Asymptotic completeness below the two-boson threshold in the massive translation invariant Nelson model

Wojciech Dybalski¹

joint work with J. S. Møller²

¹ETH Zürich

²Univ. Aarhus

Bordeaux, June 2013

Motivation

Asymptotic completeness in QFT attracted much attention during the last two decades:

- Relativistic QFT: [Lechner 08, Tanimoto-W.D. 11, Gérard-W.D. 12]
- Non-relativistic QFT:
 - (a) Confined case: [Spohn 97, Dereziński-Gérard 99, Fröhlich-Griesemer-Schlein 01, De Roeck-Kupiainen 11, Faupin-Sigal 12, De Roeck Kupiainen-Griesemer 13]
 - (b) Translationally invariant case: [Fröhlich-Griesemer-Schlein 04/05]

In this talk we aim at asymptotic completeness results for massive translationally invariant models for arbitrary coupling constants.

Motivation

Asymptotic completeness in QFT attracted much attention during the last two decades:

- Relativistic QFT: [Lechner 08, Tanimoto-W.D. 11, Gérard-W.D. 12]
- Non-relativistic QFT:
 - (a) Confined case: [Spohn 97, Dereziński-Gérard 99, Fröhlich-Griesemer-Schlein 01, De Roeck-Kupiainen 11, Faupin-Sigal 12, De Roeck Kupiainen-Griesemer 13]
 - (b) Translationally invariant case: [Fröhlich-Griesemer-Schlein 04/05]

In this talk we aim at asymptotic completeness results for massive translationally invariant models for arbitrary coupling constants.

Outline

- The class of models
- 2 The energy-momentum spectrum
- Main result
- Outline of the proof
- Conclusion and outlook

Nelson model

Definition

•
$$\mathcal{H} = \mathcal{K} \otimes \Gamma(\mathfrak{h})$$
, where $\mathcal{K} = L^2(\mathbb{R}^{\nu}, dy)$, $\mathfrak{h} = L^2(\mathbb{R}^{\nu}, dk)$.

$$\Theta H = \Omega(-i\nabla_y) \otimes 1 + 1 \otimes d\Gamma(\omega) + (a(G_y) + a^*(G_y)), \text{ where}$$

(a)
$$\Omega(p) = \frac{p^2}{2M}$$
 or $\Omega(p) = \sqrt{p^2 + M^2}$.

(b)
$$\omega(k) = \sqrt{k^2 + m^2}$$
, $m > 0$.

(c)
$$G_{\nu}(k) = e^{-iky}G(k)$$
, $G \in S(\mathbb{R}^{\nu})$, rotationally invariant.

Nelson model

Definition

- $\mathcal{H} = \mathcal{K} \otimes \Gamma(\mathfrak{h})$, where $\mathcal{K} = L^2(\mathbb{R}^{\nu}, dy)$, $\mathfrak{h} = L^2(\mathbb{R}^{\nu}, dk)$.
- $oldsymbol{\Theta} H = \Omega(-i\nabla_y) \otimes 1 + 1 \otimes \mathrm{d}\Gamma(\omega) + (a(G_y) + a^*(G_y)),$ where

(a)
$$\Omega(p) = \frac{p^2}{2M}$$
 or $\Omega(p) = \sqrt{p^2 + M^2}$.

(b)
$$\omega(k) = \sqrt{k^2 + m^2}, m > 0.$$

(c)
$$G_y(k) = e^{-iky}G(k)$$
, $G \in S(\mathbb{R}^{\nu})$, rotationally invariant.

Polaron model

Definition

•
$$\mathcal{H} = \mathcal{K} \otimes \Gamma(\mathfrak{h})$$
, where $\mathcal{K} = L^2(\mathbb{R}^3, dy)$, $\mathfrak{h} = L^2(\mathbb{R}^3, dk)$.

$$oldsymbol{\Theta} H = \Omega(-i
abla_y)\otimes 1 + 1\otimes \mathrm{d}\Gamma(\omega) + (a(\mathcal{G}_y) + a^*(\mathcal{G}_y)),$$
 where

(a)
$$\Omega(p) = \frac{p^2}{2M}$$
.

(b)
$$\omega(k) = \text{const} > 0$$
.

(c)
$$G_y(k) = e^{-iky} \frac{G(k)}{|k|}$$
, $G \in S(\mathbb{R}^3)$, rotationally invariant.

Remark: Polaron model describes interaction of an electron with optical phonons in a dielectric cristal.

The fiber Hamiltonians

H commutes with the momentum operators

$$P = -i\nabla_y \otimes 1 + 1 \otimes \mathrm{d}\Gamma(k).$$

The joint spectral measure will be denoted by $E(\cdot)$.

Therefore, H has a fiber decomposition

$$H = I^* \left(\int^{\oplus} d\xi \, H(\xi) \right) I,$$

where I is a unitary transformation.

The fiber Hamiltonians have the form

$$H(\xi) = \Omega(\xi - d\Gamma(k)) + d\Gamma(\omega) + a^*(G) + a(G)$$

and act on $\mathcal{H}_{\mathcal{E}} = \Gamma(\mathfrak{h})$.

The fiber Hamiltonians

H commutes with the momentum operators

$$P = -i\nabla_y \otimes 1 + 1 \otimes \mathrm{d}\Gamma(k).$$

The joint spectral measure will be denoted by $E(\cdot)$.

Therefore, H has a fiber decomposition

$$H = I^* \left(\int^{\oplus} d\xi \, H(\xi) \right) I,$$

where I is a unitary transformation.

The fiber Hamiltonians have the form

$$H(\xi) = \Omega(\xi - d\Gamma(k)) + d\Gamma(\omega) + a^*(G) + a(G)$$

and act on $\mathcal{H}_{\mathcal{E}} = \Gamma(\mathfrak{h})$.

The fiber Hamiltonians

H commutes with the momentum operators

$$P = -i\nabla_y \otimes 1 + 1 \otimes \mathrm{d}\Gamma(k).$$

The joint spectral measure will be denoted by $E(\cdot)$.

Therefore, H has a fiber decomposition

$$H = I^* \left(\int^{\oplus} d\xi \, H(\xi) \right) I,$$

where I is a unitary transformation.

The fiber Hamiltonians have the form

$$H(\xi) = \Omega(\xi - d\Gamma(k)) + d\Gamma(\omega) + a^*(G) + a(G)$$

and act on $\mathcal{H}_{\varepsilon} = \Gamma(\mathfrak{h})$.

The energy-momentum spectrum

The joint spectrum Σ of (P, H) can be decomposed as follows

$$\Sigma = \Sigma_{\rm pp} \cup \Sigma_{\rm ac} \cup \Sigma_{\rm sc},$$

where
$$\Sigma_i = \{ (\xi, \lambda) \in \mathbb{R}^{\nu+1} \mid \lambda \in \sigma_i(H(\xi)) \}, \quad i \in \{ pp_aac, sc \}.$$

Thresholds

$$\Sigma^{(1)}(\xi) := \inf_{k} \{ \Sigma^{(0)}(\xi - k) + \omega(k) \}$$

$$\Sigma^{(2)}(\xi) := \inf_{k_1, k_2} \{ \Sigma^{(0)}(\xi - k_1 - k_2) + \omega(k_1) + \omega(k_2) \}.$$

The structure of continuous spectrum

Theorem (J.S. Møller, M.G. Rasmussen, 2011)

The set

$$R := \{ (\xi, \lambda) \in \mathbb{R}^{\nu+1} \, | \, \lambda < \Sigma^{(2)}(\xi) \}$$

has trivial intersection with $\Sigma_{\rm sc}$. Hence it is contained in $\Sigma_{\rm ac} \cup \Sigma_{\rm pp}$.

Main Result: General formulation

Main result: Asymptotic completeness holds in R.

Definition

Extended objects are defined as follows

$$\begin{array}{lll} \mathcal{H}^{\mathrm{ex}} & = & \mathcal{H} \otimes \Gamma(\mathfrak{h}), \\ H^{\mathrm{ex}} & = & H \otimes 1 + 1 \otimes \mathrm{d}\Gamma(\omega), \\ P^{\mathrm{ex}} & = & P \otimes 1 + 1 \otimes \mathrm{d}\Gamma(k). \end{array}$$

The joint spectral measure of $(P^{\mathrm{ex}}, H^{\mathrm{ex}})$ will be denoted by $E^{\mathrm{ex}}(\cdot)$.

Definition

• Let $U : \Gamma(\mathfrak{h} \oplus \mathfrak{h}) \to \Gamma(\mathfrak{h}) \otimes \Gamma(\mathfrak{h})$ be the canonical identification:

$$U|0\rangle = |0\rangle \otimes |0\rangle, \ Ua^*(h_1,h_2) = (a^*(h_1) \otimes 1 + 1 \otimes a^*(h_2)).$$

② Let q_0, q_∞ be bounded operators on $\mathcal{K} \otimes \mathfrak{h}$. We define operators $\hat{q}: \mathcal{K} \otimes \mathfrak{h} \to \mathcal{K} \otimes (\mathfrak{h} \oplus \mathfrak{h})$ by:

$$\hat{q}(\Psi \otimes h) := (q_0(\Psi \otimes h), q_{\infty}(\Psi \otimes h)).$$

① We define $\check{\Gamma}(\hat{q}): \mathcal{H} \to \mathcal{H}^{\mathrm{ex}}$ by $\check{\Gamma}(\hat{q}):=U\Gamma(\hat{q})$.

Definition

• Let $U : \Gamma(\mathfrak{h} \oplus \mathfrak{h}) \to \Gamma(\mathfrak{h}) \otimes \Gamma(\mathfrak{h})$ be the canonical identification:

$$U|0
angle = |0
angle \otimes |0
angle, \ Ua^*(h_1,h_2) = (a^*(h_1)\otimes 1 + 1\otimes a^*(h_2)).$$

② Let q_0, q_∞ be bounded operators on $\mathcal{K} \otimes \mathfrak{h}$. We define operators $\hat{q}: \mathcal{K} \otimes \mathfrak{h} \to \mathcal{K} \otimes (\mathfrak{h} \oplus \mathfrak{h})$ by:

$$\hat{q}(\Psi \otimes h) := (q_0(\Psi \otimes h), q_{\infty}(\Psi \otimes h)).$$

ullet We define $\check{\Gamma}(\hat{q}): \mathcal{H} \to \mathcal{H}^{\mathrm{ex}}$ by $\check{\Gamma}(\hat{q}):=U\Gamma(\hat{q})$.

Definition

• Let $U : \Gamma(\mathfrak{h} \oplus \mathfrak{h}) \to \Gamma(\mathfrak{h}) \otimes \Gamma(\mathfrak{h})$ be the canonical identification:

$$U|0\rangle = |0\rangle \otimes |0\rangle,$$

 $Ua^*(h_1, h_2) = (a^*(h_1) \otimes 1 + 1 \otimes a^*(h_2)).$

② Let q_0, q_∞ be bounded operators on $\mathcal{K} \otimes \mathfrak{h}$. We define operators $\hat{q}: \mathcal{K} \otimes \mathfrak{h} \to \mathcal{K} \otimes (\mathfrak{h} \oplus \mathfrak{h})$ by:

$$\hat{q}(\Psi \otimes h) := (q_0(\Psi \otimes h), q_{\infty}(\Psi \otimes h)).$$

3 We define $\check{\Gamma}(\hat{q}): \mathcal{H} \to \mathcal{H}^{\mathrm{ex}}$ by $\check{\Gamma}(\hat{q}):=U\Gamma(\hat{q})$.

Main result

Theorem

• There exists the wave operator $\Omega_R^+: E^{\mathrm{ex}}(R)\mathcal{H}_+ \to E(R)\mathcal{H}$ given by

$$\Omega_R^+ := \operatorname{s-} \lim_{t \to \infty} \operatorname{e}^{itH} \check{\Gamma}(1,1)^* \operatorname{e}^{-itH^{\operatorname{ex}}},$$

where
$$\mathcal{H}_+ := E(\Sigma_{\mathrm{pp}})\mathcal{H} \otimes \Gamma(\mathfrak{h})$$
.

 Ω_R^+ is a unitary, i.e.,

$$\begin{array}{rcl} \Omega_R^{+*}\Omega_R^+ & = & E^{\mathrm{ex}}(R)|_{\mathcal{H}_+} \\ \Omega_R^+\Omega_R^{+*} & = & E(R). \end{array}$$

Main result

Theorem

• There exists the wave operator $\Omega_R^+: E^{\mathrm{ex}}(R)\mathcal{H}_+ \to E(R)\mathcal{H}$ given by

$$\Omega_R^+ := \operatorname{s-} \lim_{t \to \infty} \operatorname{e}^{itH} \check{\Gamma}(1,1)^* \operatorname{e}^{-itH^{\operatorname{ex}}},$$

where
$$\mathcal{H}_+ := E(\Sigma_{\mathrm{pp}})\mathcal{H} \otimes \Gamma(\mathfrak{h})$$
.

 Ω_R^+ is a unitary, i.e.,

$$\begin{array}{rcl} \Omega_R^{+*}\Omega_R^+ & = & E^{\mathrm{ex}}(R)|_{\mathcal{H}_+}, \\ \Omega_R^+\Omega_R^{+*} & = & E(R). \end{array}$$

Theorem (J.S. Møller, M.G. Rasmussen, 2011)

Let $(\xi_0, \lambda_0) \in R$, $(\lambda_0$ outside of some discrete set). Let a_{ξ_0} have the form

$$a_{\xi_{\mathbf{0}}} = \frac{1}{2} \big\{ v_{\xi_{\mathbf{0}}} \cdot i \nabla_k + i \nabla_k \cdot v_{\xi_{\mathbf{0}}} \big\},\,$$

where $v_{\xi_0} \in C_0^{\infty}(\mathbb{R}^{\nu} \setminus \{0\}; \mathbb{R}^{\nu})$ is a suitable vector field.

Then there exist a neighbourhood N_0 of ξ_0 , a neighbourhood \mathcal{J}_0 of λ_0 , and a constant $c_{\mathrm{m}} > 0$ s.t. for any $\xi \in N_0$:

$$\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))i[H(\xi),\mathrm{d}\Gamma(a_{\xi_{\mathbf{0}}})]\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))\geq c_{\mathrm{m}}\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))$$

$$\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))i[H^{(1)}(\xi),1\otimes a_{\xi_{\mathbf{0}}}]\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))\geq c_{\mathrm{m}}\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))$$

where $H^{(1)} := H \otimes 1 + 1 \otimes \omega$

Remark: For future reference we fix open set \mathcal{O} s.t. $\overline{\mathcal{G}} \subset \mathcal{N}_0 \times \mathcal{J}_0$.

Theorem (J.S. Møller, M.G. Rasmussen, 2011)

Let $(\xi_0, \lambda_0) \in R$, $(\lambda_0$ outside of some discrete set). Let a_{ξ_0} have the form

$$a_{\xi_{\mathbf{0}}} = \frac{1}{2} \big\{ v_{\xi_{\mathbf{0}}} \cdot i \nabla_k + i \nabla_k \cdot v_{\xi_{\mathbf{0}}} \big\},\,$$

where $v_{\xi_0} \in C_0^{\infty}(\mathbb{R}^{\nu} \setminus \{0\}; \mathbb{R}^{\nu})$ is a suitable vector field.

Then there exist a neighbourhood N_0 of ξ_0 , a neighbourhood \mathcal{J}_0 of λ_0 , and a constant $c_{\mathrm{m}}>0$ s.t. for any $\xi\in N_0$:

$$\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))i[H(\xi),\mathrm{d}\Gamma(a_{\xi_{\mathbf{0}}})]\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))\geq c_{\mathrm{m}}\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))$$

$$\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))i[H^{(1)}(\xi),1\otimes a_{\xi_{\mathbf{0}}}]\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))\geq c_{m}\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))$$

where $H^{(1)} := H \otimes 1 + 1 \otimes \omega$

Remark: For future reference we fix open set $\mathcal{O}_{s,t}$. $\mathcal{O}_{s,t}$. $\mathcal{O}_{s,t}$.

Theorem (J.S. Møller, M.G. Rasmussen, 2011)

Let $(\xi_0, \lambda_0) \in R$, $(\lambda_0$ outside of some discrete set). Let a_{ξ_0} have the form

$$a_{\xi_{\mathbf{0}}} = \frac{1}{2} \big\{ v_{\xi_{\mathbf{0}}} \cdot i \nabla_k + i \nabla_k \cdot v_{\xi_{\mathbf{0}}} \big\},\,$$

where $v_{\xi_0} \in C_0^{\infty}(\mathbb{R}^{\nu} \setminus \{0\}; \mathbb{R}^{\nu})$ is a suitable vector field.

Then there exist a neighbourhood N_0 of ξ_0 , a neighbourhood \mathcal{J}_0 of λ_0 , and a constant $c_{\mathrm{m}}>0$ s.t. for any $\xi\in N_0$:

$$\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))i[H(\xi),\mathrm{d}\Gamma(a_{\xi_{\mathbf{0}}})]\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))\geq c_{\mathrm{m}}\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))$$

$$\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))i[H^{(1)}(\xi),1\otimes a_{\xi_{\mathbf{0}}}]\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))\geq c_{\mathbf{m}}\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))$$

where $H^{(1)} := H \otimes 1 + 1 \otimes \omega$.

Remark: For future reference we fix open set $\mathcal{O}_{s,t}$. $\mathcal{O}_{s,t}$. $\mathcal{O}_{s,t}$.

Theorem (J.S. Møller, M.G. Rasmussen, 2011)

Let $(\xi_0, \lambda_0) \in R$, $(\lambda_0$ outside of some discrete set). Let a_{ξ_0} have the form

$$a_{\xi_{\mathbf{0}}} = \frac{1}{2} \{ v_{\xi_{\mathbf{0}}} \cdot i \nabla_k + i \nabla_k \cdot v_{\xi_{\mathbf{0}}} \},$$

where $v_{\xi_0} \in C_0^{\infty}(\mathbb{R}^{\nu} \setminus \{0\}; \mathbb{R}^{\nu})$ is a suitable vector field.

Then there exist a neighbourhood N_0 of ξ_0 , a neighbourhood \mathcal{J}_0 of λ_0 , and a constant $c_{\mathrm{m}} > 0$ s.t. for any $\xi \in N_0$:

$$\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))i[H(\xi),\mathrm{d}\Gamma(a_{\xi_{\mathbf{0}}})]\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))\geq c_{\mathrm{m}}\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H(\xi))$$

$$\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))i[H^{(1)}(\xi),1\otimes a_{\xi_{\mathbf{0}}}]\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))\geq c_{\mathbf{m}}\mathbf{1}_{\mathcal{J}_{\mathbf{0}}}(H^{(1)}(\xi))$$

where $H^{(1)} := H \otimes 1 + 1 \otimes \omega$.

Remark: For future reference we fix open set \mathcal{O} s.t. $\overline{\mathcal{O}} \subset \underline{N}_0 \times \mathcal{J}_0$.

9 Given the small region of spectrum $\mathcal{O} \subset R$, in which the Mourre estimate holds with the conjugate operator $\mathrm{d}\Gamma(a_{\xi_0})$, we set

$$\widetilde{a}_{\xi_{\mathbf{0}}} := \frac{1}{2} \{ v_{\xi_{\mathbf{0}}} \cdot (i \nabla_k - y) + (i \nabla_k - y) \cdot v_{\xi_{\mathbf{0}}} \}.$$

- ② We choose q_0 , q_∞ as smooth approximate characteristic functions of $(-\infty, c_0]$ and $[c_0, \infty)$, where $0 < c_0 \ll c_{\mathrm{m}}$, s.t. $q_0 + q_\infty = 1$. We set $q_0^t := q_0(\tilde{a}_{\xi_0}/t)$, $q_\infty^t := q_\infty(\tilde{a}_{\xi_0}/t)$.
- Using minimal velocity estimates, which follow from Mourre theory, we show that

$$W_{\mathcal{O}}^{+*} := \operatorname{s-} \lim_{t \to \infty} \operatorname{e}^{itH^{\operatorname{ex}}} \check{\Gamma}(\hat{q}^t) \operatorname{e}^{-itH} E(\mathcal{O}) \text{ exists.}$$

 $\bullet \text{ Then } \Omega^+_R W^{+*}_{\mathcal{O}} := \operatorname{s-lim}_{t \to \infty} \operatorname{e}^{itH} \check{\Gamma}(1,1)^* \check{\Gamma}(q^t) \operatorname{e}^{-itH} E(\mathcal{O}) = E(\mathcal{O}).$

• Given the small region of spectrum $\mathcal{O} \subset R$, in which the Mourre estimate holds with the conjugate operator $\mathrm{d}\Gamma(a_{\xi_0})$, we set

$$\tilde{a}_{\xi_{\mathbf{0}}} := \frac{1}{2} \{ v_{\xi_{\mathbf{0}}} \cdot (i \nabla_k - y) + (i \nabla_k - y) \cdot v_{\xi_{\mathbf{0}}} \}.$$

- ② We choose q_0 , q_∞ as smooth approximate characteristic functions of $(-\infty,c_0]$ and $[c_0,\infty)$, where $0< c_0 \ll c_{\mathrm{m}}$, s.t. $q_0+q_\infty=1$. We set $q_0^t:=q_0(\tilde{a}_{\xi_0}/t),\ q_\infty^t:=q_\infty(\tilde{a}_{\xi_0}/t)$.
- Using minimal velocity estimates, which follow from Mourre theory we show that

$$W_{\mathcal{O}}^{+*} := \operatorname{s-} \lim_{t \to \infty} \operatorname{e}^{itH^{\operatorname{ex}}} \check{\Gamma}(\hat{q}^t) \operatorname{e}^{-itH} E(\mathcal{O}) \text{ exists.}$$

 $\bullet \ \, \text{Then} \,\, \Omega^+_R W^{+*}_{\mathcal{O}} := \text{s-lim}_{t \to \infty} \, \mathrm{e}^{itH} \check{\Gamma}(1,1)^* \check{\Gamma}(q^t) \mathrm{e}^{-itH} E(\mathcal{O}) = E(\mathcal{O}).$

• Given the small region of spectrum $\mathcal{O} \subset R$, in which the Mourre estimate holds with the conjugate operator $\mathrm{d}\Gamma(a_{\xi_0})$, we set

$$\tilde{a}_{\xi_{\mathbf{0}}} := \frac{1}{2} \{ v_{\xi_{\mathbf{0}}} \cdot (i \nabla_k - y) + (i \nabla_k - y) \cdot v_{\xi_{\mathbf{0}}} \}.$$

- ② We choose q_0 , q_∞ as smooth approximate characteristic functions of $(-\infty, c_0]$ and $[c_0, \infty)$, where $0 < c_0 \ll c_{\mathrm{m}}$, s.t. $q_0 + q_\infty = 1$. We set $q_0^t := q_0(\tilde{a}_{\xi_0}/t)$, $q_\infty^t := q_\infty(\tilde{a}_{\xi_0}/t)$.
- Using minimal velocity estimates, which follow from Mourre theory, we show that

$$W_{\mathcal{O}}^{+*} := \operatorname{s-} \lim_{t \to \infty} \operatorname{e}^{itH^{\operatorname{ex}}} \check{\Gamma}(\hat{q}^t) \operatorname{e}^{-itH} E(\mathcal{O}) \text{ exists.}$$

 $\bullet \ \, \text{Then} \,\, \Omega^+_R W^{+*}_{\mathcal{O}} := \text{s-lim}_{t \to \infty} \, \mathrm{e}^{itH} \check{\Gamma}(1,1)^* \check{\Gamma}(q^t) \mathrm{e}^{-itH} E(\mathcal{O}) = E(\mathcal{O}).$

• Given the small region of spectrum $\mathcal{O} \subset R$, in which the Mourre estimate holds with the conjugate operator $\mathrm{d}\Gamma(a_{\xi_0})$, we set

$$\tilde{a}_{\xi_{\mathbf{0}}} := \frac{1}{2} \{ v_{\xi_{\mathbf{0}}} \cdot (i \nabla_k - y) + (i \nabla_k - y) \cdot v_{\xi_{\mathbf{0}}} \}.$$

- ② We choose q_0 , q_∞ as smooth approximate characteristic functions of $(-\infty,c_0]$ and $[c_0,\infty)$, where $0< c_0 \ll c_{\mathrm{m}}$, s.t. $q_0+q_\infty=1$. We set $q_0^t:=q_0(\tilde{a}_{\xi_0}/t),\ q_\infty^t:=q_\infty(\tilde{a}_{\xi_0}/t)$.
- Using minimal velocity estimates, which follow from Mourre theory, we show that

$$W_{\mathcal{O}}^{+*} := \operatorname{s-} \lim_{t \to \infty} \operatorname{e}^{itH^{\operatorname{ex}}} \check{\Gamma}(\hat{q}^t) \operatorname{e}^{-itH} E(\mathcal{O}) \text{ exists.}$$

 $\bullet \ \, \text{Then} \,\, \Omega^+_R W^{+*}_{\mathcal{O}} := \text{s-lim}_{t \to \infty} \, \mathrm{e}^{itH} \check{\Gamma}(1,1)^* \check{\Gamma}(q^t) \mathrm{e}^{-itH} E(\mathcal{O}) = E(\mathcal{O}).$

Structure of the proof of time-convergence

The proof relies on Mourre theory and the method of propagation estimates (PE)

Heisenberg derivatives

 \downarrow

Minimal velocity PE

 \downarrow

Existence of asymptotic observables (e.g. $W_{\mathcal{O}}^{+*}$).

③ We recall that $H^{\mathrm{ex}} = H \otimes 1 + 1 \otimes \mathrm{d}\Gamma(\omega)$ has a fiber decomposition

$$H^{\mathrm{ex}} = (I^{\mathrm{ex}})^* (\int^{\oplus} d\xi \, H^{\mathrm{ex}}(\xi)) I^{\mathrm{ex}},$$

where I^{ex} is a unitary transformation.

② The fiber Hamiltonians, acting on $\mathcal{H}^{\mathrm{ex}}_{\xi} = \Gamma(\mathfrak{h}) \otimes \Gamma(\mathfrak{h})$, are given by

$$H^{ ext{ex}}(\xi) = \Omega(\xi - \mathrm{d}\Gamma^{ ext{ex}}(k)) + \mathrm{d}\Gamma^{ ext{ex}}(\omega) + (a^*(G) + a(G)) \otimes 1.$$

Here we set

$$\mathrm{d}\Gamma^{\mathrm{ex}}(b) := \mathrm{d}\Gamma(b) \otimes 1 + 1 \otimes \mathrm{d}\Gamma(b).$$

③ We recall that $H^{\mathrm{ex}} = H \otimes 1 + 1 \otimes \mathrm{d}\Gamma(\omega)$ has a fiber decomposition

$$H^{\mathrm{ex}} = (I^{\mathrm{ex}})^* (\int^{\oplus} d\xi \, H^{\mathrm{ex}}(\xi)) I^{\mathrm{ex}},$$

where I^{ex} is a unitary transformation.

② The fiber Hamiltonians, acting on $\mathcal{H}^{\mathrm{ex}}_{\xi} = \Gamma(\mathfrak{h}) \otimes \Gamma(\mathfrak{h})$, are given by

$$H^{\mathrm{ex}}(\xi) = \Omega(\xi - \mathrm{d}\Gamma^{\mathrm{ex}}(k)) + \mathrm{d}\Gamma^{\mathrm{ex}}(\omega) + (a^*(G) + a(G)) \otimes 1.$$

Here we set

$$\mathrm{d}\Gamma^{\mathrm{ex}}(b) := \mathrm{d}\Gamma(b) \otimes 1 + 1 \otimes \mathrm{d}\Gamma(b).$$

 $\textbf{ 0} \ \ \mathsf{We} \ \mathsf{can} \ \mathsf{decompose} \ \mathcal{H}_{\xi}^{\mathrm{ex}} \ \mathsf{as}$

$$\mathcal{H}_{\xi}^{\mathrm{ex}} = \bigoplus_{n=0}^{\infty} \mathcal{H}_{\xi}^{(n)} = \bigoplus_{n=0}^{\infty} (\Gamma(\mathfrak{h}) \otimes \Gamma^{(n)}(\mathfrak{h})),$$

 $\Theta H^{\text{ex}}(\xi)$ can be decomposed analogously:

$$H^{\text{ex}}(\xi) = \bigoplus_{n=0}^{\infty} H^{(n)}(\xi),$$

$$H^{(n)}(\xi) = \Omega(\xi - d\Gamma^{(n)}(k)) + d\Gamma^{(n)}(\omega) + (a^*(G) + a(G)) \otimes 1$$

In particular $H^{(0)}(\xi) = H(\xi)$

 $\ \, \textbf{ 0} \ \, \text{We can decompose } \mathcal{H}^{\mathrm{ex}}_{\xi} \ \text{as} \\$

$$\mathcal{H}_{\xi}^{\mathrm{ex}} = \bigoplus_{n=0}^{\infty} \mathcal{H}_{\xi}^{(n)} = \bigoplus_{n=0}^{\infty} (\Gamma(\mathfrak{h}) \otimes \Gamma^{(n)}(\mathfrak{h})),$$

② $H^{\text{ex}}(\xi)$ can be decomposed analogously:

$$H^{\text{ex}}(\xi) = \bigoplus_{n=0}^{\infty} H^{(n)}(\xi),$$

$$H^{(n)}(\xi) = \Omega(\xi - d\Gamma^{(n)}(k)) + d\Gamma^{(n)}(\omega) + (a^*(G) + a(G)) \otimes 1.$$

In particular $H^{(0)}(\xi) = H(\xi)$.

Key lemma

Lemma 1

Let $\chi \in C_0^{\infty}(\mathbb{R})$ be supported below $\Sigma^{(2)}(\xi)$. Then

$$\chi(H^{\mathrm{ex}}(\xi)) = \chi(H(\xi))P_0 \oplus \chi(H^{(1)}(\xi))P_1,$$

where P_n are projections on $\mathcal{H}_{\xi}^{(n)}$.

Proof. One notes that spectrum of $H^{(2)}(\xi)$ is contained above $\Sigma^{(2)}(\xi)$. This follows from the formulas:

$$H^{(2)}(\xi) = \int^{\oplus} dk_1 dk_2 (H(\xi - k_1 - k_2) + \omega(k_1) + \omega(k_2)),$$

$$\Sigma^{(2)}(\xi) = \inf_{k_1, k_2} (\Sigma^{(0)}(\xi - k_1 - k_2) + \omega(k_1) + \omega(k_2)). \quad \Box$$

Remark

The geometric inverse of the wave operator can be decomposed as:

$$\begin{split} \mathcal{W}^{+*}_{\mathcal{O}} &:= \operatorname{s-}\lim_{t \to \infty} \operatorname{e}^{itH^{\operatorname{ex}}} \check{\Gamma}(\hat{q}(\tilde{a}_{\xi_{\mathbf{0}}}/t) \operatorname{e}^{-itH} E(\mathcal{O}) \\ &= \operatorname{s-}\lim_{t \to \infty} (I^{\operatorname{ex}})^* \bigg(\int^{\oplus} d\xi \operatorname{e}^{itH^{\operatorname{ex}}(\xi)} \check{\Gamma}(\hat{q}(a_{\xi_{\mathbf{0}}}/t)) \operatorname{e}^{-itH(\xi)} \bigg) I E(\mathcal{O}). \end{split}$$

Thus it is enough to prove convergence of asymptotic observables at fixed momentum ξ .

Heisenberg derivatives

Definition

1 Let $\mathbb{R} \ni t \mapsto \Phi_t \in B(\Gamma(\mathfrak{h}))$ be uniformly bounded. We set

$$\mathbf{D}\Phi_t = \partial_t \Phi_t + i[H(\xi), \Phi_t].$$

2 Let $\mathbb{R} \ni t \mapsto \Phi_t^{(1)} \in B(\Gamma(\mathfrak{h}) \otimes \mathfrak{h})$ be uniformly bounded. Then

$$\mathbf{D}^{(1)}\Phi_t^{(1)} = \partial_t \Phi_t^{(1)} + i[H^{(1)}(\xi), \Phi_t^{(1)}].$$

Proposition 1

Fix $\xi \in \mathbb{R}^{\nu}$ and suppose that:

- \bullet $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ supported in $(-\infty, \Sigma_0^{(2)}(\xi))$.
- ② $q \in C^{\infty}(\mathbb{R})_{\mathbb{R}}$ s.t. $q' \in C_0^{\infty}(\mathbb{R})$ and q = 0 near zero.
- ② $j_0, j_\infty \in C^\infty(\mathbb{R})_{\mathbb{R}}$ s.t. $j_0', j_\infty' \in C_0^\infty(\mathbb{R})$, $0 \le j_0, j_\infty \le 1$, $j_0 = 1$ near zero and $j_0^2 + j_\infty^2 = 1$.
- ⓐ supp j_0 ∩ supp $q = \emptyset$.

$$\mathbf{D}(\chi \mathrm{d}\Gamma(q^t)\chi) = \check{\Gamma}^{(1)}(j^t)^*\chi^{(1)}\mathbf{D}^{(1)}(1\otimes q^t)\chi^{(1)}\check{\Gamma}^{(1)}(j^t) + O(t^{-2}),$$

where we set
$$\chi := \chi(H(\xi))$$
, $\chi^{(\ell)} := \chi(H^{(\ell)}(\xi))$ and $q^t := q(a_{\xi o}/t)$.

Proposition 1

Fix $\xi \in \mathbb{R}^{\nu}$ and suppose that:

- \bullet $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ supported in $(-\infty, \Sigma_0^{(2)}(\xi))$.
- $q \in C^{\infty}(\mathbb{R})_{\mathbb{R}}$ s.t. $q' \in C_0^{\infty}(\mathbb{R})$ and q = 0 near zero.
- ② $j_0, j_\infty \in C^\infty(\mathbb{R})_{\mathbb{R}}$ s.t. $j_0', j_\infty' \in C_0^\infty(\mathbb{R})$, $0 \le j_0, j_\infty \le 1$, $j_0 = 1$ near zero and $j_0^2 + j_\infty^2 = 1$.
- ⓐ supp j_0 ∩ supp $q = \emptyset$.

$$\mathbf{D}(\chi \mathrm{d}\Gamma(q^t)\chi) = \check{\Gamma}^{(1)}(j^t)^*\chi^{(1)}\mathbf{D}^{(1)}(1\otimes q^t)\chi^{(1)}\check{\Gamma}^{(1)}(j^t) + O(t^{-2}),$$

where we set
$$\chi := \chi(H(\xi))$$
, $\chi^{(\ell)} := \chi(H^{(\ell)}(\xi))$ and $q^t := q(a_{\xi o}/t)$.

Proposition 1

Fix $\xi \in \mathbb{R}^{\nu}$ and suppose that:

- \bullet $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ supported in $(-\infty, \Sigma_0^{(2)}(\xi))$.
- $q \in C^{\infty}(\mathbb{R})_{\mathbb{R}}$ s.t. $q' \in C_0^{\infty}(\mathbb{R})$ and q = 0 near zero.
- **9** $j_0, j_\infty \in C^\infty(\mathbb{R})_{\mathbb{R}}$ s.t. $j_0', j_\infty' \in C_0^\infty(\mathbb{R})$, $0 \le j_0, j_\infty \le 1$, $j_0 = 1$ near zero and $j_0^2 + j_\infty^2 = 1$.
- ② supp j_0 ∩ supp $q = \emptyset$

$$\mathbf{D}(\chi \mathrm{d}\Gamma(q^t)\chi) = \check{\Gamma}^{(1)}(j^t)^*\chi^{(1)}\mathbf{D}^{(1)}(1\otimes q^t)\chi^{(1)}\check{\Gamma}^{(1)}(j^t) + O(t^{-2}),$$

where we set
$$\chi := \chi(H(\xi)), \ \chi^{(\ell)} := \chi(H^{(\ell)}(\xi))$$
 and $q^t := q(a_{\xi_0}/t)$.

Proposition 1

Fix $\xi \in \mathbb{R}^{\nu}$ and suppose that:

- \bullet $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ supported in $(-\infty, \Sigma_0^{(2)}(\xi))$.
- $q \in C^{\infty}(\mathbb{R})_{\mathbb{R}}$ s.t. $q' \in C_0^{\infty}(\mathbb{R})$ and q = 0 near zero.
- **9** $j_0, j_\infty \in C^\infty(\mathbb{R})_{\mathbb{R}}$ s.t. $j_0', j_\infty' \in C_0^\infty(\mathbb{R})$, $0 \le j_0, j_\infty \le 1$, $j_0 = 1$ near zero and $j_0^2 + j_\infty^2 = 1$.

$$\mathbf{D}(\chi \mathrm{d}\Gamma(q^t)\chi) = \check{\Gamma}^{(1)}(j^t)^*\chi^{(1)}\mathbf{D}^{(1)}(1\otimes q^t)\chi^{(1)}\check{\Gamma}^{(1)}(j^t) + O(t^{-2}),$$

where we set
$$\chi := \chi(H(\xi)), \ \chi^{(\ell)} := \chi(H^{(\ell)}(\xi))$$
 and $q^t := q(a_{\xi_0}/t)$.

Proposition 1a

Fix $\xi \in \mathbb{R}^{\nu}$ and suppose that:

- \bullet $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ supported in $(-\infty, \Sigma_0^{(2)}(\xi))$.
- $q \in C^{\infty}(\mathbb{R})_{\mathbb{R}}$ s.t. $q' \in C_0^{\infty}(\mathbb{R})$ and q = 0 near zero.
- **9** $j_0, j_\infty \in C^\infty(\mathbb{R})_{\mathbb{R}}$ s.t. $j_0', j_\infty' \in C_0^\infty(\mathbb{R})$, $0 \le j_0, j_\infty \le 1$, $j_0 = 1$ near zero and $j_0^2 + j_\infty^2 = 1$.

$$\begin{split} \mathbf{D}(\chi \mathrm{d}\Gamma(q^t)\chi) &= \Gamma(j_0^t) \mathbf{D}(\chi \mathrm{d}\Gamma(q^t)\chi) \Gamma(j_0^t) \\ &+ \check{\Gamma}^{(1)}(j^t)^* \chi^{(1)} \mathbf{D}^{(1)}(1 \otimes q^t) \chi^{(1)} \check{\Gamma}^{(1)}(j^t) + O(t^{-2}), \end{split}$$

where we set
$$\chi := \chi(H(\xi))$$
, $\chi^{(\ell)} := \chi(H^{(\ell)}(\xi))$ and $q^t := q(a_{\xi_0}/t)$.

Proposition 2

Fix $\xi \in \mathbb{R}^{\nu}$ and suppose that:

- \bullet $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ supported in $(-\infty, \Sigma_0^{(2)}(\xi))$.
- ② $q \in C^{\infty}(\mathbb{R})_{\mathbb{R}}$ s.t. $q' \in C_0^{\infty}(\mathbb{R})$, $0 \le q \le 1$ and q = 1 in a neighbourhood Δ of zero.
- **②** $j_0, j_\infty \in C^\infty(\mathbb{R})_\mathbb{R}$ s.t. $j_0', j_\infty' \in C_0^\infty(\mathbb{R})$, $0 \le j_0, j_\infty \le 1$, $j_0 = 1$ in Δ and $j_0^2 + j_\infty^2 = 1$.

Then

$$\mathbf{D}(\chi\Gamma(q^t)\chi) = \check{\Gamma}^{(1)}(j^t)^*\chi^{(1)}(\Gamma(q^t)\otimes 1)\mathbf{D}^{(1)}(1\otimes q^t)\chi^{(1)}\check{\Gamma}^{(1)}(j^t) + O(t^{-2}),$$

where we set $\chi := \chi(H(\xi))$, $\chi^{(\ell)} := \chi(H^{(\ell)}(\xi))$ and $q^t := q(a_{\xi_0}/t)$.

Proposition 2a

Fix $\xi \in \mathbb{R}^{\nu}$ and suppose that:

- \bullet $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ supported in $(-\infty, \Sigma_0^{(2)}(\xi))$.
- ② $q \in C^{\infty}(\mathbb{R})_{\mathbb{R}}$ s.t. $q' \in C_0^{\infty}(\mathbb{R})$, $0 \le q \le 1$ and q = 1 in a neighbourhood Δ of zero.

Then

$$\mathbf{D}(\chi \Gamma(q^t)\chi) = \frac{1}{t} \check{\Gamma}^{(1)}(j^t)^* \chi^{(1)} C_t(1 \otimes q'^t) \chi^{(1)} \check{\Gamma}^{(1)}(j^t) + O(t^{-2}),$$

where $t \mapsto C_t$ satisfies $C_t(N+1) = O(1)$ and $[C_t, 1 \otimes p^t] = O(t^{-1})$ for any $p \in C^{\infty}(\mathbb{R})$ with $p' \in C^{\infty}_0(\mathbb{R})$.

Proposition 3

- **1** Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
 - ② Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.
- **3** Let $0 < \varepsilon < c_0 < c_m$, $r > \varepsilon$ and $\mathcal{I} := [-r, c_0] \setminus [-\varepsilon, \varepsilon]$

Then there exists c > 0 such that for all $\Psi \in \mathcal{F}$:

$$\int_1^\infty \frac{dt}{t} \langle \Psi_t, \check{\Gamma}^{(1)}(j^t)^* \chi^{(1)}(1 \otimes \mathbf{1}_{\mathcal{I}}(a_{\xi_0}/t)) \chi^{(1)} \check{\Gamma}^{(1)}(j^t) \Psi_t \rangle \leq c \|\Psi\|^2,$$

where $\Psi_t := e^{-itH(\xi)}\Psi$ and $j = (j_0, j_\infty)$ as defined in Proposition 1a.

Proposition 3

- Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
- **2** Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.
- **1** Let $0 < \varepsilon < c_0 < c_m$, $r > \varepsilon$ and $\mathcal{I} := [-r, c_0] \setminus [-\varepsilon, \varepsilon]$.

Then there exists c > 0 such that for all $\Psi \in \mathcal{F}$:

$$\int_1^\infty \frac{dt}{t} \langle \Psi_t, \check{\Gamma}^{(1)}(j^t)^* \chi^{(1)}(1 \otimes \mathbf{1}_{\mathcal{I}}(a_{\xi_0}/t)) \chi^{(1)} \check{\Gamma}^{(1)}(j^t) \Psi_t \rangle \leq c \|\Psi\|^2,$$

where $\Psi_t := e^{-itH(\xi)}\Psi$ and $j = (j_0, j_\infty)$ as defined in Proposition 1a.

Proposition 3

- **1** Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
- **2** Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.
- **3** Let $0 < \varepsilon < c_0 < c_m$, $r > \varepsilon$ and $\mathcal{I} := [-r, c_0] \setminus [-\varepsilon, \varepsilon]$.

Then there exists c > 0 such that for all $\Psi \in \mathcal{F}$:

$$\int_1^\infty \frac{dt}{t} \langle \Psi_t, \check{\Gamma}^{(1)}(j^t)^* \chi^{(1)}(1 \otimes \mathbf{1}_{\mathcal{I}}(a_{\xi_0}/t)) \chi^{(1)} \check{\Gamma}^{(1)}(j^t) \Psi_t \rangle \leq c \|\Psi\|^2,$$

where $\Psi_t := e^{-itH(\xi)}\Psi$ and $j = (j_0, j_\infty)$ as defined in Proposition 1a.

Proposition 3a

- **1** Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
- ② Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.
- **1** Let $0 < \varepsilon < c_0 < c_m$, $r > \varepsilon$ and $\mathcal{I}_0 := [-r, c_0]$.

Then there exists c > 0 such that for all $\Psi^{(1)} \in \mathcal{F} \otimes \mathfrak{h}$:

$$\int_1^\infty \frac{dt}{t} \langle \Psi_t^{(1)}, \chi^{(1)}(1 \otimes \mathbf{1}_{\mathcal{I}_{\mathbf{0}}}(a_{\xi_{\mathbf{0}}}/t))\chi^{(1)}\Psi_t^{(1)} \rangle \leq c \|\Psi^{(1)}\|^2,$$

where
$$\Psi_t^{(1)} := e^{-itH^{(1)}(\xi)}\Psi^{(1)}$$
 and $\chi^{(1)} := \chi(H^{(1)}(\xi))$.

Proposition 4

- **1** Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
- **2** Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.

Then there exist c>0 and $0<\varepsilon_0< c_{\rm m}/2$ s.t. for any r>0 and $\Psi\in\mathcal{F}$:

$$\int_{1}^{\infty} \frac{dt}{t} \left\| \Gamma \left(\mathbf{1}_{[-r,\varepsilon_{\mathbf{0}}]} (a_{\xi_{\mathbf{0}}}/t) \right) \chi(H(\xi)) \Psi_{t} \right\|^{2} \leq c \|\Psi\|^{2},$$

where $\Psi_t = e^{-itH(\xi)}\Psi$.

Proposition 5

- Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
- ② Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.
- **③** Let $q \in C^{\infty}(\mathbb{R})$ be s.t. $q' \in C_0^{\infty}(\mathbb{R})$, $0 \le q \le 1$, q = 1 in $[-\varepsilon, \varepsilon]$ and supp $q' \subset (-\infty, c_m) \setminus [-\varepsilon, \varepsilon]$ for some $0 < \varepsilon < c_m$.

Then the following strong limit exists

$$Q^{+}(H(\xi))\chi := \operatorname{s-}\lim_{t\to\infty} \operatorname{e}^{itH(\xi)}\Gamma(q^{t})\operatorname{e}^{-itH(\xi)}\chi,$$

and commutes with bounded Borel functions of $H(\xi)$. (Here we set $\chi := \chi(H(\xi))$). Moreover, if $\operatorname{supp} q \subset (-\infty, \varepsilon_0)$, where ε_0 appeared in Proposition 4, then $Q^+(H(\xi))\chi = 0$.

Proposition 5

- Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
- **2** Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.
- **③** Let $q ∈ C^{\infty}(\mathbb{R})$ be s.t. $q' ∈ C_0^{\infty}(\mathbb{R})$, 0 ≤ q ≤ 1, q = 1 in $[-\varepsilon, \varepsilon]$ and supp $q' ⊂ (-\infty, c_m) \setminus [-\varepsilon, \varepsilon]$ for some $0 < \varepsilon < c_m$.

Then the following strong limit exists

$$Q^{+}(H(\xi))\chi := \operatorname{s-}\lim_{t \to \infty} \operatorname{e}^{itH(\xi)} \Gamma(q^{t}) \operatorname{e}^{-itH(\xi)} \chi,$$

and commutes with bounded Borel functions of $H(\xi)$. (Here we set $\chi := \chi(H(\xi))$). Moreover, if $\operatorname{supp} q \subset (-\infty, \varepsilon_0)$, where ε_0 appeared in Proposition 4, then $Q^+(H(\xi))\chi = 0$.

Proposition 5

- Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
- **2** Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.
- Let $q \in C^{\infty}(\mathbb{R})$ be s.t. $q' \in C_0^{\infty}(\mathbb{R})$, $0 \le q \le 1$, q = 1 in $[-\varepsilon, \varepsilon]$ and $\operatorname{supp} q' \subset (-\infty, c_{\mathrm{m}}) \setminus [-\varepsilon, \varepsilon]$ for some $0 < \varepsilon < c_{\mathrm{m}}$.

Then the following strong limit exists

$$Q^{+}(H(\xi))\chi := \operatorname{s-}\lim_{t \to \infty} \operatorname{e}^{itH(\xi)} \Gamma(q^{t}) \operatorname{e}^{-itH(\xi)} \chi,$$

and commutes with bounded Borel functions of $H(\xi)$. (Here we set $\chi := \chi(H(\xi))$). Moreover, if $\operatorname{supp} q \subset (-\infty, \varepsilon_0)$, where ε_0 appeared in Proposition 4, then $Q^+(H(\xi))\chi = 0$.

Proposition 6

- Let $(\xi_0, \lambda_0) \in R$, $\xi_0 \in N_0$, $\lambda_0 \in \mathcal{J}_0$, c_m be as in the Mourre estimate.
- **2** Let $\chi \in C_0^{\infty}(\mathbb{R})_{\mathbb{R}}$ be supported in \mathcal{J}_0 and $\xi \in N_0$.
- **1** Let j_0, j_∞ be as in Proposition 1a and s.t. $\operatorname{supp} j_0', j_\infty' \subset (-\infty, c_{\mathrm{m}})$.
- Let $\hat{q} = (q_0, q_\infty) := (j_0^2, j_\infty^2)$ (in particular $q_0 + q_\infty = 1$).

Then the following strong limit exists:

$$W^{+}(\hat{q}^{t})(\xi)^{*}\chi := \operatorname{s-}\lim_{t \to \infty} \operatorname{e}^{itH^{\operatorname{ex}}(\xi)} \check{\Gamma}(\hat{q}^{t}) \operatorname{e}^{-itH(\xi)}\chi,$$

where we set $\chi := \chi(H(\xi))$. These operators intertwine (bounded Borel functions of) $H(\xi)$ and $H^{ex}(\xi)$.

- We have shown asymptotic completeness below the two-boson threshold for a class of massive non-relativistic QFT.
- The results hold for arbitrary coupling strength and in space of arbitrary dimension.
- The class of models includes the massive Nelson model and the polaron model.
- Future directions:
 - Asymptotic completeness above the two-boson threshold. (Problem of regularity of embedded mass shells).
 - Asymptotic completeness in local relativistic QFT. (Project with C. Gérard, arXiv:1211.3393).

- We have shown asymptotic completeness below the two-boson threshold for a class of massive non-relativistic QFT.
- The results hold for arbitrary coupling strength and in space of arbitrary dimension.
- The class of models includes the massive Nelson model and the polaron model.
- Future directions:
 - Asymptotic completeness above the two-boson threshold. (Problem of regularity of embedded mass shells).
 - Asymptotic completeness in local relativistic QFT. (Project with C. Gérard, arXiv:1211.3393).

- We have shown asymptotic completeness below the two-boson threshold for a class of massive non-relativistic QFT.
- The results hold for arbitrary coupling strength and in space of arbitrary dimension.
- The class of models includes the massive Nelson model and the polaron model.
- Future directions:
 - Asymptotic completeness above the two-boson threshold. (Problem of regularity of embedded mass shells).
 - Asymptotic completeness in local relativistic QFT. (Project with C. Gérard, arXiv:1211.3393).

- We have shown asymptotic completeness below the two-boson threshold for a class of massive non-relativistic QFT.
- The results hold for arbitrary coupling strength and in space of arbitrary dimension.
- The class of models includes the massive Nelson model and the polaron model.
- Future directions:
 - Asymptotic completeness above the two-boson threshold. (Problem of regularity of embedded mass shells).
 - Asymptotic completeness in local relativistic QFT. (Project with C. Gérard, arXiv:1211.3393).

