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Jacobi operators

Suppose that J is a bounded selfadjoint operator on `2(N). If J
has a cyclic vector ψ, that is,

{Jnψ}∞n=0 is dense in `2(N),

then there is an appropriate basis such that J is represented by a
matrix of the form

J =

⎛
⎜
⎜
⎜
⎝

b1 a1
a1 b2 a2

a2 b3 a3
⋱ ⋱ ⋱

⎞
⎟
⎟
⎟
⎠

with real entries in the diagonal and positive entries above/below.

Moreover, there is a probability measure dµ on σ(J) so that J is
unitarily equivalent to the operator of multiplication by the identity
function in the Hilbert space L2(R,dµ).
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Orthogonal polynomials
Jacobi matrices are intimately related to orthogonal polynomials.

The polynomials {Pn}n≥0 generated by the three-term recurrence
relation

P0(x) = 1, a1P1(x) = x − b1,

xPn(x) = an+1Pn+1(x) + bn+1Pn(x) + anPn−1(x), n > 1

are orthonormal with respect to the measure dµ, that is,

∫R
Pn(x)Pm(x)dµ(x) = δn,m.

Fact: There is a one-one correspondence between bounded Jacobi
parameters {an,bn}∞n=1 and nontrivial probability measures dµ on R
with compact support.

In spectral theory, one seeks to relate properties of the Jacobi para-
meters to properties of the measure of orthogonality, and vice versa.
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The Weyl m-function

A key role is played by the m-function defined by

m(x) ∶= mµ(x) = ∫R

dµ(t)
t − x

, x ∈ C ∖ supp(dµ).

This analytic function is a Pick function (i.e., Imm(x) > 0 for
Im x > 0) and we have

m(x) = −1/x +O(x−2
) near ∞.

The boundary values m(t + i0) ∶= limε↓0 m(t + iε) exist for
a.e. t ∈ R and 1

π
Immµ(t + iε)dt

w
Ð→ dµ as ε ↓ 0.

To be even more specific, dµ/dt = 1
π Immµ(t + i0) a.e. on R and

µ({t}) = limε→0 ε Immµ(t + iε) for t ∈ R.

Hence, isolated mass points of dµ are poles of the m-function.
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Spectral theory of OP’s
Level I: A single compact interval

When an → 1 and bn → 0, we have σess(J) = [−2,2].
And if Σac(J) = σess(J) = [−2,2], then an → 1 and bn → 0.

Level II: A finite union of compact intervals (or finite gap sets)

When the Jacobi parameters are periodic sequences, the spectrum
is a finite gap set.
But a general finite gap set leads to quasi-periodic parameters.

Level III: Infinite gap sets

Almost periodic parameters tend to produce Cantor spectrum.
In this talk, we focus on inverse spectral theory for a certain class
of infinite gap sets.
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Infinite gap sets

In this talk, we consider infinite gap sets of the form

E = [α,β] ∖ ⋃j(αj , βj),

where ⋃j is a countable union of disjoint open subintervals.

A classical example is the Cantor set C(ε1, ε2, . . .) with

0 ≤ εi < 1 for all i .
[ Remove the middle ε1 part of [0,1], the middle ε2 part of the two remaining intervals, etc ]

This set has Lebesgue measure zero if and only if ∑i εi = ∞.

When ∑i εi < ∞, the set is homogeneous in the sense of Carleson.

By definition, this means there is an ε > 0 so that

∣(t − δ, t + δ) ∩ E∣ ≥ δε for all t ∈ E and all δ < diam(E).
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Parreau–Widom sets

A more general class of infinite gap sets is defined as follows.

Let g be the Green’s function for C ∖ E with pole at ∞ and recall
that

g(x) = ∫ log ∣t − x ∣dµE(t) − log(Cap(E)).

Here, dµE is the equilibrium measure of E and Cap denotes the
logarithmic capacity.

While g vanishes on E, it is concave on (αj , βj) for each j . So
there is precisely one critical point cj per gap in E.
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Here, dµE is the equilibrium measure of E and Cap denotes the
logarithmic capacity.

While g vanishes on E, it is concave on (αj , βj) for each j . So
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Defn. We say that E is a Parreau–Widom set if

∑j g(cj) < ∞

9 / 25▲



Comb-like domains

↷
E
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Comb-like domains

↷
E

dµE is absolutely continuous iff

supj{
g(cj)
∣vj−v ∣} < ∞ for a.e. v ∈ (0, π).

This is always the case when ∑j g(cj) < ∞ (i.e., E is PW).
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The isospectral torus

We denote by TE the set of all two-sided matrices J ′ = {a′n,b′n}∞n=−∞
that are reflectionless on E and for which σ(J ′) = E.

The term reflectionless means that

Re⟨δn, (J ′ − (t + i0))−1
δn⟩ = 0 for a.e. t ∈ E and all n.

J′ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋱ ∣
⋱ b′n−1 a′n−1 ∣

a′n−1 b′n ∣ a′n−−− −−− −−− − −−− −−− −−−
a′n ∣ b′n+1 a′n+1

∣ a′n+1 b′n+2 ⋱
∣ ⋱ ⋱

⎞
⎟⎟⎟⎟⎟⎟
⎠

Equivalently,

(a′n)2m+
n(t + i0)m−

n(t + i0) = 1 for a.e. t ∈ E and all n,

where m+
n is the m-function for J+n = {a′n+k ,b

′
n+k}

∞
k=1 and m−

n the
m-function for J−n = {a′n−k ,b

′
n+1−k}

∞
k=1.
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Remling’s theorem

By compactness, any bounded J = {an,bn}∞n=1 has accumulation
points when the coefficients are shifted to the left.

Such two-sided limit points are also called right limits of J.

Let E ⊂ R be a compact set and assume that ∣E∣ > 0.

If σess(J) = E and the spectral measure dρ = f (t)dt + dρs of J
obeys

f (t) > 0 for a.e. x ∈ E,

then any right limit of J belongs to TE. [Ann. of Math. 2011]

The theorem says that the left-shifts of J approach TE as a set.

Hence, TE is the natural limiting object associated with E.
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The collection of divisors

Recall that
E = [α,β]∖⋃j (αj , βj).

As described below, there is a natural way to introduce a torus of
dimension equal to the number of gaps in E.

The set DE of divisors consists of all formal sums

D = ∑j(yj ,±), yj ∈ [αj , βj],

where (yj ,+) and (yj ,−) are identified when yj is equal to αj or βj .

un i v e r s i ty of cop enhagen de partment of mathemat i cal s c i e n c e s

α αj βj αk βk β

Slide 0 — February 4, 2012

We shall equip DE with the product topology.
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A map TE → DE

When J ′ ∈ TE, we know that G(x) ∶= ⟨δ0, (J ′ − x)−1δ0⟩ is analytic
on C ∖ E and has purely imaginary boundary values a.e. on E.

Such a Pick function admits a representation of the form

G(x) = −1√
(x − α)(x − β)∏j

x − yj√(x − αj)(x − βj)
,

where yj ∈ [αj , βj] for each j .

Using the relation

(a′0)2m+(x) − 1/m−(x) = −1/G(x),

it follows that every yj ∈ (αj , βj) is a pole of either m+ or 1/m−.

As m+ and 1/m− have no common poles, this in turn allows us to
define a map TE → DE.
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The Szegő class

In what follows, let E be an arbitrary Parreau–Widom set.

Defn. A Jacobi matrix J = {an,bn}∞n=1 with spectral measure
dµ = f (t)dt + dµs belongs to the Szegő class for E if

the essential support of dµ is equal to E,

the absolutely continuous part of dµ obeys the Szegő condition

∫
E

log f (t)dµE(t) > −∞,

the isolated mass points of dµ in R ∖ E satisfy the Blaschke
condition

∑k g(xk) < ∞.

Q: What can we say about an and bn when J ∈ Sz(E) ?
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Szegő’s theorem

When J belongs to the Szegő class for E, we always have

0 < lim inf
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n ≤ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n < ∞.

In fact, if we assume the Blaschke condition holds true, the Szegő
condition is equivalent to

lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n > 0,

that is, the product (a1 ⋅ ⋅ ⋅ an)/Cap(E)n does not converge to 0.

This ‘if and only if’ statement is also called Szegő’s theorem.

But can’t we say more about an and what about bn ?

17 / 25▲



Szegő’s theorem

When J belongs to the Szegő class for E, we always have

0 < lim inf
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n ≤ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n < ∞.

In fact, if we assume the Blaschke condition holds true, the Szegő
condition is equivalent to

lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n > 0,

that is, the product (a1 ⋅ ⋅ ⋅ an)/Cap(E)n does not converge to 0.

This ‘if and only if’ statement is also called Szegő’s theorem.

But can’t we say more about an and what about bn ?

17 / 25▲



Szegő’s theorem

When J belongs to the Szegő class for E, we always have

0 < lim inf
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n ≤ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n < ∞.

In fact, if we assume the Blaschke condition holds true, the Szegő
condition is equivalent to

lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n > 0,

that is, the product (a1 ⋅ ⋅ ⋅ an)/Cap(E)n does not converge to 0.

This ‘if and only if’ statement is also called Szegő’s theorem.

But can’t we say more about an and what about bn ?

17 / 25▲



Szegő’s theorem

When J belongs to the Szegő class for E, we always have

0 < lim inf
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n ≤ lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n < ∞.

In fact, if we assume the Blaschke condition holds true, the Szegő
condition is equivalent to

lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n > 0,

that is, the product (a1 ⋅ ⋅ ⋅ an)/Cap(E)n does not converge to 0.

This ‘if and only if’ statement is also called Szegő’s theorem.

But can’t we say more about an and what about bn ?

17 / 25▲



Szegő asymptotics

Let E ⊂ R be a Parreau–Widom set and assume that the direct
Cauchy theorem holds on C ∖ E.

If J = {an,bn}∞n=1 belongs to the Szegő class for E then there is
a unique J ′ = {a′n,b′n}∞n=−∞ in TE such that

∣an − a′n∣ + ∣bn − b′n∣ → 0.

Consequently, an and bn are asymptotically almost periodic.

Moreover, if dµ′ is the spectral measure of J ′ restricted to `2(N),
then

Pn(x ,dµ) /Pn(x ,dµ′)
has a limit for all x ∈ C ∖R.

Hence, ∏(an/a′n) and ∑(bn − b′n) converge conditionally.
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Two conjectures

Our goal is to prove the following two conjectures:

Conj. 1 If ∑ ∣an − a′n∣ + ∣bn − b′n∣ < ∞ for some J ′ ∈ TE, then J
belongs to Sz(E).

Conj. 2 If J lies in Sz(E), then ∑(an − a′n)2 + (bn − b′n)2 < ∞ for
a unique J ′ ∈ TE.

If true, these conjectures would place the Szegő class as lying
between the `2 and `1 perturbations of points in TE.

Both conjectures are true when E is an interval. But only the first
conjecture (aka the generalized Nevai conjecture) has been settled
for general finite gap sets.

In this talk, I shall merely focus on the first conjecture.
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The critical bound

Let {xk} be the eigenvalues in R ∖ E of some J ∈ Sz(E).

If we can prove that

∑k g(xk) ≤ C1 + C2∑∣an − a′n∣ + ∣bn − b′n∣,

then Conjecture 1 is an easy consequence.

For when ∑k g(xk) < ∞, the Szegő condition is equivalent to

lim sup
n→∞

a1 ⋅ ⋅ ⋅ an

Cap(E)n > 0

— and this condition is fulfilled if we have ∑∣an − a′n∣ < ∞ !

Unfortunately, we don’t know how to get this critical bound (which
was obtained by Frank–Simon for finite gap sets).
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Green’s functions
Following Hundertmark–Simon, we seek to get bounds close to the
critical. Another approach would be to follow work of Kupin et al.

The first step is to control the (Dirichlet) Green’s function

Gnm(λ) ∶= Gnm(λ; J ′) = ⟨δn, (J+ − λ)−1δm⟩.

For finite gap sets, the appropriate estimate is

∣Gnn(λ)∣ ≤ C ∣λ − αj ∣−1/2, αj < λ ≤ cj < βj .

There seems to be at least two possibilities for generalization:

(1) ∣Gnn(λ)∣ ≤ C/g(λ), (2) ∣Gnn(λ)∣ ≤ C g ′(λ).

Assume for now that we can prove the latter (to be discussed a
little later).
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little later).
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Lieb-Thirring bounds
For p > 0, define

f (x) ∶= ∫
x

αj
g(λ)p−1dλ for αj ≤ x ≤ cj < βj .

Then ∑
xk∈(αj ,cj)

f (xk) = ∫
cj

αj
f ′(λ)#e.v.{J ∈ (λ, cj)}dλ.

As the conditions on J lead to bounds on the number of
eigenvalues, we deduce that

∫
cj

αj
f ′(λ)g ′(λ)dλ < ∞ Ô⇒ ∑

xk∈(αj ,cj)
f (xk) < ∞.

This works for all gaps (also at the right ends) and

∫ f ′g ′ = ∫ gp−1g ′ = ∑j ∫
hj

0
xp−1dx = ∑j hj

p, hj = g(cj).
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How close to critical?

We have ∑j hj
p < ∞ ⇒ ∑k f (xk) < ∞, with f = ∫ gp−1.

If g behaves like
√
λ − αj near αj , then f behaves like gp+1.

Hence, the critical bound corresponds to the limit p ↓ 0.

— But does g possess this square root behavior?
— And is the series ∑j hj

p convergent for all p < 1?

When E is a fat Cantor set, we have g ∈ Lip 1/2 (thm of Totik).
The series may be convergent for some p < 1, but not all.

When E is homogeneous, we have g ∈ Lipγ for some γ ≤ 1/2.
But even in the simple case αj = 1/2j and βj = αj + 1/2j+1, one can
show that γ < 1/2.
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Estimating Gnn

There are two explicit solutions u, v to the recursion for J ′ so that

Gnn =
unvn

Wr
.

One can show that 1/Wr is essentially the m-function for dµE,
which equals the derivative of g in every gap of E.

So the question is whether or not the product unvn is bounded.

This in turn is equivalent to boundedness of the outer function

exp{∫
2π

0

e iθ + z
e iθ − z

log( f ∗(x(e iθ))
fJ+(x(e iθ)))

dθ

4π
}, z ∈ D

where f ∗ is the a.c. part of a suitable reference measure.

The bound should be independent of fJ+ (as J ′ varies on TE).
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Estimating Gnn

A natural choice of f ∗ is 1/fE, with fE(t) = dµE/dt.

When E is a finite gap set, this choice of f ∗ vanishes like a square
root at the band edges.
And the fJ+ coming from an element on the isospectral torus either
vanishes like

√
or blows up like 1/

√
.

Q: Is fE(t)fJ+(t) ≥ C > 0 uniformly for t ∈ E and all J ′ ∈ TE ?

We believe this is true for fat Cantor sets, but do not have a
rigorous proof.

However, it seems to fail for the simple homogeneous set given by
αj = 1/2j and βj = αj + 1/2j+1.
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Merci beaucoup pour votre
attention!
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