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Set-up:

e Topic: one particle quantum mechnics in quasi-1D random media
e sample with independent building blocks, each with L channels
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e the nth block has a transfer matrix 7, (equiv. scattering matrix)
e 7, is in the generalized Lorentz group U(L, L) C Mat(2L,C)
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e Polar decomposition in U(L, L) with diagonal A > 0:
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Reminder on maximal entropy Ansatz (MEA):

MEA: in the polar decomposition of 7y --- 71 the unitaries
u,v,u, v/ € U(L) are independent and Haar distributed

e N size of mesoscopic volume
e MEA leads the DMPK flow equations for A

Discussion:

e Markov process (7n - -+ T1)n>1 on U(L, L)

e polar decomposition of 7'7T from those of 7' and 7T difficult

e state space non-compact

e approach is universal, no parameter dependence (as energy, etc.)
e no numerical test known in concrete models
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Alternative approach

Aims:

Model-dependent random dynamics on a compact space
Again link to RMT

Verifiable numerically by TMM procedure

Close to theory of products of random matrices

Natural action of U(L, L) on isotropic flag manifolds F (compact)
Flag manifold has set I of isotropic frames as cover:

I = {®eMat(2L x L,C)|d*d=1,0"Gd=0}
- {&=(v)
= 15l

Identifying frames with same flag shows F = I/T".

U,VEU(L)}
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Action

Action of U(L, L) on I:
T-o=ToS(T,0)!
with S(7, ®) upper triangular L x L with positive diagonal

Cocycle:
S(T'T,®)=S(T',T-®)S(T,d)
Does not factor to cocycle on flag IF, but diagonal does!

Markov process of I. &, =7, -, 1

Use: Calculation of Lyapunov spectrum (as in TMM)
1
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Random phase property (RPP)

Rough RPP: ¢y Haar distributed on I = U(L) x U(L)

e MEA implies the rough RPP
e But rough RPP is WRONG in concrete situations (details later)
e Need to go to normal system of coordinates and open channels

Interest in weak coupling regime of randomness:
H=Hy+ \Hq H; random

To=T+O(N\) with 7 non-random

Normal system of coordinates:
M_lﬂM — Re)\Pn+O(>\2)

with R direct sum of 2 x 2 blocks (as symplectic diagonalization)
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Random phase property (RPP)

Elliptic/open channels and hyperbolic/closed /evanescent channels

(4 0) (oo st )

R checker board sum of such blocks (Jordan blocks excluded)
e and 7y, projections in CL on elliptic/hyperbolic channels

RPP: Unique (!) invariant measure of Markov process on I

1 U
o, =R\ . b, =< >
T2\ Vv,

satisfies with errors of order O(\):

(R1) meUmp = mpUme =0

(R2) mpUmrp, fixed permutation

(R3) meUme Haar distributed on U(Le) where Lo = dim(7)

(R4) U and V independent and identically distributed (no TRI)
U=V or U=I*VI (TRI with even or odd spin)
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General implications of RPP

Program: e General implications of RPP
e Numerics and application for Anderson model
e How to prove the RPP

Theorem
Suppose RPP holds for T, = R e’Pn € U(L, L). For p > L,
)\2

N 1

where M = diag(me, me) and 5 =1,2,4.

e Equidistance of Lyapunov spectrum
e Dependence of inverse localization length +; on universality class
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Anderson model on a strip

Hilbert space /2(Z) ® (L= (¥n)nez » Un € CL
(HY)n = Y1+ U1+ (€S + 795" + AV,)¢,

S cyclic shift on Ct, ¢ magnetic flux
V, = diag(vn1,..., Vs ) with i.i.d. centered entries

Schrodinger equation Hy = Et reformulated

<¢,,+1> B <E1—e"P5—e"‘P5*—)\Vn _1> ( U >
¢n B 1 0 1,[),,,1

1 —i
. _ 1
Transfer matrices after Cayley transform C = 7 <1 ; )

N X N —
777E:C<E1 e'¥vS 1e S -V, 01>C*6U(L,L)
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Numerical test of RPP

P
L /A — M=100, k=1, ¢=0, dlliptit
08k // " including hyperbolic char
’ / I\ -- M=20, dliptic only, rest ¢
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Basis change M can be consstructed (symplectic diagonalization)
Plot of level spacing of Uy for N = 2000 and L =20 and L = 100
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Lyapunov exponents

Application: set 2cos(k/) = E — 2cos(%) forI=1,...,L
2
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Breakdown of agreement: LyE ~ O(1)
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How to prove the RPP?

Abstract approach: Given a random family of Lie group elements
Tro =Rexp(AP,) € G

where R generates compact group (R) (no hyperbolic channels)
Py i.id. in Lie algebra with E(P,) =0

Group acts on compact homogeneous space I

I has invariant volume p

Induced Markov process on I

o, = 7;\,n P,
Interest: perturbative calculation (in A) of averaged Birkhoff sums

1 N
n=1

Known: Dunford-Schwartz operator ergodic theorem
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Abstract Theorem

Theorem
Suppose that
Lie(Re*PR™Y| R € (R), P € supp(P,))
acts transitively on 1. Then there is a p-a.s. positive,
LY-normalized function p € C*(1), such that for any f € C>(I)
consisting of low frequencies w.r.t. R
1

Iy (f) Z/dupf + O(A, N}\z)-

(R) compact abelian group = isom. ¢ : (R) — Z, x (R/27Z)*

f consists of low frequencies w.r.t. R if the Fourier series of the
function R — f(R - ®), R € (R) is finite, uniformly in ¢
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Remarks:

e Main hypothesis replaces Furstenberg's irreducibility condition

e In Anderson model, P has only L random entries, dim(I) = 212
Nevertheless, hypothesis is satisfied

e Proof provides technique to check RPP, namely p =1

e At least the perturbative invariant measure pu is unique and a.c.
w.r.t. to the Riemannian volume measure

For any family in A\ of invariant measures vy,

*_ | _
w*- lim vy, =
A0 s
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Basic idea of proof in case R =1
For Lie algebra element P define the vector field

d

f(etP - P)
t=0

Consider £ = EU(G%U)
L also second derivative of Markov operator

EF(Tho- ) = F(O) + SLFO) + O0F)  Fe ()

Taking Birkhoff sum of both sides gives:
hov(LF) = O\, (N2N)™H)

Adjoint £* in L2(I, i), operator of Fokker-Planck type
Main claim: there is smooth a.s. positive p with

ker£*=Cp  C®(I) =Clp @ L(C>™(I))
Then result follows from f = [ du(pf) + LF for f € C>(I)
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Proof of main claim: £ can be brought in Hérmander form

Main hypothesis implies that £ and £* are Hormander operators
Use subelliptic estimates (compact resolvent)

Bony's maximum principle (unique groundstate)

hypoellipticity (smoothness), dissipativity (Re(f|L|f) < c||f||?)

If £*(11) = 0, then perturbative invariant measure is Haar measure
(RPP holds).

Iteration in case R =1 gives:

1
§ : m M
If R # 1, one can use instead

LF :/ dR E,(0zp, g-1F)
(R)
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Wegner L-orbital model

As Anderson model, but no shift and V,, full random hermitian

Proposition

For |E| < 2,E # 0, then RPP holds

L 142(L—p) A’
W = AZW (min{yE|,|Ei2\})

Remarks:

e Case L =1 is Thouless formula (Pastur and Figotin, and above)
e Perturbatively equidistant Lyapunov spectrum

e Scaling by factor L ~ L, different from Anderson
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Application to anomalies (no RPP holds)

E = 0, Kappus-Wegner anomaly for Anderson or L-orbital model

doaf = 2212 /d¢p(q>) F(UVF) + O(LN?)

where both f and p # 1 are explicit

Proposition
L =1, i.e. Anderson model. For band edge E = 2:

FE = N3 /dcbp(cb)g(uv*) + 0N

for some smooth g : S' — R
Remark: Derrida-Gardener (1987)
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Oscillation theorem

(HNw)n = n+1wn+l + Vn@bn + annfl with 7_N—i-l = TO =0

Theorem

HN on finite volume L x N, E € R
WE = UE(VE)* unitary at N with WE =1

o L lifted eigenphases 0y, , € R of Wy real analytic in E
o E eigenvalue of HN of multiplicity m

iffHE,’Z = m mod 27 for m eigenphases

e speed matrix SE = 1 (W§)*0g W] positive definite
e each 95,2 increasing function of E

® each 95,2 makes N turns for E € R

o HN is real = WE symmetric and SE real

Remark: reduction of dimension by 1 for eigenvalue calculation
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Preliminary numerical results
for Anderson on large squares (L = N) and cubes (L = N?)

e RPP does not hold for W£, no flat DOS of phases

e but already separation of hyperbolic and elliptic channels
e elliptic phases of Wﬁ RMT-level spacing

e DOS of SE fat tails in localization regime (as in quasi-1D)
. SE approximately Pastur-Marchenko in metallic phase

e eigenbasis of WE and S not correlated

Szenario for localized phase:
high speeds give Poisson statistics

Szenario for metallic phase:
level-spacing of Wﬁ and small phase speeds of same magnitude
lead to GOE-level spacing of HV
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Resumé

e RPP describes distribution on a compact space in normal
coordinates

e Holds for Wegner L-orbital (proof) and Anderson (numerics)
e Formulas for Lyapunov spectrum

e Techniques for study of finite size systems



