilbert space, the deficiency indices of T are defined by η±(T ) := dim ker(T ∗ ∓ i) ∈
N ∪ {+∞}. We recall some well-known facts. The operator T possesses a self-adjoint extension if and
only if η+(T ) = η−(T ). If this is the case, we denote the common value by η(T ). T is self-adjoint if and
only if η(T ) = 0. Moreover, if η(T ) is finite, the self-adjoint extensions can be explicitly parametrized by
the unitary group U(n) in dimension n = η(T ). Using the Krein formula, it follows that the absolutely
continuous spectrum of all self-adjoint extensions is the same.

Since the operator AG + V commutes with the complex conjugation, its deficiency indices are equal,
e.g., [RS, Theorem X.3]. We denote by η(G) the common value, when V = 0. This means that AG + V
possesses a self-adjoint extension. Remark that η(AG + V) = 0 (resp. η(∆G + V) = 0) if and only if
AG + V (resp. ∆G + V) is essentially self-adjoint on Cc(G). We give the following criteria for essential
self-adjointness:

Proposition 1.1. Let G = (E, V ) be a locally finite graph and V : V → R be a potential. Then, the
following assertions hold true:

(1) Provided that V is bounded from below, ∆G + V is essentially self-adjoint on Cc(G).
(2) Let x0 ∈ V , set bi := sup{∑x,y E(x, y) | ρV (x0, x) = i and ρV (x0, y) = i + 1}, and take V : V →

R. If
∑

i∈N 1/bi = +∞, then AG + V and ∆G + V is essentially self-adjoint on Cc(G).
(3) Suppose that supx maxy∼x |dG(x) − dG(y)| < ∞, E is bounded, and supx∈V |V(x)/dG(x)| < ∞,

then AG + V is essentially self-adjoint on Cc(G).
(4) Suppose that dG is bounded, supx maxy∼x |E(x) − E(y)| < ∞, where E(x) := maxy∼x E(x, y),

and that supx∈V |V(x)/E(x)| < ∞, then AG + V is essentially self-adjoint on Cc(G).
(5) Suppose there is a compact set K ⊂ V , such that

∑

y∼x E2(x, y)dG(y) ≤ V2(x) for all x /∈ K.

Then AG + V is essentially self-adjoint on Cc(G).
(6) Suppose there is a compact set K ⊂ V , such that

∑

y∼x E2(x, y)
(

1 + dG(y)
)

≤ V2(x) for all

x /∈ K, then ∆G + V is essentially self-adjoint on Cc(G).

We prove the result in Section 2.2. The first point is the discrete version of the fact that given a non-
negative potential V ∈ L2

loc(R
n), one has that −∆Rn + V is essentially self-adjoint on Cc(R

n), e.g., [RS,
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Theorem X.28]. It is essentially a repetition of [Woj, Theorem 1.3.1]. The second point is a Carleman-
type condition, see for instance [Ber, Page 504] for the case of Jacobi matrices. We stress that this result
holds true without any hypothesis of size or of sign on the potential part. In particular, the Schrödinger
operators could be unbounded from below and from above, see [Gol] for instance. Unlike in [Ber], we rely
on an commutator approach, see [Wo1, Wo2] for similar techniques. The points (3) and (4) follow by
application of the Nelson commutator Theorem. The two last ones are an application of Wüst’s Theorem
by considering A and ∆ as perturbation of the potential. We mention the works of [CTT, KL, Ma] on
related questions.

Concentrate a moment on the case of the adjacency matrix for simple graphs. Keep in mind, it is no
gentle perturbation of the Laplacian, see Proposition 2.1. In [MO, Mü], adjacency matrices for simple
trees with positive deficiency indices are constructed. In fact, it follows from the proof that the deficiency
indices are infinite in both references. We recall that a tree is a connected graph G = (E, V ) such that

for each edge e ∈ V × V with E(e) 6= 0 the graph (Ẽ, V ), with Ẽ := E × 1{e}c , i.e., with e removed, is
disconnected. As a general result, a special case of Theorem 1.1 gives that, given a locally finite simple
tree G, one has

η(G) ∈ {0,+∞}.(1.4)

This is a new result to our knowledge, although the literature on trees is extensive. We believe that,
given a simple graph G = (E, V ), or more generally, a graph with bounded weights, (1.4) should be true.
In Remark 2.2, we explain that it is enough to prove (1.4) for simple bi-partite graphs. We recall that
a bi-partite graph is a graph so that its vertex set can be partitioned into two subsets in such a way
that no two points in the same subset are neighbors. Trees are bi-partite for instance. We stress that
this conjecture is false if one takes unbounded weights, see for instance counter-examples of adjacency
matrices given by Jacobi matrices in [Gol, Remark 2.1] and also in [MO].

We now point out that the self-adjointness of the adjacency matrix, acting on a simple locally finite
tree G, is linked with the growth of the offspring, i.e., of the number of sons. (We refer to Section 3.1
for precise definitions concerning trees.) When the latter grows up to linearly, Proposition 1.1 gives that
η(G) = 0. On the other hand, if the growth is “exponential”, Proposition 3.1 assures that η(G) = ∞. In
Section 3.2, using invariant spaces, we prove the following sharp result:

Proposition 1.2. Let α > 0 and G be a tree with offspring ⌊nα⌋ per individual at generation n. Then,
one obtains:

η(G) =

{

0, if α ≤ 2,

+∞, if α > 2.

We come back to the general question for Schrödinger operators and give our main result in the
context of trees. We prove it in Section 3.5 and generalize it in Theorem 4.1 to a family of graphs
obtained recursively.

Theorem 1.1. Let G = (E, V ) be a locally finite weighted tree, where E is bounded, and let V : V → R

be a potential. Then one has:

η(AG + V) ∈ {0,+∞} and η(∆G + V) ∈ {0,+∞}.(1.5)

In particular, one obtains η(G) ∈ {0,+∞}.
Moreover, in Section 3.4, we prove some generic results for random trees and their deterministic

Schrödinger operators. We obtain:

Proposition 1.3. Let G = (E, V ) be a random tree with independent and identically distributed (i.i.d.)
offspring. Suppose that the offspring distribution has finite expectation. Then for almost all trees, the
Schrödinger operators AG + V and ∆G + V are essentially self-adjoint on Cc(G), for all potentials V :
V → R. In particular, almost surely, one gets η(G) = 0.

We refer to Section 3.4 for definitions, a proof of this result and also for Proposition 3.2, which treats
the case of random offspring at a given generation.

We now present the structure of the paper. We start by proving, in Section 2.1, that the domains of
the Laplacian and of the adjacency matrix are different for simple graphs of unbounded degree. Then, in
Section 2.2, we prove Proposition 1.1. Next, we present our main tool in Section 2.3. Subsequently, after
giving a few definitions in Section 3.1, we discuss the setting of trees. We start by explaining in Section
3.2 how to reduce in some cases the analysis of adjacency matrices to the one of Jacobi matrices. After
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that, in Section 3.3, we provide an example of tree G with “exponential growth” such that η(G) = ∞.
Then, we prove Proposition 1.3 in Section 3.4. Next, in Section 3.5, we prove the first main result of
the introduction, namely Theorem 1.1 and generalize it in Section 4. Finally in Appendix A, we recall
a general result of stability of deficiency indices, proposition A.1, and deduce a criterion for essential
self-adjointness of Jacobi matrices, which possess unbounded diagonals.
Notation: The set of nonpositive integers is denoted by N, note that 0 ∈ N. Given a set X and Y ⊆ X
let 1Y : X → {0, 1} be the characteristic function of Y , namely 1−1

Y {1} = Y . We denote also by Y c the
complement set of Y in X.

Acknowledgments: We would like to thank Hermann Schulz-Baldes, Vladimir Georgescu, Andreas
Knauf, and Mathias Rafler for helpful discussions.

2. General results

2.1. Comparison of domains. In view of Proposition A.1, it is tempting to try to prove that the
adjacency matrix AG is self-adjoint by comparing it to the discrete Laplace operator ∆G. (Remember
that the latter is always essentially self-adjoint on Cc(G) by Proposition 1.1.) But, as a matter of fact, if
the graph G is simple and has unbounded degree, we prove in this section that this is impossible.

Given a locally finite graph G = (E, V ) and a potential V : V → R, we set HG := AG + V. We first
recall that the domain of the adjoint is given by

D
(

(HG)∗
)

=
{

f ∈ ℓ2(G), x 7→
(

∑

y∼x

E(x, y)f(y)

)

+ V(x)f(x) ∈ ℓ2(G)
}

.

Then, given f ∈ D((HG)∗), one has:

((HG)∗f) (x) =

(

∑

y∼x

E(x, y)f(y)

)

+ V(x)f(x), for all x ∈ V.

We prove the result:

Proposition 2.1. Consider G = (E, V ) and suppose there is a sequence (xn)n∈N of points in V , so that

lim
n→∞

∑

y∼xn

E2(y, xn) = ∞ and lim
n→∞

(

∑

y∼xn
E(y, xn)

)2

∑

y∼xn
E2(y, xn)

= ∞.(2.1)

Then, D(∆G) 6= D(AG). In particular, the conclusion holds true when G is simple and has unbounded
degree.

Proof. We suppose that D(∆G) = D(AG). Therefore, the uniform boundedness principle ensures that
there are a, b ≥ 0 such that

‖∆Gf‖2 ≤ a‖AGf‖2 + b‖f‖2, for all f ∈ D(AG).(2.2)

We note now that one has that ‖∆G(1{xn})‖2 =
∑

y∼xn
E2(y, xn) +

(
∑

y∼xn
E(y, xn)

)2
and also that

‖AG(1{xn})‖2 =
∑

y∼xn
E2(y, xn). Taking f = 1{xn} in (2.2) leads to a contradiction.

Finally, when G is simple and has unbounded degree, consider a sequence (xn)n∈N, so that dG(xn)
tends to infinity. ¤

2.2. Essential self-adjointness of discrete Schrödinger operators. We prove some criteria of self-
adjointness for Schrödinger operators.

Proof of Proposition 1.1. We start with the first point and mimic [Woj, Theorem 1.3.1]. Using Proposi-
tion A.1, it is enough to suppose that V is non negative. Take f ∈ D

(

(∆G+V)∗
)

so that (∆G+V)∗f = −f .
Since ∆G + V is non-negative, it is enough to prove that f = 0. Notice that one has, for all x ∈ V ,

∑

y∼x

E(x, y)f(y) =
(

1 + V(x) +
∑

y∼x

E(x, y)
)

f(x).

Therefore, given x ∈ V , there exists y ∼ x with |f(y)| > |f(x)|. This is in contradiction to the fact that
f ∈ ℓ2(G).

We turn to the second point. As there is no restriction on V, it is enough to consider the case of
H := AG + V. We denote by Si := {x ∈ V, ρV (x0, x) = i} the sphere of radius i ∈ N around x0 ∈ V . For
n ∈ N, consider an : N → [0, 1] with finite support and set χn :=

∑

i∈N an(i)1Si
and χ̃n := 1 − χn. We
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see immediately that χnD(H∗) ⊂ D(H) ⊂ D(H∗). Then, the commutator [H∗, χn], defined on D(H∗),
is well defined (in the operator sense). Easily, it extends to a bounded operator, which we denote by
[H∗, χn]◦. We take f ∈ D(H∗) and will prove that it is also contained in D(H) by approximating it with
fn := χnf . We have

‖fm − fn‖ + ‖H(fm − fn)‖ ≤ ‖(χm − χn)f‖ + ‖(χm − χn)H∗f‖
+ ‖[H∗, χn]f‖ + ‖[H∗, χm]f‖.(2.3)

We now choose an in order to make (fn)n∈N a Cauchy sequence with respect to the graph norm of H.
Set

(2.4) an(i) :=

{

1, for i ≤ n,

min
{

1,max{0, 1 − 1
n

∑i
j=n+1 1/bj}

}

, for i > n.

Notice that an has finite support, since
∑

j∈N 1/bj = +∞. This gives that χnf and χnH∗f tend to f

and H∗f , respectively. It remains to control the commutator in (2.3). By the Schur test and (2.4), we
have:

‖[H∗, χ̃n]◦‖ ≤ sup
v∈V

∑

w∈V

|〈1{v}, [H
∗, χ̃n]◦ 1{w}〉| = sup

v∈V

∑

w∈V

|〈1{v}, [AG, χ̃n]1{w}〉|

= sup
v∈V

∑

w∈V

E(v, w)|χn(w) − χn(v)| = sup
v∈V

∑

w∈V,ρV (w,v)=1

E(v, w)|χn(w) − χn(v)| ≤ 1

n
.

Returning to (2.3), this implies that fn is a Cauchy sequence in D(H). Let g be its limit. Since H is
closed, g ∈ D(H) and g = f .

We turn to (3) and (4). Taking in account the contribution of the potential, we essentially rewrite
[Gol, Proposition 1.1]. Take f ∈ Cc(G). For dG bounded let M (x) := E(x) and for E bounded let
M (x) := dG(x). Let M be the operator of multiplication by M (·), too. We denote all constants, which
are independent from f , by the same letter C. We have:

‖(AG + V)f‖2 ≤ 2
∑

x

∣

∣

∣

∑

y∼x

E(x, y)f(y)
∣

∣

∣

2

+ 2‖Vf‖2 ≤ 2
∑

x

dG(x)E2(x)
∑

y∼x

|f(y)|2 + 2‖Vf‖2

≤ 2
∑

x

dG(x)max
y∼x

(dG(y))E2(x)|f(x)|2 + 2‖Vf‖2

≤ 2
∑

x

E2(x)dG(x)
(

C + dG(x)
)

|f(x)|2 + 2‖Vf‖2 ≤ C‖M f‖2.

Moreover, noticing that the potential V commutes with M , we get

|〈f, [AG,M ]f〉| =
∣

∣

∣

∑

x

f(x)
∑

y∼x

E(x, y)
(

M (y) − M (x)
)

f(y)
∣

∣

∣ ≤
∑

x

∑

y∼x

C|E1/2(x)f(x)| |E1/2(y)f(y)|

≤ c
∑

x

dG(x)|E1/2(x)f(x)|2 ≤ C
∥

∥M
1/2f

∥

∥

2
.

Then, using [RS, Theorem X.36], the result follows.
We deal now with the fifth point. As a potential is essentially self-adjoint on Cc(G), thanks to Wüst’s

Theorem, e.g., [RS, Theorem X.14], it is enough to prove that there is b ≥ 0 so that,

‖AGf‖2 ≤ ‖Vf‖2 + b‖f‖2, for all f ∈ Cc(G).(2.5)

As x 7→ V(x)1K(x) is bounded, it is enough to prove (2.5) with b = 0 and under the stronger hypothesis:
∑

y∼x E2(x, y)dG(y) ≤ V2(x) for all x ∈ V . The statement is now obvious as, for all f ∈ Cc(G), one has

‖AGf‖2 =
∑

x∈V

∑

y∼x

|E(x, y)f(y)|2 ≤
∑

x∈V

∑

y∼x

dG(x)E2(x, y)|f(y)|2 =
∑

x∈V

∑

y∼x

dG(y)E2(x, y)|f(x)|2.

Finally, by using the last inequality and by taking into account the diagonal part of the Laplacian, one
has, for all f ∈ Cc(G),

‖∆Gf‖2 ≤
∑

x∈V

(

∑

y∼x

dG(y)E2(x, y) + E2(x, y)
)

|f(x)|2.

Wüst’s Theorem gives the last point. ¤
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Remark 2.1. Given a ∈ [0, 1), note that if one strengthens the assumption in the fourth point to
∑

y∼x

E2(x, y)dG(y) ≤ aV2(x), for all x /∈ K

the previous proof and the Kato-Rellich theorem (or more generally Proposition A.1) ensures D(AG+V) =
D(V ), too. In the same spirit, if one supposes that

∑

y∼x E2(x, y)
(

1 + dG(y)
)

≤ aV2(x) for all x /∈ K in

the fifth point, one gets also D(∆G + V) = D(V ).

2.3. Bounded perturbations of graphs and deficiency indices. In this section, we compute the
deficiency indices, in the case one adds up to a given number of edges per vertex to a countable union of
graphs. We slightly improve the surgery Lemma of [Gol].

Lemma 2.1. Given a sequence of graphs Gn = (En, Vn), for n ∈ N, let G◦ := (E◦, V ◦) :=
⋃

n∈N Gn be

the disjoint union of {Gn | n ∈ N}. Choose Ẽ : V ◦ × V ◦ → [0,∞), so that Ẽ is symmetric, with support

away from the diagonal. Set G := (E, V ) with V = V ◦ and E := E◦ + Ẽ. Suppose that:

sup
x∈V

∑

y∈V

d̃G(y)Ẽ2(x, y) < ∞,(2.6)

where d̃G(x) := |{y ∈ V, Ẽ(x, y) 6= 0}|. Consider a potential V : V → R. Set HG := AG + V and
HGn

:= AGn
+ V|Gn

. Then, one obtains

η(HG) =
∑

n∈N

η(HGn
).

In particular, η(G) =
∑

n∈N η(Gn).

Proof. Take f ∈ Cc(G) = Cc(G
◦). Set HG◦ :=

⊕

n∈N HGn
. Notice that:

‖(HG −HG◦)f‖2 =
∑

x∈V

∣

∣

∣

∑

y∈V

Ẽ(x, y)f(y)
∣

∣

∣

2

≤
∑

x∈V

∑

y∈V

d̃G(x)Ẽ2(x, y)|f(y)|2

=
∑

x∈V

(

∑

y∈V

d̃G(y)Ẽ2(x, y)
)

|f(x)|2.

We infer, there is a finite M , so that ‖(HG − HG◦)f‖ ≤ M‖f‖, for all f ∈ Cc(G) = Cc(G
◦). Then, the

closure of (HG −HG◦) is a bounded operator and Proposition A.1 can be applied.
Alternatively, one can conclude using an argument of [Gol]. Since the closure of (HG − HG◦) is a

bounded operator, the graph norms of HG and of HG◦ are equivalent when restricted to Cc(G). By taking
the closure, we infer D(HG) = D(HG◦). Moreover, using again the boundedness of the difference and the
definition of the domain of the adjoints of HG and of HG◦ , one gets directly D((HG)∗) = D((HG◦)∗).
Finally, since the deficiency indices η±(HG) of HG are equal (and of HG◦ , resp.), (A.1) gives that
η(HG) = η(HG◦). ¤

Example 2.1. Given a locally finite graph G := (E, V ) with bounded weights E and a set of vertices
X ⊆ V , such that sup dG(X) < ∞, then the induced graph G′ = G[V \ X], obtained by removing the
vertices in X, has deficiency index η(G′) = η(G).

2.4. Tensor products and deficiency indices. For the sake of completeness and motivated by Re-
mark 2.2 (see below), we discuss shortly the tensor product of graphs regarding the computation of
deficiency indices. We recall that given two graphs Gi = (Ei, Vi), i = 1, 2, one defines the tensor product
G := (E, V ) of G1 with G2 by setting V := V1 ×V2 and E

(

(x1, x2), (y1, y2)
)

:= E(x1, y1) ·E(x2, y2). One
sees that AG1⊗G2

= AG1
⊗ AG2

. We turn to the question of deficiency indices. It is well-known that
η(G1 ⊗ G2) = 0 if η(G1) = η(G2) = 0, e.g., [RS, Theorem VII.33]. One has also that η(G1 ⊗ G2) = ∞,
when η(G1) = ∞ and η(G2) > 0. In fact, in the general case, one obtains easily a lower bound on the
deficiency indices:

Lemma 2.2. Given two symmetric operators S, T acting on the Hilbert spaces H and K , respectively.
Let η = maxi∈{±}

(

ηi(S) · ηi(T )
)

, with the convention 0 · ∞ = 0. Then, η±(S ⊗ T ) ≥ η.

Proof. We recall that, given a symmetric operator H, z 7→ dim ker(H∗ − z) is constant on the upper and
lower open half-planes of C. Therefore it is enough to give a lower bound for dim ker(S∗ ⊗ T ∗ − z2), for
z = eiπ(1/2±1/4)). Take f ∈ D(S∗) and g ∈ D(T ∗), so that S∗f = zf and T ∗g = zg. One has:

S∗ ⊗ T ∗(f ⊗ g) − z2f ⊗ g = (S∗f − zf) ⊗ T ∗g + zf ⊗ (T ∗g − zg) = 0.
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This concludes the proof. ¤

It is however more important to obtain the exact value of the deficiency indices. We recall the following
elementary fact:

Lemma 2.3. Let G be a locally finite graph and K be a finite graph. Then, one deduces

η(G ⊗ K) = η(G) · dim(Im(AK)).

Proof. As AK is self-adjoint in a finite dimensional Hilbert space, we can decompose it with the help of
its eigenspaces. We have AK =

⊕

i λi1Ei
, where Ei is the eigenspace associated to the eigenvalue λi.

Note that (AG⊗K)∗ =
⊕

i λi(AG)∗ ⊗ 1Ei
. To conclude, we notice that dim

(

ker((AG)∗ ⊗ 1Ei
+ i)

)

=

dim
(

ker((AG)∗ + i)
)

× dim1Ei
. ¤

We now come back to the conjecture mentioned in the introduction following (1.4)

Remark 2.2. The complete graph K2 = (E2, V2) is defined by V2 := {0, 1} and E2(0, 1) = 1. Note that
AK2

is injective. Its spectrum is {−1, 1}. Given a locally finite graph G, the previous lemma states that
η(G ⊗ K2) = 2η(G). Moreover, note that G ⊗ K2 is bipartite. Therefore if (1.4) is true for all bipartite
simple graphs, then it is true for all simple graphs.

3. The case of a tree

3.1. Some definitions related to trees. It is convenient to choose a root in the tree. Due to its
structure, one can take any point of V . We denote it by ǫ.

We define inductively the spheres Sn by S−1 = ∅, S0 := {ǫ}, and Sn+1 := NG(Sn) \ Sn−1. Given
n ∈ N, x ∈ Sn, and y ∈ NG(x), one sees that y ∈ Sn−1 ∪ Sn+1. We write x ∼> y and say that x is a son
of y, if y ∈ Sn−1, while we write x <∼ y and say that x is a father of y, if y ∈ Sn+1. Notice that ǫ has no
father. Given x 6= ǫ, note that there is a unique y ∈ V with x ∼> y, i.e., everyone apart from ǫ has one
and only one father. We denote the father of x by ←−x . Given x ∈ Sn, we set ℓ(x) := n, the length of x.
The offspring of an element x is given by off(x) := |{y ∈ NG(x), y ∼> x}|, i.e., it is the number of sons
of x. When ℓ(x) ≥ 1, note that off(x) = dG(x) − 1.

3.2. Diagonalization in the case of an offspring depending on the generation. In this section,
we define a certain family of trees. Then, we explain how to explicitly diagonalize the adjacency matrices
on them. We start with a definition.

Definition 3.1. A simple tree G = (E, V ) with offspring sequence (bn)n∈N is a simple tree with a root
such that bn = off(x), for each x ∈ Sn and n ∈ N.

In Proposition 3.2, we consider a family of trees with random offspring per individual and generation.
At the moment, we focus on the deterministic case and give a concrete example:

ǫ

<<
<<

<<
<<

S0

•

££
££

££
££

qqqqqqqqqqqqqq •

MMMMMMMMMMMMMM

<<
<<

<<
<<

S1

• • • • • • S2

Example of a tree with b0 = 2 and b1 = 3.

Now we adapt the decomposition of a tree given in [AF], see also [GG], in order to write the adjacency ma-
trix as a direct sum of Jacobi matrices. We consider the tree G = (E, V ) with offspring sequence (bn)n∈N.
We define:

(Uf)(x) := 1{∪n≥1Sn}(x)
1

√

b
ℓ
(

←−x
)

f
(←−x

)

, for f ∈ ℓ2(G).
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Easily, one get ‖Uf‖ = ‖f‖, for all f ∈ ℓ2(G). Moreover, it is a completely non-unitary isometry, i.e., it
is an isometry, such that the strong limit s-lim

k→∞
(U∗)k = 0. The adjoint U∗ of U is given by

(U∗f)(x) :=
1

√

bℓ(x)

∑

y∼>x

f(y), for f ∈ ℓ2(G).

Note that one has:

(AGf)(x) =
√

bℓ(←−x ) (Uf)(x) +
√

bℓ(x) (U∗f)(x), for f ∈ Cc(G).

Supposing now that bn ≥ 1 for all n ∈ N, we construct invariant subspaces for AG. We start by
noticing that dim ℓ2(Sn) =

∏

i=0,...,n−1 bn, for n ≥ 1 and dim ℓ2(S0) = 1. Therefore, as U is an isometry,

Uℓ2(Sn) = ℓ2(Sn+1) if and only if bn = 1. Set Q0,0 := ℓ2(S0) and Q0,k := UkQ0,0, for all k ∈ N. Note
that dim Q0,k = dim ℓ2(S0) = 1, for all k ∈ N. Moreover, given f ∈ ℓ2(Sk), one has f ∈ Q0,k if and only
if f is constant on Sk. We define recursively Qn,n+k for k, n ∈ N. Given n ∈ N, suppose that Qn,n+k is
constructed for all k ∈ N, and set

• Qn+1,n+1 as the orthogonal complement of
⊕

i=0,...,n Qi,n+1 in ℓ2(Sn+1),

• Qn+1,n+k+1 := UkQn+1,n+1, for all k ∈ N \ {0}.
We sum-up the construction in the following diagram:

ℓ2(S0) ℓ2(S1) ℓ2(S2) ℓ2(S3)

Q0,0
U

// Q0,1
U

//

⊥

²²

Q0,2
U

//

⊥

Q0,3

⊥

Q1,1
U

// Q1,2
U

//

⊥

²²

Q1,3

⊥

Q2,2
U

// Q2,3

⊥

²²

Q3,3

We point out that dim Qn+1,n+1 = dim Qn+1,n+k+1, for all k ∈ N and stress that it is 0 if and only
if bn = 1. Notice that U∗Qn,n = 0, for all n ∈ N. Set finally Mn :=

⊕

k∈N Qn,n+k and note that

ℓ2(G) =
⊕

n∈N Mn. Moreover, one has that canonically Mn ≃ ℓ2(N; Qn,n) ≃ ℓ2(N) ⊗ Qn,n. In this
representation, the restriction An of AG to the space Mn is given by the following tensor product of
Jacobi matrices:

An ≃















0
√

bn 0 0 · · ·
√

bn 0
√

bn+1 0
. . .

0
√

bn+1 0
√

bn+2
. . .

...
. . .

. . .
. . .

. . .















⊗ 1Qn,n
.

Now AG is given as the direct sum
⊕

n∈N An in ⊕n∈NMn. In particular, η(G) =
∑

n∈N η(An). Note that
if bn = 1, for all n ∈ N, we recover the case of the adjacency matrix of the simple graph N.

We now turn to the case of bn := ⌊nα⌋, for some α > 0.

Proof of Proposition 1.2. The sum
∑

n∈N 1/
√

bn is finite if and only if α > 2. Then [Ber, page 504]
yields that An = (An)∗ for α ∈ [0, 2] and n ∈ N. One infers that η(G) = 0. Now, easily one sees that
bi−1bi+1 ≤ b2

i , for i ≥ 1. Thus, [Ber, page 507] gives that η(An) = dim(Qn,n). This completes the
proof. ¤

3.3. Trees with exponential growth and non-essential self-adjointness. In the previous section,
we focused on trees with given offspring per individual for each generation. We now replace this hypothesis
by a control on the maximum and on the minimum of the offspring of individuals for each generation.
We turn to the result, see also [MO, Mü].
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Proposition 3.1. Let G = (E, V ) be a locally finite simple tree, endowed with an origin. Supposing

n 7→ maxx∈Sn−1
off(x)

minx∈Sn
off(x)

∈ ℓ1(N),(3.1)

one has that η(G) = ∞.

Condition (3.1) can be interpreted as an “exponential growth”.

Proof. We construct f ∈ ℓ2(G) \ {0}, so that (AG)∗f = if and

f(x) = f(y), if ←−x = ←−y , (x, y ∈ V \ {ǫ})
i.e., for all x ∈ V , f is constant on off(x). We denote the constant value by f(∼> x). With this notation,
we have

off(x)f(∼> x) + f
(←−x

)

= if(x),(3.2)

for all x ∈ Sn, with n ≥ 1. We denote by ‖f‖Sn
the ℓ2-norm of f restricted to Sn. Then we have:

‖f‖2
Sn+1

=
∑

x∈Sn−1

∑

y∼>x

∑

z∼>y

|f(z)|2 =
∑

x∈Sn−1

∑

y∼>x

∑

z∼>y

|f(∼> y)|2,

≤
∑

x∈Sn−1

∑

y∼>x

∑

z∼>y

2

off2(y)

(

|f(y)|2 + |f(x)|2
)

, by (3.2)

≤ 2
maxx∈Sn−1

off(x)

minx∈Sn
off(x)

‖f‖2
Sn−1

+
2

minx∈Sn
off(x)

‖f‖2
Sn

.

By induction, one sees that supn∈N‖f‖2
Sn

is finite. Finally using (3.1), we derive that f ∈ ℓ2(G). Theo-
rem 1.1 concludes that the deficiency indices are infinite. ¤

3.4. Discrete Schrödinger operators and random trees. In this section we discuss certain random
trees. Before dealing with random trees in the sense of Definition 3.2, we start with trees with random
offspring sequence, see Definition 3.1.

We recall some well-known notions from probability theory. The left shift on NN is τ : NN → NN,
τ
(

(xn)n∈N

)

:= (xn+1)n∈N. We assign the discrete topology to N and the product topology to NN.
Therefore, τ is continuous. An N-valued stochastic process X := (Xn)n∈N, is called ergodic, if for all
Borel-measurable A ⊆ NN, one has

P
(

X ∈ A and τ(X) 6∈ A
)

+ P
(

X 6∈ A and τ(X) ∈ A
)

= 0 =⇒ P (X ∈ A) ∈ {0, 1}
and stationary, if

P (X ∈ A) = P
(

τ(X) ∈ A
)

for all Borel-measurable A ⊆ NN. For example, if Xn, n ∈ N, are i.i.d. random variables then the process
(Xn)n∈N is stationary and ergodic.

Proposition 3.2. Let G = (E, V ) be a tree with offspring sequence (bn)n∈N, where (bn)n∈N is a stationary
and ergodic stochastic process. Then for almost every G, the Schrödinger operators AG + V and ∆G + V
are essentially self-adjoint on Cc(G), for all V : V → R.

Proof. Take m ∈ N, so that P (b0 = m) > 0. Since (bn)n∈N is a stationary and ergodic N-valued stochastic
process, there is, almost surely, a subsequence (bnk

)k∈N with bnk
= m for all k ∈ N. Consider now the

forest of finite trees obtained by removing all edges between Snk
and Snk+1, for all n ∈ N. Note that,

for each element of Snk+1, there is at most one edge connecting it to Snk
. The Schrödinger operators,

restricted to the finite trees, are all essentially self-adjoint. Lemma 2.1 gives the result. ¤

Next we consider random trees. Denote by W :=
⋃

n∈N(N∗)n the set of all finite words over the
alphabet N∗ := N \ {0}. The length of a word w = (w1, . . . , wn) ∈ W is ℓ(w) := n.

Definition 3.2. Let (Xw)w∈W be a family of i.i.d. random variables with values in N. We construct a
graph G = (E, V ) as follows:

V :=
{

(w1, . . . , wn) ∈ W | wm+1 ≤ X(w1,...,wm) for all m ∈ N,m < n
}

and

E(v, w) :=

{

1 if {ℓ(v), ℓ(w)} = {n, n + 1} and (v0, . . . , vn) = (w0, . . . , wn)

0 otherwise,

for v = (v1, . . . , vℓ(v)), w = (w1, . . . , wℓ(w)) ∈ V . We call G random tree with i.i.d. offspring. The law of
Xǫ is called offspring distribution of G.
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Note that a random tree is a tree with the empty word ǫ as root. Words of length n correspond to Sn,
the n-sphere. Hence, the notation ℓ of the length is consistent with the one given in Section 3.1.

Proposition 3.3. Let G = (E, V ) be a random tree with i.i.d. offspring, such that its offspring distribu-
tion has finite expectation. Then almost surely there are M ≥ 1 and a family (Gi)i∈N of disjoint finite
subtrees Gi := (Ei, Vi) of G, so that V =

⋃

i∈N Vi

sup
i∈Vi

max
x∈max(Vi)

off(x) ≤ M,(3.3)

where max(Vi) := {x ∈ Vi, (y ∼> x in G) =⇒ y /∈ Vi}, for all i ∈ N.

Proof. Since the offspring distribution has finite expectation, there is M ∈ N such that

(3.4)
∑

m>M
mP (Xǫ = m) < 1.

Let G̃ := G \ L be the forest one gets by deleting all the edges in

L := {(v, w) ∈ V × V | ℓ(v) < ℓ(w), offG(v) ≤ M}
from G. Each connected component in G̃ is a random tree with independent offspring. Denote by
Ĝ = (Ê, V̂ ) a connected component of G̃. The expected number of sons in Ĝ is given by the l.h.s.
in (3.4). It is well known that such family trees almost surely get extinct, see e.g., [Kle, Theorem 3.11].

Therefore all the connected components of G̃ are almost surely finite. We present a proof here.
The tree Ĝ has a root ŵ0 ∈ V̂ with ℓ(ŵ0) = min{ℓ(ŵ) | ŵ ∈ V̂ }. We define the n-sphere of Ĝ to

be Ŝn := {ŵ ∈ V̂ | ℓ(ŵ) = n + ℓ(ŵ0)} and denote by X̂ŵ := offĜ(ŵ) the number of sons of ŵ ∈ V̂

in Ĝ. The random variable Ŷn := |Ŝn| fulfills Ŷn =
∑

ŵ∈Ŝn−1
X̂ŵ and is hence measurable with respect to

the σ-algebra F̂n := σ
(

X̂ŵ

∣

∣ ŵ ∈ ⋃n−1
j=0 Ŝj

)

. Therefore the stochastic process (Ŷn)n∈N is adapted to the

filtration (F̂n)n∈N. With (3.4), for all n ∈ N we have

(3.5) E
[

Ŷn+1

∣

∣ F̂n

]

=
∑

ŵ∈Ŝn

E
[

X̂ŵ

∣

∣ F̂n

]

=
∑

ŵ∈Ŝn

E[X̂ŵ] = ŶnE[X̂ŵ0
] ≤ Ŷn.

Hence, the process (Ŷn)n∈N is a supermartingale. Since Ŷn ≥ 0, the martingale convergence theorem

guarantees that Yn converges almost surely. We denote its limit by Ŷ . With (3.5) we entail

0 ≤ E[Ŷn] = E
[

E[Ŷn | F̂n−1]
]

= E
[

Ŷn−1E[X̂ŵ0
]
]

= E[Ŷn−1]E[X̂ŵ0
] =

(

E[X̂ŵ0
]
)n

.

In view of (3.4), Fatou’s Lemma ensures that E[Ŷ ] = 0 and therefore that Ŷ = 0 almost surely. Finally,

since Ŷ assumes only integer values, for almost every realization of (Ŷn)n∈N there exists N ∈ N with

Ŷn = 0 for all n ≥ N . ¤

It remains to prove the announced result.

Proof of Proposition 1.3. Almost surely, Proposition 3.3 gives a forest of finite trees Gi = (Ei, Vi). On
each of them, the restriction of the Schrödinger operator is essentially self-adjoint, as ℓ2(Gi) is finite
dimensional. Moreover, as

⋃

i∈N Vi = V and (3.3) holds true, the hypothesis of Lemma 2.1 are satisfied
and the result follows. ¤

3.5. The possible indices. We now prove our main result in the context of trees and improve it in
Section 4. This is a proof by contradiction.

We start with some notations about subgraphs. The connected component CG(x) of x ∈ V is the graph
CG(x) := (Ex, Vx) with Vx := {y ∈ V, there is an x-y-path} and Ex := E|Vx×Vx

. A graph G′ := (E′, V ′)
is called a subgraph of G, if V ′ ⊆ V and E′(x, y) ∈ {0, E(x, y)}, for all x, y ∈ V ′. The subgraph
G[V ′] := (E|V ′×V ′ , V ′) is called the induced graph of G by V ′ ⊆ V . Given a set S ⊆ V × V , we denote
Ssym := {(x, y), (y, x) | (x, y) ∈ S} and by Sc

sym its complement in V ×V . The graph G\S :=
(

E|Sc
sym

, V
)

is obtained by deleting the edges in Ssym from G.

Proof of Theorem 1.1. Suppose that G = (E, V ) is a locally finite tree with bounded weights. In view
of (1.3), it is enough to consider a discrete Schrödinger operator HG of the form AG + V for some
potential V : V → R. Suppose that HG has finite and positive deficiency index η(HG) > 0. Given a
subgraph G′ = (E′, V ′) of G, we denote by HG′ the Schrödinger operator given by AG′ + V|V ′ .

We construct inductively a sequence (vk)k∈N of points of V , so that vk ∼ vk+1 for all k ∈ N. Along the
way we also define a sequence of subgraphs (Gk)k∈N of G, such that Gk := (Ek, Vk) is a tree, satisfying
vk ∈ Vk and η(HGk

) ≥ η(HGk+1
) > 0. Start with G0 := G and some v0 ∈ V . For each k ∈ N we first
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remove the edges connected to vk and obtain G′
k := Gk \ ({vk} × NGk

(vk)). Using Lemma 2.1 and the
fact that Gk is a tree, we find

0 < η(HGk
) = η(HG′

k
) =

∑

w∈NGk
(vk)

η(HCG′
k
(w)).

Therefore there exists w ∈ NGk
(vk) with η(HCG′

k
(w)) > 0. Set vk+1 := w and Gk+1 := CG′

k
(w). As

announced the graph Gk+1 is a tree.
Since k 7→ η(HGk

) is decreasing, positive, and has integer values, there is K ∈ N so that η(HGk
) is

constant for all k ≥ K. Now consider G̃k := Gk[Vk \ Vk+1].

•____

• • •

G̃1

v1

•___________

• •

••

G̃2

v2

•___________

•

•

•

••

G̃3

v3

•___________

•

•

•

••

G̃4

v4

____

The dashed line at the bottom shows the constructed path (vk)k∈N. The graphs G̃k can extend infinitely,

as indicated with the dots. For all k ∈ N the graph Gk is the union of all G̃k′ with k′ ≥ k plus the dashed
bottom line starting at vk.

Again by Lemma 2.1, we infer

η(HG̃k
) = η(HGk

) − η(HGk+1
) = 0, for k ≥ K.

By one more application of Lemma 2.1, we obtain

0 < η(HGK
) =

∞
∑

k=K

η(HG̃k
) = 0.

This is a contradiction. ¤

4. Recursive graphs

In this section we generalize the previous approach to graphs which satisfy a certain recursive property.
We shall use the notation related to subgraphs, which were introduced in section 3.5. To simplify notation,
given a potential V : V → R and the Schrödinger operator HG := AG +V acting on G = (E, V ), we shall
write ηH(G) := η(HG). As above, if G′ is a subgraph of G obtained by removing edges, we denote by
HG′ the Schrödinger operator AG + V.

Definition 4.1. Let G = (E, V ) be a locally finite graph. Given M > 0 and V : V → R, we say that G
has the property R(M,V), if

• either ηH(G) = 0 or
• we can find a partition {B,Un,Wn | n ∈ N} of V such that

(P1) ηH(G[B]) = 0,

(P2) {Ũn, W̃n | n ∈ N} is pairwise disjoint, where Ũn := B ∩ NG(Un) and W̃n := B ∩ NG(Wn).
(P3) For m,n ∈ N, E(Un,Wm) = 0 and E(Un, Um) = 0, E(Wn,Wm) = 0 if m 6= n,
(P4) ∀x ∈ B : |NG(x) ∩ Un| ≤ M and ∀x ∈ Un : |NG(x) ∩ B| ≤ M for all n ∈ N,

(P5) ∀x ∈ W̃n : |NG(x) ∩ (B \ W̃n)| ≤ M and ∀x ∈ B̃ \ W̃n : |NG(x) ∩ B| ≤ M for all n ∈ N,

(P6) G[Un] and G[Wn ∪ W̃n] have the property R(M,V|Un
) and R

(

M,V|Wn∪W̃n

)

, respectively.

We explain in words, what the sets B, Un, and Wn are. The set of vertices B ⊆ V stands for the
base of the graph G. We recall that, by definition, G[B] is the restriction of the graph G to B, see
the Introduction. In the case of trees, for the k-th level of recursion we use B = {vk}. We allow
more complicated situations here: for instance, ηH(B) = 0 if B has bounded degree and weights, see

also Proposition 1.1. The graphs G[Un] and G[Wn ∪ W̃n] correspond to subgraphs that we want to
cut out and to study in the next recursive step. The condition (P4) ensures that each element of the
subgraph G[Un] is linked by at most M edges to the base. On the other hand, the graph G[Wn] could
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be linked to the base by a large number of edges, like in the previous case for trees. In this situation, we
shall not consider G[Wn] in the next recursive step but G[Wn ∪ W̃n], which contains a part of the base.

Notice that B \ ⋃

n∈N W̃n is empty in the previous setting of a tree. Note that condition (P5) makes

sure that each element of the subgraph G[Wn ∪ W̃n] is linked to the remaining part of the base with at

most M edges. Condition (P2) ensures that the subgraphs G[Un] and G[Wn ∪ W̃n] are not too close to
each other. Condition (P3) tells that there are no edges between the Un and Wn. This condition can be
relaxed with Lemma 2.1, by asking that each vertices is linked with at most M other ones.

Definition 4.1 is motivated by the fact that the recursive process splits the deficiency indices in a
conservative way.

Lemma 4.1. Suppose that G is a locally finite graph with bounded weights satisfying (P2) – (P5). Then,
using the notation of Definition 4.1,

(4.1) ηH(G) = ηH

(

G
[

B \
⋃

n∈N
W̃n

]

)

+
∑

n∈N

ηH
(

G[Un]
)

+ ηH
(

G[Wn ∪ W̃n]
)

.

Moreover, if G obeys (P1),

(4.2) ηH

(

G
[

B \
⋃

n∈N
W̃n

]

)

= 0.

Proof. Equation (4.1) is a direct consequence of Lemma 2.1. By the same argument

0 = ηH(B) = ηH

(

G
[

B \
⋃

n∈N
W̃n

]

)

+
∑

n∈N

ηH

(

G[W̃n]
)

.

Equation (4.2) follows, since deficiency indices are nonnegative. ¤

Finally, we prove:

Theorem 4.1. Suppose that G is a locally finite graph with bounded weights satisfying property R(M,V),
for a certain potential V. Then η(AG + V) = ηH(G) ∈ {0,∞}.
Proof. Let G be a graph fulfilling all assumptions and having finite and positive deficiency index. As in
the case of trees we construct a sequence of nested subgraphs (Gk)k∈N of G such that for all k ∈ N

• ηH(Gk) ≥ ηH(Gk+1) > 0,
• Gk satisfies property R(M).

We set G0 := G and construct Gk+1 inductively from Gk. We use now Lemma 4.1. Taking advantage

of (4.2) in (4.1), there is a subgraph of Gk, among the family {Gk[Un(k)], Gk[Wn(k) ∪ W̃n(k)] | k ∈ N}
with positive deficiency index. We call it Gk+1. By (4.1) we have ηH(Gk) ≥ ηH(Gk+1). Thanks to (P5),
Gk+1 satisfies also property R(M).

As in Theorem 1.1 we conclude that there is K ∈ N so that ηH(Gk) is constant for all k ≥ K. Now

consider G̃k := Gk[Vk \ Vk+1]. By Lemma 2.1, we infer ηH(G̃k) = ηH(Gk) − ηH(Gk+1) = 0, for k ≥ K.
By construction there are at most M connections per vertex between Gk and Gk+1. By a last application

of Lemma 2.1, we obtain 0 < ηH(GK) =
∑∞

k=K ηH(G̃k) = 0. This is the desired contradiction. ¤

We finish by mentioning a possible generalization.

Remark 4.1. In the previous result, we do not suppose more than having bounded weights. The main
examples we have in mind are simple graphs. However if one considers weighted graphs such that
inf

(

E(V × V ) \ {0}
)

= 0, using (2.6), one can relax the hypothesis on the uniformity in M , which
is implemented in Definition 4.1.

Appendix A. Stability of the deficiency indices of a symmetric operator

Given a closed and densely defined symmetric operator S, one has the obvious inclusion D(S) ⊂ D(S∗).
In fact, given z ∈ C \ R, one gets the topological direct sum

D(S∗) = D(S) ⊕ ker(S∗ + z) ⊕ ker(S∗ − z).(A.1)

One also knows that z 7→ dim
(

ker(S∗ − z)
)

is constant on the two connected components of C \R. Note
also that dim (D(S∗)/D(S)) = η−(S) + η+(S). We refer to [RS, Section X.1] for an introduction to the
subject.

For the convenience of the reader and as we were not able to locate a proof in the literature, we recall
the following useful and well-known fact. It is essentially due to Kato and Rellich.
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Proposition A.1. Given two closed and densely defined symmetric operators S, T acting on a complex
Hilbert space and such that D(S) ⊂ D(T ). Suppose there are a ∈ [0, 1) and b ≥ 0 such that

‖Tf‖ ≤ a‖Sf‖ + b‖f‖, for all f ∈ D(S).(A.2)

Then, the closure of (S+T )|D(S) is a symmetric operator that we denote by S+T . Moreover, one obtains
that D(S) = D(S + T ) and that η±(S) = η±(S + T ). In particular, S + T is self-adjoint if and only if S
is.

Note that if S is self-adjoint, i.e., η±(S) = 0, the above result is the standard Kato-Rellich theorem, e.g.,
[RS, Theorem X.12]. In the proofs of this article, we use this result in the case a = 0 and η−(S) = η+(S).
In this setting, one can avoid this general result and repeat a shorter argumentation, coming from [Gol].
We explain this alternative approach at the end of the proof of Lemma 2.1. Finally, we point out that all
the results about deficiency indices of this article are stable under the above class of perturbation, i.e.,
(A.2) with a ∈ [0, 1).

Proof. Let θ ∈ [−1, 1]. Note that Wθ|D(S) := (S + θT ) |D(S) is symmetric and closable. Its closure is
denoted by Wθ. Using (A.2), one sees that the graph norms of S and of Wθ are equivalent on D(S). Then,
we infer that Wθ is closed, symmetric and with domain D(Wθ) = D(S). In particular, D(S +T ) = D(S).

We concentrate on the deficiency indices. It is enough to consider the case a ∈ (0, 1) and b > 0. Notice
first that, for f ∈ D(S) and ε > 0, one obtains ‖Tf‖2 ≤ a2(1 + ε)‖Sf‖2 + b2(1 + 1/ε)‖f‖2 for all ε > 0.
Then, since S is symmetric, we derive that

‖Tf‖2 ≤ α2‖(S ± iγ)f‖2, for all f ∈ D(S)(A.3)

and where α2 = (1 + ε)a2 and γ =
√

b2/(εa2). Taking ε small enough, we reduce to the case α ∈ (0, 1)
and γ ≥ 1. Take now

θ1, θ2 ∈ [−1, 1], so that |θ1 − θ2| <
(1 − α)

α
.(A.4)

We now prove:

ker((Wθ1
)∗ ± iγ) ∩

(

ker((Wθ2
)∗ ± iγ)

)⊥
= ker((Wθ1

)∗ ± iγ) ∩ ran(Wθ2
∓ iγ) = {0}.(A.5)

Given H a closed symmetric and densely defined operator, by considering Im〈y, (H ± iγ)y〉, one sees that
‖(H ± iγ)y‖ ≥ γ‖y‖ for all y ∈ D(H) and that the range of (H ± iγ) is closed. Hence, the first equality
of (A.5) holds true.

Take x ∈ D
(

(Wθ1
)∗

)

\{0} and in the intersection in the l.h.s. of (A.5). We finish the proof for the minus
sign. The other case is done analogous. We infer that there is z ∈ D(S) \ {0}, such that (Wθ2

+ iγ)z = x.
Then,

0 = 〈((Wθ1
)∗ − iγ)x, z〉 = 〈x, (Wθ1

+ iγ)z〉 = ‖x‖2 + (θ2 − θ1)〈x, Tz〉.(A.6)

Now, with (A.3), we infer (1 − α)‖Tz‖ ≤ α‖(Wθ2
+ iγ)z‖. Using the latter with (A.4) and (A.6), we

derive:

‖x‖ ≤ |θ1 − θ2| · ‖Tz‖ < ‖(Wθ2
+ iγ)z‖ = ‖x‖,

which is a contradiction. This proves (A.5) and therefore dim ker(Wθ2

∗±iγ) ≥ dim ker((Wθ1
)∗±iγ), under

the hypothesis (A.4). One deduces easily that dim ker((Wθ)
∗ ± iγ) = dim ker(S∗ ± iγ), for all θ ∈ [−1, 1].

To conclude, we recall that, given a symmetric operator H, one has that z 7→ dim
(

ker(H∗ − z)
)

is
constant on the two connected components of C \ R. ¤

We now give a direct application to Jacobi matrices, which act on ℓ2(N). Given A, the closure of a
three-diagonal symmetric Jacobi matrix with an ∈ R on the diagonal and bn > 0 on the upper diagonal,
it is well known, e.g., [Ber, Page 504], that if

∑

n∈N 1/bn = ∞ and with no condition on the sequence
(an)n, then A∗ = A. We give a generalisation in Proposition 1.1 (2). With again no condition on the
diagonal elements, we prove now:

Proposition A.2. Let A be the closure of a (2N + 1)-diagonal (complex-)symmetric matrix acting by
Af(n) =

∑

k∈N ak,nf(k) for f : N → C with compact support and where ak,n ∈ C, for k, n ∈ N. If

lim inf
n→∞

cn < ∞, where cn := max
0≤l<k≤K

|an−1−l,n−l+k|,

for n ≥ K, then A = A∗.
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Proof. Let (cun
)n∈N be a bounded subsequence of (cn)n∈N and set Bn := 1[un,un+1−1] A1[un,un+1−1].

A =



























































Bn−1

aun−1,un−1

aun,un

Bn



























































Set B be the closure of ⊕nBn. Note that the deficiency indices of B are (0, 0), since Bn are finite
dimensional matrices. Then, remembering that supn∈N |cun

| < ∞, we see that (B − A)|Cc(N) extends to
a bounded operator. Therefore, Proposition A.1 entails that A is self-adjoint. ¤
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