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1. What is Q(uantum)E(rgodicity)?

Let us consider a positive self-adjoint operator ∆ with a com-
pact resolvent on the Hilbert space L2(X,µ) (with X a closed
manifold). Let (φn, λn) be an eigen-decomposition of ∆ and
N(λ) := #{λn ≤ λ}.

We say that the eigen-basis (φn)n∈N satisfies QE if there exists

• A probability measure ν

• A density one sub-sequence (λnj) of λn so that

weak− lim
j→∞

|φnj |
2µ = ν .
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Density 1 means that

lim
λ→∞

#{λnj ≤ λ}
N(λ)

= 1 .

Remark: the measure ν could be 6= µ and even singular w.r. to

µ.
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The measure ν comes from a local Weyl formula

lim
λ→∞

1

N(λ)

∑
λn≤λ

∫
X
|φn|2fdµ =

∫
fdν .

Existence of a local Weyl formula is often given, using the heat

kernel pt(x, y), by looking at the asymptotics of the integrals∫
X pt(x, x)f(x)dµ as t→ 0+.
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In fact, a microlocal Weyl formula giving the limit of the averages

〈Aφn|φn〉 with A = Op(a) a ΨDO is needed in general:

Trace∆(Op(a)) := lim
λ→∞

1

N(λ)

∑
λn≤λ

〈Op(a)φn|φn〉 =
∫
S?X

adν̃

where the image of ν̃ by the projection π : S?X → X is ν.

Equivalently, one needs to evaluate the behaviour, as t→ 0+,∫
X×X

pt(x, y)kA(x, y)dµxdµy .

For this we need to know pt(x, y) near the diagonal.
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The historical example of QE is due to A. Shnirelman (74’): if

(X, g) is a closed Riemannian manifold whose geodesic flow

is ergodic, QE holds for any eigen-basis of the Laplace-

Beltrami operator with ν the normalized Riemannian vol-

ume. This applies in particular if the curvature of (X, g) is < 0.

This result has been extended to many cases: manifolds with

boundaries, discontinuous metrics, semi-classical Schrödinger op-

erators, large regular graphs. To our knowledge, nothing was

known before our work in the sR case.
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Path to QE Theorems: One need to prove

• A microlocal Weyl formula

Trace∆(A) := lim
λ→∞

1

N(λ)

∑
λn≤λ

〈Aφn|φn〉 =
∫
S?X

adν̃

with A = Op(a) and π?ν̃ = ν (π : T ?X → X the canonical
projection).

• A vanishing Theorem for the variance: if
∫
T ?X adν̃ = 0, then

Var∆(A) := lim
λ→∞

1

N(λ)

∑
λn≤λ

|〈Aφn|φn〉|2 = 0 .

Usually the vanishing of the variance comes from ergodicity as-
sumptions for a suitable dynamics preserving ν̃.
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2. Sub-Riemannian Laplacians

Given

• X a closed manifold with a smooth measure µ

• A smooth distribution E ⊂ TX satisfying the bracket gener-
ating condition

• A smooth metric g on E,

we define a sR Laplacian ∆g,µ as the self-adjoint operator on
L2(X,µ) which is the Friedrichs extension of the closure of the
quadratic form D(f) :=

∫
X ‖df‖2gdµ.
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Locally, if (e1, e2, · · · , el) is a local orthonormal frame for (E, g),

∆g,µ = D?
1D1 +D?

2D2 + · · ·

where the adjoint are taken w.r. to µ.

The principal symbol of ∆g,µ is the co-metric g? defined by

g?(x, ξ) = ‖ξ|Ex‖
2
gx. The sub-principal symbol vanishes and all

choices of µ give operators unitarily equivalent up to a bounded

operator.

It follows from Hörmander’s Theorem that ∆g,µ is sub-elliptic

and has a compact resolvent, hence a discrete spectrum and a

spectral decomposition (φn, λn). We are interested in micro-local

Weyl formulae and QE Theorems for sR Laplacians ∆g,µ.
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3. Statement of the main result: a QE theorem in the 3D

contact case

Let us start with a 3D closed manifold with a smooth measure

µ and an oriented contact distribution, i.e. E = kerα with α∧dα
non vanishing. Let us give a smooth sR metric g on E. There

exists a unique contact form β so that dβ(e1, e2) = 1 for any

positive orthonormal frame (e1, e2) of E for g. Let us denote

by Z the Reeb vector field of β (i.e. β(Z) = 1, dβ(Z, .) = 0).

Then the Popp measure dP = |β ∧ dβ| is Z−invariant. The Weyl

formula reads

N(λ) ∼
∫
X dP

32
λ2 .
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Let ν the probability given by ν = 1∫
X dP

dP .

An Hamiltonian interpretation of Z: If Σ is the symplectic sub-

cone of T ?X generated by α and q : Σ → R is the positively

homogeneous function with value 1 on ±β, the Hamiltonian vec-

tor field Xq on Σ projects onto ±Z.
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Our result is as follows

Theorem 1 .– If the dynamics of the Reeb vector field Z is

ergodic for the Popp volume, QE holds for any eigenbasis

of the sR Laplacians ∆g,µ with the measure ν given by the

normalized Popp volume.
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Example: X is the unit cotangent bundle of a 2D closed Rieman-

nian manifold (M,h), E = kerα with α the Liouville form. Then

we can choose g so that the Reeb vector field is the geodesic

flow of (M,h).

Question: in this case, what is the link of our result and Shnirelman’s

Theorem?
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Remark 1: The Reeb dynamics and the geodesics

All geodesics in T ?X with Cauchy data (x0, ξ0 + τα(x0)) ∈ T ?X
with τ ∈ R have the same Cauchy data in TX. As τ → ±∞, they

spiral around the trajectories of ±Z.
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Remark 2: the Popp volume is the asymptotic Hopf invariant

introduced by V. Arnold.

If X = S3 and Z is a divergence free vector field, Arnold in-

troduced an invariant measuring the average asymptotic linking

number of two long trajectories of Z. In our case, this is exactly

1/
∫
X dP . Hence, Weyl formula shows that the Arnold invariant

is a spectral invariant.
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4a. Ideas of the proof: micro-local Weyl formula via heat

expansions

Estimation of ∆−traces will follow from estimating the asymp-

totic behaviour of traces

Trace
(
Ae−t∆

)
as t→ 0+, where A is a ΨDO of order 0. This needs to know the

asymptotic behaviour of the heat kernel not only on the diagonal,

but near the diagonal. The needed estimates can be found in

the work of Davide Barilari: he gives a good approximation of

the rescaled heat kernel by the Heisenberg kernel, known at least

since a paper of B. Gaveau.
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The result is as follows, if A = Op(a) with a homogeneous of

degree 0:

Trace
(
Ae−t∆

)
∼t→0+

1

8π2t2

∫
Σ

q

sinh q
adL ,

with L the Liouville measure on Σ.

It follows that

Trace∆(A) =
1

2

∫
X

(a(x, α(x)) + a(x,−α(x))) dν .

In average, the eigenfunctions microlocally concentrate on the

contact cone Σ.
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4b. Ideas of the proof: normal forms and Reeb dynamics

The idea of normal forms in dynamical systems goes back at

least to Birkhoff. In our context, a normal form was proposed by

Richard Melrose in 1984. This normal form is a formal normal

form along Σ: this is enough in view of the microlocal Weyl

formula.

This normal form on the level of classical mechanics is as follows:

it is given by the symplectic cone Σ× R2 with the identification

of Σ ⊂ T ?X to Σ× 0. The geodesic Hamiltonian takes the form

g? = qω +OΣ(∞)

where ω is an harmonic oscillator.
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A corresponding ΨDO normal form takes place reducing along

Σ the Laplace operator to something like ∆ ∼ QΩ with Ω a

quantum harmonic oscillator and [Q,Ω] = 0.

Let us see how the proof works assuming ∆ = QΩ. We need to

show that the variance V (f) vanishes as soon as
∫
X fdP = 0.
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The proof follows the Shnirelman’s proof replacing ∆ by Q.

Using the microlocal Weyl formula, we can replace f by a ΨDO A

commuting with Ω. Let us denote by At := e−itQAeitQ; the prin-

cipal symbol of At is a ◦ Φt where Φt is the flow of Xq which

is ergodic on each level set q = cte. By decomposing φn into

eigenfunctions of Ω, one sees that

〈Atφn|φn〉 = 〈Aφn|φn〉 = 〈ATφn|φn〉

with AT := 1
T

∫ T
0 Atdt.
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Hence Var∆(A−AT ) = 0 and

Var∆(A) = Var∆(AT ) ≤ Trace∆(A?TAT ) .

The last expression is given by the integral on Σ∩{q = 1} of a2
T .

This integral is going to 0 as T → ∞ thanks to the ergodicity

and the von Neumann ergodic Theorem.
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5. Other sR geometries. There is a large zoo of sR distri-

butions. Important facts are

• The presence of singularities in the horizontal distribution:

the simplest case is the Martinet case.

• The possible presence of anormal geodesics

• The possibility of resonances in the normal forms.
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Let us discuss the Martinet case:

We consider the 3D case where E = kerα with α ∧ dα vanishing

with a non zero differential on a sub-manifold Y ⊂ X (locally

α = dx − z2dy). On X \ Y , we have a contact sR metric and a

Popp volume dP . Locally, if Y is defined by F = 0, we have dP =

ν ⊗ d log |F |+ 0(1) where ν is a measure on Y . Our conjecture

is the following local Weyl formula∑
λn≤λ

∫
fφ2

ndµ ∼
∫
Y fdν

32
λ2 logλ .

This implies that, in average, the eigenfunctions concentrate on

Y . Concentration of a density 1 sub-sequence would follow from

a QE Theorem (to be found).
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We can prove our conjecture in some “separable cases” and also

prove a weaker form using some heat kernel estimates due to A.

Sanchez-Calle.

This would give another form of the results of R. Montgomery

in the nice paper “Hearing the zero locus of a magnetic field”.
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What remains to do?

The general case is certainly difficult to handle. Even a local
Weyl formula is not available at the moment. In the regular
case, approach by heat kernels will probably give the answer in
a more or less explicit way. This will work for example in the
contact case or in the Engel case.

In the non regular case, the desingularization proposed by Rotschild-
Stein could be used.

Concerning the dynamics leading to QE, the situation is less
clear, even in the 5D contact case. In general, the singular
geodesics could enter into the game!

Any help will be welcome!
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