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E=[a, 8]~ U(a,8),

where J; is a countable union of disjoint open subintervals.

A classical example is the Cantor set C(e1,¢€2,...) with

0<e;j<1 forall i

[ Remove the middle e part of [0,1], the middle e3> part of the two remaining intervals, etc ]
This set has Lebesgue measure zero if and only if 3 ;¢; = oo.

When ¥, &; < oo, the set is homogeneous in the sense of Carleson.

By definition, this means there is an £ > 0 so that
[(t=6,t+d)nE|>de forall teEandall § <diam(E).




Parreau—\Widom sets

A more general class of infinite gap sets is defined as follows.




Parreau—\Widom sets

A more general class of infinite gap sets is defined as follows.

Let g be the Green's function for C \ E with pole at oo and recall

g(x) = [ log|t - x| dpue(t) - log(Cap(E)).

Here, dug is the equilibrium measure of E and Cap denotes the
logarithmic capacity.

that




Parreau—\Widom sets

A more general class of infinite gap sets is defined as follows.

Let g be the Green's function for C \ E with pole at oo and recall

that
g(x) = [ log|t - x| dpue(t) - log(Cap(E)).

Here, dug is the equilibrium measure of E and Cap denotes the
logarithmic capacity.

While g vanishes on E, it is concave on («j, ;) for each j. So
there is precisely one critical point ¢; per gap in E.

i




Parreau—\Widom sets

A more general class of infinite gap sets is defined as follows.

Let g be the Green's function for C \ E with pole at oo and recall

that
g(x) = [ log|t - x| dpu(t) - log(Cap(E)).

Here, dug is the equilibrium measure of E and Cap denotes the
logarithmic capacity.

While g vanishes on E, it is concave on (aj, 3;) for each j. So
there is precisely one critical point ¢; per gap in E.

Defn. We say that E is a Parreau—Widom set if
Zj g(Cj) <00
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~ Szegl6 asymptotics

Let Ec R be a Parreau—Widom set and assume that the direct
Cauchy theorem holds on C \ E.

If J={an,bn}p; belongs to the Szegs class for E then there is
a unique J' ={a},, b/} in TE such that

lan — a,| + |bn = bj,| = 0.
Consequently, a, and b, are asymptotically almost periodic.
Moreover, if dy’ is the spectral measure of J' restricted to /?(N),
then

Pa(x,dp) [ Pa(x,dp")
has a limit for all x € C\ R.

Hence, [1(an/a),) and 3.(b, — b),) converge conditionally.
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then Conjecture 1 is an easy consequence.

For when Y g(xx) < oo, the Szegé condition is equivalent to
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n—»oop Cap(E)"

— and this condition is fulfilled if we have ¥ |a, — a/,| < oo !

Unfortunately, we don't know how to get this critical bound (which
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f(x) :=L g(\)PdN for aj <x < ¢ < G

TS f = [T an
xie(ay,cj)
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As the conditions on J lead to bounds on the number of
eigenvalues, we deduce that

f;"f'(x)g'(x)dkoo — T () <.

xp€e(ay,ci)

This works for all gaps (also at the right ends) and
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If g behaves like \/\ - a; near aj, then f behaves like gP*!.

Hence, the critical bound corresponds to the limit p | 0.

— But does g possess this square root behavior?

— And is the series }; h;” convergent for all p < 17

When E is a fat Cantor set, we have g € Lip1/2 (thm of Totik).
The series may be convergent for some p < 1, but not all.

When E is homogeneous, we have g € Lip~y for some v < 1/2.

But even in the simple case o = 1/2/ and 3 = o + 1/2/*1, one can
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When E is a finite gap set, this choice of f* vanishes like a square
root at the band edges.

And the f;+ coming from an element on the isospectral torus either
vanishes like /" or blows up like 1/y/ .

Q: Is fE(t)fy+(t) > C > 0 uniformly for t € E and all J' € Tg?

We believe this is true for fat Cantor sets, but do not have a
rigorous proof.

However, it seems to fail for the simple homogeneous set given by
.= 1/24 . j+1




Merci beaucoup pour votre
attention!
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