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Describe some robust and general method to control spectra
for symmetric diffusion operators

L generator of a Markov semigroup,P; = exp(tL) symmetric in

£3(u)

/ﬂ@@Z/ﬂW@-
w finite (probability) measure, Pr(1) =1, f > 0 = P:f > 0.
Model case L : Laplace operator on a compact or finite
measure manifold.
Carré du Champ : T(f,f) = 3(Lf% — 2fLf) > 0.

Dirichlet form E(f, f) = — [ fL(f)du = [T(f,f)du;
In the model case ['(f, f) = g¥9,f9;f, where g¥ is the
Riemann metric.
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Functional inequalities and spectrum

Aim : describe functional inequalities (involving £P norms and
the Dirichlet form) which lead to control of the spectrum of L :
eg which show that the spectrum is discrete and control

Yo exp(—tAp)

General method : control

[Peflloo < K(B)[Ifl oromly  [[Pefll2 <

then pointwise

Pef(x) = / F(y) pe(x, v) duly)

for a density p;, and

1pelloc < K(t) or [|pelloc < Ki(t/2).

Then

/ptxxdu Ze A < K(t)

Ki(8)lfllx
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Model inequalities
Sobolev inequalities (Sob,(C)) :
IF1Z < 112 + CE(F),

with p > 2 (p =2n/(n—2)). nis the dimension in the Sobolev
inequality.

Logarithmic Sobolev inequality (LS(C)) :
Ent, (%) < CE(f),
Ent,(f) = [ fIn(f)dp — [ fdpin( [ fdpu).
Poincaré inequalities (P(C)) :
o3 (f) < CE(f),

op(f) = [ f2du— ([ fdp)?.
Sobolev = Logarithmic Sobolev = Poincaré



Nash and

weaum  POINCaré Inequalities

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities



Nash and
spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

P(C)

—
—

Poincaré Inequalities

spec(—L) C {0} U[1/C,0)
0'2(Ptf) < exp(—2t/C)02(f).



Nash and
spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

Poincaré Inequalities

Proof :

P(C)

—
—

spec(—L) C {0} U[1/C,0)
0'2(Ptf) < exp(—2t/C)02(f).



Nash and
spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

Poincaré Inequalities

P(C) <= spec(—L)C{0}U[1l/C,0)
>  0%(Pif) < exp(—2t/C)o?(f).

Proof : 8tPtf = L(Ptf), and 81_-”PtfH% = —28(Ptf)



Nash and
spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

Poincaré Inequalities

P(C) <= spec(—L)C{0}U[1l/C,0)
>  0%(Pif) < exp(—2t/C)o?(f).

8tPtf = L(Ptf), and 81_-”PtfH% = —28(Ptf)
Apply to f — [fdp and use [ fdu=0=> [ Pifdu=0.



Nash and

weaum  POINCaré Inequalities

D. Bakry
Joint works
with F.

GM P(C) <= spec(—L)C {0}U[1/C, )
>  0%(Pif) < exp(—2t/C)o?(f).

Classical Nash O Pof = L(Ptf), and 8t”PtfH% — —25(Ptf)-

and Sobolev

Inequalities Apply to f — [ fdp and use [ fdu =0 = [ P;fdp =0. With
H(t) = |IP:f|2,
P(C) = H' < —(2/C)H.



Nash and

weaum  POINCaré Inequalities

D. Bakry
Joint works
with F.

GM P(C) <= spec(—L)C {0}U[1/C, )
>  0%(Pif) < exp(—2t/C)o?(f).

Classical Nash O Pof = L(Ptf), and 8t”PtfH% — —25(Ptf)-

and Sobolev

Inequalities Apply to f — [ fdp and use [ fdu =0 = [ P;fdp =0. With
H(t) = |IP:f|2,
P(C) = H' < —(2/C)H.

use : H(t) is convex.



Nash and
spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

Poincaré Inequalities

P(C) <= spec(—L)C{0}U[1l/C,0)
>  0%(Pif) < exp(—2t/C)o?(f).

(9tPtf = L(Ptf), and 81_-”PtfH% = _28(Ptf)
Apply to f — [ fdp and use [ fdu =0 = [ P;fdp =0. With

H(t) = ||P:fll3,
P(C) = H' < —(2/C)H.

use : H(t) is convex.
In H is convex

H" :4/(LPtf)2du, H' = —2/Pth(Ptf)du

—> (Cauchy — Shwartz) = HH" > H"%.



Nash and

weanm  From inequalities to

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

bounds



Nash and
spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

From inequalities to bounds

» Poincaré not enough to go beyond first eigenvalue.



Nash and
spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

From inequalities to bounds

» Poincaré not enough to go beyond first eigenvalue.

» Sobolev + Poincaré — Discrete spectrum, bounded
diameter.



Nash and
spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Classical Nash
and Sobolev
Inequalities

From inequalities to bounds

» Poincaré not enough to go beyond first eigenvalue.

» Sobolev + Poincaré — Discrete spectrum, bounded
diameter.

> Sobolev <= ||P:f||loe < K(2)||f|1, K(t) = Ct="/2,
0 < t < 1. (Ultracontractivity)



Nash and

weanm  From inequalities to bounds

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

» Poincaré not enough to go beyond first eigenvalue.

Classical Nash
and Sobolev
Inequalities

» Sobolev + Poincaré — Discrete spectrum, bounded
diameter.

> Sobolev <= ||P:f||loe < K(2)||f|1, K(t) = Ct="/2,
0 < t < 1. (Ultracontractivity)

» Logarithmic Sobolev "almost enough” to get discrete
spectrum (but not ultracontractivity)
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For classical Nash, (W(x) = Cx"/("+2))  this gives Ct~"/2.

Conversely if
1Pefll2 < K(E)[I 1|1,

then N (W) with

X X
Vv 1(x) = Zln—.
() = sup o N Koy

Sobolev case : K(t) = ct="/? (0 < t < 1) then
V= Cx" (M2 (x = 00) .
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Hint on the proof :

with f >0, [fdu=1: H(t) = ||Pcf||3, H'(t) = —2E(P:f).
Apply N(V) to P,f.

dH

—— < —2dt.
VI(H)

NV) = H< V(-H'/)2) —

Uses the fact that [ Pifdp = [ fdp.
Differential equation, from which a bound || P:f||3 < Ki(t)]|f]1.

. use the convexity of In H : from
1Pefll2 < K(t/2)'/2|f

|1,
H(t) < H(0)' K (20)t/2

take asymptotics in t = 0 and optimize in a.
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Beyond spectral gap : bottom of the essential spectrum

If

/fzdﬂg re(f) + (/I‘I(f)d,u)z

where T1(f) is the projection onto a finite dimensional space.

Then, 0ess € [%,oo).
Conversely, if 0ess C (1,00), then (1) holds.
Other version : Super Poincaré Inequalities

If 0ess = ), then there exists w € £2(p) and r +— 3(r) on

(0, 00) such that

(SPI)/f2dM< rE(f)+ﬂ(r)</\fw]du>2.

w =), ajf;, where f; eigenvectors and (a;)

decreasing such that ). |aj| < oo; then 3(r) = n(r)/ai(r),

such that (f,---

s fa(r)) span the spectral space Ey,.

(1)
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» Either the operator L is Persson
Then, the essential spectrum is empty.
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cE(f)
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From (SPI) to discrete spectrum : Wang's theorem

If (SPI) holds for some function r +— 3(r) and w € £2(p) and
» Either P; has a density for some t > 0.

» Either the operator L is Persson

Then, the essential spectrum is empty.
Persson : There exists an increasing sequence (Ak) such that
UAk = E and p(Agk) < oo such that inf oess > supy Ak, where

: cE(f) .
A = mf{fﬂd,u’ f supported in Ai}

Holds as soon as the Aj are nicely separated and the
embedding from H(Ay) into £L2(Ax) is compact.
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Other Version of (SPI) : Weighted Nash Inequalities N(w, V)
For some w € £2(u), w > 0 and increasing concave W with
lim, oo W(r)/r=10
2
113 < w( &(f) 2)_
| (J Iwf|dy] (J Iwf|dp)
Weighted

Nash
Inequalities . Question : what is the relation with Ultracontractivity?



Nash and
spectrum

From Weighted Nash to

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.
Maheux

Weighted
Nash
Inequalities

control on the spectrum



Nash and

wecm  From Weighted Nash to control on the spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.

e 17113 £(f)
(f wifldu)? S W((f W]f\du)2)'

Weighted
Nash
Inequalities



Nash and

wecm  From Weighted Nash to control on the spectrum

D. Bakry
Joint works
with F.
Bolley, I.
Gentil, P.

e 17113 £(f)
(f wifldu)? S W((f W]f\du)2)'

foowdx<00'fwzduzland Lw < cw.

Weighted
Nash
Inequalities



Nash and

wecm  From Weighted Nash to control on the spectrum

D. Bakry
Joint works

with F.
Bolley, I.
Gl\;g:(le‘u: ||f||2 g(f)
2 <V .
(f wifldu)? ((f W!f\du)2)
[~ wdx < oo, [w?du=1and Lw < cw. Then,
Q:(f) = w=LP:(wf) bounded from L} (w?dpu) to L2(w?dp).
Weighted

Nash
Inequalities



Nash and

wecm  From Weighted Nash to control on the spectrum

D. Bakry
Joint works

with F.
Bolley, I.
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ux 5 < w ‘
(J wifldu)> ((f W!f\du)2)
= wdx < oo, [w?du=1and Lw < cw. Then,
Q:(f) = wP:(wf) bounded from LY (w?dpu) to L2(w?dp).
Bound on the spectrum and the density
Weighted
Inequaliis D e M KA(H)e, pelx.y) < K(t)ew(x)w(y)
n

K=Y(s) = /oo Vi) dx.

w—1(s) X
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From Weighted Nash Inequalities and back

From Nash to bounds

. T ; : P13
. as before : differential equation on WPt Replace

invariance by [ wPfdu < et [ wfdy due to Lw < cw
Gives ||Pf||3 < K(t)(J |fw|dp)?, and
w™ 1Pf(fw)||2,w2du < 1112, w24
From bounds to weighted Nash If ||P:f||2 < K(t)|/fw||1, then
N(®) with ®(x) = sup{5; In 7@ > 0}.
Use convexity of t +— In || Pf||2.
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Mabhe . s .
> W = a|x| : Poincaré ; no discrete spectrum.

W = ax? : Logarithmic Sobolev ; no ultracontractivity (so no
direct bound on the spectrum).

(Log-Sob does not imply discrete spectrum : in infinite
dimension, infinite products of Gaussian measures satisfy
logarithmic Sobolev but no discrete spectrum).

W = a|x|® with a > 2 : ultracontractivity and N(V) with

Examples w(X) _ C(]. + X(|nX)_(2a_2)/a).
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Joint works Model examples on the real line, with p(dx) = e~ " dx and
with F.
Bolley, . r(f) = {2
Gentil, P.
Maheu W = a|x| : Poincaré ; no discrete spectrum.
W = ax? : Logarithmic Sobolev ; no ultracontractivity (so no
direct bound on the spectrum).
(Log-Sob does not imply discrete spectrum : in infinite
dimension, infinite products of Gaussian measures satisfy
logarithmic Sobolev but no discrete spectrum).
W = a|x|® with a > 2 : ultracontractivity and N(V) with
Frameles W(x) = C(1+ x(Inx)~Ga=2)/a),

W = c|x|* 1 < a < 2. Not ultracontractive but Weighted
Nash with W(x) = C(14 x)* (0 < XA < 1) and w = e"/?|x|77,
v > 0.
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