NON-BACKTRACKING SPECTRUM OF RANDOM GRAPHS

Charles Bordenave

CNRS & University of Toulouse

Joint work with Marc Lelarge and Laurent Massoulié

Take a finite graph G = (V, E) and define a local operator, e.g. a discrete analog of a differential operator.

Which properties of the graph are contained in the extremal eigenvalues and their eigenvectors?

In this talk : non-backtracking matrices.

Take a finite, simple, non-oriented graph G = (V, E).

Adjacency matrix : symmetric, indexed on vertices, for $u, v \in V$,

 $A_{uv} = \mathbf{1}(\{u, v\} \in E).$

If |V| = n, the (real) eigenvalues of A are $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$

From Perron-Frobenius Theorem : if G is connected, then

$$\lambda_1 > \lambda_2$$
 and $\lambda_1 \ge -\lambda_n$.

Moreover, $\lambda_1 = -\lambda_n$ is equivalent to G bipartite.

Assume $\deg(v) = d$ for all $v \in V$.

Then

$$\lambda_1 = d$$

with associated eigenvector

$$\psi_1 = (1, \dots, 1)^\top / \sqrt{n}.$$

Largest non-trivial eigenvalue

$$\lambda = \max\{|\lambda_k| : |\lambda_k| \neq d\}.$$

Theorem (Alon-Boppana (1991))

$$\lambda \geqslant 2\sqrt{d-1} - \frac{c_d}{\log n}.$$

A $d\operatorname{\!-regular}$ is Ramanujan if

$$\lambda \leqslant 2\sqrt{d-1}$$

Existence of infinite sequence of bipartite Ramanujan graphs

- $d = p^k + 1$, p prime : Lubotzky, Phillips & Sarnak (1988), Margulis (1988), Morgenstern (1994),
- any $d \ge 3$: Marcus, Spielman, Srivastava (2013).

Theorem (Chung (1989))

$$\operatorname{diam}(G) \leqslant \frac{\log(n-1)}{\log d - \log \lambda} + 2.$$

Spectral gap and Expansion

For $X,Y\subset V,$ define $E(X,Y)=\sum_{x\in X,y\in Y}\mathbf{1}(\{u,v\}\in E).$

Isoperimetric constant :

$$h(G) = \min_{X \subset V} \frac{E(X, X^c)}{\min(|X|, |X^c|)}.$$

Theorem (Cheeger's Inequality)

$$\frac{h(G)^2}{2d} \leqslant d - \lambda_2 \leqslant 2h(G).$$

Theorem (Friedman (2004))

Fix integer $d \ge 3$. Let G_n is a sequence of uniformly distributed d-regular graphs on n vertices, then with high probability,

 $\lambda = 2\sqrt{d-1} + o(1).$

Most regular graphs are nearly Ramanujan!!

NON-REGULAR GRAPHS

It is not straightforward to extend the previous notions to non-regular graphs. Lubotzky (1995), Hoory (2005).

Eigenvectors of extremal eigenvalues tend to localize on large degree vertices.

NON-REGULAR GRAPHS

It is not straightforward to extend the previous notions to non-regular graphs. Lubotzky (1995), Hoory (2005).

Eigenvectors of extremal eigenvalues tend to localize on large degree vertices.

For example, if G is an Erdős-Rényi graph with parameter α/n , for any fixed $k \ge 1$, with high probability,

$$\lambda_k \sim \sqrt{\max_{v \in V}^{[k]} \deg(v)} \sim \sqrt{\frac{\log n}{\log \log n}},$$

Sudakov & Krivelevich (2003).

Oriented edge set :

$$\vec{E} = \{uv : \{u, v\} \in E\},\$$

hence, $|\vec{E}| = 2|E|$.

If e = uv, f = xy are in \vec{E} ,

$$B_{ef} = \mathbf{1}(v = x)\mathbf{1}(u \neq y),$$

defines a $|\vec{E}| \times |\vec{E}|$ matrix on the oriented edges.

PERRON EIGENVALUE

A closed non-backtracking path $p = (v_1 \dots v_n)$ is a path such that $v_{i-1} \neq v_{i+1}$. If e = uv,

 $||B^{\ell}\delta_{e}||_{1} = \text{nb of NB paths starting with } vu \text{ of length } \ell + 1.$

PERRON EIGENVALUE

A closed non-backtracking path $p = (v_1 \dots v_n)$ is a path such that $v_{i-1} \neq v_{i+1}$. If e = uv,

 $||B^{\ell}\delta_{e}||_{1} = \text{nb of NB paths starting with } vu \text{ of length } \ell + 1.$

If G is 2-connected (any vertex or pair of vertices are part of a cycle) then B is irreducible and

 $\lambda_1 = \lim_{\ell \to \infty} \|B^{\ell} \delta_e\|_1^{1/\ell} =$ growth rate of the universal cover of B.

HASHIMOTO'S IDENTITY

Let Q the diagonal matrix with $Q_{vv} = \deg(v) - 1$. We have

$$\det(z - B) = (z^2 - 1)^{|E| - |V|} \det(z^2 - Az + Q)$$

HASHIMOTO'S IDENTITY

Let Q the diagonal matrix with $Q_{vv} = \deg(v) - 1$. We have

$$\det(z-B) = (z^2-1)^{|E|-|V|} \det(z^2 - Az + Q)$$

If G is d-regular, then Q = (d-1)I and $\sigma(B) = \{\pm 1\} \cup \{\lambda : \lambda^2 - \lambda\mu + (d-1) = 0 \text{ with } \mu \in \sigma(A)\}.$

Angel, Friedman, Hoory (2007), Terras (2011)

For a *d*-regular graph, $\lambda_1 = d - 1$,

- * Alon-Boppana bound : $\max_{k\neq 1} \mathfrak{Re}(\lambda_k) \ge \sqrt{\lambda_1} o(1).$
- * Ramanujan (non bipartite) : $|\lambda_2| = \sqrt{\lambda_1}$
- * Friedman's thm : $|\lambda_2| \leq \sqrt{\lambda_1} + o(1)$ if G random uniform.

Theorem (Ihara-Bass Formula) Let ζ_G be the Ihara's zeta function. We have

$$\frac{1}{\zeta_G(z)} = \det(I - Bz) = (1 - z^2)^{|E| - |V|} \det(I - Az + Qz^2).$$

The poles of the zeta function are the reciprocal of eigenvalues of B.

NON-BACKTRACKING WALKS

A closed non-backtracking path $p = (v_1, \dots, v_n)$ is a closed path such that $v_{i-1} \neq v_{i+1} \mod(n)$.

A closed non-backtracking path is prime if it cannot be written as $p = (q, q, \dots, q)$ with q closed non-backtracking path.

Equivalence class $p \sim p'$ if $v'_i = v_{i+k} \mod(n)$.

IHARA'S ZETA FUNCTION (1966)

$$\zeta_G(z) = \prod_{p: \text{ prime eq. class}} \left(1 - z^{|p|}\right)^{-1}.$$

Ihara-Bass Formula :

$$\frac{1}{\zeta_G(z)} = \det(I - Bz) = (1 - z^2)^{|E| - |V|} \det(I - Az + Qz^2).$$

IHARA'S ZETA FUNCTION (1966)

$$\zeta_G(z) = \prod_{p: \text{ prime eq. class}} \left(1 - z^{|p|}\right)^{-1}.$$

Ihara-Bass Formula :

$$\frac{1}{\zeta_G(z)} = \det(I - Bz) = (1 - z^2)^{|E| - |V|} \det(I - Az + Qz^2).$$

<u>RIEMANN HYPOTHESIS FOR GRAPHS</u>

Graph analog of RH = poles on a circle = Ramanujan ! (Stark & Terras)

NON-BACKTRACKING MATRIX OF ARBITRARY GRAPH

"In general graphs, the condition $|\lambda_2| \leq \sqrt{\lambda_1}$ is one of the possible analogs of a Ramanujan property".

BUT

- \star No Alon-Boppana lower bound.
- \star No Cheeger-type isoperimetric inequality.
- \star No Chung-type diameter inequality.

A more satisfactory analog was proposed by Lubotzky (1995).

COMMUNITY DETECTION

"Eigenvalues/eigenvectors such that $|\lambda_k| > \sqrt{\lambda_1}$ should contain relevant global information on the graph".

Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang (2013)

NON-BACKTRACKING SPECTRUM OF RANDOM GRAPHS

SIMULATION FOR ERDŐS-RÉNYI GRAPH

Eigenvalues of *B* for an Erdős-Rényi graph $\mathcal{G}(n, \alpha/n)$ with n = 500 and $\alpha = 4$.

Erdős-Rényi Graph

 $\lambda_1 \geqslant |\lambda_2| \geqslant \dots$

Theorem Let $\alpha > 1$ and G with distribution $\mathcal{G}(n, \alpha/n)$. With high probability,

 $\lambda_1 = \alpha + o(1)$ $|\lambda_2| \leqslant \sqrt{\alpha} + o(1).$

Consider a set of types $[r] = \{1, \dots, r\}$ and assign type $\sigma_n(v)$ to vertex v. We assume that

$$\pi_n(i) = \frac{1}{n} \sum_{v=1}^n \mathbf{1}(\sigma_n(v) = i) = \pi(i) + O(n^{-\gamma}),$$

for some probability vector π .

Consider a set of types $[r] = \{1, \dots, r\}$ and assign type $\sigma_n(v)$ to vertex v. We assume that

$$\pi_n(i) = \frac{1}{n} \sum_{v=1}^n \mathbf{1}(\sigma_n(v) = i) = \pi(i) + O(n^{-\gamma}),$$

for some probability vector π .

If $\sigma(u) = i, \sigma(v) = j$, the edge $\{u, v\}$ is present independently with probability

$$rac{W_{ij}}{n} \wedge 1$$

where W is a symmetric matrix.

(Inhomogeneous random graph, Chung-Lu random graph, ...)

If $\sigma(v) = j$, mean number of type i neighbors is $\pi(i)W_{ij} + O(1/n).$

Mean progeny matrix

 $M = \operatorname{diag}(\pi)W.$

We assume that the average degree is homogeneous, for all $j \in [r]$,

$$\sum_{i=1}^{r} M_{ij} = \alpha > 1.$$

Assume that M is strongly irreducible and we order its real eigenvalues

$$\alpha = \mu_1 > |\mu_2| \ge \cdots \ge |\mu_r|.$$

Model used in community detection. Notably for r = 2,

$$\pi = \left(\frac{1}{2}, \frac{1}{2}\right)$$

and, with a > b,

$$W = \begin{pmatrix} a & b \\ b & a \end{pmatrix}.$$

Then

$$\mu_1 = \frac{a+b}{2}$$
 and $\mu_2 = \frac{a-b}{2}$.

Decelle, Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang

$$n = 500, \quad a = 7, \quad b = 1, \quad \mu_1 = 4, \quad \mu_2 = 3.$$

Let $1 \leq r_0 \leq r$ such that

 $\alpha = \mu_1 > |\mu_2| \ge \cdots \ge |\mu_{r_0}| > \sqrt{\mu_1} \ge |\mu_{r_0+1}| \ge \cdots \ge |\mu_r|.$

Theorem

Let $\alpha > 1$ and G a stochastic block model as above. With high probability, up to reordering the eigenvalues of B,

$$\begin{aligned} \lambda_k &= \mu_k + o(1) & \text{if } k \in [r_0] \\ |\lambda_k| &\leqslant \sqrt{\alpha} + o(1) & \text{if } k \notin [r_0]. \end{aligned}$$

Let $1 \leq r_0 \leq r$ such that

 $\alpha = \mu_1 > |\mu_2| \ge \cdots \ge |\mu_{r_0}| > \sqrt{\mu_1} \ge |\mu_{r_0+1}| \ge \cdots \ge |\mu_r|.$

Theorem

Let $\alpha > 1$ and G a stochastic block model as above. With high probability, up to reordering the eigenvalues of B,

$$\begin{aligned} \lambda_k &= \mu_k + o(1) & \text{if } k \in [r_0] \\ |\lambda_k| &\leqslant \sqrt{\alpha} + o(1) & \text{if } k \notin [r_0]. \end{aligned}$$

(+ a description of the eigenvectors of λ_k , $k \in [r_0]$, if the μ_k are distinct, In particular, they are asymptotically orthogonal).

Assume

$$\pi = \left(\frac{1}{2}, \frac{1}{2}\right)$$
 and $W = \left(\begin{matrix} a & b \\ b & a \end{matrix}\right)$.

If $(a-b)^2 > 2(a+b)$, with high probability, we may reconstruct correctly a proportion larger than $1/2 + \varepsilon$ of the types from the second largest eigenvector of B.

If $(a-b)^2 < 2(a+b)$, no algorithm can perform that (Neeman, Mossel & Sly (2012)).

Some ideas of proofs

Perron eigenvalue

Let us restrict ourselves to the Erdős-Rényi case.

We zoom and consider the matrix B^{ℓ} where for some well chosen $0 < \kappa < 1/2$,

 $\ell \sim \kappa \log_{\alpha} n.$

If
$$e = uv \in \vec{E}$$
 and $\chi(f) = 1$ for all $f \in \vec{E}$,

 $\langle \delta_e, B^\ell \chi \rangle =$ nb of NB paths of length ℓ starting from v in $G \setminus e$

is close to the population Z_{ℓ} at generation ℓ in a Galton-Watson process with $\operatorname{Poi}(\alpha)$ distribution.

PERRON EIGENVALUE

Seneta-Heyde thm, conditionned on non-extinction, a.s.

$$\frac{Z_{\ell}}{\alpha^{\ell}} \to M \in (0,\infty).$$

Hence, conditionned on non-extinction, a.s.

 $\frac{Z_{2\ell}}{\alpha^\ell Z_\ell} \to 1.$

PERRON EIGENVALUE

Seneta-Heyde thm, conditionned on non-extinction, a.s.

 $\frac{Z_{\ell}}{\alpha^{\ell}} \to M \in (0,\infty).$

Hence, conditionned on non-extinction, a.s.

$$\frac{Z_{2\ell}}{\alpha^{\ell} Z_{\ell}} \to 1.$$

The vector

$$\varphi = \frac{B^{\ell} \chi}{\|B^{\ell} \chi\|}$$

should be close to an eigenvector of B^{ℓ} associated to α^{ℓ} .

Perron eigenvalue

Seneta-Heyde thm, conditionned on non-extinction, a.s.

 $\frac{Z_\ell}{\alpha^\ell} \to M \in (0,\infty).$

Hence, conditionned on non-extinction, a.s.

$$\frac{Z_{2\ell}}{\alpha^\ell Z_\ell} \to 1.$$

The vector

$$\varphi = \frac{B^\ell \chi}{\|B^\ell \chi\|}$$

should be close to an eigenvector of B^{ℓ} associated to α^{ℓ} .

Also, if $x \in \mathbb{R}^{\vec{E}}$ has positive entries, $(B^{\ell}x)/||B^{\ell}x||$ should be nearly aligned with the Perron eigenvector.

STRATEGY OF PROOF

If
$$x \in \mathbb{R}^{\vec{E}}$$
, set $\check{x}(e) = x(e^{-1})$,

$$\zeta = \frac{B^{\ell}\check{\varphi}}{\|B^{\ell}\check{\varphi}\|} = \frac{B^{\ell}B^{*\ell}\chi}{\|B^{\ell}B^{*\ell}\chi\|} \text{ and } \theta = \|B^{\ell}\check{\varphi}\|.$$

The statement : $\lambda_1 = \alpha + o(1)$ with eigenvector asymptotically aligned to ζ and $|\lambda_2| \leq \sqrt{\alpha} + o(1)$ is implied by

STRATEGY OF PROOF

If
$$x \in \mathbb{R}^{\vec{E}}$$
, set $\check{x}(e) = x(e^{-1})$,

$$\zeta = \frac{B^{\ell}\check{\varphi}}{\|B^{\ell}\check{\varphi}\|} = \frac{B^{\ell}B^{*\ell}\chi}{\|B^{\ell}B^{*\ell}\chi\|} \text{ and } \theta = \|B^{\ell}\check{\varphi}\|.$$

The statement : $\lambda_1 = \alpha + o(1)$ with eigenvector asymptotically aligned to ζ and $|\lambda_2| \leq \sqrt{\alpha} + o(1)$ is implied by

Proposition (Near eigenvector) With high probability,

$$\langle \zeta, \check{\varphi} \rangle > c_0 \text{ and } c_0 \alpha^{\ell} < \theta < c_1 \alpha^{\ell}.$$

Proposition (Small norm in the complement) With high probability,

 $\sup_{x:\langle x,\check{\varphi}\rangle=0}\|B^{\ell}x\|\leqslant (\log n)^c\alpha^{\ell/2}\|x\|.$

Proposition (Small norm in the complement) With high probability,

$$\sup_{x:\langle x,\check{\varphi}\rangle=0}\|B^{\ell}x\|\leqslant (\log n)^c\alpha^{\ell/2}\|x\|.$$

Proposition (Small norm in the complement) With high probability,

$$\sup_{x:\langle x,\check{\varphi}\rangle=0}\|B^{\ell}x\|\leqslant (\log n)^c\alpha^{\ell/2}\|x\|.$$

Standard issue : the graph contains a clique of size m with proba larger than $n^{-m^2/2}$,

 $\mathbb{E}(B^{\ell})_{ee} \ge (m-1)^{\ell} n^{-m^2/2} = e^{(\kappa \log(m-1) - m^2/2)\log n}.$

Polynomially small event may have a big influence in expectation.

With high probability, the graph is ℓ -tangled free that is : no vertex has more than two distinct cycles in its ℓ neighborhood.

With high probability, the graph is ℓ -tangled free that is : no vertex has more than two distinct cycles in its ℓ neighborhood.

We may replace B^{ℓ} by

 $(B^{(\ell)})_{ef} = \text{nb of NB tangle free paths } \gamma \text{ of length } \ell \text{ from } e \text{ to } f$ $= \sum_{\gamma} \prod_{s=0}^{\ell+1} A_{\gamma_s, \gamma_{s+1}},$

where the sum is over NB tangle free paths of length ℓ from e to f in the complete graph.

Friedman (2004), Neeman-Sly-Mossel (2013), ...

Consider the centered matrix

$$\Delta_{ef}^{(\ell)} = \sum_{\gamma} \prod_{s=0}^{\ell+1} \left(A_{\gamma_s, \gamma_{s+1}} - \frac{\alpha}{n} \right),$$

where the sum is over NB tangle free paths of length ℓ from e to f.

After a tricky decomposition,

$$||B^{\ell}x||_{2} \leq ||\Delta^{(\ell)}|| + \frac{\alpha}{n} \sum_{t=1}^{\ell-1} ||\Delta^{(t-1)}\chi||_{2} |\langle (B^{*})^{\ell-t-1}\chi, x\rangle| + \dots$$

which we should estimate over $\langle \check{\varphi}, x \rangle = \langle (B^*)^{\ell} \chi, x \rangle = 0.$

Massoulié (2013)

$$\|B^{\ell}x\|_{2} \leq \|\Delta^{(\ell)}\| + \frac{\alpha}{n} \sum_{t=1}^{\ell-1} \|\Delta^{(t-1)}\chi\|_{2} \Big| \langle (B^{*})^{\ell-t-1}\chi, x \rangle \Big|$$

From the Galton-Watson tree comparison $\langle (B^*)^{\ell}\chi, \delta_e \rangle \simeq \alpha^{\ell-t} \langle (B^*)^t\chi, \delta_e \rangle,$

$$\max_{\langle (B^*)^\ell \chi, x \rangle = 0} \left| \langle (B^*)^t \chi, x \rangle \right| \leq (\log n)^c \sqrt{n} \, \alpha^{t/2} \|x\|_2.$$

$$\|B^{\ell}x\|_{2} \leq \|\Delta^{(\ell)}\| + \frac{\alpha}{n} \sum_{t=1}^{\ell-1} \|\Delta^{(t-1)}\chi\|_{2} \Big| \langle (B^{*})^{\ell-t-1}\chi, x \rangle \Big|$$

From the Galton-Watson tree comparison $\langle (B^*)^{\ell}\chi, \delta_e \rangle \simeq \alpha^{\ell-t} \langle (B^*)^t\chi, \delta_e \rangle,$

$$\max_{\langle (B^*)^\ell \chi, x \rangle = 0} \left| \langle (B^*)^t \chi, x \rangle \right| \leq (\log n)^c \sqrt{n} \, \alpha^{t/2} \|x\|_2.$$

By the method of moments, with $m \simeq \log n / \log \log n$,

$$\|\Delta^{(t)}\| \leqslant \left(\operatorname{Tr}\left(\Delta^{(t)}\Delta^{(t)*}\right)^{m}\right)^{1/m} \leqslant (\log n)^{c} \alpha^{t/2}$$

 $\|\Delta^{(t)}\chi\| \leqslant (\log n)^c \sqrt{n} \,\alpha^{t/2}.$

FINAL COMMENTS

* No lower bound on $|\lambda_2|$.

FINAL COMMENTS

- \star No lower bound on $|\lambda_2|$.
- $\star\,$ Limit empirical distribution of eigenvalues ?

FINAL COMMENTS

- * No lower bound on $|\lambda_2|$.
- \star Limit empirical distribution of eigenvalues ?
- $\star\,$ Without the homogeneous mean degree assumption ? (also open for random lifts of irregular graphs).

$\star\,$ A new proof of Friedman's Theorem ?

- \star A new proof of Friedman's Theorem ?
- ★ In a general graph can we relate the condition $|\lambda_2| \leq \sqrt{\lambda_1} + o(1)$ to something geometric?

- \star A new proof of Friedman's Theorem ?
- ★ In a general graph can we relate the condition $|\lambda_2| \leq \sqrt{\lambda_1} + o(1)$ to something geometric?
- $\star\,$ Generally a good idea to study non-Hermitian local operators.

THANK YOU FOR YOUR ATTENTION !

Proposition (Near eigenvector) With high probability,

 $\langle \zeta, \check{\varphi} \rangle > c_0 \text{ and } c_0 \alpha^{\ell} < \theta < c_1 \alpha^{\ell}.$

It requires to prove convergence of expressions of the form

 $\alpha^{-2\ell} \langle \delta_e, B^{2\ell} B^{*\ell} \chi \rangle$

toward a limit random variable.

NEAR EIGENVECTOR FOR SBM

For the stochastic block model, if ϕ_k is the left eigenvector of M with eigenvalue μ_k , we set,

 $\chi_k(e) = \phi_k(\sigma(e_2)).$

If $|\mu_k| > \sqrt{\mu_1}$, the candidate eigenvector is ζ_k defined as

$$\varphi_k = \frac{B^\ell \chi_k}{\|B^\ell \chi_k\|}, \quad \theta_k = \|B^\ell \check{\varphi}_k\|, \quad \zeta_k = \frac{B^\ell B^{*\ell} \check{\chi}_k}{\|B^\ell B^{*\ell} \check{\chi}_k\|}.$$

NEAR EIGENVECTOR FOR SBM

For the stochastic block model, if ϕ_k is the left eigenvector of M with eigenvalue μ_k , we set,

 $\chi_k(e) = \phi_k(\sigma(e_2)).$

If $|\mu_k| > \sqrt{\mu_1}$, the candidate eigenvector is ζ_k defined as

$$\varphi_k = \frac{B^\ell \chi_k}{\|B^\ell \chi_k\|}, \quad \theta_k = \|B^\ell \check{\varphi}_k\|, \quad \zeta_k = \frac{B^\ell B^{*\ell} \check{\chi}_k}{\|B^\ell B^{*\ell} \check{\chi}_k\|}.$$

We now deal with a multi-type Galton-Watson tree, the condition $|\mu_k| > \sqrt{\mu_1}$, is Kesten-Stigum condition and after tedious computations, we find notably that for $k \neq j \in [r_0]$,

 $|\langle \zeta_j,\check{\varphi}_j \rangle| \geqslant c_0, \quad \langle \zeta_j,\check{\varphi}_k \rangle = o(1) \quad ext{ and } \quad \langle \zeta_j,\zeta_k \rangle = o(1).$

Consider the multi-type Galton-Watson process with mean progeny matrix M (+ finite second moment).

Let $Z_{\ell} \in \mathbb{N}^r$ is the population vector at generation ℓ ,

If $|\mu_k| > \sqrt{\mu_1}$, then, for some centered M_k , a.s. and in L^2 ,

$$\frac{\langle Z_{\ell}, \phi_k \rangle}{\mu_k^{\ell}} - \langle Z_0, \phi_k \rangle \to M_k.$$

If $|\mu_k| < \sqrt{\mu_1}$, then, for some M_k , in L^2 ,

$$\frac{\langle Z_\ell, \phi_k \rangle}{\mu_1^{\ell/2}} \to M_k.$$