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Set-up:

• Topic: one particle quantum mechnics in quasi-1D random media
• sample with independent building blocks, each with L channels

• the nth block has a transfer matrix Tn (equiv. scattering matrix)
• Tn is in the generalized Lorentz group U(L, L) ⊂ Mat(2L,C)

T ∗GT = G G =

(
1 0
0 −1

)
• Polar decomposition in U(L, L) with diagonal Λ ≥ 0:

T =

(
u 0
0 v

)( √
1 + Λ

√
Λ√

Λ
√

1 + Λ

)(
u′ 0
0 v ′

)
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Reminder on maximal entropy Ansatz (MEA):

MEA: in the polar decomposition of TN · · · T1 the unitaries
u, v , u′, v ′ ∈ U(L) are independent and Haar distributed

• N size of mesoscopic volume
• MEA leads the DMPK flow equations for Λ

Discussion:

• Markov process (TN · · · T1)N≥1 on U(L, L)
• polar decomposition of T ′T from those of T ′ and T difficult
• state space non-compact
• approach is universal, no parameter dependence (as energy, etc.)
• no numerical test known in concrete models
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Alternative approach

Aims:
Model-dependent random dynamics on a compact space
Again link to RMT
Verifiable numerically by TMM procedure
Close to theory of products of random matrices

Natural action of U(L, L) on isotropic flag manifolds F (compact)
Flag manifold has set I of isotropic frames as cover:

I = {Φ ∈ Mat(2L× L,C) |Φ∗Φ = 1 ,Φ∗GΦ = 0 }

=

{
1√
2

(
U
V

) ∣∣∣∣ U,V ∈ U(L)

}
Identifying frames with same flag shows F = I/TL.
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Action

Action of U(L, L) on I:

T · Φ = T Φ S(T ,Φ)−1

with S(T ,Φ) upper triangular L× L with positive diagonal

Cocycle:
S(T ′T ,Φ) = S(T ′, T · Φ) S(T ,Φ)

Does not factor to cocycle on flag F, but diagonal does!

Markov process of I: Φn = Tn · Φn−1

Use: Calculation of Lyapunov spectrum (as in TMM)

γp = lim
N→∞

1

N
log ‖Λp TN · · · T1‖

= lim
N→∞

1

N

N∑
n=1

log 〈ep|S(Tn,Φn−1)|ep〉
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Random phase property (RPP)

Rough RPP: ΦN Haar distributed on I ∼= U(L)× U(L)

• MEA implies the rough RPP
• But rough RPP is WRONG in concrete situations (details later)
• Need to go to normal system of coordinates and open channels

Interest in weak coupling regime of randomness:

H = H0 + λH1 H1 random

Tn = T +O(λ) with T non-random

Normal system of coordinates:

M−1TnM = R eλPn+O(λ2)

with R direct sum of 2× 2 blocks (as symplectic diagonalization)
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Random phase property (RPP)

Elliptic/open channels and hyperbolic/closed/evanescent channels(
e iη 0
0 e−iη

) (
cosh(η) sinh(η)
sinh(η) cosh(η)

)
R checker board sum of such blocks (Jordan blocks excluded)
πe and πh projections in CL on elliptic/hyperbolic channels

RPP: Unique (!) invariant measure of Markov process on I

Φn = R eλPn · Φn−1 =
1√
2

(
Un

Vn

)
satisfies with errors of order O(λ):
(R1) πeUπh = πhUπe = 0
(R2) πhUπh fixed permutation
(R3) πeUπe Haar distributed on U(Le) where Le = dim(πe)
(R4) U and V independent and identically distributed (no TRI)

U = V or U = I ∗V I (TRI with even or odd spin)
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General implications of RPP

Program: • General implications of RPP
• Numerics and application for Anderson model
• How to prove the RPP

Theorem

Suppose RPP holds for Tn = R eλPn ∈ U(L, L). For p > Le

γp =
λ2

4L2
e

ETr(Πe(P∗ + P)ΠePΠe)

(
L− p +

1

β

)
+ O(λ3)

where Πe = diag(πe , πe) and β = 1, 2, 4.

• Equidistance of Lyapunov spectrum
• Dependence of inverse localization length γL on universality class
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Anderson model on a strip

Hilbert space `2(Z)⊗ CL 3 (ψn)n∈Z , ψn ∈ CL

(Hψ)n = ψn+1 + ψn−1 + (e iϕS + e−iϕS∗ + λVn)ψn

S cyclic shift on CL, ϕ magnetic flux
Vn = diag(vn,1, . . . , vn,L) with i.i.d. centered entries

Schrödinger equation Hψ = Eψ reformulated(
ψn+1

ψn

)
=

(
E1− e iϕS − e−iϕS∗ − λVn −1

1 0

)(
ψn

ψn−1

)

Transfer matrices after Cayley transform C = 1√
2

(
1 −i
1 i

)

T E
n = C

(
E1− e iϕS − e−iϕS∗ − λVn −1

1 0

)
C∗ ∈ U(L, L)
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Numerical test of RPP
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M=100, κ=1, φ=0, elliptic
including hyperbolic channels
M=20, elliptic only, rest same
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Poisson
GOE, Wigner surmise
GUE, Wigner surmise

Basis change M can be constructed (symplectic diagonalization)
Plot of level spacing of UN for N = 2000 and L = 20 and L = 100
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Lyapunov exponents

Application: set 2 cos(kl) = E − 2 cos(2πlL ) for l = 1, . . . , L

γp =
λ2

4L

(
1

Le

∑
l

1

| sin(kl)|

)2 (
L− p +

1

β

)
+ O(λ3)

Breakdown of agreement: LγEL ∼ O(1)
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How to prove the RPP?

Abstract approach: Given a random family of Lie group elements

Tλ,σ = R exp(λPσ) ∈ G

where R generates compact group 〈R〉 (no hyperbolic channels)
Pσ i.i.d. in Lie algebra with E(Pσ) = 0
Group acts on compact homogeneous space I
I has invariant volume µ
Induced Markov process on I

Φn = Tλ,n · Φn−1

Interest: perturbative calculation (in λ) of averaged Birkhoff sums

Iλ,N(f ) =
1

N
E

N∑
n=1

f (Φn)

Known: Dunford-Schwartz operator ergodic theorem
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Abstract Theorem

Theorem

Suppose that

Lie(ReλPR−1 |R ∈ 〈R〉,P ∈ supp(Pσ))

acts transitively on I. Then there is a µ-a.s. positive,
L1-normalized function ρ ∈ C∞(I), such that for any f ∈ C∞(I)
consisting of low frequencies w.r.t. R

Iλ,N(f ) =

∫
dµρ f + O(λ,

1

Nλ2
) .

〈R〉 compact abelian group ⇒ isom. ϕ : 〈R〉 → Zn × (R/2πZ)k

f consists of low frequencies w.r.t. R if the Fourier series of the
function R 7→ f (R · Φ), R ∈ 〈R〉 is finite, uniformly in Φ
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Remarks:
• Main hypothesis replaces Furstenberg’s irreducibility condition
• In Anderson model, P has only L random entries, dim(I) = 2L2

Nevertheless, hypothesis is satisfied
• Proof provides technique to check RPP, namely ρ = 1
• At least the perturbative invariant measure ρµ is unique and a.c.

w.r.t. to the Riemannian volume measure

Corollary

For any family in λ of invariant measures νλ,

w*- lim
λ→0

νλ = µρ
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Basic idea of proof in case R = 1
For Lie algebra element P define the vector field

∂P f (Φ) =
d

dt

∣∣∣
t=0

f (etP · Φ)

Consider L = Eσ(∂2Pσ
)

L also second derivative of Markov operator

EσF (Tλ,σ · Φ) = F (Φ) +
λ2

2
L(F )(φ) + O(λ3) F ∈ C∞(I)

Taking Birkhoff sum of both sides gives:

Iλ,N(LF ) = O(λ, (λ2N)−1)

Adjoint L∗ in L2(I, µ), operator of Fokker-Planck type
Main claim: there is smooth a.s. positive ρ with

kerL∗ = Cρ C∞(I) = C1I ⊕ L(C∞(I))

Then result follows from f =
∫

dµ(ρf ) + LF for f ∈ C∞(I)
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Proof of main claim: L can be brought in Hörmander form
Main hypothesis implies that L and L∗ are Hörmander operators
Use subelliptic estimates (compact resolvent)
Bony’s maximum principle (unique groundstate)
hypoellipticity (smoothness), dissipativity (<e〈f |L|f 〉 ≤ c‖f ‖2)

Corollary

If L∗(1I) = 0, then perturbative invariant measure is Haar measure
(RPP holds).

Iteration in case R = 1 gives:

Iλ,N(f ) =
M−1∑
m=0

λm
∫

dµρmf + O(λM ,
1

Nλ2
) .

If R 6= 1, one can use instead

L̂F =

∫
〈R〉

dR Eσ(∂2RPσR−1F )
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Wegner L-orbital model

As Anderson model, but no shift and Vn full random hermitian

Proposition

For |E | < 2,E 6= 0, then RPP holds

γEp = λ2
1 + 2(L− p)

2(4− E 2)
+ O

( λ3

min{|E |, |E ± 2|}
)

Remarks:
• Case L = 1 is Thouless formula (Pastur and Figotin, and above)
• Perturbatively equidistant Lyapunov spectrum
• Scaling by factor L ∼ Le different from Anderson
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Application to anomalies (no RPP holds)

Proposition

E = 0, Kappus-Wegner anomaly for Anderson or L-orbital model

L∑
p=1

γEp = λ2 L2

∫
dΦ ρ(Φ) f (UV ∗) + O

(
Lλ3

)
where both f and ρ 6= 1 are explicit

Proposition

L = 1, i.e. Anderson model. For band edge E = 2:

γE = λ2/3
∫

dΦ ρ(Φ) g(UV ∗) + O
(
λ
)

for some smooth g : S1 → R
Remark: Derrida-Gardener (1987)
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Oscillation theorem

(HNψ)n = Tn+1ψn+1 + Vnψn + Tnψn−1 with TN+1 = T0 = 0

Theorem

HN on finite volume L× N, E ∈ R
W E

N = UE
N (V E

N )∗ unitary at N with W E
0 = 1

• L lifted eigenphases θEN,` ∈ R of W E
N real analytic in E

• E eigenvalue of HN of multiplicity m
iff θEN,` = π mod 2π for m eigenphases

• speed matrix SE
N = 1

i (W E
N )∗∂EW E

N positive definite
• each θEN,` increasing function of E

• each θEN,` makes N turns for E ∈ R
• HN is real ⇒ W E

N symmetric and SE
N real

Remark: reduction of dimension by 1 for eigenvalue calculation
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Preliminary numerical results
for Anderson on large squares (L = N) and cubes (L = N2)

• RPP does not hold for W E
N , no flat DOS of phases

• but already separation of hyperbolic and elliptic channels
• elliptic phases of W E

N RMT-level spacing
• DOS of SE

N fat tails in localization regime (as in quasi-1D)
• SE

N approximately Pastur-Marchenko in metallic phase
• eigenbasis of W E

N and SE
N not correlated

Szenario for localized phase:
high speeds give Poisson statistics

Szenario for metallic phase:
level-spacing of W E

N and small phase speeds of same magnitude
lead to GOE-level spacing of HN
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Resumé

• RPP describes distribution on a compact space in normal
coordinates
• Holds for Wegner L-orbital (proof) and Anderson (numerics)
• Formulas for Lyapunov spectrum
• Techniques for study of finite size systems


