DS 1 - Analyse - MEEF

S.Golénia le 26 octobre 2017

Durée 3H.

Cours : Soit $(u_n)_{n\in\mathbb{N}}$ à valeurs réelles. Traduiser les assertions suivantes grâce à des quantificateurs.

- 1) $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in\mathbb{R}$,
- 2) $(u_n)_{n\in\mathbb{N}}$ ne converge pas,
- 3) $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$,
- 4) $(u_n)_{n\in\mathbb{N}}$ est de Cauchy.

Exercice 1 : Montrer l'existence et calculer les limites des suites suivantes :

- $1) \lim_{n \to +\infty} \sqrt{n} \sqrt{n+1},$
- $2) \lim_{n \to +\infty} \frac{\ln(n)}{n^3},$
- 3) $\lim_{n \to +\infty} \ln(1+n^2) \ln(n^2-4)$,
- 4) $\lim_{n\to+\infty}\frac{\cos(n)+n}{n^2}.$

Exercice 2 : Calculer les sommes suivantes :

- 1) $\sum_{k=106}^{253} (3k+1)$,
- 2) $\sum_{k=106}^{253} (3^k + 2^{k+3}),$
- 2) $\sum_{k=106}^{253} k3^k$. On pourra d'abord calculer $\sum_{k=?}^{?} x^k$ et la dériver.

Exercice 3 : Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_{n+2}+3u_{n+1}-4u_n=0$ avec $u_0=1$ et $u_1=0$. Donner l'expression de u_n pour tout $n\in\mathbb{N}$.

Exercice 4: Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et la relation $u_{n+1}=f(u_n)$ avec $f(x):=\frac{x+3}{2x}$.

- 1) Faire une étude des variations de la fonction f sur $]0,\infty[$.
- 2) Calculer u_1 et u_2 .
- 3) Montrer que $u_n \in \left[\frac{1}{2}, \frac{7}{2}\right]$ pour tout $n \in \mathbb{N}.$
- 4) Montrer que la suite $(u_{2n})_{n\in\mathbb{N}}$ est croissante et que la suite $(u_{2n+1})_{n\in\mathbb{N}}$ est décroissante.
- 5) Montrer que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent.
- 6) Résoudre $(f \circ f)(x) = x$ pour x > 0.
- 7) Déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge.
- 8) Montrer que $|f'(x)| \le a$ pour tout $x \ge u_2$, où a := 0, 96.
- 9) Montrer que $|u_{n+1}-u_n| \le a|u_n-u_{n-1}|$ pour tout $n \ge 3$.
- 10) Montrer que $\left| \frac{3}{2} u_n \right| \le \frac{a^{n-2}}{1-a} |u_3 u_2|$.
- 11) Donner n tel que $\left|\frac{3}{2}-u_n\right| \leq 10^{-10}$.

Exercice 5: On suppose que $\lim_{n\to\infty}\cos(n)$ existe et vaut l.

1) En utilisant

$$\cos^2(x) = \frac{1 + \cos(2x)}{2},$$

 $\text{d\'emontrer que } l \in \{-1/2,1\}.$

2) En utilisant

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b),$$

avec a=n et $b\in\{-1,1\}$. Trouver une contradiction et déduire que la suite $(\cos(n))_{n\in\mathbb{N}}$ n'a pas de limite.

2