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POSITIVE COMMUTATORS, FERMI GOLDEN RULE AND THE

SPECTRUM OF 0 TEMPERATURE PAULI-FIERZ

HAMILTONIANS.

SYLVAIN GOLÉNIA

Abstract. We perform the spectral analysis of a zero temperature Pauli-
Fierz system for small coupling constants. Under the hypothesis of Fermi
golden rule, we show that the embedded eigenvalues of the uncoupled system
disappear and establish a limiting absorption principle above this level of en-
ergy. We rely on a positive commutator approach introduced by Skibsted and
pursued by Georgescu-Gérard-Møller. We complete some results obtained so
far by Dereziński-Jaks̆ić on one side and by Bach-Fröhlich-Segal-Soffer on the
other side.

En hommage au 60ème anniversaire de Vladimir Georgescu.

1. Introduction

Pauli-Fierz operators are often used in quantum physics as generator of approxi-
mate dynamics of a (small) quantum system interacting with a free Bose gas. They
describe typically a non-relativistic atom interacting with a field of massless scalar
bosons. Pauli-Fierz operators appear also in solid state physics. They are used
to describe the interaction of phonons with a quantum system with finitely many
degrees of freedom. This paper is devoted to the justification of the second-order
perturbation theory for a large class of perturbation. For positive temperature sys-
tem, this property is related to the return to equilibrium, see for instance [DJ2]
and reference therein.

This question has been studied in many places, see for instance [BFS, BFSS, DJ,
FMS, FP] for zero temperature systems and [DJ, JP, M] for positive temperature.
We mention also [FGS, GGM, HSp, S] who studied certain spectral properties using
positive commutator techniques. Here, we focus on the zero temperature setting. In
[BFS], one uses some analytic deformation techniques. In [BFSS] and in [DJ], one
uses some kind of Mourre estimate approach. In the former, one enlarges the class
of perturbation studied in [BFS] and in the latter, one introduces another class.
These two classes do not fully overlap. This is due to the choice of the conjugate
operator. In this paper, we enlarge the class of perturbations used in [DJ] for the
question of the Virial theorem (one-commutator theory) and also for the limiting
absorption principal (two-commutator theory).

Now, we present the model. For the sake of simplicity and as in [DJ], we start
with a n-level atom. It is described by a self-adjoint matrix K acting on a finite
dimensional Hilbert space K . Let (ki)i=0,...,n be its eigenvalues, with ki < ki+1.
On the other hand, we have the Bosonic field Γs(h) with the 1-particle Hilbert space
h := L2(Rd, dk). The Hamiltonian is given by the second quantization dΓ(ω) of ω,
where ω(k) = |k|, see Section 2.1. This is a massless and zero temperature system.
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The free operator is given by H0 = K ⊗ 1Γ(ω) + 1K ⊗ dΓ(ω) on K ⊗ Γ(h). Its
spectrum is [k0,∞). It has no singularly continuous spectrum. Its point spectrum is
the same as K, with the same multiplicity. Let α ∈ B(K ,K ⊗h) be a form-factor
and φ(α) the field operator associated to it, see Section 2.2. Under the condition

(I0) (1 ⊗ ω−1/2)α ∈ B(K ,K ⊗ h),

we define the interacting Hamiltonian on K ⊗ Γ(h) by

Hλ := K ⊗ 1Γ(ω) + 1K ⊗ dΓ(ω) + λφ(α), where λ ∈ R.(1.1)

The operator is self-adjoint with domain K ⊗D
(
dΓ(ω)

)
.

We now focus on a selected eigenvalue ki0 , with i0 > 0. The aim of this paper
is to give hypotheses on the form factor α to ensure that Hλ has no eigenvalue in
a neighborhood of ki0 for λ small enough (and non-zero). First, we have to ensure
that the perturbation given by the field operator will really couple the system at
energy ki0 ; we have to avoid form factors like α(x) = 1⊗ b for all x ∈ K and some
b ∈ h, see Section 6. Here comes the second-order perturbation theory, namely the
hypothesis of Fermi golden rule for the couple (H0, α) at energy ki0 :

w− lim
ε→0+

Pφ(α)P Im(H0 − k + iε)−1Pφ(α)P > 0, on PH ,(1.2)

where P := Pki0
⊗ PΩ and P := 1 − P . At first sight, this is pretty implicit.

We make it explicit in Appendix A. This condition involves the form factor, the
eigenvalues of H0 lower than ki0 and its eigenfunctions. Therein, we also explain
why the ground state energy is tacitly excluded.

In this paper, we are establishing an extended Mourre estimate, in the spirit
of [GGM2, S]; this is an extended version of the positive commutator technique
initiated by E. Mourre, see [ABG, M] and [G2, GJe] for recent developments. Due
to the method, we make further hypotheses on the form-factor. To formulate them,
we shall take advantage of the polar coordinates and of the unitary map:

T :=

{
L2(Rd, dk) −→ L2(R+, dr) ⊗ L2(Sd−1, dθ) := h̃

u 7−→ Tu := (r, θ) 7→ r(d−1)/2u(rθ).
(1.3)

We identify h and h̃ through this transformation. We write ∂r for ∂r ⊗ 1. We first
give meaning to the commutator via:

(I1a) α ∈ B
(
K ,K ⊗ Ḣ 1(R+) ⊗ L2(Sd−1)

)
, 1 ⊗ ω−1/2∂rα ∈ B(K ,K ⊗ h).

Here, the dot means the completion of C∞
c (R+) under the norm given by the space.

We denote by ‖ ·‖2 the L2 norm. Recall the norm of H 1 is given by ‖ ·‖2 +‖∂r · ‖2.
We explain the method on a formal level. We start by choosing a conjugate

operator so as to obtain some positivity of the commutator. We choose A :=
1K ⊗ dΓ(i∂r). Note this operator is not self-adjoint and only maximal symmetric.
We set N := 1K ⊗ dΓ(Id), the number operator. Thanks to (I1a), one obtains

[Hλ, iA] = N + 1K ⊗ PΩ︸ ︷︷ ︸
≥1

+λφ(∂rα) − 1K ⊗ PΩ︸ ︷︷ ︸
Hλ-bounded

=: M + S.

Consider a compact interval J . Since dΓ(ω) is non-negative, we have:

EJ (H0) =
∑

0≤i≤sup(J )

Pki
⊗ EJ−ki

(
dΓ(ω)

)
.(1.4)
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We infer (1K ⊗PΩ)EJ (H0) = 0 if and only if J contains no eigenvalues of K. We
evaluate the commutator at an energy J which contains ki0 and no other ki. Thus,

M + EJ (H0)SEJ (H0) ≥ 1 +
(
− 1 +O(λ)

)
EJ (H0) ≥ O(λ)EJ (H0),(1.5)

since φ(i∂rα) is H0-bounded. We keep M outside the spectral measure as it is not
Hλ-bounded. Note we have no control on the sign of O(λ) so far. We have not yet
used the Fermi golden rule assumption. We follow an idea of [BFSS] and set

Bε := Im
((

(H0 − ki0 )
2 + ε2

)−1
Pφ(α)P

)

Observe that (1.2) implies there exists c > 0 such that

P [Hλ, iλBε]P =
λ2

ε
Pφ(α)P Im(H0 − ki0 + iε)−1 Pφ(α)P ≥ cλ2

ε
P,

holds true for ε small enough. Let Â := A+λBε and Ŝ := S+λ[Hλ, iBε]. We have

[Hλ, iÂ] = M + Ŝ. We go back to (1.5) and infer:

M + EJ (H0)ŜEJ (H0) ≥
(
cλ2/ε+O(λ)

)
EJ (H0) + error terms.(1.6)

By taking ε := ε(λ), one hopes to obtain the positivity of the constant in front of
EJ (H0), to control the errors terms and to replace the spectral measure by the one
of Hλ. Using the Feshbach method and with a more involved choice of conjugate
operator, we show in Section 6 that there are λ0, c

′, η > 0 so that

M + EJ (Hλ)ŜEJ (Hλ) ≥ c′|λ|1+ηEJ (Hλ), for all |λ| ≤ λ0,(1.7)

on the sense of forms on D(N1/2).
One would like to deduce there is no eigenvalue in J from (1.7). To apply a Virial

theorem, one has at least to check that the eigenvalues of Hλ are in the domain
of N1/2. One may proceed like in [M]. In this article, we follow [GGM, S] and

construct a sequence of approximated conjugate operators Ân such that [Hλ, iÂn] is

Hλ-bounded, converges to [Hλ, iÂ] and such that one may apply the Virial theorem
with An. To justify these steps, we make a new assumption:

(I1b) 1K ⊗ ω−aα ∈ B(K ,K ⊗ h), for some a > 1.

We now give our first result, based on the Virial theorem, see Proposition 4.11.

Theorem 1.1. Let I be an open interval containing ki0 and no other ki. Assume
the Fermi golden rule hypothesis (1.2) at energy ki0 . Suppose that (I0), (I1a) and
(I1b) are satisfied. Then, there is λ0 > 0 such that Hλ has no eigenvalue in I, for
all |λ| ∈ (0, λ0).

We now give more information on the resolvent Rλ(z) := (Hλ − z)−1 as the
imaginary part of z tends to 0. We show it extends to an operator in some weighted
spaces around the real axis. This is a standard result in the Mourre theory, when one
supposes some 2-commutators-like hypothesis, see [ABG]. Here, as the commutator
is not Hλ-bounded, one relies on an adapted theory. We use [GGM] which is a
refined version of [S]. We check the hypotheses (M1)–(M5) given in Appendix C
and deduce a limiting absorption principle, thanks to Theorem C.8. Using again
(1.3), we state our class of form factors:

(I2) α ∈ B
(
K ,K ⊗ Ḃ

1,1
2 (R+) ⊗ L2(Sd−1)

)
.
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Recall that the dot denotes the completion of C∞
c . One choice of norm for B

1,1
2 is:

‖f‖
B

1,1
2

(R+) = ‖f‖2 +

∫ 1

0

∥∥f(2t+ ·) − 2f(t+ ·) + f(·)
∥∥

2

dt

t2
.

We refer to [ABG, T] for Besov spaces and real interpolation. To express the

weights, consider b̃ the square root of the Dirichlet Laplacian on L2(R+, dr). Using

(1.3), we define b := 1K ⊗T−1b̃T in H . Set Ps := 1K ⊗ (dΓ(b)+1)−s(N +1)1/2.

Theorem 1.2. Let I be an open interval containing ki0 and no other ki. Assume
the Fermi golden rule hypothesis (1.2) at energy ki0 . Suppose that (I0), (I1a) and
(I2) (and not necessarily (I1b)), there is λ0 > 0 such that Hλ has no eigenvalue
in I, for all |λ| ∈ (0, λ0). Moreover, Hλ has no singularly continuous spectrum in
I. For each compact interval J included in I, and for all s ∈ (1/2, 1], the limits

P∗
sRλ(x± i0)Ps := lim

y→0+
P∗

sRλ(x± iy)Ps

exist in norm uniformly in x ∈ J . Moreover the maps:

J ∋ x 7→ P
∗
sRλ(x ± i0)Ps

are Hölder continuous of order s− 1/2 for the norm topology of B(H )

To our knowledge, the condition (I2) is new, even for the question far from the
thresholds. We believe it to be optimal for limiting absorption principle.

We now compare our result with the literature. In [BFSS], they use a different
conjugate operator, the second quantization of the generator of dilatation. With
this choice they have [H0, iA] = 1K ⊗ dΓ(ω). The commutator is Hλ-bounded.
They modify the conjugate operator in the same way but the choice of parameters
is more involved. The class of perturbations is thus different from ours.

In [DJ][Theorem 6.3], one shows the absence of embedded eigenvalues by proving
a limiting absorption principal with the weights 1K ⊗ (dΓ(b) + 1)−s, for s > 1/2,
without any contribution in N . They suppose essentially (I0) and that α ∈
B

(
K ,K ⊗ Ḣ s(R+) ⊗ L2(Sd−1)

)
, for s > 1. The class of perturbations is chosen

in relation with the weights. Their strategy is to take advantage the Fermi golden
rule at the level of the limiting absorption principle, with the help of the Feshbach
method. The drawback is that they are limited by the relation weights/class of
form-factors and they cannot give a Virial-type theorem. On the other hand, their
method allows to cover some positive temperature systems and we do not deal with
this question. Their method leads to fewer problems with domains questions. We
mention that they do not suppose the second condition of (I1a).

Therefore, concerning merely the disappearance of the eigenvalues, the conditions

(I1a) and (I1b) do not imply α to be better than Ḣ 1(R+), in the Sobolev scale.
Hence, Theorem 1.1 is a new result. We point out that the condition (I2) is weaker
than the one used in [DJ]. The weights obtained in the limiting absorption principle
are also better than the ones given in [DJ]. We mention that one could improve
them by using some Besov spaces, see [GGM]. To simplify the presentation, we do
not present them here. We believe they could hardly be reached by the method
exposed in [DJ] due to the interplay between weights and form-factors.

In [GGM2] and in [S], one cares about showing that the point spectrum is locally
finite, i.e. without clusters and of finite multiplicity. Here, they use a Virial theo-
rem. Between the eigenvalues, one shows a limiting absorption principle, and uses
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a hypothesis on the second commutator, something stronger than (I2), see Section
4.5. In our approach, we use the Virial theorem and the limiting absorption prin-
ciple in an independent way. In particular, if one is interested only in the limiting
absorption principle, one does not need to suppose the more restrictive condition
(I1b) but only (I0), (I1a) and (I2). This is due to the fact that we are showing
a strict Mourre estimate, i.e. without compact contribution.

We now give the plan of the paper. In Section 2, we recall some definitions and
properties of Pauli-Fierz models. In Section 3, we construct the conjugate operators.
In Section 4, we prove the regularity properties so that one may apply the Mourre
theory. The Virial theorem is discussed in Section 4.4. In Section 5, we establish
the extended Mourre estimate far from the thresholds for small coupling constants,
we explain in Remark 5.3 why the method should be improved to obtain the result
above a threshold. In Section 6, we settle the extended Mourre estimate above the
thresholds under the hypotheses of a Fermi golden rule. In Appendix A, we explain
how to check the Fermi golden rule and why this hypothesis is compatible with the
hypothesis (I0), (I1a), (I1b) and (I2). In Appendix B, we gather some properties
of C0-semigroups and in Appendix C we recall the properties of the C1 class in this
setting and the hypotheses so as to apply the extended Mourre theory.

Notation: Given a borelian set J , we denote by EJ (A) the spectral measure
associated to a self-adjoint operator A at energy J . Given Hilbert spaces H ,K ,
we denote by B(H ,K ) the set of bounded operator from H to K . We simply
write B(H ), when H = K . We denote by σ(H) the spectrum of H . We set
〈x〉 := (1 + x2)1/2. We denote by ‖ · ‖H and by 〈·, ·〉H the norm and the scalar
product of H , respectively. We omit the indices when no confusion arises. We
denote by w−lim and s−lim the weak and strong limit, respectively. A dot over
a Besov or a Sobolev space denotes the closure of the set C∞

c of smooth functions
with compact support, with respect to the norm of the space.

Acknowledgments: I express my gratitude to Jan Dereziński who encouraged
me in pursuing these ideas. I would also like to thank Volker Bach, Alain Joye,
Christian Gérard, Vladimir Georgescu, Wolfgang Spitzer, Claude-Alain Pillet and
Zied Ammari for some useful discussions. This work was partially supported by
the Postdoctoral Training Program HPRN-CT-2002-0277.

2. The Pauli-Fierz model

Pauli-Fierz operators are often used in quantum physics as generator of approxi-
mate dynamics of a (small) quantum system interacting with a free Bose gas. They
describe typically a non-relativistic atom interacting with a field of massless scalar
bosons. The quantum system is given by a (separable) complex Hilbert space K .
The Hamiltonian describing the system is denoted by a self-adjoint operator K,
which is bounded from below. We will suppose that K has some discrete spectrum.
One may consider purely discrete spectrum, like [GGM2], or not, like in [S]. To
do not mutter the presentation, we will take K = RanEI(K), where I contains a
finite number of eigenvalues and consider the restriction of K to this space. Hence,
we restrict the analysis to a self-adjoint matrix K acting in a Hilbert space K of
finite dimension. This corresponds to analyze n level atoms. Doing so, we avoid
some light problems of domains, which are already discussed in details in [GGM2, S]
and gain in clarity of presentation.
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2.1. The bosonic field. We refer to [BR, BSZ, RS] for a more thorough discussion
of these matters. The bosonic field is described by the Hilbert space Γ(h), where h
is a Hilbert space. We recall its construction. Set h0⊗ = C and hn⊗ = h⊗ · · · ⊗h.
Given a closed operator A, we define the closed operator An⊗ defined on hn⊗

by A0⊗ = 1 if n = 0 and by A ⊗ . . . ⊗ A otherwise. Let Sn be the group of
permutation of n elements. For each σ ∈ Sn, one defines the action on hn⊗ by
σ(fi1 ⊗ . . .⊗ fin

) = fσ−1(i1) ⊗ . . .⊗ fσ−1(in), where (fi) is a basis of h. The action

extends to hn⊗ by linearity to a unitary operator. The definition is independent of
the choice of the basis. On hn⊗, we set

Πn :=
1

n!

∑

σ∈Sn

σ and Γn(h) := Πn(hn⊗).(2.1)

Note that Πn is an orthogonal projection. We call Γn(h) the n-particle bosonic
space. The bosonic space is defined by

Γ(h) :=

∞⊕

n=0

Γn(h).

We denote by Ω the vacuum, the element (1, 0, 0, . . .) and by PΩ := Γ(h) → Γ0(h)
the projection associated to it. We define Γfin(h) the set of finite particle vectors,
i.e. Ψ = (Ψ1,Ψ2, . . .) such that Ψn = 0 for n big enough.

We now define the second quantized operators. We recall that a densely defined
operator A is closable if and only if its adjoint A∗ is densely defined. Given a
closable operator q in h. We define Γfin(q) acting from Γfin(D(q)) into Γfin(h) by

Γfin(q)|Πn(D(q)n⊗) := q ⊗ . . .⊗ q.

Since q is closable, q∗ is densely defined. Using that Γfin(q
∗) ⊂ Γfin(q)

∗, we see that
Γfin(q) is closable and we denote by Γ(q) its closure. Note that Γ(q) is bounded if
and only if ‖q‖ ≤ 1.

Let b be a closable operator on h. We define dΓfin(b) : Γfin

(
D(b)

)
−→ Γfin(h) by

dΓfin(b)|Πn(D(b)n⊗) :=

n∑

j=1

1 ⊗ . . .⊗ 1 ⊗ b︸︷︷︸
jth

⊗1 ⊗ . . .⊗ 1.

As above, dΓfin(b) is closable and dΓ(b) denotes also its closure. We link the objects.

Lemma 2.1. Let R
+ ∋ t 7→ wt ∈ B(h) be a C0-semigroup of contractions (resp. of

isometries), with generator a. Then R+ ∋ t 7→ Γ(wt) ∈ B
(
Γ(h)

)
is a C0-semigroup

of contractions (resp. of isometries) whose generator is dΓ(a).

Proof. It is easy to see that Wt := Γ(wt) is a C0-semigroup of contractions (resp.
of isometries). Let A be its generator. Immediately, one gets dΓfin(a) ⊂ A. Since
Γfin

(
D(a)

)
is dense in dΓ(h) and invariant under Wt, the Nelson lemma gives that

Γfin

(
D(a)

)
is dense in D(A) for the graph norm and also that dΓ(a) = A. �

2.2. The interacting system. Given a self-adjoint operator ω in h and a finite
dimensional Hilbert space K . One defines the free Hamiltonian H0 acting on the
Hilbert space H := K ⊗ Γ(h) by

H0 := K ⊗ 1Γ(h) + 1K ⊗ dΓ(ω).(2.2)

We recall also the definition of the number operator N := 1K ⊗ dΓ(Id).
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We now define the interaction. Let α be an element B(K ,K ⊗ h). This is a
form-factor. We define b(α) on H by b(α) := K ⊗ hn⊗ → K ⊗ h(n−1)⊗, where

b(α)(Ψ ⊗ φ1 ⊗ . . . φn) := α∗(Ψ ⊗ φ1) ⊗ φ2 ⊗ . . . φn,

for n ≥ 1 and by 0 otherwise. This operator is bounded and its norm is given
by ‖α‖B(K ,K⊗h). We define the annihilation operator on K ⊗ Γ(h) with domain

K ⊗ Γfin(h) by

a(α) := (N + 1)1/2b(α)
(
1 ⊗ Π),

where Π :=
∑

n Πn, see (2.1). As above, it is closable and its closure is denoted by

a(α). Its adjoint is the creation operator. It acts as a∗(α) = b∗(α)(N + 1)1/2 on
H . Note that b∗(α)(ψ ⊗ φ1 ⊗ . . .⊗ φn) = (αφ) ⊗ φ1 ⊗ . . .⊗ φn.

The (Segal) Field operator is defined by

φ(α) :=
1√
2

(
a(α) + a∗(α)

)
.

We consider its closure on K ⊗D(N1/2). We have the two elementary estimates:

‖(N + 1)−1/2a(∗)(α)‖ ≤ ‖α‖, ‖(N + 1)−1/2φ(α)‖ ≤
√

2‖α‖.(2.3)

An assertion containing (∗) holds with and without ∗.
We give the following Nτ -estimate and refer to [DJ, Proposition 4.1] for a proof

of i). The point ii) is a direct consequence of the Kato-Rellich Lemma. This kind
of estimates comes back to [GJ]. See also [BFS]. We refer to [G1][Appendix A] and
[GGM2][Proposition 3.7] for unbounded K.

Proposition 2.2. Let ω be a non-negative, injective, self-adjoint operator on h.
Let β ∈ B

(
K ,K ⊗D(ω−1/2)

)
.

i) Then φ(β) ∈ B
(
K ⊗D(dΓ(ω)1/2),H

)
and for any Φ ∈ D(dΓ(ω)1/2),

|φ(β)Φ‖2 ≤‖β‖B(K ,K⊗h) ‖Φ‖2

+ 2‖ω−1/2β‖B(K ,K⊗h) 〈Φ, 1K ⊗ dΓ(ω)Φ〉.(2.4)

ii) The field operator φ(α) is H0-operator bounded with relative bound ε, for all
ε > 0. Hence, Hλ := H0 + λφ(α), for λ ∈ R, defines a self-adjoint operator with
domain D(Hλ) = K ⊗ dΓ(ω) and is essentially self-adjoint on any core of H0.

2.3. The zero-temperature Pauli-Fierz Model. We now precise our model to
the zero-temperature physical setting. The one particle space is given by h :=
L2(Rd, dk), where k is the boson momentum. The one particle kinetic energy is
the operator of multiplication by ω(k) := |k|. Consider a self-adjoint matrix K on
a finite dimensional Hilbert space K and denote by (ki)i=0,...,n, with ki < ki+1 its
eigenvalues. We denote by Pki

the projection onto the i-th eigenspace.
The spectrum of dΓ(ω) in Γ(h) is [0,∞) and due the vacuum part, 0 is the only

eigenvalue. Its multiplicity is one. The spectrum of H0 given by (2.2) is [k0,∞).
The eigenvalues are given by (ki)i=0,...,n and have the same multiplicity as those
of K . The singularly continuous component of the spectrum is empty. Here,
(ki)i=0,...,n play also the rôle of thresholds.

We consider a form-factor α satisfying hypothesis (I0). By applying Proposition
2.2, the operator Hλ, given by (1.1), is self-adjoint and D(Hλ) = K ⊗D

(
dΓ(ω)

)
.

Since we study form factors in B(K ,K ⊗h), we forbid some eventual singular-
ities of the form-factor from the very beginning. However, if the atomic part has a
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particular shape, one may use some gauge transformations and gains in singularity,
see for instance [GGM2][Section 2.4] and [DJ][Section 1.6]. Nevertheless, it is an
open question if there exists some gauge transformation that allows one to cover
the physical form factor studied in [BFS, BFSS], from our conditions. Conversely,
the classes of perturbations studied in the latter does not fully cover ours.

3. The conjugate operators

In this paper, we analyze the spectrum of the Pauli-Fierz Hamiltonian Hλ de-
scribed in Section 2.3 using some commutator techniques. We study the behavior
of the embedded eigenvalues of Hλ under small coupling constants and establish
some refined spectral properties. To do so, we establish a version of the Mourre
estimate, see Appendix C.2. Hence, we start by constructing the conjugate opera-
tor. We follow similar ideas as in [GGM2, HSp, S]. Later, we modify it by a finite
rank perturbation, in the spirit of [BFSS]. Unlike in the standard Mourre theory,
the conjugate operator is not self-adjoint and only maximal-symmetric. We refer
to Appendix C.1 for discussions about 1-commutators properties in this setting.
We point out that one may avoid to work with maximal-symmetric operator by
symmetrizing the space and thus gluing non-physical free bosons, see [DJ][Section
5.2]. This trick leads to some problems of domains with our method and would be
treated elsewhere.

We point out that the real drawback of this choice of conjugate operator comes
from the fact that the commutator is not Hλ bounded, like in the standard Mourre
theory and [BFS, BFSS, FGS, FP]. Some difficulties appear to apply the Virial
theorem. To overcome them, we follow ideas of [S, GGM2] and construct a series
of approximate conjugate operators. One may also proceed like in [M].

3.1. The semigroup on the 1-particle space. Fix χ ∈ C∞
c

(
R

+; [0, 1]
)

decreasing

such that χ(x) = 1 for x ≤ 1 and 0 for x ≥ 2. Set χ̃ := 1 − χ. We consider the
following vector fields on R+:

mn(t) :=

{
χ̃ (nt) , for n ∈ N,

1, for n = ∞,
and sn(t) =

mn(t)

t
.(3.1)

Note that mn converges increasingly to m∞, almost everywhere, as n goes to infin-
ity. As in [S] and in [GGM2], the rôle of m∞ would be to ensure the positivity of
the commutator and the one of mn would be to guarantee of the Virial theorem.

We define the associated vector fields in Rd as follows:
−→sn(k) := sn

(
|k|

)
k, for k ∈ R

d and n ∈ N
∗ ∪ {∞}.(3.2)

We shall construct the C0-semigroup of isometries associated to the vector fields −→sn

on h = L2(Rd) and identify the generators. We define

an := −1

2

(−→sn ·Dk +Dk · −→sn

)
(3.3)

on C∞
c (Rd \ {0}) for all n ∈ N∗ ∪ {∞} and where Dk = i∇. These operators are

closable as the domains of their adjoints are dense. In the sequel, we denote by the
same symbol their closure.

We work in polar coordinates. We identify h and h̃ through the transformation

(1.3). Given an operator B in h, we denote by B̃ the corresponding operator acting

in the h̃ and given by B̃ := TBT−1. We have:
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Proposition 3.1. For n finite, an is essentially self-adjoint on C∞
c (Rd \ {0}) and

a∞ is maximal symmetric with deficiency indices (N, 0). Here, N = ∞ for d ≥ 2
and N = 2 for d = 1. The operator an generates a C0-semigroup of isometries
denoted by {wn,t}t∈R+. In polar coordinates, the domains are given by

D(ãn) ⊃ D(ã∞) = Ḣ 1(R+) ⊗ L2(Sd−1), for all n ∈ N
∗,

D(ã∗∞) =H 1(R+) ⊗ L2(Sd−1),

where Ḣ 1(R+) is the closure of C∞
c (R+) under the norm ‖ · ‖ + ‖∂r · ‖ and where

H 1(R+) is the Sobolev space of first order.

See Section B for an overview on C0-semigroups. For n finite, the C0-semigroup
extends to a C0-group since an is self-adjoint.

Proof. When n is finite, it is well known that an is essentially self-adjoint on
C∞

c (Rd) and follows by studying C0-group associated to the flow defined by the
smooth vector field −→sn. The density follows by the Nelson lemma. See for instance
[ABG][Proposition 4.2.3]. Hence, for n finite, it remains to show that C∞

c (Rd \ {0})
is a core for an.

Straightforwardly, for n ∈ N∗ ∪ {∞}, one gets

ãn := TanT
−1 = i

(
mn(·)∂r +

1

2
(mn)′(·)

)
⊗ 1, where mn(r) := rsn(r).(3.4)

We extend mn on R by setting mn(−r) := mn(r) for r > 0 and prolongate
it by continuity in 0. Let φn,t be the flow generated by the smooth vector field
mn on R. In other words, φn,t := φn(t, ·) is the unique solution of (∂tφn)(t, r) =
mn

(
φn(t, r)

)
, where φn(0, r) = r. Since mn is globally Lipschitz, φn,t exists for all

time t. Moreover, φn,t is a smooth diffeomorphism of R with inverse φn,−t for all

t ∈ R. Let φ̃n,t be the restriction of φn,t from R+∗ to R+∗. Let Ωn,t be the domain
of this restriction, i.e. the set of r > 0 such that φn,t(r) > 0. One has Ωn,t = R+∗

for t ≥ 0 as mn(r) is positive. For the same reason, t 7→ Ωn,t is increasing. Note

also that we have Ωn,−t = φn,t(R
+∗) for t ≥ 0. For u ∈ h̃, we set:

(w̃n,tu)(r, θ) := 1Ωn,−t
(r)

√
φ′n,−t(r)u(φn,−t(r), θ), for t ≥ 0.(3.5)

A change of variable gives that w̃n,t is an isometry of L2(R+) with range L2(Ωn,−t)
for all t ≥ 0. Since φn,t is a smooth flow, {w̃n,t}t≥0 is a C0-semigroup of isometries.
The adjoint C0-semigroup is given by

(w̃∗
n,tu)(r, θ) := 1R+∗(r)

√
φ′n,t(r)u(φn,t(r), θ), for t ≥ 0.(3.6)

This is not a semigroup of isometries when n = ∞.

We compute the generator of the semigroup {w̃n,t}t≥0. Take u ∈ C∞
c

(
h̃
)
. We

have w̃n,tu ∈ C∞
c (Ωn,−t × Sd−1). Let r ∈ Ωn,−t, we get

−
(
d

dt
w̃n,tu

)
(r, θ) =

(
w̃n,t

(
mn(·)∂r +

1

2
(mn)′(·)

)
u

)
(r, θ).

Denoting by the same symbol the closure of ãn on C∞
c (R+∗ × Sd−1), we obtain

−i d
dt
w̃n,tu = w̃n,tãnu.
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The closed operator is a priori only a restriction of the generator of the semigroup
(in the sense of the inclusion of graph of operators). Now, since w̃n,t stabilizes

C∞
c (h̃) for all t ≥ 0, the Nelson lemma gives that this space is a core for generator

of the C0-semigroup {w̃n,t}t≥0. Since this one is an extension of ãn, we have shown
that ãn is really the generator. One may denote formally w̃n,t = eitãn . The domain

of ãn contains Ḣ 1(R+) ⊗ L2(Sd−1). Easily, this is an equality for n = ∞.
Considering the spectrum of an, we derive the deficiency indices of the closure

of an on C∞
c (Rd \ {0}) are of the form (N, 0). For n finite these indices are equal,

we infer the essential self-adjointness of an on C∞
c (Rd \ {0}).

At this point, one may feel the real difference between the case n finite and
infinite. On one hand m∞ ≥ 1 and on the other hand, for finite n, mn(r) tends to
0 as r tends to 0. The domain of the adjoint of ã∞ would be different. Indeed,

(
ã∗∞u

)
(r, θ) = i

(
m∞(r)(∂ru)(r, θ) +

1

2
(m∞)′(r)u(r, θ)

)
,(3.7)

where u ∈ D(ã∗∞) = H 1(R+) ⊗ L2(Sd−1). Moreover, when n = ∞, the deficiency
indices are then (∞, 0), as the dimension of L2(Sd−1) is infinite. �

3.2. The C0-semigroup on the Fock space. Thanks to Proposition 3.1 and
Lemma 2.1, we define the C0-semigroups on the whole Hilbert space. We set:

Wn,t := 1K ⊗ Γ(wn,t) and W ∗
n,t = 1K ⊗ Γ(w∗

t ), for t ≥ 0.(3.8)

Clearly, {Wn,t}t≥0 is a C0-semigroup of isometries. Let A∞ be its generator. In
the same way, for n finite, we set

An := 1K ⊗ dΓ(an).(3.9)

This is the generator of the C0-group 1K ⊗Γ(eitan) by Lemma 2.1. Recall the rôle
of the An is to ensure a Virial theorem, see Proposition 4.11.

In Section 5, we see that the operator A∞ alone is not enough to deal with
threshold energy as the system could be uncoupled. One needs to take in account
the Fermi golden rule. One way is to follow [DJ] and to take advantage of it in
the limiting absorption principle. Another way is to modify the conjugate operator
with a finite rank perturbation so as to obtain more positivity above the thresholds,
by letting appearing the Fermi golden rule in the commutator, see Section 6. This
idea comes from [BFSS]. We follow it.

Choose ki0 an eigenvalue of K and assume that (6.1) holds true at energy ki0

for the couple (H0, α). Let P be the projector Pki0
⊗ PΩ. For ε < ε0, we define

Ân := An + λθBε, for n ∈ N
∗ ∪ {∞},

where Bε := Im(Rε
2
φ(α)P ), Rε :=

(
(H0 − ki0 )

2 + ε2
)−1/2

and Rε := PRε. Note
that the conjugate operator depends on the two parameters λ ∈ R from the coupling
constant, ε > 0 from the Fermi golden rule hypothesis and on an extra technical
θ > 0. For the sake of clarity, we do not write these extra dependences.

Using Proposition B.5 and the fact that Bε is bounded, one gets Â∞ is the
generator of a C0-semigroup. A bit more is true.

Lemma 3.2. The operator Â∞ is maximal symmetric on D(A∞) and is the genera-

tor of C0-semigroup of isometries, denoted by {Ŵn,t}t≥0. For n finite, the operator

Ân is self-adjoint on the domain of D(An).
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Proof. The second point is obvious. We concentrate on the first one. By Proposition
3.1, A∞ is maximal symmetric with deficiency indices (N, 0) for some N 6= 0. Since
Bε is bounded, there is c < 0 such that ‖Bε(A∞ − z)−1‖ < 1, for all z ∈ C where
Im(z) ≤ c. Since (I + Bε(A∞ − z)−1)(A∞ − z) = A∞ + Bε − z on the domain of

A∞, we get the spectrum of Â∞ is contained in an upper half plane R + i[c,∞).

Now, since Bε is symmetric, so is Â∞. If the indices of Â∞ would be both non-zero
then its spectrum would be C. Therefore, the deficiency indices of Â∞ are (N ′, 0)
for some non-negative N ′. Note that N ′ 6= 0 by the Kato-Rellich theorem applied
on Â∞, since Bε is bounded. Hence, Â∞ is maximal symmetric on D(A∞) and its
spectrum is R + i[0,∞). It is automatically a C0-semigroup of isometries. �

4. Smoothness with respect to the C0-semigroup

In Section 4.1, we recall a general result. In Section 4.2, we give some 1-
commutator properties for An. We check the hypothesis (M1)–(M4) of Appendix
C.2. We identify the spaces and operators appearing therein in Lemma 4.3. In
Section 4.3, we extend these properties to Ân, using Proposition B.5 and Lemma
4.5. The Virial theorem is discussed in Section 4.4. At last, second commutator
assumptions and the hypothesis (M5) are discussed in Section 4.5.

4.1. A general result. In order to check the C1 properties, the b-stability, see
Definition B.3, and to be able to deduce hypothesis (M1)-(M5) of Appendix C.2,
we recall [GGM2][Proposition 4.10]. We formulate it for bounded K. Set first a
C0-semigroup of isometries R+ ∋ t → vt ∈ B(h) with generator a. By Lemma 2.1,
Vt := 1K ⊗ Γ(vt) is a C0-semigroup of isometries with generator A = 1K ⊗ dΓ(a).
Let b ≥ 0 be a self-adjoint operator on h, and K as in (2.2). Set

B := K ⊗ 1Γ(h) + 1K ⊗ dΓ(b), GB := D(B1/2) = 1K ⊗D
(
dΓ(b)1/2

)
.

Proposition 4.1. Let ω and b ≥ 0 acting in h. Then,
i) The space GB is b-stable under {Vt}t∈R+ (resp. {V ∗

t }t∈R+), if

v∗t bvt ≤ Ctb, (resp. vtbv
∗
t ≤ Ctb) with sup

0<t<1
Ct <∞.(4.1)

ii) Assuming (4.1) and that there is a constant C such that for all ui ∈ D(b1/2)

ω ≤ Cb, |〈u2, (ωvt − vtω)u1〉| ≤ Ct‖b1/2u1‖ · ‖b1/2u2‖, for 0 < t < 1.(4.2)

Then H0 ∈ C1(A;GB,G
∗
B). Besides, in the sense of forms on GB, one has

[H0, iA]◦ = 1K ⊗ dΓ([ω, ia]◦).

iii) Assume (4.1) and that α is a form-factor satisfying

α ∈ B
(
K ,K ⊗D(a)

)
, aα ∈ B

(
K ,K ⊗D(b−1/2)

)
.(4.3)

Then φ(α) ∈ C1(A;GB,G
∗
B) and in the sense of forms on GB, we get

[φ(α), iA]◦ = −φ(iaα).

Here [·, ·]◦ denotes the closure of the form defined by [·, ·], H0 is defined in (2.2)
and aα is a short for (1 ⊗ a)α. If (I0) and (4.1)–(4.3) hold true, then Hλ, defined
in (1.1), is self-adjoint with the same domain as H0 and lies in C1(A;GB,G

∗
B).
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4.2. Estimation on the first commutator. In this section, we compute the first
commutator with respect to the conjugate operator A∞ and check the hypotheses
(M1)-(M4) discussed in Appendix C.2. We follow [GGM] and use only the hy-
potheses (I0) and (I1a). We start with a direct consequence of Proposition 3.1.

Lemma 4.2. We assume (I0) and (I1a). Then, α ∈ B
(
K ,K ⊗ D(an)

)
and

anα ∈ B
(
K ,K ⊗D(ω−1/2)

)
, for all n ∈ N

∗ ∪ {∞}.
We formally decompose the commutator [Hλ, iAn] into two parts. We set:

{
Mn := 1K ⊗ dΓ(mn) + 1 ⊗ PΩ,

Sn := −φ(ianα) − 1K ⊗ PΩ,
for all n ∈ N

∗ ∪ {∞}.(4.4)

Here, we add 1K ⊗ PΩ to obtain M∞ ≥ 1. We stress that, for finite n, Mn

has a different domain as M∞. Indeed, D(Mn) ⊂ D(H0) when n is finite and
D(M∞) = D(N), since M∞ = N + 1K ⊗ PΩ.

We start with the hypothesis (M1). We need to precise the definition the com-
mutator H ′

λ given formally by [Hλ, iA∞]. Note that it does not extend to a Hλ-
bounded operator, as in the standard Mourre theory. We follow [GGM] and define

B∞ := K ⊗ 1Γ(h) + 1K ⊗ dΓ
(
(k2 + 1)1/2

)
.(4.5)

Let D∞ := D(B∞) and G∞ := D(B
1/2
∞ ). We would drop the subscripts after this

lemma as no more confusion could arise with Appendix C.2.

Lemma 4.3. Assume (I0) and (I1a). Then:
i) Hλ ∈ C1(M∞), D(Hλ) ∩D(M∞) is a core for M∞, S∞ is symmetric and lies

in B(D(H0),H ).
ii) Let H ′

λ be the closure of M∞ + S∞ defined on D(Hλ) ∩ D(M∞). Therefore,
Hλ and H ′

λ satisfy (M1).
iii) D∞ = D(H ′

λ) ∩D(Hλ) = D(M∞) ∩D(Hλ) and G∞ is the same as in (C.2).

Proof. We start with i). Take the C0-group generated by m∞ acting by (vtf)(x) =
eitf(x) for f ∈ h. We use Proposition 4.1, with a = m∞ and b = ω. Conditions
(4.1) and (4.2) are trivially satisfied. Condition (4.3) follows from Lemma 4.2.

Therefore, Hλ ∈ C1
(
M∞;D

(
|Hλ|1/2

)
,D

(
|Hλ|1/2

)∗)
and thus [ABG][Lemma 7.5.3]

gives Hλ ∈ C1(M∞). Therefore, Proposition 2.2 gives that D(Hλ) ∩ D(M∞) =
D(N) ∩ 1K ⊗D

(
dΓ(ω)

)
= D(B∞). This is an obvious core for M∞.

Now, Lemma C.7 implies point ii) and also gives the statements on D = D∞ in
iii). By Proposition 2.2 and (I1a), we have that S∞ is H0-form bounded. Then,

the norm ‖ ·‖G , given by (C.2), is equivalent to
√
〈·, (M∞ +H0 + 1) ·〉 on D . Since

D is a form core for B∞, we infer G = G∞. �

From now on, we drop the subscripts for D and G . We clarify the C1 property.
The hypothesis (M2) is checked in Theorem 5.1.

Lemma 4.4. Assume (I0) and (I1a). Then,
i) {W∞,t}t≥0 b-stabilizes G and G ∗.
ii) Hλ ∈ C1(A∞;G ,G ∗) and [Hλ, iA] = H ′

λ on D .
Therefore, hypotheses (M3) and (M4) are fulfilled.

Proof. We apply Proposition 4.1. As in the proof of Proposition 3.1, we work
in polar coordinate through the isomorphism (1.3). In this representation, the
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operator b acts by b̃ = (r2 + 1)1/2 ⊗ 1 in h̃. Using (3.5) and (3.6), we obtain

w̃∗
∞,tb̃w̃∞,t = b

(
φ∞,t(·)

)
and w̃∞,tb̃w̃

∗
∞,t = 1R+

(
φ∞,−t(·)

)
b
(
φ∞,−t(·)

)
.

Therein, the flow φ∞,t was extended in R. We have,

|b
(
φ∞,t(r)

)
− b(r)| ≤ ‖∇b‖∞|φ∞,t(r) − r| ≤ ‖∇b‖∞|t|, for 0 ≤ |t| ≤ 1.(4.6)

We infer 1 ≤ b
(
φ∞,t(r)

)
≤ ‖∇b‖∞

(
1+ |t|

)
b(r), for 0 ≤ |t| ≤ 1. Hence, the condition

(4.1) is satisfied. The C0-semigroup {W∞,t}t∈R+ and {W ∗
∞,t}t∈R+ b-stabilizes G .

We prove the second point with the help of Proposition 4.1 ii) and iii). First,
ω ≤ b. Now, ωw∞,t − w∞,tω =

(
ω − ω

(
φ∞,−t(·)

))
wt. By (4.6), we obtain that

|φ∞,t(r)− r| ≤ C|t|b(r) and hence |ω−ω
(
φ∞,−t(·)

)
| ≤ C|t|b, for all t ∈ [0, 1]. Since

{ωt}t∈R+ b-stabilizes D(b1/2), we get (4.2). Now by Lemma 4.2, we check (4.3). We
obtain Hλ ∈ C1(A∞;G ,G ∗). �

4.3. Estimation on the first perturbed commutator. We now add the fi-
nite rank perturbation Bε to the conjugate operator. We consider the conjugate
operator Ân, given by (6.6). We denote with a hat the perturbed operators. Set

Ŝn := Sn + [Hλ, iλθBε], for all n ∈ N
∗ ∪ {∞}.(4.7)

Note that the operator Mn, given in (4.4), is unaffected by Bε.
Although Bε is a finite rank perturbation, one needs to be careful, especially in

the 2-commutators properties. We give the key-lemma which allows us to transfer
safely properties of An to Ân. We point out that Lemma 6.7 shows that [Hλ, Bε]
is also a finite rank operator in H . Recall that G = G∞ is given in (4.5).

Lemma 4.5. Assume (I0). We have:
i) Bε is a finite rank self-adjoint operator.
ii) Bε ∈ B(G ).
iii) Assume also (I1a), then Bε is belonging to C1(A∞;G ,G ).

Proof. Since P is of finite rank and Bε is symmetric, we need only to show that
Bε is bounded. (I0) gives that Pφ(α)P = PαP belongs to B(H ,K ⊗D(ω−1/2)).
Now, recall that εR2

ε = Im(H0 − k + iε)−1 and that 1 ⊗ ω1/2(H0 − k ± iε)−1 is
bounded by functional calculus in K ⊗ h. This concludes i).

For point ii), note that Bε ∈ B(G ) is equivalent to Bε ∈ B
(
D(|H0|1/2)

)
, since

PαP is with image in the 1-particle space. Hence, the assertion follows by noticing
that 1 ⊗ ω1/2(1 + ω)1/2(H0 − k ± iε)−1 is bounded in K ⊗ h.

As in ii), it is enough to show that T := Pφ(α)P (H0 − z)−1 and its adjoint
are in C1

(
A∞;D(|H0|1/2),D(|H0|1/2)

)
, where z ∈ C \ R. We treat T . Note that

H0|K⊗h ∈ C1(A∞). Using (1.3), we have:

[T, iA∞] = P (1 ⊗ ∂r)αP (H0 − z)−1 − PαP (H0 − z)−2.

Like in ii), the second term is easily bounded in D(|H0|1/2). The boundedness of
the first one is ensured by the second part of (I1a). �

As an immediate corollary, we infer from Lemma 4.3 the following.

Lemma 4.6. Assume (I0) and (I1a). Then:

i) Hλ ∈ C1(M∞), D(Hλ) ∩D(M∞) is a core for M∞, Ŝ∞ is symmetric and lies
in B(D(H0),H ).
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ii) Let Ĥ ′
λ be the closure of M∞ + Ŝ∞ defined on D(Hλ) ∩ D(M∞). Therefore,

Hλ and Ĥ ′
λ satisfy (M1).

iii) D = D(Ĥ ′
λ) ∩ D(Hλ) = D(M∞) ∩D(Hλ) and G is the same as in (C.2).

We now strengthen Lemma 4.4 and check (M3) and (M4). The hypothesis
(M2) is checked in Theorem 6.2.

Lemma 4.7. Assume (I0) and (I1a). Then,

i) {Ŵ∞,t}t≥0 b-stabilizes G and G ∗.

ii) C1(A∞,G ,G
∗) = C1(Â∞,G ,G

∗).

iii) Hλ ∈ C1(Â∞;G ,G ∗) and [Hλ, iÂ] = Ĥ ′
λ on D .

Therefore, hypotheses (M3) and (M4) are fulfilled.

Proof. We consider {Ŵ∞,t}t∈R. The argument is the same for the adjoint. Let A′
∞

be the generator of {W∞,t}t∈R in G . As in (6.6), set Â∞

′
:= A′

∞+λθBε. Thanks to

Proposition B.5, since Bε ∈ B(G ), Â∞

′
is the generator of a C0-semigroup in G . We

name it {Ŵ ′
∞,t}t∈R. By duality and interpolation, it extends to a C0-semigroup in

H . Comparing the generators, we obtain that {Ŵ ′
∞,t}t∈R is really the restriction

of {Ŵ∞,t}t∈R and it gives point i). By Lemma 4.4, it is enough to show ii) to get
iii). Proposition C.6 and the boundedness of Bε in G and G ∗ give the former. �

4.4. The Virial theorem. In order to obtain a Virial theorem, we proceed like
in [GGM2, S] by approximating the conjugate operator. Indeed, since Ĥ ′

λ is not
Hλ-bounded, one can not apply a priori H ′

λ to an eigenfunction of Hλ even in the
form sense. In this section, we use the hypotheses (I0) and (I1). Here, (I1) means
(I1a) and (I1b). In a zero temperature setting, this method is less demanding in
hypotheses than the one used in [M], see for instance [M][Proposition 6.1]. Note
that we do not deal with the positive temperature Hamiltonians treated therein.

Lemma 4.8. Assume (I0) and (I1). Then φ(ianα) tends to φ(ia∞α), as quadratic
forms on D(|Hλ|1/2), as n goes to infinity.

Proof. Thanks to Proposition 2.2, it is enough to show that ‖(an−a∞)α‖B(K ,K⊗h)

and that ‖ω−1/2(an − a∞)α‖B(K ,K⊗h) tend to 0 as n goes to infinity.
We start with the first point. Like in the proof of Proposition 3.1, we work

in polar coordinates. We focus on the expression of ãn obtained in (3.4). We

have α ∈ B(K ,K ⊗ Ḣ 1 ⊗ L2). Moreover, since mn(r) ≤ m∞(r) = 1 and mn

converges simply to 1 almost everywhere, by the Lebesgue dominated convergence
theorem, we obtain ‖(mn −m∞)∂α‖B(K ,K⊗h) tends to 0. We treat the term in(
m′

n(r)−m′
∞(r)

)
α = m′

n(r)α = m′
n(r)rar−aα. As a > 1/2, dominated convergence

proves it tends to 0 in B(K ,K ⊗ h). The proof of the second point is the same
but use the fact that r−aα ∈ B(K ,K ⊗h) for the term in m′

n, for some a > 1. �

We point out that if one knows that ω−1α ∈ B(K ,K ⊗ C0(R
+) ⊗ L2(Sd−1)),

one may relax (I1b) and take a = 1. Here C0(R
+) denotes the continuous functions

vanishing in 0 and in +∞.

Lemma 4.9. Assume n finite, (I0) and (I1a). Then, {Ŵn,t}t∈R b-stabilizes the
form domain of Hλ.

Proof. First we apply Proposition 4.1 i) with vt = wn,t and b = w. As we have a
C0-group, by taking t negative we obtain the result for the adjoint. As in the proof
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of Proposition 3.1, we denote by φn,t : Rd → Rd the flow generated by the smooth
vector field −→sn. Since mn(0) = 0, we have

|φn,t(k) − k| = |φn,t(k) − φn,0(k)| ≤
∫ |t|

0

|mn(φn,s(k)) −mn(0)| ds

≤ ‖∇mn‖∞
∫ |t|

0

|φn,s(k)| ds, for all t ∈ R.(4.8)

By the Gronwall lemma, we infer there is C such that |φn,t(k)| ≤ C|k|, for all
t ∈ [1, 1]. Plugging back into (4.8), we obtain |φn,t(k)− k| ≤ C|tk|, for all t ∈ [1, 1].
Now using (3.5) and (3.6), we infer e−itanweitan = w

(
φn,t(·)

)
. Since mn is globally

Lipschitz, there is C′ such that

|w(φn,t(k)) − w(k)| ≤ C′|t|w(k), for all t ∈ [1, 1].(4.9)

Hence, we satisfy the hypothesis (4.1) and D(|Hλ|1/2) is b-stable under {Wn,t}t∈R.

We now take care about {Ŵn,t}t∈R. Let A′
n be the generator of {Wn,t}t∈R in

D(|Hλ|1/2). As in (6.6), set Ân

′
:= A′

n +λθBε. By Lemma 4.5 ii) and the fact that
Bε is with values in the 0 and 1 particles space, we get Bε bounded in D(|Hλ|1/2).

Thanks to Proposition B.5, Ân

′
is the generator of a C0-group in D(|Hλ|1/2). We

name it {Ŵ ′
n,t}t∈R. By duality and interpolation, it extends to a C0-group in H .

Comparing the generators, we obtain that {Ŵ ′
n,t}t∈R is really the restriction of

{Ŵn,t}t∈R and this gives the result. �

Lemma 4.10. Assume n finite, (I0) and (I1a). Then Hλ ∈ C1(Ân). Moreover:
[
Hλ, iÂn

]
= Mn + Ŝn,(4.10)

holds true in the sense of forms on D(|Hλ|1/2).

Proof. Using again (4.9), we check (4.2). We get [H0, iAn]◦ = 1K ⊗dΓ([ω, ian]◦) in
the sense of form on D(|Hλ|1/2). By computing [ω, ian]◦ on the core C∞

c (Rd \ {0}),
we obtain [ω, ian]◦ = mn. Now, by Lemma 4.2, we can use Proposition 4.1 iii)
and deduce

[
Hλ, iAn

]
= Mn + Sn in the sense of forms on D(|Hλ|1/2). Finally, by

Lemma 6.7, [Hλ, Bε] is of finite rank, we also obtain (4.10) on the same domain.

Now, Hλ ∈ C1
(
Ân;D

(
|Hλ|1/2

)
,D

(
|Hλ|1/2

)∗)
by Lemma 4.9 and Proposition

C.6. We apply [GGM2][Lemma 6.3] to get Hλ ∈ C1(Ân). �

Therefore, the Virial theorem holds true when Ân is the conjugate operator and
when n is finite. However, there is no Mourre estimate for Ân but only one for
Â∞. To overcome this problem, we take advantage of the monotone convergence
of [H0, iAn] to [H0, iA∞] and of the uniformity given in Lemma 4.8 to prove:

Proposition 4.11 (Virial theorem). Assume (I0) and (I1). Let u be an eigen-

function of Hλ then u ∈ D(N1/2) and 〈u, (M∞ + Ŝ∞)u〉 = 0, as a quadratic form
on D(N1/2) ∩ D(Hλ).

Proof. First, Mn is a bounded form for Hλ. Note that 0 ≤ mn ≤ m implies
0 ≤ dΓ(mn) ≤ dΓ(m) for all n. Now, since mn is increasing and converges to m as
n goes to infinity, monotone convergence gives

0 ≤ 〈g,Mng〉 ≤ 〈g,M∞g〉 and 〈g,Mng〉 −→
n→∞

〈g,M∞g〉,
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for all g ∈ D(M∞) ∩D(Hλ). Using some Cauchy sequences, this holds true also in

the sense of forms for g ∈ D(M
1/2
∞ ) ∩D(Hλ). By authorizing the value +∞ on the

two r.h.s. when g /∈ D(M
1/2
∞ ), one allows g ∈ D(Hλ). On the other hand, Lemma

4.2 gives that Ŝn tends to Ŝ∞ as a quadratic form on D(H).

Let Ḣ be the closure of quadratic form 〈u, Ĥ ′
λu〉 defined on D(M∞) ∩ D(H).

It is given by the quadratic form 〈u, (M∞ + Ŝ∞)u〉 defined on D(M
1/2
∞ ) ∩ D(H).

Take now an eigenfunction u of Hλ. By Lemma 4.10 and the Virial theorem, see
[ABG][Proposition 7.2.10], we get 〈u, (Mn + Ŝn)u〉 = 0. By letting n go to infinity

and noticing that D(M
1/2
∞ ) = K ⊗D(N1/2), we get the result. �

4.5. Estimation on the second commutator. In this section, we discuss the
second commutator hypothesis (I2) so as to obtain a limiting absorption principle
through the Theorem C.8. We stress we forgo the hypothesis (I1b) in this section.
We start with the important remark.

Lemma 4.12. We have C2(A∞,G ,G
∗) = C2(Â∞,G ,G

∗).

Proof. It is enough to show one inclusion. Using Proposition C.6 and the invariance
of G and G ∗ given in Lemmata 4.4 and 4.7, one may work directly with A∞ and
Â∞. Let H ∈ B(G ,G ∗) be in C2(A∞,G ,G

∗). One justifies the next expansion, by
working in the form sense on D

(
(A∗

∞)2|G
)
× D

(
(A∞)2|G

)
. This is legal by using

Lemma 4.5. We have:

[[H, Â∞], Â∞] =[[H,A∞], A∞] + [[H,A∞], λθBε]

[[H,λθBε], A∞] + [[H,λθBε], λθBε].

The first term is in B(G ,G ∗) by hypothesis. For the second one, note that [H,A∞] ∈
B(G ,G ∗) since H is C1(A∞,G ,G

∗). For the third one, we expand the commutator
inside, use again that H ∈ C1(A∞,G ,G

∗) and finish with Lemma 4.5 iii). For the
last one, one expands it and use Lemma 4.5 ii). �

We start by discussing the C2 theory used in [GGM2, S] and check the point
(M5’). Through the isomorphism given by (1.3), we suppose the stronger

(I2’) α ∈ B
(
K ,K ⊗ Ḣ 2(R+) ⊗ L2(Sd−1)

)
.

This hypothesis is stronger than α ∈ B
(
K ,K ⊗ Ḣ s(R+) ⊗ L2(Sd−1)

)
for s > 1,

the one used in [DJ][Theorem 6.3].

Lemma 4.13. Assume (I0), (I1a) and (I2’). Then Hλ ∈ C2(Â∞,G ,G
∗) and

[Ĥ ′
λ, iÂ∞] = λφ

(
a2
∞α

)
+ λθ[[Hλ, Bε], iA] + λ2θ2[Ĥ ′

λ, Bε].

Therefore, the hypothesis (M5’) is fulfilled.

Proof. We use Proposition 4.1 ii) and iii) for the operator H := N − λφ(ia∞α).
Point ii) is trivially satisfied. The hypothesis (I2) and Proposition 2.2 give (4.3).
We obtain H ∈ C1(A∞;G ,G ∗). �

We now work with the hypothesis (I2) which is weaker than the one used in
[DJ]. Thanks to Lemma 4.12, we have

C1,1(A∞,G ,G
∗) :=

(
C2(A∞,G ,G

∗),B(G ,G ∗)
)
1/2,1

=
(
C2(Â∞,G ,G

∗),B(G ,G ∗)
)
1/2,1

=: C1,1(Â∞,G ,G
∗).

We refer to [ABG, T] for real interpolation. We obtain:
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Lemma 4.14. Assume (I0), (I1a) and (I2). Then Hλ ∈ C1,1(Â∞,G ,G
∗) and

the hypothesis (M5) is fulfilled.

Proof. By Lemma 4.13, we have H0 ∈ C2(Â∞,G ,G
∗). It is enough to show that

φ(α) ∈ C1,1(A∞,G ,H ). By [DJ][Lemma 2.7], we haveW∞,tφ(α) = φ(w∞,tα)W∞,t

for t ≥ 0. By Proposition 2.2 and b ≥ 1 and since {W∞,t} b-preserves G , we get
∫ 1

0

∥∥[W∞,t[W∞,t, φ(α)]]
∥∥
B(G ,H )

dt

t2
≤

∫ 1

0

∥∥φ([w∞,t[w∞,t, α]])W∞,2t

∥∥
B(G ,H )

dt

t2

≤ C

∫ 1

0

∥∥[w∞,t[w∞,t, α]]
∥∥
B(K ,K⊗h)

dt

t2
.

The latter is finite if and only if α belongs to
(
B

(
K ,D(a2

∞)
)
,B(K ,K ⊗h)

)
1/2,1

.

On the other hand, using the isomorphism (1.3) and Proposition 3.1, this space is

the same as
(
B

(
K ,K ⊗Ḣ 2(R+)⊗L2(Sd−1)

)
,B(K ,K ⊗ h̃)

)
1/2,1

. Finally, using

[T][Section 2.10.4], this is equivalent to the fact that α satisfies (I2). �

5. A Mourre estimate far from the thresholds

5.1. The result. The aim in this part is to show a Mourre estimate far from
thresholds for small coupling constants. This is a well-known result, see [BFS, DJ]
for instance. For the sake of completeness, we give a proof of the estimate. Doing
so, we point out, in Remark 5.3, where the lack of positivity occurs above the
thresholds. We use the approach based on the theory described in Appendix C.
To obtain information just above the thresholds and without supposing the Fermi
golden rule, one should add a compact term in (5.1), see [GGM, S].

Theorem 5.1. Let I0 be a compact interval containing no element of σ(K). Sup-
pose also that (I0) and (I1a) are satisfied. Then, for all open interval I ⊂ I0:

i) There are M∞ ≥ 1 and S∞ a |Hλ|1/2-bounded operator such that [Hλ, iA∞] =
M∞ + S∞ holds in the sense of forms on D(N1/2).

ii) The conditions (M1)–(M4) are satisfied.
iii) There is λ0 > 0 such that the following extended Mourre estimate

M∞ + S∞ ≥ a(λ)EI(Hλ) − b(λ)EIc(Hλ)〈Hλ〉.(5.1)

holds true in the sense of forms on D(N1/2), for all |λ| ≤ λ0. Here, a(λ) is positive
and can be written as

(
1 +O(λ)

)
. Besides, b(λ) is also positive.

iv) If (I1b) holds true, then Hλ has no eigenvalue in I, for all |λ| ≤ λ0.
v) If (I2) holds true (and not necessarily (I1b)), then Hλ has no eigenvalue in

the interior of I, for all |λ| ≤ λ0. Moreover, one obtains the estimations of the
resolvent given in Theorem 1.2.

Proof. By Lemma 4.3, we have the first point. The point ii) is shown in Section
4.2. The point iii) follows from Proposition 5.2. Indeed, since S∞ is form bounded
with respect to Hλ, we have that for all η > 0

EI(Hλ)S∞EIc(Hλ) + EIc(Hλ)S∞EI(Hλ) ≥
− ηEI(Hλ)S∞〈Hλ〉−1S∞EI(Hλ) − η−1EIc(Hλ)〈Hλ〉.(5.2)

The point iv) follows from the Virial Theorem, Proposition 4.11. Finally, Theorem
C.8 gives point v), the space G appearing therein is identified in Lemma 4.3. �
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5.2. The inequality. Here we establish the extended Mourre estimate away from
the threshold. We use only (I0) and (I1a) and do not assume any Fermi golden
rule assumption.

Proposition 5.2. Let I0 be a compact interval such that σ(K) ∩ I0 = ∅. Let I
be an open interval included in I0. Let M∞ := N + 1 ⊗ PΩ ≥ 1 and let S∞ :=
−1 ⊗ PΩ − λφ(ia∞α). For λ small enough, we get

M∞ + EI(Hλ)S∞EI(Hλ) ≥
(
1 +O(λ)

)
EI(Hλ),(5.3)

holds true in the sense of forms on D(N1/2).

Proof. Let J be a compact set containing I and contained in the interior of I0.
Note that (1.4) gives EJ (H0)1K ⊗ PΩ = 0. By Proposition 2.2, we derive:

EJ (H0)S∞EJ (H0) = λEJ (H0)φ(ia∞α)EJ (H0) = O(λ)EJ (H0).(5.4)

As M∞ ≥ 1, it remains to prove that EI(Hλ)S∞EI(Hλ) = O(λ)EI (Hλ). We insert
EJ (H0)+EJ c(H0) on the right and on the left of S∞. By (5.4), all the four terms
are actually O(λ)EI (Hλ). Indeed, Proposition 2.2 gives for instance that

EI(Hλ)Ec
J (H0)S∞EJ (H0)EI(Hλ) = O(λ)EI(Hλ).

For the right hand side, take h ∈ C∞
c (J ) so that h|I = 1. We have

EI(Hλ)EJ c(H0) = EI(Hλ)
(
h(Hλ) − h(H0)

)
EJ c(H0) = O(λ),

by Lemma 5.4. �

Remark 5.3. This proof would not work over one of thresholds {ki}i=0,...,n. Here,
we use in a drastic way that EJ (H0)1 ⊗ PΩ = 0. However, when σ(K) ∩ I = {ki},
this expression is never 0 and is of norm 1. A brutal estimation would give

M + EI(Hλ)S∞EI(Hλ) ≥ O(λ)EI(Hλ).(5.5)

We have no control on the sign. This is no surprise as we know that one may
uncouple the two parts of the system and an eigenvalue can remain, see Section 6.
To control the sign, one needs to gain some positivity just above Pki

⊗ PΩ. This
would be the rôle of the Fermi golden rule and of the operator Bε.

Here we have used the elementary:

Lemma 5.4. Let h ∈ C∞
c (R) and s ≤ 1/2. Let V be symmetric operator being

H0-form bounded operator, with constant lower than 1. Then, there is C such that∥∥〈H0〉s
(
h(H0) − h(H0 + λV )

)∥∥ ≤ C|λ|.

6. A Mourre estimate at the thresholds

In this section we would like to study the absence of eigenvalue above one of
the thresholds. From a physical point of view, as soon as the interaction is on, one
expects the embedded eigenvalues to disappear into the complex plane and to turn
into resonances. This is however not mathematically true as one may uncouple the
Bosonic Field and the atom. Take for instance ω bounded, α ∈ B(K ,K ⊗h), given
by α(x) := 1⊗b, for all x ∈ K and where ωb ∈ h. After a dressing transformation,
see for instance [D][Theorem 3.5], the operator Hλ is unitarly equivalent to the free
operator K ⊗ 1Γ(h) + 1K ⊗ dΓ(ω̃λ), for some ω̃λ ∈ B(h). Therefore, Hλ has the
same eigenvalues as H0 for all λ. Note that this is no restriction to suppose that ω
is bounded thanks to the exponential law, see for instance [BSZ][Section 3.2]. We
couple the two systems through a Fermi golden rule assumption.
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6.1. The Fermi golden rule hypothesis. We choose one eigenvalue ki0 of Hel

for i0 > 0. Let P := Pki0
⊗ PΩ and let P := 1 − P . Note that P is of finite rank.

We give an implicit hypothesis on α and explain how to check it in Appendix A.

Definition 6.1. We say that the Fermi golden rule holds true at energy k for a
couple (H0, α) if there exist positive ε0, c1 and c2 such that

c1P ≥ Pφ(α)P Im(H0 − k + iε)−1Pφ(α)P ≥ c2P,(6.1)

holds true in the sense of forms, for all ε0 > ε > 0.

Due to the Fock space structure, one may omit P in (6.1) but we keep it to em-
phasize the link between hypotheses of this type in other fields (like for Schrödinger
operators). Since P is of finite rank, this property follows from (1.2).

The upper and the lower bounds of (6.1) would be crucial in our analysis. We
shall keep track of the lower bound in the sequel so as to emphasis the gain of
positivity it occurs. We set few notations.

Rε :=
(
(H0 − ki0 )

2 + ε2
)−1/2

, Rε := PRε and Fε := Rε
2
.(6.2)

Note that εR2
ε = Im(H0 − ki0 + iε)−1 and that Rε commutes with P . We get:

(c1/ε)P ≥ Pφ(α)Fεφ(α)P ≥ (c2/ε)P,(6.3)

for ε0 > ε > 0. It follows:

‖Rε‖ = 1/ε and ‖Pφ(α)Rε‖ ≤ c
1/2
1 ε−1/2.(6.4)

As pointed out in Remark 5.3, we seek some more positivity for the commutator
above the energy P = Pki

⊗ PΩ. We proceed like in [BFSS] and set

Bε := Im(Rε
2
φ(α)P ).

It is a finite rank operator, see Lemma 4.5 for more properties. Observe now that
we gain some positivity as soon as λ 6= 0:

P [Hλ, iλBε]P = λ2Pφ(α)Fεφ(α)P ≥ (c2λ
2/ε)P.(6.5)

It is therefore natural to modify our conjugate operator. We set

Ân := An + λθBε, for n ∈ N
∗ ∪ {∞}.(6.6)

It depends on the two parameters λ ∈ R, ε > 0 and on an extra technical θ > 0.
For the sake of clarity, we do not write these extra dependences. Heuristically,
the operator A∞ would give the positivity around the threshold and the Bε would
complete it just above. We mention that Â∞ is maximal symmetric and generates
a semigroup of isometries, see Lemma 3.2.

6.2. Main result. We prove the extended Mourre estimate over the threshold ki0 .
This is the heart of the paper. The proof relies on the Feshbach method. We exploit
the freedom we have so far on ε and θ: set ε := ε(λ) and θ =: θ(λ) and suppose
that λ = o(ε), ε = o(θ) and θ = o(1) as λ tends to 0. We summarize this into:

|λ| ≪ ε ≪ θ ≪ 1, as λ tends to 0.(6.7)

In [BFSS], this condition is more involved and the size of the interval comes into the

play. We stress that the conjugate operator Â∞ depends on these three parameters.
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Theorem 6.2. Let I0 be a compact interval containing ki0 and no other ki. Assume
the Fermi golden rule hypothesis (6.1) and (6.7) hold true. Suppose also that (I0)
and (I1a) are satisfied. Then, for all open interval I ⊂ I0:

i) There are M∞ ≥ 1 and Ŝ∞ a |Hλ|1/2-bounded operator such that [Hλ, iÂ∞] =

M∞ + Ŝ∞ holds in the sense of forms on D(N1/2).
ii) There is λ0 > 0 such that the following extended Mourre estimate

M∞ + Ŝ∞ ≥ a(λ)EI(Hλ) − b(λ)EIc(Hλ)〈Hλ〉(6.8)

holds true in the sense of forms on D(N1/2), for all λ ∈ (0, λ0). Here, one has
a(λ) = λ2θc2/5ε and b(λ) > 0.

iii) If (I1b) holds true, then Hλ has no eigenvalue in I.
iv) If (I2) holds true (and not necessarily (I1b)), then Hλ has no eigenvalue

in the interior of I, for all |λ| ≤ λ0. Moreover, one obtains the estimation of the
resolvents given in Theorem 1.2.

Remark 6.3. By taking θ and ε as power of λ, one may take a(λ) = λ1+η/5, for
some η > 0. We do not reach the power 1 as expected in Remark 5.3. This is due
to the non-linearity in λ of the conjugate operator. Note also, this is very small
and then one does not expect a fast propagation of the state, i.e. the eigenvalue
turns into a resonance.

The proof of this theorem needs few steps and is given in Section 6.4. We
first go into the Feshbach method and deal with unperturbed spectral measure in
Proposition 6.5. Next, in Proposition 6.8, we change the spectral measure.

6.3. The infrared decomposition. As suggested by (6.5), one expects to have
to slip the space with the projector P to take advantage of this positivity. To do
so, we use the Feshbach method. As our result is local in energy, we fix a compact
interval J which contains the selected eigenvalue ki0 and no others. We consider
the Hilbert space HJ := EJ (H0)H . Let H v

J := PHJ and H v
J its orthogonal in

HJ . The v subscript stands for vacuum. Given H bounded in HJ = H v
J ⊕H v

J ,
we write it following this decomposition in a matricial way:

H =

(
Hvv Hvv

Hvv Hvv

)
.(6.9)

We recall the Feshbach method, see [BFS] and see also [DJ][Section 3.2] for more
results of this kind.

Proposition 6.4. Assume that z /∈ σ(Hvv). We define

Gv(z) := z1vv −Hvv −Hvv
(
z1vv −Hvv

)−1
Hvv.

Then, z ∈ σ(H) if and only if 0 ∈ σ
(
Gv(z)

)
.

The reader should keep in mind that J would be chosen slightly bigger than the
interval I. This lost comes from the change of spectral measure from H0 to Hλ.
The aim of the section is to show the following proposition about Ŝ∞, see (4.7).

Proposition 6.5. Let J be a compact interval containing k and no other ki. Sup-
pose the Fermi golden rule (6.1) and (6.7), then one has

EJ (H0)Ŝ∞EJ (H0) ≥ (c2λ
2θε−1/3 − 1)EJ (H0)(6.10)

holds true in the sense of forms, for λ small enough.
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We go through a series of lemmata and give the proof at the end of the section.
The −1 of the r.h.s. seems at first sight disturbing as we seek for some positivity.
It would be balanced when we will add the operator M∞ ≥ 1, see Section 6.4. In
the first place, we estimate the parts of Ŝ∞.

Lemma 6.6. With respect to the decomposition (6.9), as λ goes to 0, we have

EJ (H0)
(
λφ(a∞α) − P

)
EJ (H0) =

(
O(λ) O(λ)
O(λ) −1

)
.

Proof. The part in P follows directly from (1.4). The one in α results from Propo-
sition 2.2 and the fact that Pφ(a∞α)P = 0. �

Lemma 6.7. Suppose that the Fermi golden rule (6.1) holds true. Then, the form
[Hλ, Bε] defined on D(Hλ) × D(Hλ) extends to a finite rank operator on H , still
denoted by [Hλ, Bε]. As λ tends to 0, we have

∥∥ [Hλ, λθBε]
∥∥
B(H )

≤ O(λθε−1/2) +O(λ2θε−3/2).(6.11)

Besides, with respect to the decomposition (6.9), we have:

EJ (H0)[H0, λθBε]EJ (H0) =

(
0 O(λθε−1/2)

O(λθε−1/2) 0

)

and

EJ (H0)[λφ(α), λθBε]EJ (H0) =

(
O(λ2θε−3/2) O(λ2θε−3/2)
O(λ2θε−3/2) λ2θFε

)
.

Proof. We give some estimates independent of J . We expand the commutators,
this could be justified by considering the commutator in the form sense on D(Hλ).

[dΓ(ω), Rε
2
φ(α)P ] = [H0 − ki0 , Rε

2
φ(α)P ]

= P (H0 − ki0)RεRεφ(α)P + PRεRεφ(α)P (H0 − ki0) = PO(ε−1/2)P + 0.(6.12)

Indeed, the first term derives from (6.4) and ‖(H0−ki0)Rε‖ = O(1). For the second
one, note that (H0 − ki0 )P = 0.

We turn to the second estimation and apply Proposition 2.2. We get φ(α)Rε =
φ(α)R1R

−1
1 Rε = O(ε−1). By (6.4), we have

[φ(α), Rε
2
φ(α)P ] = PFεP + Pφ(α)RεRεφ(α)P + PRεRεφ(α)Pφ(α)(P + P )

= PFεP + PO(ε−3/2)P + PO(ε−3/2)P .(6.13)

Gathering lines (6.12) and (6.13), we get (6.11). We finish by adding EJ (H0). �

We go into the Feshbach method and conclude.

Proof of Proposition 6.5. We set Cλ := EJ (H0)Ŝ∞EJ (H0). First observe that for
all µ ≤ −3/4, we get Cvv

λ −µ is invertible in B(H vv) and ‖(Cvv
λ −µ)−1‖B(H vv) ≤ 2.

Indeed, from Lemma 6.6 and 6.7, we have that Cvv
λ is bounded from below by

O(λ2θε−3/2) +O(λ). This is bigger than −1/2 by (6.7), for λ small enough.
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We now estimate from below the internal energy of Cλ, uniformly in µ ≤ 3/4.
By Lemmata 6.6 and 6.7, the first part and the Fermi golden Rule (6.3), we infer

Cvv
λ − Cvv

λ (Cvv
λ − µ)−1Cvv

λ + 1 ≥
≥ c2λ

2θε−1 +
(
O(λθε−1/2) +O(λ2θε−3/2) +O(λ)

)2

= c2λ
2θε−1

(
O(θ) +O(λθε−1) +O(ε1/2) + O(λ2θε−2) +O(λε−1/2) +O(θ−1ε)

)

≥ c2λ
2ε−1/2, for λ small enough.

We have used (6.7) for the last line.
We are now able to conclude. Since J contains ki0 and no other ki. We have

EJ (H0)PΩ = P by (1.4). Let µ < c2λ
2θε−1/2− 1. Note that µ ≤ −3/4 for λ small

enough by (6.7). Thanks to the previous lower bound, we can apply Proposition 6.4
with respect to the decomposition (6.9) for Cλ and with z = µ to get the result. �

6.4. The extended Mourre estimate. At the end of the section, we establish
the extended Mourre estimate. We start by enhancing Proposition 6.5.

Proposition 6.8. Let I be a compact interval containing ki0 and not other ki.
Assume the Fermi golden rule (6.1) and (6.7). Then,

EI(Hλ)Ŝ∞EI(Hλ) ≥ c2(λ
2θε−1/4 − 1)EI(Hλ)

holds true in the sense of forms for λ small enough.

Proof. Let J be a compact interval as in Proposition 6.5 such that I is included
in its interior and contains ki0 . By (6.7), it is enough to prove

EI(Hλ)
(
λφ(a∞α) + [Hλ, iλθBε] − PΩ

)
EI(Hλ) ≥

(
c2λ

2θε−1/3 +O(λ2) +O(λ2θε−1/2) +O(λ3θε−3/2) − 1
)
EI(Hλ).(6.14)

We start with the left hand side of (6.14) and introduce EJ (H0)+EJ c(H0) on the
right and on the left of ([Hλ, iλθBε] + λφ(a∞α) − PΩ). Note that both of spectral
measures are bounded in D(H0), endowed with the graph norm. We need to control
the mixed term. Using Lemma 5.4 and (6.11), we get

EI(Hλ)EJ c(H0)[Hλ, iλθBε]EJ (H0)EI(Hλ) =
(
O(λ2θε−1/2) +O(λ3θε−3/2)

)
EI(Hλ),

and a better term for EI(Hλ)EJ c(H0)[Hλ, iλθBε]EJ c(H0)EI(Hλ). Since the term
φ(a∞α)〈H0〉−1/2 is bounded in H by Proposition 2.2, Lemma 5.4 gives

EI(Hλ)EJ c(H0)λφ(a∞α)EJ (H0)EI(Hλ) = O(λ2)EI(Hλ),

and a better term for the full-mixed term. As H0 commute with PΩ, we infer
EI(Hλ)EJ c(H0)PΩEJ (H0)EI(Hλ) = 0. Now using Proposition (6.5) we obtain

EI(Hλ)
(
[Hλ, iλθBε] + λφ(a∞α) − PΩ

)
EI(Hλ) ≥

(c2λ
2θε−1/3 − 1)EI(Hλ)EJ (H0)EI(Hλ)

+
(
O(λ2) +O(λ2θε−1/2) +O(λ3θε−3/2)

)
EI(Hλ).

Finally, the estimation (6.14) follows by noticing that EI(Hλ)EJ (H0)EI(Hλ) is
equal to

(
1 +O(λ2)

)
EI(Hλ), again by Lemma 5.4. �

We are now able to prove the announced result.
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Proof of Theorem 6.2. The operator M∞ and Ŝ∞ are given in (4.4) and (4.7).
Points i) and ii) are given in Section 4.3. By Proposition 6.8 and since M∞ ≥ 1,

M∞ + EI(Hλ)Ŝ∞EI(Hλ) ≥ c2λ
2θε−1/4EI(Hλ)

holds true in the form sense on D(N1/2). Then, (5.2) gives iii). The point iv) follows
from the Virial Theorem, Proposition 4.11. Finally Theorem C.8 gives point v).
Indeed, the space G appearing therein is identified in Lemma 4.3. In remains to
notice that the spaces (C.4) given for Â∞ and A∞ are the same. This follows from
the fact that these operators have the same domain in G ∗, by Lemma 4.5 and that
the spaces G ∗

s are given by complex interpolation. �

Appendix A. Level shift operator

In this paper, we never make the hypothesis that we analyse an eigenvalue which
could be different than the ground state energy of H0. The point is that it is well
known that it is supposed to remain, even if the perturbation is switched on, see for
instance [AH, BFS, G0]. This leads to a contradiction to the hypothesis made on
the Fermi golden rule. Therefore, in this section, we explain how one may check the
Fermi golden rule assumption (6.1), why it is not fulfilled at ground state energy.
This would also explain the compatibility with (I0)–(I2). The computations we
lead are standard, we keep it simple. See also [BFS, DJ2, JP].

Let ei be an orthonormal basis of eigenvectors of K relative to the eigenvalue ki.
To simplify the computation, say that ki0 is simple. Since ki0 is simple and since
φ(α)(ei0 ⊗ Ω) = α(ei0 ) ∈ K ⊗ h, (6.1) is equivalent to:

c1 ≥
〈
α(ei0 ), Im(H0 − ki0 + iε)−1α(ei0)

〉
≥ c2 > 0, for 0 < ε ≤ ε0.

We have α(ei0 ) =
∑

i=1,...,n ei ⊗ fi,i0 ∈ K ⊗ h, where fi,i0 =
〈
ei ⊗ 1h, α(ei0 )

〉
. As

h = L2(Rd, dk), we write fi,i0 as a function of k. We go into polar coordinates, see
(1.3) and infer

c1 ≥
∑

i=1,...,n

∫ ∞

0

∫

Sd−1

ε
|fi,i0 |2(rθ)rd−1

(r + λi − λi0 )
2 + ε2

dσ dr ≥ c2 > 0

Suppose now that (r, θ) 7→ |fi,i0 |2(rθ)rd−1 is continuous and in L1. Then by domi-
nated convergence, we let ε go to zero and get:

c1 ≥
∑

i=1,...,i0

ci(λi0 − λi)
d−1

∫

Sd−1

ε|fi,i0 |2
(
θ(λi0 − λi)

)
dσ ≥ c2 > 0(A.1)

Here note that, up to the constant ci, r 7→ ε/
(
(r + λi − λi0 )

2 + ε2
)

is a Dirac
sequence if and only if λi ≤ λi0 .

To satisfy the Fermi golden rule, it is enough to have a non-zero term in (A.1).
When d ≥ 2, we stress that the sum is taken till i0 − 1 and therefore is empty at
ground state energy. When the 1-particle space is over R, it cannot be satisfied
at this level of energy as well. Indeed, one would obtain a contradiction with the
hypothesis (I0) and the continuity of (r, θ) 7→ |fi,i0 |2(rθ).

Appendix B. Properties of C0-semigroups

In this section, we gather various facts about C0-semigroups we use along this
article. Let H be a Hilbert space. Recall that w−lim denotes the weak limit.
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Definition B.1. We say R+ ∋ t 7→Wt, with Wt ∈ B(H ) is a C0-semigroup if

(1) W0 = Id and Ws+t = WsWt, for all s, t ≥ 0,
(2) w−limt→0+ Wt = Id.

Automatically, this implies that R+ ⊃ t 7→ Wt is strongly continuous, see
[HP][Theorem 10.6.5]. We keep the convention of [GGM2] and define the generator
of {Wt}t≥0 as being the closed densely defined operator A defined on

D(A) := {u ∈ H | lim
t→0+

(it)−1(Wt − Id)u exists}.

We set Au this limit. Formally, one reads Wt = eitA. The map R+ ⊃ t 7→ W ∗
t

being weakly continuous, {W ∗
t }t≥0 is also a C0-semigroup. Its generator is −A∗.

We recall the Nelson Lemma, see for instance [BR][Corollary 3.1.7].

Lemma B.2 (Nelson Lemma). Let D be a dense subset of H and let {Wt}t≥0 be
a C0-semigroup. If WtD ⊂ D then D is a core for the generator of {Wt}t≥0.

Let G and H be two Hilbert spaces such that G ⊂ H continuously and densely.
Using the Riesz isomorphism, we identify H with H ∗, where the latter is the set
of anti-linear forms acting on H . We infer the following scale of spaces G ⊂ H ≃
H ∗ ⊂ G ∗ with continuous and dense embeddings. In order to define the restriction
of Wt on G , we set:

Definition B.3. Given a C0-semigroup {Wt}t≥0 on H . We say that G is b-stable
(boundedly stable) under the action of {Wt}t≥0 if

i) WtG ⊂ G , for all t ∈ R+,
ii) supt∈[0,1] ‖Wtu‖ is bounded for all u ∈ G .

Remark B.4. Note that unlike for C0-groups, the second condition is required to
ensure the continuity in 0. These two conditions are equivalent to the fact that
{Wt|G }t≥0 is a C0-semigroup on G .

Assuming that G is b-stable under the action of {Wt}t≥0, we denote by AG its
generator. Thus, AG is the restriction of A and its domain is given by

D(AG ) = {u ∈ G ∩ D(A) | Au ∈ G }.
If G ∗ is also b-stable under {W ∗

t }t≥0, we denote by AG ∗ the generator of {Wt}t≥0

extended to G ∗. As above A is a restriction of AG ∗ and thanks to the Nelson
lemma, we have that A is the closure of AG in H and that AG ∗ is the closure of
A in G ∗. We would drop the subscript G when no confusion could arise.

We recall the following result of perturbation, see [K][Theorem IX.2.1].

Proposition B.5. Let B be a bounded operator in a Hilbert space H . Then A is
the generator a C0-semigroup if and only if A+B is also one.

Appendix C. The Mourre method

C.1. The C1 class. Given a self-adjoint operator A, the so-called C1(A) class of
regularity is a key notion within the Mourre’s theory, see [ABG] and [GG]. This
guarantees some properties of domains and that the commutator of an operator H
with A would be H-bounded. In this paper, we have to deal with maximal sym-
metric conjugate operators and thus have to extend the standard class exposed in
details in [ABG][Section 6.2]. As some refinements appear, we present an overview
of the properties and refer to [GGM][Section 2] for proofs.
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Within this section, we consider a closed densely defined operator A acting in a
Hilbert space H . Note this implies that D(A∗) is dense in H . We first defined
the class of bounded operators belonging to C1(A). Let S ∈ B(H ). We denote by
[S,A] the sesquilinear form defined on D(A∗) ×D(A) by

〈u, [S,A]v〉 := 〈A∗u, Sv〉 − 〈S∗u,Av〉, for u ∈ D(A∗), v ∈ D(A).

Definition C.1. An operator S ∈ B(H ) belongs to C1(A) if the sesquilinear form
[S,A] is continuous for the topology of H × H . We denote by [S,A]◦ the unique
bounded operator in H extending this form.

We now extend the definition to unbounded operator by asking the resolvent
R(z) := (S−z)−1 to be C1(A). We precise the statement. We first recall that given
S a closed densely defined operator on H , the A-regular resolvent set of S is the
set ρ(S,A) ⊂ C \ σ(S) such that R(z) is of class C1(A).

Definition C.2. Let S be a closed and densely defined operator on H . We say
that S is of class C1(A) if there are a constant C and a sequence of complex numbers
zν ∈ ρ(S,A) such that |zν | → ∞ and ‖R(zν)‖ ≤ C|zν |−1. If S is of class C1(A) and
ρ(S,A) = C \ σ(S) then we say that S is of full class C1(A).

In many cases these two definitions coincide. Indeed, given S ∈ C1(A), one shows
that if A is regular or if S is self-adjoint with a spectral gap then S is in the full
class C1(A). We recall that a closed densely defined operator B is regular if there
is a constant C and αn ∈ C \ σ(B) such that ‖(B −αn)‖ ≤ C|αn|−1 and such that
|αn| → ∞. The generators of C0-semigroups are regular for instance.

Definition C.3. Let A and S be two closed and densely defined operators in H .
We define [A,S] as the sesquilinear form acting on

(
D(A∗)∩D(S∗)

)
×

(
D(A)∩D(S)

)

and given by 〈u, [S,A]v〉 := 〈A∗u, Sv〉 − 〈S∗u,Av〉.
Proposition C.4. Let S ∈ C1(A). Then D(A∗) ∩ D(S∗) and D(A) ∩ D(S) are
cores for S and S∗ respectively and the form [A,S] has a unique extension to a
continuous sesquilinear form denoted by [A,S]◦ on D(S∗) ∩ D(S). Moreover,

[A,R(z)]◦ = −R(z)[A,S]◦R(s), for all z ∈ ρ(S,A),

where on the right hand side, [A,S]◦ is considered as an element of B
(
D(S),D(S∗)

)
.

We stress the fact that [A,S] extends to an element of B
(
D(S),D(S∗)

)
is not

enough to ensure S ∈ C1(A), see [GG]. Some conditions of compatibilities are to
be added, see [GGM][Proposition 2.21]. This could also be bypassed by knowing
some invariance under a C0-semigroup generated by A.

Definition C.5. Let {W1,t}t∈R+ , {W2,t}t∈R+ be two C0-semigroups on the Hilbert
spaces H1 and H2 with generator A1 and A2. We say that B ∈ B(H1,H2) is of
class C1(A1, A2) if:

‖W2,tS − SW1,t‖B(H1,H2) ≤ ct, 0 ≤ t ≤ 1.

If G ⊂ H are two Hilbert spaces continuously and densely embedded and if a
C0-semigroup {Wt}t∈R+ , with generator A on H , b-stabilizes G and G ∗, we denote
the class C1(AG , AG ∗) by C1(A;G ,G ∗). We have the following result.

Proposition C.6. S ∈ C1(A1, A2) if and only if the sesquilinear form 2[S,A]1 on
D(A∗

2)×D(A1) defined by 〈u2, 2[S,A]1u1〉 := 〈S∗u2, A1u1〉−〈A∗
2u2, Su1〉 is bounded
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for the topology of H2×H1. Let 2[S,A]◦1 be the closure of this form in B(H1,H2).
We have:

2[S,A]◦1 = s− lim
t→0+

(SW1,t −W2,tS).

Note that for S ∈ B(H ), with Hi = H and Wi,t = Wt, one has S ∈ C1(A1, A2)
if and only if B ∈ C1(A).

C.2. Regularity assumptions for the limiting absorption principle. In this
part, we recall a set of assumptions presented in [GGM] so as to ensure a lim-
iting absorption principle, see Theorem C.8. Consider H a self-adjoint opera-
tor, H ′ symmetric closed and densely defined and A closed and densely defined.
These operators are linked by H ′ = [H, iA] in a sense defined lower. Denote also
D := D(H) ∩ D(H ′) endowed with the intersection topology, namely the topology
associated to the norm ‖ · ‖ + ‖H · ‖ + ‖H ′ · ‖.

We start by some assumptions on H and on H ′.

(M1) H is of full class C1(H ′), D = D(H) ∩ D(H ′∗) and this is a core for H ′.
(M2) There are I ⊂ R open and bounded and a, b > 0 such that

(C.1) H ′ ≥
(
a1I(H) − b1Ic(H)

)
〈H〉

holds true in the sense of forms on D .

The last one is the strict Mourre estimate. In order to check the first hypothesis,
we rely on [GGM][Lemma 2.26], see also [S][Lemma 2.6]:

Lemma C.7. Let H,M be self-adjoint operators such that H ∈ C1(M) and that
D(H) ∩ D(M) is a core of M . Let R be a symmetric operator such that D(R) ⊃
D(H). Set H ′ the closure of M+R defined on D(R)∩D(M). Then H is of full class
C1(H ′) and D(H)∩D(H ′) is a core for H ′ and D(H)∩D(H ′) = D(H)∩D(H ′∗) =
D(H) ∩ D(M).

Assuming (M2), one chooses c > 0 such that H ′+c〈H〉 ≥ 〈H〉 (take for instance
c = b + 1). Since H ′ + c〈H〉 is symmetric and positive, it possesses a Friedrichs
extension G ≥ 〈H〉. We name the form domain of G:

G := D(G1/2), endowed with the graph norm ‖ · ‖G .(C.2)

Note that G is also obtained by completing the space D with the help of the norm
‖u‖G =

√
〈u, (H ′ + c〈H〉)u〉. We identify these spaces in Lemma 4.3.

We now recall the dual norm ‖ · ‖G ∗ of G . Given u ∈ H , we set

‖u‖G ∗ := sup
v∈D, ‖v‖G ≤1

|〈u, v〉| = ‖G−1/2u‖.(C.3)

Using the Riesz isomorphism, we identify H with H ∗ the space of anti-linear
forms on H . The space G ∗ is given by the completion of H with respect to the
norm ‖ · ‖G ∗ . We get the following scale space:

D ⊂ G ⊂ H ≃ H
∗ ⊂ G

∗ ⊂ D
∗,

with dense and continuous embeddings.
We turn to the assumptions concerning the conjugate operator A and higher

commutators. Suppose A to be the generator of {Wt}t∈R+

(M3) The C0-semigroup {Wt}t∈R+ is of isometries and b-stabilizes G and G ∗,
(M4) H ∈ C1(A;G ,G ∗),
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(M5) H ∈ C1,1(A;G ,G ∗).

The hypothesis (M4) implies that

lim
t→0+

(
〈u,WtHu〉 − 〈Hu,Wtu〉

)
= 〈u,H ′u〉, for all u ∈ D .

The hypothesis (M5) means that H ∈ B(G ,G ∗) and that
∫ 1

0

∥∥ [Wt, [Wt, H ]]
∥∥
B(G ,G ∗)

dt

t2
<∞.

This is equivalent to the fact that H belongs to
(
C2(A;G ,G ∗),B(G ,G ∗)

)
1/2,1

. We

refer to [ABG, T] for real interpolation.
One may also consider the stronger H ′ ∈ C1(A;G ,G ∗), i.e.

(M5’) H ∈ C2(A;G ,G ∗).

We now give the result. Let AG ∗ be the generator of {Wt}t∈R+ generator in G ∗.
For s ∈ (0, 1), we set:

G ∗
s := D

(
|AG ∗ |s

)
and G−s := (G ∗

s )∗.(C.4)

Here, the absolute value is taken with respect to the Hilbert structure of G ∗. Given
J an interval, we define J±

0 := {λ ± iµ, λ ∈ J and µ > 0}. Finally, set R(z) :=
(H − z)−1. From [GGM], we obtain:

Theorem C.8. Assume that (M1)–(M5) hold true. Let J be a compact interval
included in I. Then if z ∈ J ±

0 , R(z) induces a bounded operator in B(G ∗
s ,G−s),

for all s ∈ (1/2, 1]. Moreover the limit R(λ ± i0) = limµ→±0 R(λ + iµ) exists
in the norm topology of B(G ∗

s ,G−s), locally uniformly in λ ∈ J and the maps
λ 7→ R(λ± i0) ∈ B(G ∗

s ,G−s) are Hölder continuous of order s− 1/2.

This theorem can be improved by considering weights in some Besov spaces
related to the conjugate operator. We refer to [GGM] for more details. Note that
the theory exposed in [GGM] is formulated with the hypothesis (M5’) but, as
mentioned in [GGM] and proceeding like in [ABG] for instance, the hypothesis
(M5) is enough to apply the theory.
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[DJ] J. Dereziński and V. Jaks̆ić: Spectral theory of Pauli-Fierz operators, J. Funct. Anal.

180, No. 2, 243–327 (2001).



28 SYLVAIN GOLÉNIA
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