NON-BACKTRACKING SPECTRUM OF RANDOM GRAPHS

Charles Bordenave

CNRS \& University of Toulouse

Joint work with Marc Lelarge and Laurent Massoulié

ExTREMAL EIGENVALUES OF GRAPHS

Take a finite graph $G=(V, E)$ and define a local operator, e.g. a discrete analog of a differential operator.

Which properties of the graph are contained in the extremal eigenvalues and their eigenvectors?

In this talk : non-backtracking matrices.

ADJACENCY MATRIX

Take a finite, simple, non-oriented graph $G=(V, E)$.

Adjacency matrix : symmetric, indexed on vertices, for $u, v \in V$,

$$
A_{u v}=\mathbf{1}(\{u, v\} \in E)
$$

PERRON EIGENVALUE

If $|V|=n$, the (real) eigenvalues of A are

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{n}
$$

From Perron-Frobenius Theorem: if G is connected, then

$$
\lambda_{1}>\lambda_{2} \quad \text { and } \quad \lambda_{1} \geqslant-\lambda_{n} .
$$

Moreover, $\lambda_{1}=-\lambda_{n}$ is equivalent to G bipartite.

Assume $\operatorname{deg}(v)=d$ for all $v \in V$.

Then

$$
\lambda_{1}=d
$$

with associated eigenvector

$$
\psi_{1}=(1, \ldots, 1)^{\top} / \sqrt{n}
$$

$\underline{\text { Spectral GAP }}$

Largest non-trivial eigenvalue

$$
\lambda=\max \left\{\left|\lambda_{k}\right|:\left|\lambda_{k}\right| \neq d\right\} .
$$

Theorem (Alon-Boppana (1991))

$$
\lambda \geqslant 2 \sqrt{d-1}-\frac{c_{d}}{\log n}
$$

Ramanujan graphs

A d-regular is Ramanujan if

$$
\lambda \leqslant 2 \sqrt{d-1}
$$

Existence of infinite sequence of bipartite Ramanujan graphs

- $d=p^{k}+1, p$ prime : Lubotzky, Phillips E3 Sarnak (1988), Margulis (1988), Morgenstern (1994),
- any $d \geqslant 3$: Marcus, Spielman, Srivastava (2013).

Theorem (Chung (1989))

$$
\operatorname{diam}(G) \leqslant \frac{\log (n-1)}{\log d-\log \lambda}+2
$$

Spectral Gap and Expansion

For $X, Y \subset V$, define

$$
E(X, Y)=\sum_{x \in X, y \in Y} \mathbf{1}(\{u, v\} \in E) .
$$

Isoperimetric constant :

$$
h(G)=\min _{X \subset V} \frac{E\left(X, X^{c}\right)}{\min \left(|X|,\left|X^{c}\right|\right)} .
$$

Theorem (Cheeger's Inequality)

$$
\frac{h(G)^{2}}{2 d} \leqslant d-\lambda_{2} \leqslant 2 h(G)
$$

RANDOM REGULAR GRAPH

Theorem (Friedman (2004))
Fix integer $d \geqslant 3$. Let G_{n} is a sequence of uniformly distributed d-regular graphs on n vertices, then with high probability,

$$
\lambda=2 \sqrt{d-1}+o(1) .
$$

Most regular graphs are nearly Ramanujan!!

NON-REGULAR GRAPHS

It is not straightforward to extend the previous notions to non-regular graphs. Lubotzky (1995), Hoory (2005).

Eigenvectors of extremal eigenvalues tend to localize on large degree vertices.

NON-REGULAR GRAPHS

It is not straightforward to extend the previous notions to non-regular graphs. Lubotzky (1995), Hoory (2005).

Eigenvectors of extremal eigenvalues tend to localize on large degree vertices.

For example, if G is an Erdős-Rényi graph with parameter α / n, for any fixed $k \geqslant 1$, with high probability,

$$
\lambda_{k} \sim \sqrt{\max _{v \in V}[k] \operatorname{deg}(v)} \sim \sqrt{\frac{\log n}{\log \log n}}
$$

Sudakov 6 Krivelevich (2003).

Hashimoto's non-backtracking matrix

Oriented edge set :

$$
\vec{E}=\{u v:\{u, v\} \in E\}
$$

hence, $|\vec{E}|=2|E|$.
If $e=u v, f=x y$ are in \vec{E},

$$
B_{e f}=\mathbf{1}(v=x) \mathbf{1}(u \neq y)
$$

defines a $|\vec{E}| \times|\vec{E}|$ matrix on the oriented edges.

PERRON EIGENVALUE

A closed non-backtracking path $p=\left(v_{1} \ldots v_{n}\right)$ is a path such that $v_{i-1} \neq v_{i+1}$. If $e=u v$,
$\left\|B^{\ell} \delta_{e}\right\|_{1}=\mathrm{nb}$ of NB paths starting with $v u$ of length $\ell+1$.

Perron eigenvalue

A closed non-backtracking path $p=\left(v_{1} \ldots v_{n}\right)$ is a path such that $v_{i-1} \neq v_{i+1}$. If $e=u v$,
$\left\|B^{\ell} \delta_{e}\right\|_{1}=\mathrm{nb}$ of NB paths starting with $v u$ of length $\ell+1$.

If G is 2-connected (any vertex or pair of vertices are part of a cycle) then B is irreducible and

$$
\lambda_{1}=\lim _{\ell \rightarrow \infty}\left\|B^{\ell} \delta_{e}\right\|_{1}^{1 / \ell}=\text { growth rate of the universal cover of } B .
$$

Hashimoto's Identity

Let Q the diagonal matrix with $Q_{v v}=\operatorname{deg}(v)-1$. We have

$$
\operatorname{det}(z-B)=\left(z^{2}-1\right)^{|E|-|V|} \operatorname{det}\left(z^{2}-A z+Q\right)
$$

Hashimoto's Identity

Let Q the diagonal matrix with $Q_{v v}=\operatorname{deg}(v)-1$. We have

$$
\operatorname{det}(z-B)=\left(z^{2}-1\right)^{|E|-|V|} \operatorname{det}\left(z^{2}-A z+Q\right)
$$

If G is d-regular, then $Q=(d-1) I$ and

$$
\sigma(B)=\{ \pm 1\} \cup\left\{\lambda: \lambda^{2}-\lambda \mu+(d-1)=0 \text { with } \mu \in \sigma(A)\right\}
$$

Angel, Friedman, Hoory (2007), Terras (2011)

Non-Backtracking matrix of regular graphs

For a d-regular graph, $\lambda_{1}=d-1$,
\star Alon-Boppana bound : $\max _{k \neq 1} \mathfrak{R e}\left(\lambda_{k}\right) \geqslant \sqrt{\lambda_{1}}-o(1)$.
\star Ramanujan (non bipartite) : $\left|\lambda_{2}\right|=\sqrt{\lambda_{1}}$
\star Friedman's thm : $\left|\lambda_{2}\right| \leqslant \sqrt{\lambda_{1}}+o(1)$ if G random uniform.

Ihara-Bass Formula

Theorem (Ihara-Bass Formula)
Let ζ_{G} be the Ihara's zeta function. We have

$$
\frac{1}{\zeta_{G}(z)}=\operatorname{det}(I-B z)=\left(1-z^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-A z+Q z^{2}\right)
$$

The poles of the zeta function are the reciprocal of eigenvalues of B.

Non-Backtracking Walks

A closed non-backtracking path $p=\left(v_{1}, \cdots, v_{n}\right)$ is a closed path such that $v_{i-1} \neq v_{i+1} \bmod (n)$.

A closed non-backtracking path is prime if it cannot be written as $p=(q, q, \cdots, q)$ with q closed non-backtracking path.

Equivalence class $p \sim p^{\prime}$ if $v_{i}^{\prime}=v_{i+k} \bmod (n)$.

Ihara's Zeta Function (1966)

$$
\zeta_{G}(z)=\prod_{p: \text { prime eq. class }}\left(1-z^{|p|}\right)^{-1}
$$

Ihara-Bass Formula :

$$
\frac{1}{\zeta_{G}(z)}=\operatorname{det}(I-B z)=\left(1-z^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-A z+Q z^{2}\right)
$$

Ihara's Zeta Function (1966)

$$
\zeta_{G}(z)=\prod_{p: \text { prime eq. class }}\left(1-z^{|p|}\right)^{-1}
$$

Ihara-Bass Formula :

$$
\frac{1}{\zeta_{G}(z)}=\operatorname{det}(I-B z)=\left(1-z^{2}\right)^{|E|-|V|} \operatorname{det}\left(I-A z+Q z^{2}\right)
$$

RIEMANN HYPOTHESIS FOR GRAPHS

With $s=-\ln (z)$ and $N(p)=e^{|p|}$,

$$
\zeta_{G}(z)=\prod_{p}\left(1-z^{|p|}\right)^{-1}=\prod_{p}\left(1-N(p)^{-s}\right)^{-1}
$$

For $\mathfrak{R e}(s)>1$,

$$
\zeta(s)=\sum_{n \geqslant 1} n^{-s}=\prod_{p: \text { prime }}\left(1-p^{-s}\right)^{-1}
$$

Graph analog of $\mathrm{RH}=$ poles on a circle $=$ Ramanujan ! (Stark \mathcal{G} Terras)

Non-BACKTRACKING MATRIX OF ARBITRARY GRAPH

"In general graphs, the condition $\left|\lambda_{2}\right| \leqslant \sqrt{\lambda_{1}}$ is one of the possible analogs of a Ramanujan property".

BUT
\star No Alon-Boppana lower bound.
\star No Cheeger-type isoperimetric inequality.
\star No Chung-type diameter inequality.

A more satisfactory analog was proposed by Lubotzky (1995).

COMMUNITY DETECTION

"Eigenvalues/eigenvectors such that $\left|\lambda_{k}\right|>\sqrt{\lambda_{1}}$ should contain relevant global information on the graph".

Krzakala/Moore/Mossel/Neeman/Sly/Zdeborová/Zhang (2013)

Non-BACKTRACKING SPECTRUM OF RANDOM GRAPHS

Simulation for Erdôs-RÉnyi Graph

Eigenvalues of B for an Erdős-Rényi graph $\mathcal{G}(n, \alpha / n)$ with $n=500$ and $\alpha=4$.

Erdớs-Rényi Graph

$$
\lambda_{1} \geqslant\left|\lambda_{2}\right| \geqslant \ldots
$$

Theorem

Let $\alpha>1$ and G with distribution $\mathcal{G}(n, \alpha / n)$. With high probability,

$$
\begin{aligned}
\lambda_{1} & =\alpha+o(1) \\
\left|\lambda_{2}\right| & \leqslant \sqrt{\alpha}+o(1)
\end{aligned}
$$

$\underline{\text { Stochastic Block Model }}$

Consider a set of types $[r]=\{1, \cdots, r\}$ and assign type $\sigma_{n}(v)$ to vertex v. We assume that

$$
\pi_{n}(i)=\frac{1}{n} \sum_{v=1}^{n} \mathbf{1}\left(\sigma_{n}(v)=i\right)=\pi(i)+O\left(n^{-\gamma}\right)
$$

for some probability vector π.

Stochastic Block Model

Consider a set of types $[r]=\{1, \cdots, r\}$ and assign type $\sigma_{n}(v)$ to vertex v. We assume that

$$
\pi_{n}(i)=\frac{1}{n} \sum_{v=1}^{n} \mathbf{1}\left(\sigma_{n}(v)=i\right)=\pi(i)+O\left(n^{-\gamma}\right)
$$

for some probability vector π.

If $\sigma(u)=i, \sigma(v)=j$, the edge $\{u, v\}$ is present independently with probability

$$
\frac{W_{i j}}{n} \wedge 1
$$

where W is a symmetric matrix.
(Inhomogeneous random graph, Chung-Lu random graph, ...)

Stochastic Block Model

If $\sigma(v)=j$, mean number of type i neighbors is

$$
\pi(i) W_{i j}+O(1 / n)
$$

Mean progeny matrix

$$
M=\operatorname{diag}(\pi) W
$$

We assume that the average degree is homogeneous, for all $j \in[r]$,

$$
\sum_{i=1}^{r} M_{i j}=\alpha>1
$$

Assume that M is strongly irreducible and we order its real eigenvalues

$$
\alpha=\mu_{1}>\left|\mu_{2}\right| \geqslant \cdots \geqslant\left|\mu_{r}\right| .
$$

Stochastic Block Model

Model used in community detection. Notably for $r=2$,

$$
\pi=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

and, with $a>b$,

$$
W=\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right)
$$

Then

$$
\mu_{1}=\frac{a+b}{2} \quad \text { and } \quad \mu_{2}=\frac{a-b}{2} .
$$

Decelle, Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang

Stochastic Block Model

$$
n=500, \quad a=7, \quad b=1, \quad \mu_{1}=4, \quad \mu_{2}=3 .
$$

Stochastic Block Model

Let $1 \leqslant r_{0} \leqslant r$ such that

$$
\alpha=\mu_{1}>\left|\mu_{2}\right| \geqslant \cdots \geqslant\left|\mu_{r_{0}}\right|>\sqrt{\mu}_{1} \geqslant\left|\mu_{r_{0}+1}\right| \geqslant \cdots \geqslant\left|\mu_{r}\right| .
$$

Theorem

Let $\alpha>1$ and G a stochastic block model as above. With high probability, up to reordering the eigenvalues of B,

$$
\begin{array}{rlrl}
\lambda_{k} & =\mu_{k}+o(1) & & \text { if } k \in\left[r_{0}\right] \\
\left|\lambda_{k}\right| \leqslant \sqrt{\alpha}+o(1) & & \text { if } k \notin\left[r_{0}\right] .
\end{array}
$$

Stochastic Block Model

Let $1 \leqslant r_{0} \leqslant r$ such that

$$
\alpha=\mu_{1}>\left|\mu_{2}\right| \geqslant \cdots \geqslant\left|\mu_{r_{0}}\right|>\sqrt{\mu}_{1} \geqslant\left|\mu_{r_{0}+1}\right| \geqslant \cdots \geqslant\left|\mu_{r}\right| .
$$

Theorem

Let $\alpha>1$ and G a stochastic block model as above. With high probability, up to reordering the eigenvalues of B,

$$
\begin{array}{rlrl}
\lambda_{k} & =\mu_{k}+o(1) & & \text { if } k \in\left[r_{0}\right] \\
\left|\lambda_{k}\right| \leqslant \sqrt{\alpha}+o(1) & & \text { if } k \notin\left[r_{0}\right] .
\end{array}
$$

$\left(+a\right.$ description of the eigenvectors of $\lambda_{k}, k \in\left[r_{0}\right]$, if the μ_{k} are distinct, In particular, they are asymptotically orthogonal).

Stochastic Block Model

Assume

$$
\pi=\left(\frac{1}{2}, \frac{1}{2}\right) \quad \text { and } \quad W=\left(\begin{array}{cc}
a & b \\
b & a
\end{array}\right)
$$

If $(a-b)^{2}>2(a+b)$, with high probability, we may reconstruct correctly a proportion larger than $1 / 2+\varepsilon$ of the types from the second largest eigenvector of B.

If $(a-b)^{2}<2(a+b)$, no algorithm can perform that (Neeman, Mossel $\mathcal{E S}^{\text {Sly (2012) }}$).

SOME IDEAS OF PROOFS

PERRON EIGENVALUE

Let us restrict ourselves to the Erdős-Rényi case.
We zoom and consider the matrix B^{ℓ} where for some well chosen $0<\kappa<1 / 2$,

$$
\ell \sim \kappa \log _{\alpha} n .
$$

If $e=u v \in \vec{E}$ and $\chi(f)=1$ for all $f \in \vec{E}$,
$\left\langle\delta_{e}, B^{\ell} \chi\right\rangle=\mathrm{nb}$ of NB paths of length ℓ starting from v in $G \backslash e$ is close to the population Z_{ℓ} at generation ℓ in a Galton-Watson process with $\operatorname{Poi}(\alpha)$ distribution.

PERRON EIGENVALUE

Seneta-Heyde thm, conditionned on non-extinction, a.s.

$$
\frac{Z_{\ell}}{\alpha^{\ell}} \rightarrow M \in(0, \infty)
$$

Hence, conditionned on non-extinction, a.s.

$$
\frac{Z_{2 \ell}}{\alpha^{\ell} Z_{\ell}} \rightarrow 1
$$

PERRON EIGENVALUE

Seneta-Heyde thm, conditionned on non-extinction, a.s.

$$
\frac{Z_{\ell}}{\alpha^{\ell}} \rightarrow M \in(0, \infty)
$$

Hence, conditionned on non-extinction, a.s.

$$
\frac{Z_{2 \ell}}{\alpha^{\ell} Z_{\ell}} \rightarrow 1
$$

The vector

$$
\varphi=\frac{B^{\ell} \chi}{\left\|B^{\ell} \chi\right\|}
$$

should be close to an eigenvector of B^{ℓ} associated to α^{ℓ}.

PERRON EIGENVALUE

Seneta-Heyde thm, conditionned on non-extinction, a.s.

$$
\frac{Z_{\ell}}{\alpha^{\ell}} \rightarrow M \in(0, \infty)
$$

Hence, conditionned on non-extinction, a.s.

$$
\frac{Z_{2 \ell}}{\alpha^{\ell} Z_{\ell}} \rightarrow 1
$$

The vector

$$
\varphi=\frac{B^{\ell} \chi}{\left\|B^{\ell} \chi\right\|}
$$

should be close to an eigenvector of B^{ℓ} associated to α^{ℓ}.
Also, if $x \in \mathbb{R}^{\vec{E}}$ has positive entries, $\left(B^{\ell} x\right) /\left\|B^{\ell} x\right\|$ should be nearly aligned with the Perron eigenvector.

STRATEGY OF PROOF

If $x \in \mathbb{R}^{\vec{E}}$, set $\check{x}(e)=x\left(e^{-1}\right)$,

$$
\zeta=\frac{B^{\ell} \check{\varphi}}{\left\|B^{\ell} \check{\varphi}\right\|}=\frac{B^{\ell} B^{* \ell} \chi}{\left\|B^{\ell} B^{* \ell} \chi\right\|} \text { and } \theta=\left\|B^{\ell} \check{\varphi}\right\|
$$

The statement: $\lambda_{1}=\alpha+o(1)$ with eigenvector asymptotically aligned to ζ and $\left|\lambda_{2}\right| \leqslant \sqrt{\alpha}+o(1)$ is implied by

STRATEGY OF PROOF

If $x \in \mathbb{R}^{\vec{E}}$, set $\check{x}(e)=x\left(e^{-1}\right)$,

$$
\zeta=\frac{B^{\ell} \check{\varphi}}{\left\|B^{\ell} \check{\varphi}\right\|}=\frac{B^{\ell} B^{* \ell} \chi}{\left\|B^{\ell} B^{* \ell} \chi\right\|} \text { and } \theta=\left\|B^{\ell} \check{\varphi}\right\|
$$

The statement : $\lambda_{1}=\alpha+o(1)$ with eigenvector asymptotically aligned to ζ and $\left|\lambda_{2}\right| \leqslant \sqrt{\alpha}+o(1)$ is implied by

Proposition (Near eigenvector)
With high probability,

$$
\langle\zeta, \breve{\varphi}\rangle>c_{0} \text { and } c_{0} \alpha^{\ell}<\theta<c_{1} \alpha^{\ell} .
$$

Proposition (Small norm in the complement)
With high probability,

$$
\sup _{x:\langle x, \check{\varphi}\rangle=0}\left\|B^{\ell} x\right\| \leqslant(\log n)^{c} \alpha^{\ell / 2}\|x\| .
$$

SMALL NORM IN THE COMPLEMENT

Proposition (Small norm in the complement) With high probability,

$$
\sup _{:\langle x, \check{\varphi}\rangle=0}\left\|B^{\ell} x\right\| \leqslant(\log n)^{c} \alpha^{\ell / 2}\|x\| .
$$

SMALL NORM IN THE COMPLEMENT

Proposition (Small norm in the complement) With high probability,

$$
\sup _{x:\langle x, \bar{\varphi}\rangle=0}\left\|B^{\ell} x\right\| \leqslant(\log n)^{c} \alpha^{\ell / 2}\|x\| .
$$

Standard issue : the graph contains a clique of size m with proba larger than $n^{-m^{2} / 2}$,

$$
\mathbb{E}\left(B^{\ell}\right)_{e e} \geqslant(m-1)^{\ell} n^{-m^{2} / 2}=e^{\left(\kappa \log (m-1)-m^{2} / 2\right) \log n} .
$$

Polynomially small event may have a big influence in expectation.

SMALL NORM IN THE COMPLEMENT

With high probability, the graph is ℓ-tangled free that is : no vertex has more than two distinct cycles in its ℓ neighborhood.

SMALL NORM IN THE COMPLEMENT

With high probability, the graph is ℓ-tangled free that is : no vertex has more than two distinct cycles in its ℓ neighborhood.

We may replace B^{ℓ} by
$\left(B^{(\ell)}\right)_{e f}=\mathrm{nb}$ of NB tangle free paths γ of length ℓ from e to f

$$
=\sum_{\gamma} \prod_{s=0}^{\ell+1} A_{\gamma_{s}, \gamma_{s+1}}
$$

where the sum is over NB tangle free paths of length ℓ from e to f in the complete graph.

Friedman (2004), Neeman-Sly-Mossel (2013), ...

SMALL NORM IN THE COMPLEMENT

Consider the centered matrix

$$
\Delta_{e f}^{(\ell)}=\sum_{\gamma} \prod_{s=0}^{\ell+1}\left(A_{\gamma_{s}, \gamma_{s+1}}-\frac{\alpha}{n}\right)
$$

where the sum is over NB tangle free paths of length ℓ from e to f.

After a tricky decomposition,

$$
\left\|B^{\ell} x\right\|_{2} \leqslant\left\|\Delta^{(\ell)}\right\|+\frac{\alpha}{n} \sum_{t=1}^{\ell-1}\left\|\Delta^{(t-1)} \chi\right\|_{2}\left|\left\langle\left(B^{*}\right)^{\ell-t-1} \chi, x\right\rangle\right|+\ldots
$$

which we should estimate over $\langle\check{\varphi}, x\rangle=\left\langle\left(B^{*}\right)^{\ell} \chi, x\right\rangle=0$.

SMALL NORM IN THE COMPLEMENT

$$
\left\|B^{\ell} x\right\|_{2} \leqslant\left\|\Delta^{(\ell)}\right\|+\frac{\alpha}{n} \sum_{t=1}^{\ell-1}\left\|\Delta^{(t-1)} \chi\right\|_{2}\left|\left\langle\left(B^{*}\right)^{\ell-t-1} \chi, x\right\rangle\right|
$$

From the Galton-Watson tree comparison $\left\langle\left(B^{*}\right)^{\ell} \chi, \delta_{e}\right\rangle \simeq \alpha^{\ell-t}\left\langle\left(B^{*}\right)^{t} \chi, \delta_{e}\right\rangle$,

$$
\max _{\left\langle\left(B^{*}\right)^{\ell} \chi, x\right\rangle=0}\left|\left\langle\left(B^{*}\right)^{t} \chi, x\right\rangle\right| \leqslant(\log n)^{c} \sqrt{n} \alpha^{t / 2}\|x\|_{2} .
$$

SMALL NORM IN THE COMPLEMENT

$$
\left\|B^{\ell} x\right\|_{2} \leqslant\left\|\Delta^{(\ell)}\right\|+\frac{\alpha}{n} \sum_{t=1}^{\ell-1}\left\|\Delta^{(t-1)} \chi\right\|_{2}\left|\left\langle\left(B^{*}\right)^{\ell-t-1} \chi, x\right\rangle\right|
$$

From the Galton-Watson tree comparison $\left\langle\left(B^{*}\right)^{\ell} \chi, \delta_{e}\right\rangle \simeq \alpha^{\ell-t}\left\langle\left(B^{*}\right)^{t} \chi, \delta_{e}\right\rangle$,

$$
\max _{\left\langle\left(B^{*}\right)^{\ell} \chi, x\right\rangle=0}\left|\left\langle\left(B^{*}\right)^{t} \chi, x\right\rangle\right| \leqslant(\log n)^{c} \sqrt{n} \alpha^{t / 2}\|x\|_{2} .
$$

By the method of moments, with $m \simeq \log n / \log \log n$,

$$
\begin{gathered}
\left\|\Delta^{(t)}\right\| \leqslant\left(\operatorname{Tr}\left(\Delta^{(t)} \Delta^{(t)^{*}}\right)^{m}\right)^{1 / m} \leqslant(\log n)^{c} \alpha^{t / 2} \\
\left\|\Delta^{(t)} \chi\right\| \leqslant(\log n)^{c} \sqrt{n} \alpha^{t / 2}
\end{gathered}
$$

Final comments

\star No lower bound on $\left|\lambda_{2}\right|$.

Final comments

\star No lower bound on $\left|\lambda_{2}\right|$.
\star Limit empirical distribution of eigenvalues?

Final comments

\star No lower bound on $\left|\lambda_{2}\right|$.
\star Limit empirical distribution of eigenvalues?

* Without the homogeneous mean degree assumption? (also open for random lifts of irregular graphs).

Final comments
\star A new proof of Friedman's Theorem?

Final comments

\star A new proof of Friedman's Theorem?
\star In a general graph can we relate the condition $\left|\lambda_{2}\right| \leqslant \sqrt{\lambda_{1}}+o(1)$ to something geometric?

Final comments

\star A new proof of Friedman's Theorem?
\star In a general graph can we relate the condition $\left|\lambda_{2}\right| \leqslant \sqrt{\lambda_{1}}+o(1)$ to something geometric?
^ Generally a good idea to study non-Hermitian local operators.

THANK YOU FOR YOUR ATTENTION!

NEAR EIGENVECTOR

Proposition (Near eigenvector)
With high probability,

$$
\langle\zeta, \check{\varphi}\rangle>c_{0} \text { and } c_{0} \alpha^{\ell}<\theta<c_{1} \alpha^{\ell} .
$$

It requires to prove convergence of expressions of the form

$$
\alpha^{-2 \ell}\left\langle\delta_{e}, B^{2 \ell} B^{* \ell} \chi\right\rangle
$$

toward a limit random variable.

Near eigenvector for SBM

For the stochastic block model, if ϕ_{k} is the left eigenvector of M with eigenvalue μ_{k}, we set,

$$
\chi_{k}(e)=\phi_{k}\left(\sigma\left(e_{2}\right)\right)
$$

If $\left|\mu_{k}\right|>\sqrt{\mu}_{1}$, the candidate eigenvector is ζ_{k} defined as

$$
\varphi_{k}=\frac{B^{\ell} \chi_{k}}{\left\|B^{\ell} \chi_{k}\right\|}, \quad \theta_{k}=\left\|B^{\ell} \check{\varphi}_{k}\right\|, \quad \zeta_{k}=\frac{B^{\ell} B^{* \ell} \check{\chi}_{k}}{\left\|B^{\ell} B^{* \ell} \check{\chi}_{k}\right\|}
$$

Near eigenvector for SBM

For the stochastic block model, if ϕ_{k} is the left eigenvector of M with eigenvalue μ_{k}, we set,

$$
\chi_{k}(e)=\phi_{k}\left(\sigma\left(e_{2}\right)\right)
$$

If $\left|\mu_{k}\right|>\sqrt{\mu}_{1}$, the candidate eigenvector is ζ_{k} defined as

$$
\varphi_{k}=\frac{B^{\ell} \chi_{k}}{\left\|B^{\ell} \chi_{k}\right\|}, \quad \theta_{k}=\left\|B^{\ell} \check{\varphi}_{k}\right\|, \quad \zeta_{k}=\frac{B^{\ell} B^{* \ell} \check{\chi}_{k}}{\left\|B^{\ell} B^{* \ell} \check{\chi}_{k}\right\|}
$$

We now deal with a multi-type Galton-Watson tree, the condition $\left|\mu_{k}\right|>\sqrt{\mu}_{1}$, is Kesten-Stigum condition and after tedious computations, we find notably that for $k \neq j \in\left[r_{0}\right]$,

$$
\left|\left\langle\zeta_{j}, \check{\varphi}_{j}\right\rangle\right| \geqslant c_{0}, \quad\left\langle\zeta_{j}, \check{\varphi}_{k}\right\rangle=o(1) \quad \text { and } \quad\left\langle\zeta_{j}, \zeta_{k}\right\rangle=o(1)
$$

Kesten-Stigum Theorem (1966)

Consider the multi-type Galton-Watson process with mean progeny matrix M (+ finite second moment).

Let $Z_{\ell} \in \mathbb{N}^{r}$ is the population vector at generation ℓ,
If $\left|\mu_{k}\right|>\sqrt{\mu_{1}}$, then, for some centered M_{k}, a.s. and in L^{2},

$$
\frac{\left\langle Z_{\ell}, \phi_{k}\right\rangle}{\mu_{k}^{\ell}}-\left\langle Z_{0}, \phi_{k}\right\rangle \rightarrow M_{k} .
$$

If $\left|\mu_{k}\right|<\sqrt{\mu_{1}}$, then, for some M_{k}, in L^{2},

$$
\frac{\left\langle Z_{\ell}, \phi_{k}\right\rangle}{\mu_{1}^{\ell / 2}} \rightarrow M_{k}
$$

