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EXTREMAL EIGENVALUES OF GRAPHS

Take a finite graph G = (V, E') and define a local operator, e.g.
a discrete analog of a differential operator.

Which properties of the graph are contained in the extremal
eigenvalues and their eigenvectors ?

In this talk : non-backtracking matrices.



ADJACENCY MATRIX

Take a finite, simple, non-oriented graph G = (V, E).

Adjacency matrix : symmetric, indexed on vertices, for u,v € V,

Aup = 1{u,v} € E).



PERRON EIGENVALUE

If |V| = n, the (real) eigenvalues of A are

M= .2\,

From Perron-Frobenius Theorem : if G is connected, then
)\1 > )\2 and )\1 > *)\n-

Moreover, A\; = —\,, is equivalent to G bipartite.



REGULAR GRAPHS

Assume deg(v) =d forall v e V.

Then
AN =d

with associated eigenvector



SPECTRAL GAP

Largest non-trivial eigenvalue

A = max{|\g| : |A\g| # d}.

Theorem (Alon-Boppana (1991))

A>2/d—1-— 1ocgdn'



RAMANUJAN GRAPHS

A d-regular is Ramanujan if

A< 2Vd—1

Existence of infinite sequence of bipartite Ramanujan graphs

- d=p" +1, p prime : Lubotzky, Phillips & Sarnak (1988),
Margulis (1988), Morgenstern (1994),

- any d > 3 : Marcus, Spielman, Srivastava (2013).



SPECTRAL GAP AND DIAMETER

Theorem (Chung (1989))

) log(n — 1)
d cosn=b o
(@) S 157 Toan



SPECTRAL GAP AND EXPANSION

For X, Y C V, define
E(X,Y)= Y 1({uv}€E).

zeX,yeY
7
A
Isoperimetric constant :
E(X, X¢
h(G) = mi (X, X°)

XV min ([ X], | X))

Theorem (Cheeger’s Inequality)




RANDOM REGULAR GRAPH

Theorem (Friedman (2004))
Fix integer d > 3. Let G,, is a sequence of uniformly distributed
d-regular graphs on n vertices, then with high probability,

A=2vVd—1+0(1).

Most regular graphs are nearly Ramanujan!!



NON-REGULAR GRAPHS

It is not straightforward to extend the previous notions to
non-regular graphs. Lubotzky (1995), Hoory (2005).

Eigenvectors of extremal eigenvalues tend to localize on large
degree vertices.



NON-REGULAR GRAPHS

It is not straightforward to extend the previous notions to
non-regular graphs. Lubotzky (1995), Hoory (2005).

Eigenvectors of extremal eigenvalues tend to localize on large
degree vertices.

For example, if G is an Erdés-Rényi graph with parameter a/n,
for any fixed k£ > 1, with high probability,

logn
k \/ her eg(v) \/ loglogn’

Sudakov & Krivelevich (2003).



HASHIMOTO’S NON-BACKTRACKING MATRIX

Oriented edge set :

E = {uw: {u,v} € E},
hence, |E| = 2|E|.
If e =uv, f = xy are in E,

Bep =1(v = 2)1(u # y),

defines a |E| x |E| matrix on the oriented edges.

Y



PERRON EIGENVALUE

A closed non-backtracking path p = (vy...v,) is a path such
that v;_1 # vip1. If e = uv,

| B*6. |1 = nb of NB paths starting with vu of length ¢+ 1.



PERRON EIGENVALUE

A closed non-backtracking path p = (vy...v,) is a path such
that v;_1 # vip1. If e = uv,

| B*6. |1 = nb of NB paths starting with vu of length ¢+ 1.

If G is 2-connected (any vertex or pair of vertices are part of a
cycle) then B is irreducible and

AL = Elim ||B€66|H/€ = growth rate of the universal cover of B.
— 00



HASHIMOTO’S IDENTITY

Let @ the diagonal matrix with @Q,, = deg(v) — 1. We have

det(z — B) = (22— 1D)FIVldet(22 — Az + Q)



HASHIMOTO’S IDENTITY

Let @ the diagonal matrix with @Q,, = deg(v) — 1. We have

det(z — B) = (22— 1D)FIVldet(22 — Az + Q)

If G is d-regular, then @ = (d — 1)I and

o(B)={£1}U{X: A\ = Au+(d—1)=0with p € o(A)}.

Angel, Friedman, Hoory (2007), Terras (2011)



NON-BACKTRACKING MATRIX OF REGULAR GRAPHS

For a d-regular graph, A\ =d — 1,
* Alon-Boppana bound : maxy+; Re(A) > A1 — o(1).
*» Ramanujan (non bipartite) : [Aa| = VA1

* Friedman’s thm : [A2] < /A1 + o(1) if G random uniform.



IHARA-BAss FORMULA

Theorem (IThara-Bass Formula)
Let (g be the Thara’s zeta function. We have

CG’l(Z) = det(I — BZ) = (1 — 22)|E|_|V| det(] — Az + QZ2)

The poles of the zeta function are the reciprocal of eigenvalues
of B.



NON-BACKTRACKING WALKS

A closed non-backtracking path p = (v1,- -+ ,vy) is a closed path
such that v;—1 # v;+1 mod(n).

A closed non-backtracking path is prime if it cannot be written
as p=(q,q, - ,q) with ¢ closed non-backtracking path.

Equivalence class p ~ p' if v} = v; 1 mod(n).



[HARA’S ZETA FUNCTION (1966)

W= I (1)

P prime eq. class

Thara-Bass Formula :

=det(I — Bz) = (1 — 22)PI-WVldet(I — Az + Q2?).
a(2)
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RIEMANN HYPOTHESIS FOR_GRAPHS

With s = —In(z) and N(p) = el?l,

G =TI (1-=") " =TT~ 5w "

P P
For Re(s) > 1,

) =>n*= T[] (-p2)""

n=1 P prime

-/

\
\ /
/

Graph analog of RH = poles on a circle = Ramanujan! (Stark &
Terras)



NON-BACKTRACKING MATRIX OF ARBITRARY GRAPH

"In general graphs, the condition |Aa| < /A1 is one of the
possible analogs of a Ramanujan property”.

BUT

* No Alon-Boppana lower bound.
* No Cheeger-type isoperimetric inequality.

* No Chung-type diameter inequality.

A more satisfactory analog was proposed by Lubotzky (1995).



COMMUNITY DETECTION

"Eigenvalues/eigenvectors such that |\i| > /A1 should contain
relevant global information on the graph”.

rate g=2

. Ka
Dolptins g=2 Overlap: 1

Overlap:

4 6

Adjnoun g=2 -
Overlap: 0.6250 Polbooks 4-3

Overlap: 0.7571

Krzakala/Moore/Mossel/Neeman/Sly/Zdeborovd/Zhang (2013)



NON-BACKTRACKING SPECTRUM OF RANDOM GRAPHS




SIMULATION FOR ERDOS-RENYI GRAPH

Eigenvalues of B for an Erdés-Rényi graph G(n,«/n) with
n = 500 and o = 4.




ErRDOS-RENYI GRAPH

)\1>|A2’2

Theorem
Let a > 1 and G with distribution G(n,a/n). With high
probability,

M= a+o(1)
Xo| < Va+o(l).



STOCHASTIC BLOCK MODEL

Consider a set of types [r] = {1,--- ,r} and assign type o,(v) to
vertex v. We assume that
1 n
(i) = 5 31 (on(v) = 8) = 7(0) + O ),
v=

for some probability vector .



STOCHASTIC BLOCK MODEL

Consider a set of types [r] = {1,--- ,r} and assign type o,(v) to
vertex v. We assume that
1 n
(i) = 5 31 (on(v) = 8) = 7(0) + O ),
v=

for some probability vector .

If o(u) =1i,0(v) = j, the edge {u, v} is present independently

with probability
Wi

n

AL,

where W is a symmetric matrix.

(Inhomogeneous random graph, Chung-Lu random graph, ...)



STOCHASTIC BLOCK MODEL

If o(v) = j, mean number of type i neighbors is

m(i)Wi; + O(1/n).

Mean progeny matrix

M = diag(m)W.

We assume that the average degree is homogeneous, for all
j e lrl,

r
ZMij =a>1.
=1

Assume that M is strongly irreducible and we order its real
eigenvalues

a=p > [po = 2= [pl



STOCHASTIC BLOCK MODEL

Model used in community detection. Notably for » = 2,
(11
"= \22

and, with a > b,

Then
a-+b a—2b
and  po = 5

=

Decelle, Krzakala, Moore, Mossel, Neeman, Sly, Zdeborovd, Zhang



STOCHASTIC BLOCK MODEL

n=2>500, a=7 b=1 wu =4, pe=3.




STOCHASTIC BLOCK MODEL

Let 1 < 7rg < r such that

o= > el = 2 ] > ity = ] = - 2 |,

Theorem
Let o > 1 and G a stochastic block model as above. With high

probability, up to reordering the eigenvalues of B,
)\k ME 0(1) Ifk c [T'()]
Al < Va+o(l) ifk ¢ [ro].



STOCHASTIC BLOCK MODEL

Let 1 < 7rg < r such that
a=p1 > pa| = = g > Vg Z g Z o0 = [pe].
Theorem

Let o > 1 and G a stochastic block model as above. With high
probability, up to reordering the eigenvalues of B,

A = g +o(l) if k € [ro]
Ml < Vado(l) ifk ¢ [ro).

(+ a description of the eigenvectors of A\, k € [ro], if the uy are
distinct, In particular, they are asymptotically orthogonal).



STOCHASTIC BLOCK MODEL

Assume -
a b
™= <2,2> and W— <b G,) .

If (a — b)? > 2(a + b), with high probability, we may reconstruct
correctly a proportion larger than 1/2 + ¢ of the types from the
second largest eigenvector of B.

If (a — b)? < 2(a + b), no algorithm can perform that (Neeman,
Mossel & Sly (2012)).



SOME IDEAS OF PROOFS




PERRON EIGENVALUE

Let us restrict ourselves to the Erdgs-Rényi case.

We zoom and consider the matrix BY where for some well
chosen 0 < k < 1/2,
{ ~ klog, n.

Ife=uveE and x(f) =1 forall feE,
(¢, B'X) = nb of NB paths of length ¢ starting from v in G\e

is close to the population Z; at generation ¢ in a Galton-Watson
process with Poi(a) distribution.



PERRON EIGENVALUE

Seneta-Heyde thm, conditionned on non-extinction, a.s.
Z
é%MG&@.

Hence, conditionned on non-extinction, a.s.
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Seneta-Heyde thm, conditionned on non-extinction, a.s.
Z
é%MG&@.

Hence, conditionned on non-extinction, a.s.

Zayg
— — 1.
otZ,

The vector ,
| Bx||

¥

should be close to an eigenvector of B’ associated to of.



PERRON EIGENVALUE

Seneta-Heyde thm, conditionned on non-extinction, a.s.
Z
é%MG@@.

Hence, conditionned on non-extinction, a.s.

Zayg
— — 1.
otZ,

The vector ,
B"x
| Bl

Y= |
should be close to an eigenvector of B’ associated to of.

Also, if x € R has positive entries, (B‘x)/||B‘z|| should be
nearly aligned with the Perron eigenvector.



STRATEGY OF PROOF

If x € RE, set Z(e) = x(e™ 1),

Bé@ BKB*ZX
= = d 9 =|B%].
C= Bl T BBy 1P

The statement : \; = a + o(1) with eigenvector asymptotically
aligned to ¢ and |Ag| < v/a + o(1) is implied by



STRATEGY OF PROOF

If x € RE, set Z(e) = x(e™ 1),

Bé@ BKB*ZX ,
— = d 0 =1[B®|.
C= Bl T BBy 1P

The statement : \; = a + o(1) with eigenvector asymptotically
aligned to ¢ and |Ag| < v/a + o(1) is implied by

Proposition (Near eigenvector)
With high probability,

(¢,@) > co and coat <0 < 1o’

Proposition (Small norm in the complement)
With high probability,

sup || B'z|| < (logn)*a’’?||z].
z:(z,)=0



SMALL NORM IN THE COMPLEMENT

Proposition (Small norm in the complement)
With high probability,

sup || Bz|| < (logn)°a’’?|z|.
w1(2,9)=0



SMALL NORM IN THE COMPLEMENT

Proposition (Small norm in the complement)
With high probability,

sup || Bz]| < (logn)°a’/?|z|.
z:(z,$)=0
Standard issue : the graph contains a clique of size m with
proba larger than n_m2/2,
E(Bz)ee > (m o 1)£n—m2/2 _ 6(.14log(m—l)—m2/2) logn.

Polynomially small event may have a big influence in
expectation.



SMALL NORM IN THE COMPLEMENT

With high probability, the graph is ¢-tangled free that is : no
vertex has more than two distinct cycles in its £ neighborhood.



SMALL NORM IN THE COMPLEMENT

With high probability, the graph is ¢-tangled free that is : no
vertex has more than two distinct cycles in its £ neighborhood.

We may replace B by

(B(e))ef = nb of NB tangle free paths 7 of length ¢ from e to f
/41

= Z H A’Ys,’ys+1v

v s=0

where the sum is over NB tangle free paths of length ¢ from e
to f in the complete graph.

Friedman (2004), Neeman-Sly-Mossel (2013), . ..



SMALL NORM IN THE COMPLEMENT

Consider the centered matrix

A9 =TT (A - ©).

v s=0

where the sum is over NB tangle free paths of length ¢ from e

to f.

After a tricky decomposition,
1Balle < A + 2 ZIIN Dl (B )|+

which we should estimate over (¢, z) = ((B*)'x, z) = 0.

Massoulié (2013)



SMALL NORM IN THE COMPLEMENT

-1
Q@ _ ol
1B alle < 1A + 2 37 Ao |(B) " xa)
t=1
From the Galton-Watson tree comparison
(B)'x,0c) = a'=H{((B")'x, &),

max  [((B*)'x,z)| < (logn)*Vna'/?|zl2.
(B*)x)=0



SMALL NORM IN THE COMPLEMENT

-1
« _ w f—te
1B alle < 1A + 2 37 Ao |(B) " xa)
t=1

From the Galton-Watson tree comparison
((B)'x,0e) = a'~H((B")'x 0c),

max  [((B*)'x,z)| < (logn)*Vna'/?|zl2.
(B*)x)=0

By the method of moments, with m ~ logn/loglogn,

1/m

a1 (1e(800)") " < g

AW || < (logn)*v/n o/,



FINAL COMMENTS

No lower bound on |Ag|.



FINAL COMMENTS

* No lower bound on |As].

* Limit empirical distribution of eigenvalues ?



FINAL COMMENTS

No lower bound on |Ag|.
Limit empirical distribution of eigenvalues?

Without the homogeneous mean degree assumption ? (also
open for random lifts of irregular graphs).



FINAL COMMENTS

* A new proof of Friedman’s Theorem ?
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* A new proof of Friedman’s Theorem ?

* In a general graph can we relate the condition
|A2| < VA1 + o(1) to something geometric ?



FINAL COMMENTS

* A new proof of Friedman’s Theorem ?

* In a general graph can we relate the condition
|A2| < VA1 + o(1) to something geometric ?

* Generally a good idea to study non-Hermitian local operators.



THANK YOU FOR YOUR ATTENTION !




NEAR EIGENVECTOR

Proposition (Near eigenvector)
With high probability,

(¢,¢) > co and coad < 0 < crat.

It requires to prove convergence of expressions of the form
a—2£<56, B2€B*€X>

toward a limit random variable.



NEAR EIGENVECTOR FOR SBM

For the stochastic block model, if ¢, is the left eigenvector of M
with eigenvalue uy, we set,

Xk(e) = dr(o(e2)).
If |pg| > /1, the candidate eigenvector is (i defined as

BZXk ¢
Ok =tpmr> O=IIB"%l, G=
| BExk|l

BZB*EXk
HBZB*ZXk”



NEAR EIGENVECTOR FOR SBM

For the stochastic block model, if ¢, is the left eigenvector of M
with eigenvalue uy, we set,

Xk(e) = dr(o(e2)).
If |pg| > /1, the candidate eigenvector is (i defined as

BZXk ¢
Ok =tpmr> O=IIB"%l, G=
| BExk|l

BZB*EXk
HBeB*ZXk”

We now deal with a multi-type Galton-Watson tree, the
condition |ux| > \/pty, is Kesten-Stigum condition and after
tedious computations, we find notably that for k # j € [rg],

(G @) = cos (Gjspr) =0(1) and (G, (k) = o(1).



KESTEN-STIGUM THEOREM (1966)

Consider the multi-type Galton-Watson process with mean
progeny matrix M (+ finite second moment).

Let Zy € N" is the population vector at generation ¢,

If |px| > \/pi1, then, for some centered My, a.s. and in L2,

M —(Zo, ox) — M.

M

If |pux| < \/pi1, then, for some My, in L2,

(Zy, dr)
72
M

— Mk.



