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Introduction

Describe some robust and general method to control spectra
for symmetric diffusion operators

L generator of a Markov semigroup,Pt = exp(tL) symmetric in
L2(µ) ∫

fL(g)dµ =

∫
gL(f )dµ.

µ finite (probability) measure, Pt(1) = 1, f > 0 =⇒ Pt f > 0.

Model case L : Laplace operator on a compact or finite
measure manifold.

Carré du Champ : Γ(f , f ) = 1
2 (Lf 2 − 2fLf ) > 0.

Dirichlet form E(f , f ) = −
∫

fL(f )dµ =
∫

Γ(f , f )dµ;
In the model case Γ(f , f ) = g ij∂i f ∂j f , where g ij is the
Riemann metric.
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Inequalities

Weighted
Nash
Inequalities

Examples

Introduction

Describe some robust and general method to control spectra
for symmetric diffusion operators

L generator of a Markov semigroup,Pt = exp(tL) symmetric in
L2(µ) ∫

fL(g)dµ =

∫
gL(f )dµ.

µ finite (probability) measure, Pt(1) = 1, f > 0 =⇒ Pt f > 0.

Model case L : Laplace operator on a compact or finite
measure manifold.
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Functional inequalities and spectrum

Aim : describe functional inequalities (involving Lp norms and
the Dirichlet form) which lead to control of the spectrum of L :
eg which show that the spectrum is discrete and control∑

n exp(−tλn)

General method : control

‖Pt f ‖∞ 6 K (t)‖f ‖1 or only ‖Pt f ‖2 6 K1(t)‖f ‖1

then pointwise

Pt f (x) =

∫
f (y) pt(x , y) dµ(y)

for a density pt , and

‖pt‖∞ 6 K (t) or ‖pt‖∞ 6 K1(t/2)2.

Then ∫
pt(x , x)dµ =

∑
n

e−tλn 6 K (t).
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Model inequalities

Sobolev inequalities (Sobn(C )) :

‖f ‖2
p 6 ‖f ‖2

2 + CE(f ),

with p > 2 (p = 2n/(n− 2)). n is the dimension in the Sobolev
inequality.

Logarithmic Sobolev inequality (LS(C )) :

Entµ(f 2) 6 CE(f ),

Entµ(f ) =
∫

f ln(f )dµ−
∫

fdµ ln(
∫

fdµ).

Poincaré inequalities (P(C )) :

σ2
µ(f ) 6 CE(f ),

σ2
µ(f ) =

∫
f 2dµ− (

∫
fdµ)2.

Sobolev =⇒ Logarithmic Sobolev =⇒ Poincaré
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Inequalities

Weighted
Nash
Inequalities

Examples

Model inequalities

Sobolev inequalities (Sobn(C )) :

‖f ‖2
p 6 ‖f ‖2

2 + CE(f ),

with p > 2 (p = 2n/(n− 2)). n is the dimension in the Sobolev
inequality.

Logarithmic Sobolev inequality (LS(C )) :

Entµ(f 2) 6 CE(f ),

Entµ(f ) =
∫

f ln(f )dµ−
∫

fdµ ln(
∫

fdµ).
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Poincaré Inequalities

P(C ) ⇐⇒ spec(−L) ⊂ {0} ∪ [1/C ,∞)

⇐⇒ σ2(Pt f ) 6 exp(−2t/C )σ2(f ).

Proof : ∂tPt f = L(Pt f ), and ∂t‖Pt f ‖2
2 = −2E(Pt f ).

Apply to f −
∫

fdµ and use
∫

fdµ = 0 =⇒
∫

Pt fdµ = 0. With

H(t) = ‖Pt f ‖2
2,

P(C ) =⇒ H ′ 6 −(2/C )H.

Converse : use : H(t) is convex.
Indeed stronger : ln H is convex

H ′′ = 4

∫
(LPt f )2dµ, H ′ = −2

∫
Pt fL(Pt f )dµ

=⇒ (Cauchy − Shwartz) =⇒ HH ′′ > H ′2.
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Poincaré Inequalities

P(C ) ⇐⇒ spec(−L) ⊂ {0} ∪ [1/C ,∞)

⇐⇒ σ2(Pt f ) 6 exp(−2t/C )σ2(f ).

Proof : ∂tPt f = L(Pt f ), and ∂t‖Pt f ‖2
2 = −2E(Pt f ).

Apply to f −
∫

fdµ and use
∫

fdµ = 0 =⇒
∫

Pt fdµ = 0. With

H(t) = ‖Pt f ‖2
2,

P(C ) =⇒ H ′ 6 −(2/C )H.

Converse : use : H(t) is convex.
Indeed stronger : ln H is convex

H ′′ = 4

∫
(LPt f )2dµ, H ′ = −2

∫
Pt fL(Pt f )dµ

=⇒ (Cauchy − Shwartz) =⇒ HH ′′ > H ′2.



Nash and
spectrum

D. Bakry
Joint works

with F.
Bolley, I.
Gentil, P.
Maheux

Introduction

Classical Nash
and Sobolev
Inequalities

Ultracontractivity

Super
Poincaré
Inequalities

Weighted
Nash
Inequalities

Examples
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From inequalities to bounds

I Poincaré not enough to go beyond first eigenvalue.

I Sobolev + Poincaré =⇒ Discrete spectrum, bounded
diameter.

I Sobolev ⇐⇒ ‖Pt f ‖∞ 6 K (t)‖f ‖1, K (t) = Ct−n/2,
0 < t 6 1. (Ultracontractivity)

I Logarithmic Sobolev ”almost enough” to get discrete
spectrum (but not ultracontractivity)
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Nash Inequalities

‖f ‖2
2 6 ‖f ‖2(1−θ)

1

[
‖f ‖2

2 + CE(f )
]θ
,

with θ = n/(n + 2).

Nash from Sobolev : use Holder’s inequality (same constants).

Sobolev from Nash : use slicing : apply to (f − 2k)+ ∧ 2k and
add.
One looses on the constants, but same exponent n.

Generalised Nash (N(Ψ))

‖f ‖2
2

‖f ‖2
1

6 Ψ
(E(f )

‖f ‖2
1

)
,

with Ψ increasing and concave. Usual Nash : Ψ(x) = (1 + x)θ,
0 < θ < 1.
Equivalently, with Ψ(r) 6 rx + β(r)

(SPI )

∫
f 2dµ 6 rE(f ) + β(r)

(∫
|f |dµ

)2
.
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Inequalities

Weighted
Nash
Inequalities

Examples

Nash Inequalities

‖f ‖2
2 6 ‖f ‖2(1−θ)

1

[
‖f ‖2

2 + CE(f )
]θ
,

with θ = n/(n + 2).

Nash from Sobolev : use Holder’s inequality (same constants).

Sobolev from Nash : use slicing : apply to (f − 2k)+ ∧ 2k and
add.
One looses on the constants, but same exponent n.

Generalised Nash (N(Ψ))

‖f ‖2
2

‖f ‖2
1

6 Ψ
(E(f )

‖f ‖2
1

)
,

with Ψ increasing and concave.

Usual Nash : Ψ(x) = (1 + x)θ,
0 < θ < 1.
Equivalently, with Ψ(r) 6 rx + β(r)

(SPI )

∫
f 2dµ 6 rE(f ) + β(r)

(∫
|f |dµ

)2
.



Nash and
spectrum

D. Bakry
Joint works

with F.
Bolley, I.
Gentil, P.
Maheux

Introduction

Classical Nash
and Sobolev
Inequalities

Ultracontractivity

Super
Poincaré
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Ultracontractivity from Nash

Assume N(Ψ) with
∫∞ Ψ′(x)

x dx <∞. Then

‖Pt f ‖∞ 6 K (t)‖f ‖1,

with

K−1(s) =

∫ ∞
Ψ−1(s)

Ψ′(x)

x
dx .

For classical Nash, (Ψ(x) = Cxn/(n+2)), this gives Ct−n/2.

Conversely if
‖Pt f ‖2 6 K (t)‖f ‖1,

then N(Ψ) with

Ψ−1(x) = sup
t>0

x

2t
ln

x

K 2(t)
.

Sobolev case : K (t) = ct−n/2 (0 < t < 1) then

Ψ = Cxn/(n+2)(x →∞) .
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Hint on the proof :
Ultracontractivity from Nash
with f > 0,

∫
fdµ = 1: H(t) = ‖Pt f ‖2

2, H ′(t) = −2E(Pt f ).
Apply N(Ψ) to Pt f .

N(Ψ) =⇒ H 6 Ψ(−H ′/2) ⇐⇒ dH

Ψ−1(H)
6 −2dt.

Uses the fact that
∫

Pt fdµ =
∫

fdµ.
Differential equation, from which a bound ‖Pt f ‖2

2 6 K1(t)‖f ‖1.

Nash from Ultracontractivity: use the convexity of ln H : from
‖Pt f ‖2 6 K (t/2)1/2‖f ‖1,

H(t) 6 H(0)1−αtK (2α)αt/2

take asymptotics in t = 0 and optimize in α.
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Inequalities

Weighted
Nash
Inequalities

Examples

Hint on the proof :
Ultracontractivity from Nash
with f > 0,

∫
fdµ = 1: H(t) = ‖Pt f ‖2

2, H ′(t) = −2E(Pt f ).
Apply N(Ψ) to Pt f .

N(Ψ) =⇒ H 6 Ψ(−H ′/2) ⇐⇒ dH

Ψ−1(H)
6 −2dt.

Uses the fact that
∫

Pt fdµ =
∫

fdµ.
Differential equation, from which a bound ‖Pt f ‖2

2 6 K1(t)‖f ‖1.

Nash from Ultracontractivity: use the convexity of ln H : from
‖Pt f ‖2 6 K (t/2)1/2‖f ‖1,

H(t) 6 H(0)1−αtK (2α)αt/2

take asymptotics in t = 0 and optimize in α.
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Inequalities

Weighted
Nash
Inequalities

Examples

Hint on the proof :
Ultracontractivity from Nash
with f > 0,

∫
fdµ = 1: H(t) = ‖Pt f ‖2

2, H ′(t) = −2E(Pt f ).
Apply N(Ψ) to Pt f .

N(Ψ) =⇒ H 6 Ψ(−H ′/2) ⇐⇒ dH

Ψ−1(H)
6 −2dt.

Uses the fact that
∫

Pt fdµ =
∫

fdµ.
Differential equation, from which a bound ‖Pt f ‖2

2 6 K1(t)‖f ‖1.

Nash from Ultracontractivity: use the convexity of ln H : from
‖Pt f ‖2 6 K (t/2)1/2‖f ‖1,

H(t) 6 H(0)1−αtK (2α)αt/2

take asymptotics in t = 0 and optimize in α.



Nash and
spectrum

D. Bakry
Joint works

with F.
Bolley, I.
Gentil, P.
Maheux

Introduction

Classical Nash
and Sobolev
Inequalities

Ultracontractivity

Super
Poincaré
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Super Poincaré

Beyond spectral gap : bottom of the essential spectrum
If ∫

f 2dµ 6 rE(f ) +
(∫

Π(f )dµ
)2

(1)

where Π(f ) is the projection onto a finite dimensional space.
Then, σess ∈ [ 1

r ,∞).
Conversely, if σess ⊂ ( 1

r ,∞), then (1) holds.
Other version : Super Poincaré Inequalities
If σess = ∅, then there exists w ∈ L2(µ) and r 7→ β(r) on
(0,∞) such that

(SPI )

∫
f 2dµ 6 rE(f ) + β(r)

(∫
|fw |dµ

)2
.

Typically w =
∑

i ai fi , where fi eigenvectors and (ai )
decreasing such that

∑
i |ai | <∞; then β(r) = n(r)/a2

n(r),

such that (f1, · · · , fn(r)) span the spectral space E1/r .
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Inequalities

Weighted
Nash
Inequalities

Examples

Super Poincaré
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Inequalities

Weighted
Nash
Inequalities

Examples

Super Poincaré
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From (SPI ) to discrete spectrum : Wang’s theorem

If (SPI ) holds for some function r 7→ β(r) and w ∈ L2(µ) and

I Either Pt has a density for some t > 0.

I Either the operator L is Persson

Then, the essential spectrum is empty.
Persson : There exists an increasing sequence (Ak) such that
∪Ak = E and µ(Ak) <∞ such that inf σess > supk λk , where

λk = inf
{ cE (f )∫

f 2dµ
, f supported in Ac

k

}
.

Holds as soon as the Ak are nicely separated and the
embedding from H1(Ak) into L2(Ak) is compact.
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Weighted Nash inequalities

Other Version of (SPI) : Weighted Nash Inequalities N(w ,Ψ)

For some w ∈ L2(µ), w > 0 and increasing concave Ψ with
limr→∞Ψ(r)/r = 0

‖f ‖2
2

(
∫
|wf |dµ]2

6 Ψ
( E(f )

(
∫
|wf |dµ)2

)
.

: Question : what is the relation with Ultracontractivity?
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From Weighted Nash to control on the spectrum

‖f ‖2
2

(
∫

w |f |dµ)2
6 Ψ

( E(f )

(
∫

w |f |dµ)2

)
.

∫∞ Ψ′(x)
x dx <∞,

∫
w2dµ = 1 and Lw 6 cw . Then,

Qt(f ) = w−1Pt(wf ) bounded from L1(w2dµ) to L2(w2dµ).
Bound on the spectrum and the density

∑
n

e−λnt 6 K 2(t)ect , pt(x , y) 6 K (t)ectw(x)w(y)

K−1(s) =

∫ ∞
Ψ−1(s)

Ψ′(x)

x
dx .



Nash and
spectrum

D. Bakry
Joint works

with F.
Bolley, I.
Gentil, P.
Maheux

Introduction

Classical Nash
and Sobolev
Inequalities

Ultracontractivity

Super
Poincaré
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From Weighted Nash Inequalities and back

From Nash to bounds
Hint : as before : differential equation on

‖Pt f ‖2
2

(
R

wPt fdµ)2 . Replace

invariance by
∫

wPt fdµ 6 ect
∫

wfdµ due to Lw 6 cw .
Gives ‖Pt f ‖2

2 6 K (t)(
∫
|fw |dµ)2, and

‖w−1Pt(fw)‖2,w2dµ 6 ‖f ‖2,w2dµ.
From bounds to weighted Nash If ‖Pt f ‖2 6 K (t)‖fw‖1, then
N(Φ) with Φ(x) = sup{ x

2t ln x
K2(t)

, t > 0}.
Hint Use convexity of t 7→ ln ‖Pt f ‖2.
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Inequalities

Weighted
Nash
Inequalities

Examples

Examples

Model examples on the real line, with µ(dx) = e−W dx and
Γ(f ) = f ′2.

W = a|x | : Poincaré ; no discrete spectrum.

W = ax2 : Logarithmic Sobolev ; no ultracontractivity (so no
direct bound on the spectrum).

(Log-Sob does not imply discrete spectrum : in infinite
dimension, infinite products of Gaussian measures satisfy
logarithmic Sobolev but no discrete spectrum).

W = a|x |α with α > 2 : ultracontractivity and N(Ψ) with

Ψ(x) = C
(
1 + x(ln x)−(2α−2)/α

)
.

W = c |x |α, 1 < α < 2. Not ultracontractive but Weighted
Nash with Ψ(x) = C (1 + x)λ (0 < λ < 1) and w = eW /2|x |−γ ,
γ > 0.
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