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Extremal eigenvalues of graphs

Take a �nite graph G = (V,E) and de�ne a local operator, e.g.

a discrete analog of a di�erential operator.

Which properties of the graph are contained in the extremal

eigenvalues and their eigenvectors ?

In this talk : non-backtracking matrices.



Adjacency matrix

Take a �nite, simple, non-oriented graph G = (V,E).

Adjacency matrix : symmetric, indexed on vertices, for u, v ∈ V ,

Auv = 1({u, v} ∈ E).



Perron eigenvalue

If |V | = n, the (real) eigenvalues of A are

λ1 > λ2 > . . . > λn

From Perron-Frobenius Theorem : if G is connected, then

λ1 > λ2 and λ1 > −λn.

Moreover, λ1 = −λn is equivalent to G bipartite.



Regular graphs

Assume deg(v) = d for all v ∈ V .

Then

λ1 = d

with associated eigenvector

ψ1 = (1, . . . , 1)>/
√
n.



Spectral gap

Largest non-trivial eigenvalue

λ = max{|λk| : |λk| 6= d}.

Theorem (Alon-Boppana (1991))

λ > 2
√
d− 1− cd

log n
.



Ramanujan graphs

A d-regular is Ramanujan if

λ 6 2
√
d− 1

Existence of in�nite sequence of bipartite Ramanujan graphs

- d = pk + 1, p prime : Lubotzky, Phillips & Sarnak (1988),
Margulis (1988), Morgenstern (1994),

- any d > 3 : Marcus, Spielman, Srivastava (2013).



Spectral gap and Diameter

Theorem (Chung (1989))

diam(G) 6
log(n− 1)

log d− log λ
+ 2.



Spectral gap and Expansion

For X,Y ⊂ V , de�ne

E(X,Y ) =
∑

x∈X,y∈Y
1({u, v} ∈ E).

X

Y

Isoperimetric constant :

h(G) = min
X⊂V

E(X,Xc)

min (|X|, |Xc|)
.

Theorem (Cheeger's Inequality)

h(G)2

2d
6 d− λ2 6 2h(G).



Random regular graph

Theorem (Friedman (2004))

Fix integer d > 3. Let Gn is a sequence of uniformly distributed

d-regular graphs on n vertices, then with high probability,

λ = 2
√
d− 1 + o(1).

Most regular graphs are nearly Ramanujan ! !



Non-regular graphs

It is not straightforward to extend the previous notions to

non-regular graphs. Lubotzky (1995), Hoory (2005).

Eigenvectors of extremal eigenvalues tend to localize on large

degree vertices.

For example, if G is an Erd®s-Rényi graph with parameter α/n,
for any �xed k > 1, with high probability,

λk ∼
√

max
v∈V

[k] deg(v) ∼

√
log n

log log n
,

Sudakov & Krivelevich (2003).
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Hashimoto's non-backtracking matrix

Oriented edge set :

~E = {uv : {u, v} ∈ E},

hence, | ~E| = 2|E|.

If e = uv, f = xy are in ~E,

Bef = 1(v = x)1(u 6= y),

de�nes a | ~E| × | ~E| matrix on the oriented edges.

e

f

e

f

u
v = x

y



Perron eigenvalue

A closed non-backtracking path p = (v1 . . . vn) is a path such

that vi−1 6= vi+1. If e = uv,

‖B`δe‖1 = nb of NB paths starting with vu of length `+ 1.

If G is 2-connected (any vertex or pair of vertices are part of a

cycle) then B is irreducible and

λ1 = lim
`→∞

‖B`δe‖1/`1 = growth rate of the universal cover of B.
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Hashimoto's Identity

Let Q the diagonal matrix with Qvv = deg(v)− 1. We have

det(z −B) = (z2 − 1)|E|−|V | det(z2 −Az +Q)

If G is d-regular, then Q = (d− 1)I and

σ(B) = {±1} ∪
{
λ : λ2 − λµ+ (d− 1) = 0 with µ ∈ σ(A)

}
.

Angel, Friedman, Hoory (2007), Terras (2011)
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Non-Backtracking matrix of regular graphs

For a d-regular graph, λ1 = d− 1,

? Alon-Boppana bound : maxk 6=1 Re(λk) >
√
λ1 − o(1).

? Ramanujan (non bipartite) : |λ2| =
√
λ1

? Friedman's thm : |λ2| 6
√
λ1 + o(1) if G random uniform.



Ihara-Bass Formula

Theorem (Ihara-Bass Formula)

Let ζG be the Ihara's zeta function. We have

1

ζG(z)
= det(I −Bz) = (1− z2)|E|−|V | det(I −Az +Qz2).

The poles of the zeta function are the reciprocal of eigenvalues

of B.



Non-Backtracking Walks

A closed non-backtracking path p = (v1, · · · , vn) is a closed path

such that vi−1 6= vi+1 mod(n).
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A closed non-backtracking path is prime if it cannot be written

as p = (q, q, · · · , q) with q closed non-backtracking path.

Equivalence class p ∼ p′ if v′i = vi+k mod(n).



Ihara's Zeta Function (1966)

ζG(z) =
∏

p : prime eq. class

(
1− z|p|

)−1
.

Ihara-Bass Formula :

1

ζG(z)
= det(I −Bz) = (1− z2)|E|−|V | det(I −Az +Qz2).
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Riemann hypothesis for graphs

With s = − ln(z) and N(p) = e|p|,

ζG(z) =
∏
p

(
1− z|p|

)−1
=
∏
p

(
1−N(p)−s

)−1
.

For Re(s) > 1,

ζ(s) =
∑
n>1

n−s =
∏

p : prime

(
1− p−s

)−1
.

s 7→ e−s

0 1/2 1

Graph analog of RH = poles on a circle = Ramanujan ! (Stark &
Terras)



Non-Backtracking matrix of arbitrary graph

"In general graphs, the condition |λ2| 6
√
λ1 is one of the

possible analogs of a Ramanujan property".

BUT

? No Alon-Boppana lower bound.

? No Cheeger-type isoperimetric inequality.

? No Chung-type diameter inequality.

A more satisfactory analog was proposed by Lubotzky (1995).



Community detection

"Eigenvalues/eigenvectors such that |λk| >
√
λ1 should contain

relevant global information on the graph".

Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang (2013)



Non-backtracking spectrum of random graphs



Simulation for Erd®s-Rényi Graph

Eigenvalues of B for an Erd®s-Rényi graph G(n, α/n) with
n = 500 and α = 4.



Erd®s-Rényi Graph

λ1 > |λ2| > . . . .

Theorem
Let α > 1 and G with distribution G(n, α/n). With high

probability,

λ1 = α+ o(1)

|λ2| 6
√
α+ o(1).



Stochastic Block Model

Consider a set of types [r] = {1, · · · , r} and assign type σn(v) to
vertex v. We assume that

πn(i) =
1

n

n∑
v=1

1(σn(v) = i) = π(i) +O(n−γ),

for some probability vector π.

If σ(u) = i, σ(v) = j, the edge {u, v} is present independently
with probability

Wij

n
∧ 1,

where W is a symmetric matrix.

(Inhomogeneous random graph, Chung-Lu random graph, . . . )
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Stochastic Block Model

If σ(v) = j, mean number of type i neighbors is

π(i)Wij +O(1/n).

Mean progeny matrix

M = diag(π)W.

We assume that the average degree is homogeneous, for all

j ∈ [r],
r∑
i=1

Mij = α > 1.

Assume that M is strongly irreducible and we order its real

eigenvalues

α = µ1 > |µ2| > · · · > |µr|.



Stochastic Block Model

Model used in community detection. Notably for r = 2,

π =

(
1

2
,
1

2

)

and, with a > b,

W =

(
a b
b a

)
.

Then

µ1 =
a+ b

2
and µ2 =

a− b
2

.

Decelle, Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang



Stochastic Block Model

n = 500, a = 7, b = 1, µ1 = 4, µ2 = 3.



Stochastic Block Model

Let 1 6 r0 6 r such that

α = µ1 > |µ2| > · · · > |µr0 | >
√
µ1 > |µr0+1| > · · · > |µr|.

Theorem
Let α > 1 and G a stochastic block model as above. With high

probability, up to reordering the eigenvalues of B,

λk = µk + o(1) if k ∈ [r0]

|λk| 6
√
α+ o(1) if k /∈ [r0].

(+ a description of the eigenvectors of λk, k ∈ [r0], if the µk are
distinct, In particular, they are asymptotically orthogonal).
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Stochastic Block Model

Assume

π =

(
1

2
,
1

2

)
and W =

(
a b
b a

)
.

If (a− b)2 > 2(a+ b), with high probability, we may reconstruct

correctly a proportion larger than 1/2 + ε of the types from the

second largest eigenvector of B.

If (a− b)2 < 2(a+ b), no algorithm can perform that (Neeman,
Mossel & Sly (2012)).



Some ideas of proofs



Perron eigenvalue

Let us restrict ourselves to the Erd®s-Rényi case.

We zoom and consider the matrix B` where for some well

chosen 0 < κ < 1/2,
` ∼ κ logα n.

If e = uv ∈ ~E and χ(f) = 1 for all f ∈ ~E,

〈δe, B`χ〉 = nb of NB paths of length ` starting from v in G\e

is close to the population Z` at generation ` in a Galton-Watson

process with Poi(α) distribution.



Perron eigenvalue

Seneta-Heyde thm, conditionned on non-extinction, a.s.

Z`
α`
→M ∈ (0,∞).

Hence, conditionned on non-extinction, a.s.

Z2`

α`Z`
→ 1.

The vector

ϕ =
B`χ

‖B`χ‖

should be close to an eigenvector of B` associated to α`.

Also, if x ∈ R ~E has positive entries, (B`x)/‖B`x‖ should be

nearly aligned with the Perron eigenvector.
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Strategy of proof

If x ∈ R ~E , set x̌(e) = x(e−1),

ζ =
B`ϕ̌

‖B`ϕ̌‖
=

B`B∗`χ

‖B`B∗`χ‖
and θ = ‖B`ϕ̌‖.

The statement : λ1 = α+ o(1) with eigenvector asymptotically

aligned to ζ and |λ2| 6
√
α+ o(1) is implied by

Proposition (Near eigenvector)

With high probability,

〈ζ, ϕ̌〉 > c0 and c0α
` < θ < c1α

`.

Proposition (Small norm in the complement)

With high probability,

sup
x:〈x,ϕ̌〉=0

‖B`x‖ 6 (log n)cα`/2‖x‖.
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Small norm in the complement

Proposition (Small norm in the complement)

With high probability,

sup
x:〈x,ϕ̌〉=0

‖B`x‖ 6 (log n)cα`/2‖x‖.

Standard issue : the graph contains a clique of size m with

proba larger than n−m
2/2,

E(B`)ee > (m− 1)`n−m
2/2 = e(κ log(m−1)−m2/2) logn.

Polynomially small event may have a big in�uence in

expectation.
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Small norm in the complement

With high probability, the graph is `-tangled free that is : no

vertex has more than two distinct cycles in its ` neighborhood.

We may replace B` by

(B(`))ef = nb of NB tangle free paths γ of length ` from e to f

=
∑
γ

`+1∏
s=0

Aγs,γs+1 ,

where the sum is over NB tangle free paths of length ` from e
to f in the complete graph.

Friedman (2004), Neeman-Sly-Mossel (2013), . . .
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Small norm in the complement

Consider the centered matrix

∆
(`)
ef =

∑
γ

`+1∏
s=0

(
Aγs,γs+1 −

α

n

)
,

where the sum is over NB tangle free paths of length ` from e
to f .

After a tricky decomposition,

‖B`x‖2 6 ‖∆(`)‖+
α

n

`−1∑
t=1

‖∆(t−1)χ‖2
∣∣∣〈(B∗)`−t−1χ, x〉

∣∣∣+ . . .

which we should estimate over 〈ϕ̌, x〉 = 〈(B∗)`χ, x〉 = 0.

Massoulié (2013)



Small norm in the complement

‖B`x‖2 6 ‖∆(`)‖+
α

n

`−1∑
t=1

‖∆(t−1)χ‖2
∣∣∣〈(B∗)`−t−1χ, x〉

∣∣∣
From the Galton-Watson tree comparison

〈(B∗)`χ, δe〉 ' α`−t〈(B∗)tχ, δe〉,

max
〈(B∗)`χ,x〉=0

∣∣〈(B∗)tχ, x〉∣∣ 6 (log n)c
√
nαt/2‖x‖2.

By the method of moments, with m ' log n/ log logn,

‖∆(t)‖ 6
(

Tr
(

∆(t)∆(t)∗
)m)1/m

6 (log n)cαt/2

‖∆(t)χ‖ 6 (log n)c
√
nαt/2.



Small norm in the complement
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? Without the homogeneous mean degree assumption ? (also

open for random lifts of irregular graphs).
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? A new proof of Friedman's Theorem ?

? In a general graph can we relate the condition

|λ2| 6
√
λ1 + o(1) to something geometric ?

? Generally a good idea to study non-Hermitian local operators.
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Thank you for your attention !



Near eigenvector

Proposition (Near eigenvector)

With high probability,

〈ζ, ϕ̌〉 > c0 and c0α
` < θ < c1α

`.

It requires to prove convergence of expressions of the form

α−2`〈δe, B2`B∗`χ〉

toward a limit random variable.



Near eigenvector for SBM

For the stochastic block model, if φk is the left eigenvector of M
with eigenvalue µk, we set,

χk(e) = φk(σ(e2)).

If |µk| >
√
µ

1
, the candidate eigenvector is ζk de�ned as

ϕk =
B`χk
‖B`χk‖

, θk = ‖B`ϕ̌k‖ , ζk =
B`B∗`χ̌k
‖B`B∗`χ̌k‖

.

We now deal with a multi-type Galton-Watson tree, the

condition |µk| >
√
µ

1
, is Kesten-Stigum condition and after

tedious computations, we �nd notably that for k 6= j ∈ [r0],

|〈ζj , ϕ̌j〉| > c0, 〈ζj , ϕ̌k〉 = o(1) and 〈ζj , ζk〉 = o(1).
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Kesten-Stigum Theorem (1966)

Consider the multi-type Galton-Watson process with mean

progeny matrix M (+ �nite second moment).

Let Z` ∈ Nr is the population vector at generation `,

If |µk| >
√
µ1, then, for some centered Mk, a.s. and in L2,

〈Z`, φk〉
µ`k

− 〈Z0, φk〉 →Mk.

If |µk| <
√
µ1, then, for some Mk, in L

2,

〈Z`, φk〉
µ
`/2
1

→Mk.


