

Orthogonal polynomials on infinite gap sets

Jacob Stordal Christiansen

Centre for Mathematical Sciences, Lund University

Spectral theory and its applications University of Bordeaux, Oct 8-10, 2014

Outline

Outline

- Introduction

- Jacobi matrices and orthogonal polynomials

Outline

- Introduction

- Jacobi matrices and orthogonal polynomials
- Spectral theory
- Jacobi parameters \rightsquigarrow spectral measure

Outline

- Introduction

- Jacobi matrices and orthogonal polynomials
- Spectral theory
- Jacobi parameters \rightsquigarrow spectral measure
- Infinite gap sets
— of Parreau-Widom type

Outline

- Introduction

- Jacobi matrices and orthogonal polynomials
- Spectral theory
- Jacobi parameters \rightsquigarrow spectral measure
- Infinite gap sets
- of Parreau-Widom type
- The isospectral torus
- Remling's theorem

Outline

- Introduction

- Jacobi matrices and orthogonal polynomials
- Spectral theory
- Jacobi parameters \rightsquigarrow spectral measure
- Infinite gap sets
— of Parreau-Widom type
- The isospectral torus
- Remling's theorem
- Szegő class theory
- and discussion of two conjectures

Jacobi operators

Suppose that J is a bounded selfadjoint operator on $\ell^{2}(\mathbb{N})$. If J has a cyclic vector ψ, that is,

$$
\left\{J^{n} \psi\right\}_{n=0}^{\infty} \text { is dense in } \ell^{2}(\mathbb{N})
$$

then there is an appropriate basis such that J is represented by a matrix of the form

$$
J=\left(\begin{array}{lllll}
b_{1} & a_{1} & & & \\
a_{1} & b_{2} & a_{2} & & \\
& a_{2} & b_{3} & a_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

with real entries in the diagonal and positive entries above/below.

Jacobi operators

Suppose that J is a bounded selfadjoint operator on $\ell^{2}(\mathbb{N})$. If J has a cyclic vector ψ, that is,

$$
\left\{J^{n} \psi\right\}_{n=0}^{\infty} \text { is dense in } \ell^{2}(\mathbb{N})
$$

then there is an appropriate basis such that J is represented by a matrix of the form

$$
J=\left(\begin{array}{ccccc}
b_{1} & a_{1} & & & \\
a_{1} & b_{2} & a_{2} & & \\
& a_{2} & b_{3} & a_{3} & \\
& & \ddots & \ddots & \ddots
\end{array}\right)
$$

with real entries in the diagonal and positive entries above/below. Moreover, there is a probability measure $d \mu$ on $\sigma(J)$ so that J is unitarily equivalent to the operator of multiplication by the identity function in the Hilbert space $L^{2}(\mathbb{R}, d \mu)$.

Orthogonal polynomials

Jacobi matrices are intimately related to orthogonal polynomials.

Orthogonal polynomials

Jacobi matrices are intimately related to orthogonal polynomials.
The polynomials $\left\{P_{n}\right\}_{n \geq 0}$ generated by the three-term recurrence relation

$$
\begin{aligned}
& \quad P_{0}(x)=1, \quad a_{1} P_{1}(x)=x-b_{1}, \\
& x P_{n}(x)=a_{n+1} P_{n+1}(x)+b_{n+1} P_{n}(x)+a_{n} P_{n-1}(x), \quad n>1
\end{aligned}
$$

are orthonormal with respect to the measure $d \mu$, that is,

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m}
$$

Orthogonal polynomials

Jacobi matrices are intimately related to orthogonal polynomials.
The polynomials $\left\{P_{n}\right\}_{n \geq 0}$ generated by the three-term recurrence relation

$$
\begin{gathered}
P_{0}(x)=1, \quad a_{1} P_{1}(x)=x-b_{1} \\
x P_{n}(x)=a_{n+1} P_{n+1}(x)+b_{n+1} P_{n}(x)+a_{n} P_{n-1}(x), \quad n>1
\end{gathered}
$$

are orthonormal with respect to the measure $d \mu$, that is,

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m}
$$

Fact: There is a one-one correspondence between bounded Jacobi parameters $\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ and nontrivial probability measures $d \mu$ on \mathbb{R} with compact support.

Orthogonal polynomials

Jacobi matrices are intimately related to orthogonal polynomials.
The polynomials $\left\{P_{n}\right\}_{n \geq 0}$ generated by the three-term recurrence relation

$$
\begin{gathered}
P_{0}(x)=1, \quad a_{1} P_{1}(x)=x-b_{1} \\
x P_{n}(x)=a_{n+1} P_{n+1}(x)+b_{n+1} P_{n}(x)+a_{n} P_{n-1}(x), \quad n>1
\end{gathered}
$$

are orthonormal with respect to the measure $d \mu$, that is,

$$
\int_{\mathbb{R}} P_{n}(x) P_{m}(x) d \mu(x)=\delta_{n, m}
$$

Fact: There is a one-one correspondence between bounded Jacobi parameters $\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ and nontrivial probability measures $d \mu$ on \mathbb{R} with compact support.

In spectral theory, one seeks to relate properties of the Jacobi parameters to properties of the measure of orthogonality, and vice versa.

The Weyl m-function

A key role is played by the m-function defined by

$$
m(x):=m_{\mu}(x)=\int_{\mathbb{R}} \frac{d \mu(t)}{t-x}, \quad x \in \mathbb{C} \backslash \operatorname{supp}(d \mu)
$$

The Weyl m-function

A key role is played by the m-function defined by

$$
m(x):=m_{\mu}(x)=\int_{\mathbb{R}} \frac{d \mu(t)}{t-x}, \quad x \in \mathbb{C} \backslash \operatorname{supp}(d \mu)
$$

This analytic function is a Pick function (i.e., $\operatorname{Im} m(x)>0$ for Im $x>0$) and we have

$$
m(x)=-1 / x+\mathcal{O}\left(x^{-2}\right) \quad \text { near } \infty .
$$

The Weyl m-function

A key role is played by the m-function defined by

$$
m(x):=m_{\mu}(x)=\int_{\mathbb{R}} \frac{d \mu(t)}{t-x}, \quad x \in \mathbb{C} \backslash \operatorname{supp}(d \mu)
$$

This analytic function is a Pick function (i.e., $\operatorname{Im} m(x)>0$ for Im $x>0$) and we have

$$
m(x)=-1 / x+\mathcal{O}\left(x^{-2}\right) \quad \text { near } \infty
$$

The boundary values $m(t+i 0):=\lim _{\varepsilon \downarrow 0} m(t+i \varepsilon)$ exist for a.e. $t \in \mathbb{R}$ and

$$
\frac{1}{\pi} \operatorname{Im} m_{\mu}(t+i \varepsilon) d t \xrightarrow{w} d \mu \text { as } \varepsilon \downarrow 0 .
$$

The Weyl m-function

A key role is played by the m-function defined by

$$
m(x):=m_{\mu}(x)=\int_{\mathbb{R}} \frac{d \mu(t)}{t-x}, \quad x \in \mathbb{C} \backslash \operatorname{supp}(d \mu)
$$

This analytic function is a Pick function (i.e., $\operatorname{Im} m(x)>0$ for Im $x>0$) and we have

$$
m(x)=-1 / x+\mathcal{O}\left(x^{-2}\right) \quad \text { near } \infty .
$$

The boundary values $m(t+i 0):=\lim _{\varepsilon \downarrow 0} m(t+i \varepsilon)$ exist for a.e. $t \in \mathbb{R}$ and

$$
\frac{1}{\pi} \operatorname{Im} m_{\mu}(t+i \varepsilon) d t \xrightarrow{w} d \mu \text { as } \varepsilon \downarrow 0 .
$$

To be even more specific, $d \mu / d t=\frac{1}{\pi} \operatorname{Im} m_{\mu}(t+i 0)$ a.e. on \mathbb{R} and $\mu(\{t\})=\lim _{\varepsilon \rightarrow 0} \varepsilon \operatorname{lm} m_{\mu}(t+i \varepsilon)$ for $t \in \mathbb{R}$.

The Weyl m-function

A key role is played by the m-function defined by

$$
m(x):=m_{\mu}(x)=\int_{\mathbb{R}} \frac{d \mu(t)}{t-x}, \quad x \in \mathbb{C} \backslash \operatorname{supp}(d \mu)
$$

This analytic function is a Pick function (i.e., $\operatorname{Im} m(x)>0$ for Im $x>0$) and we have

$$
m(x)=-1 / x+\mathcal{O}\left(x^{-2}\right) \quad \text { near } \infty .
$$

The boundary values $m(t+i 0):=\lim _{\varepsilon \downarrow 0} m(t+i \varepsilon)$ exist for a.e. $t \in \mathbb{R}$ and

$$
\frac{1}{\pi} \operatorname{Im} m_{\mu}(t+i \varepsilon) d t \xrightarrow{w} d \mu \text { as } \varepsilon \downarrow 0 .
$$

To be even more specific, $d \mu / d t=\frac{1}{\pi} \operatorname{Im} m_{\mu}(t+i 0)$ a.e. on \mathbb{R} and $\mu(\{t\})=\lim _{\varepsilon \rightarrow 0} \varepsilon \operatorname{lm} m_{\mu}(t+i \varepsilon)$ for $t \in \mathbb{R}$.
Hence, isolated mass points of $d \mu$ are poles of the m-function.

Spectral theory of OP's

Level I: A single compact interval

Spectral theory of OP's

Level I: A single compact interval
When $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$, we have $\sigma_{\text {ess }}(J)=[-2,2]$.

Spectral theory of OP's

Level I: A single compact interval
When $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$, we have $\sigma_{\text {ess }}(J)=[-2,2]$.
And if $\Sigma_{\mathrm{ac}}(J)=\sigma_{\text {ess }}(J)=[-2,2]$, then $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$.

Spectral theory of OP's

Level I: A single compact interval
When $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$, we have $\sigma_{\text {ess }}(J)=[-2,2]$.
And if $\Sigma_{\text {ac }}(J)=\sigma_{\text {ess }}(J)=[-2,2]$, then $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$.
Level II: A finite union of compact intervals (or finite gap sets)

Spectral theory of OP's

Level I: A single compact interval

When $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$, we have $\sigma_{\text {ess }}(J)=[-2,2]$.
And if $\Sigma_{\text {ac }}(J)=\sigma_{\text {ess }}(J)=[-2,2]$, then $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$.
Level II: A finite union of compact intervals (or finite gap sets)
When the Jacobi parameters are periodic sequences, the spectrum is a finite gap set.

Spectral theory of OP's

Level I: A single compact interval

When $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$, we have $\sigma_{\text {ess }}(J)=[-2,2]$.
And if $\Sigma_{\text {ac }}(J)=\sigma_{\text {ess }}(J)=[-2,2]$, then $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$.
Level II: A finite union of compact intervals (or finite gap sets)
When the Jacobi parameters are periodic sequences, the spectrum is a finite gap set.
But a general finite gap set leads to quasi-periodic parameters.

Spectral theory of OP's

Level I: A single compact interval

When $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$, we have $\sigma_{\text {ess }}(J)=[-2,2]$.
And if $\Sigma_{\text {ac }}(J)=\sigma_{\text {ess }}(J)=[-2,2]$, then $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$.
Level II: A finite union of compact intervals (or finite gap sets)
When the Jacobi parameters are periodic sequences, the spectrum is a finite gap set.
But a general finite gap set leads to quasi-periodic parameters.
Level III: Infinite gap sets

Spectral theory of OP's

Level I: A single compact interval

When $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$, we have $\sigma_{\text {ess }}(J)=[-2,2]$.
And if $\Sigma_{\text {ac }}(J)=\sigma_{\text {ess }}(J)=[-2,2]$, then $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$.
Level II: A finite union of compact intervals (or finite gap sets)
When the Jacobi parameters are periodic sequences, the spectrum is a finite gap set.
But a general finite gap set leads to quasi-periodic parameters.
Level III: Infinite gap sets
Almost periodic parameters tend to produce Cantor spectrum.

Spectral theory of OP's

Level I: A single compact interval

When $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$, we have $\sigma_{\text {ess }}(J)=[-2,2]$.
And if $\Sigma_{\text {ac }}(J)=\sigma_{\text {ess }}(J)=[-2,2]$, then $a_{n} \rightarrow 1$ and $b_{n} \rightarrow 0$.
Level II: A finite union of compact intervals (or finite gap sets)
When the Jacobi parameters are periodic sequences, the spectrum is a finite gap set.
But a general finite gap set leads to quasi-periodic parameters.
Level III: Infinite gap sets
Almost periodic parameters tend to produce Cantor spectrum. In this talk, we focus on inverse spectral theory for a certain class of infinite gap sets.

Infinite gap sets

In this talk, we consider infinite gap sets of the form

$$
\mathrm{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right)
$$

where \bigcup_{j} is a countable union of disjoint open subintervals.

Infinite gap sets

In this talk, we consider infinite gap sets of the form

$$
\mathrm{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right),
$$

where \bigcup_{j} is a countable union of disjoint open subintervals.
A classical example is the Cantor set $\mathcal{C}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ with

$$
0 \leq \varepsilon_{i}<1 \text { for all } i .
$$

[Remove the middle ε_{1} part of [0,1], the middle ε_{2} part of the two remaining intervals, etc]

Infinite gap sets

In this talk, we consider infinite gap sets of the form

$$
\mathbf{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right),
$$

where \bigcup_{j} is a countable union of disjoint open subintervals.
A classical example is the Cantor set $\mathcal{C}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ with

$$
0 \leq \varepsilon_{i}<1 \text { for all } i .
$$

[Remove the middle ε_{1} part of $[0,1]$, the middle ε_{2} part of the two remaining intervals, etc]
This set has Lebesgue measure zero if and only if $\sum_{i} \varepsilon_{i}=\infty$.

Infinite gap sets

In this talk, we consider infinite gap sets of the form

$$
\mathbf{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right),
$$

where \bigcup_{j} is a countable union of disjoint open subintervals.
A classical example is the Cantor set $\mathcal{C}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ with

$$
0 \leq \varepsilon_{i}<1 \text { for all } i .
$$

[Remove the middle ε_{1} part of $\left[0,1\right.$], the middle ε_{2} part of the two remaining intervals, etc]
This set has Lebesgue measure zero if and only if $\sum_{i} \varepsilon_{i}=\infty$.
When $\sum_{i} \varepsilon_{i}<\infty$, the set is homogeneous in the sense of Carleson.

Infinite gap sets

In this talk, we consider infinite gap sets of the form

$$
\mathrm{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right),
$$

where \bigcup_{j} is a countable union of disjoint open subintervals.
A classical example is the Cantor set $\mathcal{C}\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ with

$$
0 \leq \varepsilon_{i}<1 \text { for all } i .
$$

[Remove the middle ε_{1} part of $[0,1]$, the middle ε_{2} part of the two remaining intervals, etc]
This set has Lebesgue measure zero if and only if $\sum_{i} \varepsilon_{i}=\infty$.
When $\sum_{i} \varepsilon_{i}<\infty$, the set is homogeneous in the sense of Carleson.
By definition, this means there is an $\varepsilon>0$ so that

$$
|(t-\delta, t+\delta) \cap \mathrm{E}| \geq \delta \varepsilon \text { for all } t \in \mathrm{E} \text { and all } \delta<\operatorname{diam}(\mathrm{E})
$$

Parreau-Widom sets

A more general class of infinite gap sets is defined as follows.

Parreau-Widom sets

A more general class of infinite gap sets is defined as follows.
Let g be the Green's function for $\overline{\mathbb{C}} \backslash \mathrm{E}$ with pole at ∞ and recall that

$$
g(x)=\int \log |t-x| d \mu_{\mathrm{E}}(t)-\log (\operatorname{Cap}(\mathrm{E})) .
$$

Here, $d \mu_{\mathrm{E}}$ is the equilibrium measure of E and Cap denotes the logarithmic capacity.

Parreau-Widom sets

A more general class of infinite gap sets is defined as follows.
Let g be the Green's function for $\overline{\mathbb{C}} \backslash E$ with pole at ∞ and recall that

$$
g(x)=\int \log |t-x| d \mu_{\mathrm{E}}(t)-\log (\operatorname{Cap}(\mathrm{E})) .
$$

Here, $d \mu_{\mathrm{E}}$ is the equilibrium measure of E and Cap denotes the logarithmic capacity.

While g vanishes on E, it is concave on $\left(\alpha_{j}, \beta_{j}\right)$ for each j. So there is precisely one critical point c_{j} per gap in E.

Parreau-Widom sets

A more general class of infinite gap sets is defined as follows.
Let g be the Green's function for $\overline{\mathbb{C}} \backslash E$ with pole at ∞ and recall that

$$
g(x)=\int \log |t-x| d \mu_{\mathrm{E}}(t)-\log (\operatorname{Cap}(\mathrm{E}))
$$

Here, $d \mu_{\mathrm{E}}$ is the equilibrium measure of E and Cap denotes the logarithmic capacity.

While g vanishes on E , it is concave on $\left(\alpha_{j}, \beta_{j}\right)$ for each j. So there is precisely one critical point c_{j} per gap in E.

Defn. We say that E is a Parreau-Widom set if

$$
\sum_{j} g\left(c_{j}\right)<\infty
$$

Comb-like domains

 E

Comb-like domains

Comb-like domains

$$
\sup _{j}\left\{\frac{g\left(c_{j}\right)}{\left|v_{j}-v\right|}\right\}<\infty \text { for a.e. } v \in(0, \pi) \text {. }
$$

Comb-like domains

$$
\sup _{j}\left\{\frac{g\left(c_{j}\right)}{\left|v_{j}-v\right|}\right\}<\infty \text { for a.e. } v \in(0, \pi) \text {. }
$$

This is always the case when $\sum_{j} g\left(c_{j}\right)<\infty$ (i.e., E is PW).

The isospectral torus

We denote by \mathcal{T}_{E} the set of all two-sided matrices $J^{\prime}=\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\}_{n=-\infty}^{\infty}$ that are reflectionless on E and for which $\sigma\left(J^{\prime}\right)=\mathrm{E}$.

The isospectral torus

We denote by $\mathcal{T}_{\mathbf{E}}$ the set of all two-sided matrices $J^{\prime}=\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\}_{n=-\infty}^{\infty}$ that are reflectionless on E and for which $\sigma\left(J^{\prime}\right)=\mathrm{E}$.

The term reflectionless means that

$$
\operatorname{Re}\left\langle\delta_{n},\left(J^{\prime}-(t+i 0)\right)^{-1} \delta_{n}\right\rangle=0 \text { for a.e. } t \in \mathbb{E} \text { and all } n .
$$

The isospectral torus

We denote by \mathcal{T}_{E} the set of all two-sided matrices $J^{\prime}=\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\}_{n=-\infty}^{\infty}$ that are reflectionless on E and for which $\sigma\left(J^{\prime}\right)=\mathrm{E}$.

The term reflectionless means that

$$
\operatorname{Re}\left\langle\delta_{n},\left(J^{\prime}-(t+i 0)\right)^{-1} \delta_{n}\right\rangle=0 \text { for a.e. } t \in \mathbb{E} \text { and all } n .
$$

Equivalently,

$$
\left(a_{n}^{\prime}\right)^{2} m_{n}^{+}(t+i 0) \overline{m_{n}^{-}(t+i 0)}=1 \text { for a.e. } t \in \mathrm{E} \text { and all } n
$$

where m_{n}^{+}is the m-function for $J_{n}^{+}=\left\{a_{n+k}^{\prime}, b_{n+k}^{\prime}\right\}_{k=1}^{\infty}$ and m_{n}^{-}the m-function for $J_{n}^{-}=\left\{a_{n-k}^{\prime}, b_{n+1-k}^{\prime}\right\}_{k=1}^{\infty}$.

Remling's theorem

By compactness, any bounded $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ has accumulation points when the coefficients are shifted to the left.

Such two-sided limit points are also called right limits of J.

Remling's theorem

By compactness, any bounded $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ has accumulation points when the coefficients are shifted to the left.

Such two-sided limit points are also called right limits of J.
Let $\mathrm{E} \subset \mathbb{R}$ be a compact set and assume that $|\mathrm{E}|>0$.
If $\sigma_{\text {ess }}(J)=\mathrm{E}$ and the spectral measure $d \rho=f(t) d t+d \rho_{\mathrm{s}}$ of J obeys

$$
f(t)>0 \text { for a.e. } x \in \mathbb{E},
$$

then any right limit of J belongs to \mathcal{T}_{E}. [Ann. of Math. 2011]

Remling's theorem

By compactness, any bounded $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ has accumulation points when the coefficients are shifted to the left.

Such two-sided limit points are also called right limits of J.
Let $\mathrm{E} \subset \mathbb{R}$ be a compact set and assume that $|\mathrm{E}|>0$.
If $\sigma_{\text {ess }}(J)=\mathrm{E}$ and the spectral measure $d \rho=f(t) d t+d \rho_{\mathrm{s}}$ of J obeys

$$
f(t)>0 \text { for a.e. } x \in \mathbb{E}
$$

then any right limit of J belongs to \mathcal{T}_{E}. [Ann. of Math. 2011]
The theorem says that the left-shifts of J approach \mathcal{T}_{E} as a set.

Remling's theorem

By compactness, any bounded $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ has accumulation points when the coefficients are shifted to the left.

Such two-sided limit points are also called right limits of J.
Let $\mathrm{E} \subset \mathbb{R}$ be a compact set and assume that $|\mathrm{E}|>0$.
If $\sigma_{\text {ess }}(J)=\mathrm{E}$ and the spectral measure $d \rho=f(t) d t+d \rho_{\mathrm{s}}$ of J obeys

$$
f(t)>0 \text { for a.e. } x \in \mathbb{E}
$$

then any right limit of J belongs to \mathcal{T}_{E}. [Ann. of Math. 2011]
The theorem says that the left-shifts of J approach \mathcal{T}_{E} as a set. Hence, $\mathcal{T}_{\mathbf{E}}$ is the natural limiting object associated with E.

The collection of divisors

Recall that

$$
\mathrm{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right)
$$

The collection of divisors

Recall that

$$
\mathrm{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right)
$$

As described below, there is a natural way to introduce a torus of dimension equal to the number of gaps in E .

The collection of divisors

Recall that

$$
\mathrm{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right)
$$

As described below, there is a natural way to introduce a torus of dimension equal to the number of gaps in E .

The set \mathcal{D}_{E} of divisors consists of all formal sums

$$
D=\sum_{j}\left(y_{j}, \pm\right), \quad y_{j} \in\left[\alpha_{j}, \beta_{j}\right],
$$

where $\left(y_{j},+\right)$ and $\left(y_{j},-\right)$ are identified when y_{j} is equal to α_{j} or β_{j}.

The collection of divisors

Recall that

$$
\mathrm{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right)
$$

As described below, there is a natural way to introduce a torus of dimension equal to the number of gaps in E .

The set \mathcal{D}_{E} of divisors consists of all formal sums

$$
D=\sum_{j}\left(y_{j}, \pm\right), \quad y_{j} \in\left[\alpha_{j}, \beta_{j}\right],
$$

where $\left(y_{j},+\right)$ and $\left(y_{j},-\right)$ are identified when y_{j} is equal to α_{j} or β_{j}.

The collection of divisors

Recall that

$$
\mathrm{E}=[\alpha, \beta] \backslash \bigcup_{j}\left(\alpha_{j}, \beta_{j}\right)
$$

As described below, there is a natural way to introduce a torus of dimension equal to the number of gaps in E .

The set \mathcal{D}_{E} of divisors consists of all formal sums

$$
D=\sum_{j}\left(y_{j}, \pm\right), \quad y_{j} \in\left[\alpha_{j}, \beta_{j}\right],
$$

where $\left(y_{j},+\right)$ and $\left(y_{j},-\right)$ are identified when y_{j} is equal to α_{j} or β_{j}.

We shall equip \mathcal{D}_{E} with the product topology.

$\mathrm{A} \operatorname{map} \mathcal{T}_{\mathrm{E}} \rightarrow \mathcal{D}_{\mathrm{E}}$

When $J^{\prime} \in \mathcal{T}_{\mathrm{E}}$, we know that $G(x):=\left\langle\delta_{0},\left(J^{\prime}-x\right)^{-1} \delta_{0}\right\rangle$ is analytic on $\mathbb{C} \backslash E$ and has purely imaginary boundary values a.e. on E.

$\mathrm{A} \operatorname{map} \mathcal{T}_{\mathrm{E}} \rightarrow \mathcal{D}_{\mathrm{E}}$

When $J^{\prime} \in \mathcal{T}_{\mathrm{E}}$, we know that $G(x):=\left\langle\delta_{0},\left(J^{\prime}-x\right)^{-1} \delta_{0}\right\rangle$ is analytic on $\mathbb{C} \backslash E$ and has purely imaginary boundary values a.e. on E.

Such a Pick function admits a representation of the form

$$
G(x)=\frac{-1}{\sqrt{(x-\alpha)(x-\beta)}} \prod_{j} \frac{x-y_{j}}{\sqrt{\left(x-\alpha_{j}\right)\left(x-\beta_{j}\right)}}
$$

where $y_{j} \in\left[\alpha_{j}, \beta_{j}\right]$ for each j.

$\mathrm{A} \operatorname{map} \mathcal{T}_{\mathrm{E}} \rightarrow \mathcal{D}_{\mathrm{E}}$

When $J^{\prime} \in \mathcal{T}_{\mathrm{E}}$, we know that $G(x):=\left\langle\delta_{0},\left(J^{\prime}-x\right)^{-1} \delta_{0}\right\rangle$ is analytic on $\mathbb{C} \backslash E$ and has purely imaginary boundary values a.e. on E .
Such a Pick function admits a representation of the form

$$
G(x)=\frac{-1}{\sqrt{(x-\alpha)(x-\beta)}} \prod_{j} \frac{x-y_{j}}{\sqrt{\left(x-\alpha_{j}\right)\left(x-\beta_{j}\right)}},
$$

where $y_{j} \in\left[\alpha_{j}, \beta_{j}\right]$ for each j.
Using the relation

$$
\left(a_{0}^{\prime}\right)^{2} m^{+}(x)-1 / m^{-}(x)=-1 / G(x)
$$

it follows that every $y_{j} \in\left(\alpha_{j}, \beta_{j}\right)$ is a pole of either m^{+}or $1 / m^{-}$.

$\mathrm{A} \operatorname{map} \mathcal{T}_{\mathrm{E}} \rightarrow \mathcal{D}_{\mathrm{E}}$

When $J^{\prime} \in \mathcal{T}_{\mathrm{E}}$, we know that $G(x):=\left\langle\delta_{0},\left(J^{\prime}-x\right)^{-1} \delta_{0}\right\rangle$ is analytic on $\mathbb{C} \backslash E$ and has purely imaginary boundary values a.e. on E .
Such a Pick function admits a representation of the form

$$
G(x)=\frac{-1}{\sqrt{(x-\alpha)(x-\beta)}} \prod_{j} \frac{x-y_{j}}{\sqrt{\left(x-\alpha_{j}\right)\left(x-\beta_{j}\right)}},
$$

where $y_{j} \in\left[\alpha_{j}, \beta_{j}\right]$ for each j.
Using the relation

$$
\left(a_{0}^{\prime}\right)^{2} m^{+}(x)-1 / m^{-}(x)=-1 / G(x)
$$

it follows that every $y_{j} \in\left(\alpha_{j}, \beta_{j}\right)$ is a pole of either m^{+}or $1 / m^{-}$.
As m^{+}and $1 / m^{-}$have no common poles, this in turn allows us to define a $\operatorname{map} \mathcal{T}_{\mathrm{E}} \rightarrow \mathcal{D}_{\mathrm{E}}$.

The Szegő class

In what follows, let E be an arbitrary Parreau-Widom set.

The Szegó class

In what follows, let E be an arbitrary Parreau-Widom set.
Defn. A Jacobi matrix $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ with spectral measure $d \mu=f(t) d t+d \mu_{\mathrm{s}}$ belongs to the Szegó class for E if

The Szegó class

In what follows, let E be an arbitrary Parreau-Widom set.
Defn. A Jacobi matrix $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ with spectral measure $d \mu=f(t) d t+d \mu_{\mathrm{s}}$ belongs to the Szegó class for E if

- the essential support of $d \mu$ is equal to E,

The Szegó class

In what follows, let E be an arbitrary Parreau-Widom set.
Defn. A Jacobi matrix $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ with spectral measure $d \mu=f(t) d t+d \mu_{\mathrm{s}}$ belongs to the Szegô class for E if

- the essential support of $d \mu$ is equal to E,
- the absolutely continuous part of $d \mu$ obeys the Szegó condition

$$
\int_{E} \log f(t) d \mu_{\mathbb{E}}(t)>-\infty,
$$

The Szegó class

In what follows, let E be an arbitrary Parreau-Widom set.
Defn. A Jacobi matrix $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ with spectral measure $d \mu=f(t) d t+d \mu_{\mathrm{s}}$ belongs to the Szegố class for E if

- the essential support of $d \mu$ is equal to E ,
- the absolutely continuous part of $d \mu$ obeys the Szegő condition

$$
\int_{\mathbf{E}} \log f(t) d \mu_{\mathbf{E}}(t)>-\infty,
$$

- the isolated mass points of $d \mu$ in $\mathbb{R} \backslash E$ satisfy the Blaschke condition

$$
\sum_{k} g\left(x_{k}\right)<\infty .
$$

The Szegó class

In what follows, let E be an arbitrary Parreau-Widom set.
Defn. A Jacobi matrix $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ with spectral measure $d \mu=f(t) d t+d \mu_{\mathrm{s}}$ belongs to the Szegó class for E if

- the essential support of $d \mu$ is equal to E ,
- the absolutely continuous part of $d \mu$ obeys the Szegó condition

$$
\int_{\mathbf{E}} \log f(t) d \mu_{\mathbf{E}}(t)>-\infty,
$$

- the isolated mass points of $d \mu$ in $\mathbb{R} \backslash E$ satisfy the Blaschke condition

$$
\sum_{k} g\left(x_{k}\right)<\infty .
$$

Q: What can we say about a_{n} and b_{n} when $J \in \operatorname{Sz}(E)$?

Szegő's theorem

When J belongs to the Szegő class for E, we always have

$$
0<\liminf _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(\mathrm{E})^{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(\mathrm{E})^{n}}<\infty .
$$

Szegő's theorem

When J belongs to the Szegő class for E, we always have

$$
0<\liminf _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(E)^{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(\mathrm{E})^{n}}<\infty .
$$

In fact, if we assume the Blaschke condition holds true, the Szegó condition is equivalent to

$$
\limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(E)^{n}}>0
$$

that is, the product $\left(a_{1} \cdots a_{n}\right) / \operatorname{Cap}(E)^{n}$ does not converge to 0 .

Szegő's theorem

When J belongs to the Szegő class for E, we always have

$$
0<\liminf _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(E)^{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(\mathrm{E})^{n}}<\infty .
$$

In fact, if we assume the Blaschke condition holds true, the Szegó condition is equivalent to

$$
\limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(E)^{n}}>0
$$

that is, the product $\left(a_{1} \cdots a_{n}\right) / \operatorname{Cap}(E)^{n}$ does not converge to 0 .
This 'if and only if' statement is also called Szegő's theorem.

Szegő's theorem

When J belongs to the Szegő class for E, we always have

$$
0<\liminf _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(\mathrm{E})^{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(\mathrm{E})^{n}}<\infty .
$$

In fact, if we assume the Blaschke condition holds true, the Szegó condition is equivalent to

$$
\limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(\mathrm{E})^{n}}>0
$$

that is, the product $\left(a_{1} \cdots a_{n}\right) / \operatorname{Cap}(E)^{n}$ does not converge to 0 .
This 'if and only if' statement is also called Szegő's theorem.
But can't we say more about a_{n} and what about b_{n} ?

Szegó asymptotics

Let $E \subset \mathbb{R}$ be a Parreau-Widom set and assume that the direct Cauchy theorem holds on $\mathbb{C} \backslash E$.

Szegó asymptotics

Let $E \subset \mathbb{R}$ be a Parreau-Widom set and assume that the direct Cauchy theorem holds on $\mathbb{C} \backslash E$.

If $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ belongs to the Szegő class for E then there is a unique $J^{\prime}=\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\}_{n=-\infty}^{\infty}$ in $\mathcal{T}_{\text {E }}$ such that

$$
\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right| \rightarrow 0
$$

Consequently, a_{n} and b_{n} are asymptotically almost periodic.

Szegó asymptotics

Let $E \subset \mathbb{R}$ be a Parreau-Widom set and assume that the direct Cauchy theorem holds on $\mathbb{C} \backslash E$.

If $J=\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ belongs to the Szegő class for E then there is a unique $J^{\prime}=\left\{a_{n}^{\prime}, b_{n}^{\prime}\right\}_{n=-\infty}^{\infty}$ in \mathcal{T}_{E} such that

$$
\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right| \rightarrow 0
$$

Consequently, a_{n} and b_{n} are asymptotically almost periodic.
Moreover, if $d \mu^{\prime}$ is the spectral measure of J^{\prime} restricted to $\ell^{2}(\mathbb{N})$, then

$$
P_{n}(x, d \mu) / P_{n}\left(x, d \mu^{\prime}\right)
$$

has a limit for all $x \in \overline{\mathbb{C}} \backslash \mathbb{R}$.
Hence, $\Pi\left(a_{n} / a_{n}^{\prime}\right)$ and $\sum\left(b_{n}-b_{n}^{\prime}\right)$ converge conditionally.

Two conjectures

Our goal is to prove the following two conjectures:
Conj. 1 If $\sum\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|<\infty$ for some $J^{\prime} \in \mathcal{T}_{\mathrm{E}}$, then J belongs to $\mathrm{Sz}(\mathbf{E})$.
Conj. 2 If J lies in $\operatorname{Sz}(\mathrm{E})$, then $\sum\left(a_{n}-a_{n}^{\prime}\right)^{2}+\left(b_{n}-b_{n}^{\prime}\right)^{2}<\infty$ for a unique $J^{\prime} \in \mathcal{T}_{\mathbf{E}}$.

Two conjectures

Our goal is to prove the following two conjectures:
Conj. 1 If $\sum\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|<\infty$ for some $J^{\prime} \in \mathcal{T}_{\mathbb{E}}$, then J belongs to $\mathrm{Sz}(\mathrm{E})$.
Conj. 2 If J lies in $\operatorname{Sz}(\mathrm{E})$, then $\sum\left(a_{n}-a_{n}^{\prime}\right)^{2}+\left(b_{n}-b_{n}^{\prime}\right)^{2}<\infty$ for a unique $J^{\prime} \in \mathcal{T}_{\mathbf{E}}$.

If true, these conjectures would place the Szegő class as lying between the ℓ^{2} and ℓ^{1} perturbations of points in $\mathcal{T}_{\mathbf{E}}$.

Two conjectures

Our goal is to prove the following two conjectures:
Conj. 1 If $\sum\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|<\infty$ for some $J^{\prime} \in \mathcal{T}_{\mathbb{E}}$, then J belongs to $\mathrm{Sz}(\mathrm{E})$.
Conj. 2 If J lies in $\operatorname{Sz}(\mathrm{E})$, then $\sum\left(a_{n}-a_{n}^{\prime}\right)^{2}+\left(b_{n}-b_{n}^{\prime}\right)^{2}<\infty$ for a unique $J^{\prime} \in \mathcal{T}_{\mathrm{E}}$.

If true, these conjectures would place the Szegő class as lying between the ℓ^{2} and ℓ^{1} perturbations of points in $\mathcal{T}_{\mathbf{E}}$.

Both conjectures are true when E is an interval. But only the first conjecture (aka the generalized Nevai conjecture) has been settled for general finite gap sets.

Two conjectures

Our goal is to prove the following two conjectures:
Conj. 1 If $\sum\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|<\infty$ for some $J^{\prime} \in \mathcal{T}_{\mathrm{E}}$, then J belongs to $\mathrm{Sz}(\mathrm{E})$.
Conj. 2 If J lies in $\operatorname{Sz}(\mathrm{E})$, then $\sum\left(a_{n}-a_{n}^{\prime}\right)^{2}+\left(b_{n}-b_{n}^{\prime}\right)^{2}<\infty$ for a unique $J^{\prime} \in \mathcal{T}_{\mathrm{E}}$.

If true, these conjectures would place the Szegő class as lying between the ℓ^{2} and ℓ^{1} perturbations of points in $\mathcal{T}_{\mathbf{E}}$.

Both conjectures are true when E is an interval. But only the first conjecture (aka the generalized Nevai conjecture) has been settled for general finite gap sets.

In this talk, I shall merely focus on the first conjecture.

The critical bound

Let $\left\{x_{k}\right\}$ be the eigenvalues in $\mathbb{R} \backslash E$ of some $J \in \operatorname{Sz}(E)$.
If we can prove that

$$
\sum_{k} g\left(x_{k}\right) \leq C_{1}+C_{2} \sum\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|
$$

then Conjecture 1 is an easy consequence.

The critical bound

Let $\left\{x_{k}\right\}$ be the eigenvalues in $\mathbb{R} \backslash E$ of some $J \in \operatorname{Sz}(E)$.
If we can prove that

$$
\sum_{k} g\left(x_{k}\right) \leq C_{1}+C_{2} \sum\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|
$$

then Conjecture 1 is an easy consequence.
For when $\sum_{k} g\left(x_{k}\right)<\infty$, the Szegó condition is equivalent to

$$
\limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(E)^{n}}>0
$$

The critical bound

Let $\left\{x_{k}\right\}$ be the eigenvalues in $\mathbb{R} \backslash E$ of some $J \in \operatorname{Sz}(E)$.
If we can prove that

$$
\sum_{k} g\left(x_{k}\right) \leq C_{1}+C_{2} \sum\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|
$$

then Conjecture 1 is an easy consequence.
For when $\sum_{k} g\left(x_{k}\right)<\infty$, the Szegó condition is equivalent to

$$
\limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(E)^{n}}>0
$$

- and this condition is fulfilled if we have $\sum\left|a_{n}-a_{n}^{\prime}\right|<\infty$!

The critical bound

Let $\left\{x_{k}\right\}$ be the eigenvalues in $\mathbb{R} \backslash E$ of some $J \in \operatorname{Sz}(E)$.
If we can prove that

$$
\sum_{k} g\left(x_{k}\right) \leq C_{1}+C_{2} \sum\left|a_{n}-a_{n}^{\prime}\right|+\left|b_{n}-b_{n}^{\prime}\right|
$$

then Conjecture 1 is an easy consequence.
For when $\sum_{k} g\left(x_{k}\right)<\infty$, the Szegó condition is equivalent to

$$
\limsup _{n \rightarrow \infty} \frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(\mathrm{E})^{n}}>0
$$

- and this condition is fulfilled if we have $\sum\left|a_{n}-a_{n}^{\prime}\right|<\infty$!

Unfortunately, we don't know how to get this critical bound (which was obtained by Frank-Simon for finite gap sets).

Green's functions

Following Hundertmark-Simon, we seek to get bounds close to the critical. Another approach would be to follow work of Kupin et al.

Green's functions

Following Hundertmark-Simon, we seek to get bounds close to the critical. Another approach would be to follow work of Kupin et al.

The first step is to control the (Dirichlet) Green's function

$$
G_{n m}(\lambda):=G_{n m}\left(\lambda ; J^{\prime}\right)=\left\langle\delta_{n},\left(J^{+}-\lambda\right)^{-1} \delta_{m}\right\rangle .
$$

Green's functions

Following Hundertmark-Simon, we seek to get bounds close to the critical. Another approach would be to follow work of Kupin et al.

The first step is to control the (Dirichlet) Green's function

$$
G_{n m}(\lambda):=G_{n m}\left(\lambda ; J^{\prime}\right)=\left\langle\delta_{n},\left(J^{+}-\lambda\right)^{-1} \delta_{m}\right\rangle .
$$

For finite gap sets, the appropriate estimate is

$$
\left|G_{n n}(\lambda)\right| \leq C\left|\lambda-\alpha_{j}\right|^{-1 / 2}, \quad \alpha_{j}<\lambda \leq c_{j}<\beta_{j} .
$$

Green's functions

Following Hundertmark-Simon, we seek to get bounds close to the critical. Another approach would be to follow work of Kupin et al.

The first step is to control the (Dirichlet) Green's function

$$
G_{n m}(\lambda):=G_{n m}\left(\lambda ; J^{\prime}\right)=\left\langle\delta_{n},\left(J^{+}-\lambda\right)^{-1} \delta_{m}\right\rangle .
$$

For finite gap sets, the appropriate estimate is

$$
\left|G_{n n}(\lambda)\right| \leq C\left|\lambda-\alpha_{j}\right|^{-1 / 2}, \quad \alpha_{j}<\lambda \leq c_{j}<\beta_{j} .
$$

There seems to be at least two possibilities for generalization:

$$
\text { (1) }\left|G_{n n}(\lambda)\right| \leq C / g(\lambda), \quad \text { (2) }\left|G_{n n}(\lambda)\right| \leq C g^{\prime}(\lambda) \text {. }
$$

Green's functions

Following Hundertmark-Simon, we seek to get bounds close to the critical. Another approach would be to follow work of Kupin et al.

The first step is to control the (Dirichlet) Green's function

$$
G_{n m}(\lambda):=G_{n m}\left(\lambda ; J^{\prime}\right)=\left\langle\delta_{n},\left(J^{+}-\lambda\right)^{-1} \delta_{m}\right\rangle .
$$

For finite gap sets, the appropriate estimate is

$$
\left|G_{n n}(\lambda)\right| \leq C\left|\lambda-\alpha_{j}\right|^{-1 / 2}, \quad \alpha_{j}<\lambda \leq c_{j}<\beta_{j} .
$$

There seems to be at least two possibilities for generalization:

$$
\text { (1) }\left|G_{n n}(\lambda)\right| \leq C / g(\lambda), \quad \text { (2) }\left|G_{n n}(\lambda)\right| \leq C g^{\prime}(\lambda) \text {. }
$$

Assume for now that we can prove the latter (to be discussed a little later).

Lieb-Thirring bounds

For $p>0$, define

$$
f(x):=\int_{\alpha_{j}}^{x} g(\lambda)^{p-1} d \lambda \text { for } \alpha_{j} \leq x \leq c_{j}<\beta_{j} .
$$

Lieb-Thirring bounds

For $p>0$, define

$$
f(x):=\int_{\alpha_{j}}^{x} g(\lambda)^{p-1} d \lambda \text { for } \alpha_{j} \leq x \leq c_{j}<\beta_{j}
$$

Then

$$
\sum_{x_{k} \in\left(\alpha_{j}, c_{j}\right)} f\left(x_{k}\right)=\int_{\alpha_{j}}^{c_{j}} f^{\prime}(\lambda) \#_{\text {e.v. }}\left\{J \in\left(\lambda, c_{j}\right)\right\} d \lambda .
$$

Lieb-Thirring bounds

For $p>0$, define

$$
f(x):=\int_{\alpha_{j}}^{x} g(\lambda)^{p-1} d \lambda \text { for } \alpha_{j} \leq x \leq c_{j}<\beta_{j} .
$$

Then

$$
\sum_{x_{k} \in\left(\alpha_{j}, c_{j}\right)} f\left(x_{k}\right)=\int_{\alpha_{j}}^{c_{j}} f^{\prime}(\lambda) \#_{e . v .}\left\{J \in\left(\lambda, c_{j}\right)\right\} d \lambda .
$$

As the conditions on J lead to bounds on the number of eigenvalues, we deduce that

$$
\int_{\alpha_{j}}^{c_{j}} f^{\prime}(\lambda) g^{\prime}(\lambda) d \lambda<\infty \Longrightarrow \sum_{x_{k} \in\left(\alpha_{j}, c_{j}\right)} f\left(x_{k}\right)<\infty .
$$

Lieb-Thirring bounds

For $p>0$, define

$$
f(x):=\int_{\alpha_{j}}^{x} g(\lambda)^{p-1} d \lambda \text { for } \alpha_{j} \leq x \leq c_{j}<\beta_{j}
$$

Then

$$
\sum_{x_{k} \in\left(\alpha_{j}, c_{j}\right)} f\left(x_{k}\right)=\int_{\alpha_{j}}^{c_{j}} f^{\prime}(\lambda) \#_{e . v .}\left\{J \in\left(\lambda, c_{j}\right)\right\} d \lambda .
$$

As the conditions on J lead to bounds on the number of eigenvalues, we deduce that

$$
\int_{\alpha_{j}}^{c_{j}} f^{\prime}(\lambda) g^{\prime}(\lambda) d \lambda<\infty \Longrightarrow \sum_{x_{k} \in\left(\alpha_{j}, c_{j}\right)} f\left(x_{k}\right)<\infty .
$$

This works for all gaps (also at the right ends) and

$$
\int f^{\prime} g^{\prime}=\int g^{p-1} g^{\prime}=\sum_{j} \int_{0}^{h_{j}} x^{p-1} d x=\sum_{j} h_{j}^{p}, \quad h_{j}=g\left(c_{j}\right)
$$

How close to critical?

We have $\sum_{j} h_{j}^{p}<\infty \Rightarrow \sum_{k} f\left(x_{k}\right)<\infty$, with $f=\int g^{p-1}$.

How close to critical?

We have $\sum_{j} h_{j}^{p}<\infty \Rightarrow \sum_{k} f\left(x_{k}\right)<\infty$, with $f=\int g^{p-1}$. If g behaves like $\sqrt{\lambda-\alpha_{j}}$ near α_{j}, then f behaves like g^{p+1}. Hence, the critical bound corresponds to the limit $p \downarrow 0$.

How close to critical?

We have $\sum_{j} h_{j}^{p}<\infty \Rightarrow \sum_{k} f\left(x_{k}\right)<\infty$, with $f=\int g^{p-1}$. If g behaves like $\sqrt{\lambda-\alpha_{j}}$ near α_{j}, then f behaves like g^{p+1}. Hence, the critical bound corresponds to the limit $p \downarrow 0$.

- But does g possess this square root behavior?
- And is the series $\sum_{j} h_{j}{ }^{p}$ convergent for all $p<1$?

How close to critical?

We have $\sum_{j} h_{j}^{p}<\infty \Rightarrow \sum_{k} f\left(x_{k}\right)<\infty$, with $f=\int g^{p-1}$.
If g behaves like $\sqrt{\lambda-\alpha_{j}}$ near α_{j}, then f behaves like g^{p+1}. Hence, the critical bound corresponds to the limit $p \downarrow 0$.

- But does g possess this square root behavior?
- And is the series $\sum_{j} h_{j}{ }^{p}$ convergent for all $p<1$?

When E is a fat Cantor set, we have $g \in \operatorname{Lip} 1 / 2$ (thm of Totik). The series may be convergent for some $p<1$, but not all.

How close to critical?

We have $\sum_{j} h_{j}^{p}<\infty \Rightarrow \sum_{k} f\left(x_{k}\right)<\infty$, with $f=\int g^{p-1}$.
If g behaves like $\sqrt{\lambda-\alpha_{j}}$ near α_{j}, then f behaves like g^{p+1}. Hence, the critical bound corresponds to the limit $p \downarrow 0$.

- But does g possess this square root behavior?
- And is the series $\sum_{j} h_{j}{ }^{p}$ convergent for all $p<1$?

When E is a fat Cantor set, we have $g \in \operatorname{Lip} 1 / 2$ (thm of Totik). The series may be convergent for some $p<1$, but not all.

When E is homogeneous, we have $g \in \operatorname{Lip} \gamma$ for some $\gamma \leq 1 / 2$.
But even in the simple case $\alpha_{j}=1 / 2^{j}$ and $\beta_{j}=\alpha_{j}+1 / 2^{j+1}$, one can show that $\gamma<1 / 2$.

Estimating $G_{n n}$

There are two explicit solutions u, v to the recursion for J^{\prime} so that

$$
G_{n n}=\frac{u_{n} v_{n}}{W r}
$$

Estimating $G_{n n}$

There are two explicit solutions u, v to the recursion for J^{\prime} so that

$$
G_{n n}=\frac{u_{n} v_{n}}{W r} .
$$

One can show that $1 / \mathrm{Wr}$ is essentially the m-function for $d \mu_{\mathrm{E}}$, which equals the derivative of g in every gap of E.

Estimating $G_{n n}$

There are two explicit solutions u, v to the recursion for J^{\prime} so that

$$
G_{n n}=\frac{u_{n} v_{n}}{W r} .
$$

One can show that $1 / \mathrm{Wr}$ is essentially the m-function for $d \mu_{\mathrm{E}}$, which equals the derivative of g in every gap of E.

So the question is whether or not the product $u_{n} v_{n}$ is bounded.

Estimating $G_{n n}$

There are two explicit solutions u, v to the recursion for J^{\prime} so that

$$
G_{n n}=\frac{u_{n} v_{n}}{W r} .
$$

One can show that $1 / \mathrm{Wr}$ is essentially the m-function for $d \mu_{\mathrm{E}}$, which equals the derivative of g in every gap of E.

So the question is whether or not the product $u_{n} v_{n}$ is bounded.
This in turn is equivalent to boundedness of the outer function

$$
\exp \left\{\int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left(\frac{f^{*}\left(x\left(e^{i \theta}\right)\right)}{f_{J^{+}}\left(x\left(e^{i \theta}\right)\right)}\right) \frac{d \theta}{4 \pi}\right\}, \quad z \in \mathbb{D}
$$

where f^{*} is the a.c. part of a suitable reference measure.

Estimating $G_{n n}$

There are two explicit solutions u, v to the recursion for J^{\prime} so that

$$
G_{n n}=\frac{u_{n} v_{n}}{W r} .
$$

One can show that $1 / \mathrm{Wr}$ is essentially the m-function for $d \mu_{\mathrm{E}}$, which equals the derivative of g in every gap of E.

So the question is whether or not the product $u_{n} v_{n}$ is bounded.
This in turn is equivalent to boundedness of the outer function

$$
\exp \left\{\int_{0}^{2 \pi} \frac{e^{i \theta}+z}{e^{i \theta}-z} \log \left(\frac{f^{*}\left(x\left(e^{i \theta}\right)\right)}{f_{J^{+}}\left(x\left(e^{i \theta}\right)\right)}\right) \frac{d \theta}{4 \pi}\right\}, \quad z \in \mathbb{D}
$$

where f^{*} is the a.c. part of a suitable reference measure.
The bound should be independent of $f_{J^{+}}\left(\right.$as J^{\prime} varies on $\left.\mathcal{T}_{\mathrm{E}}\right)$.

Estimating $G_{n n}$

A natural choice of f^{*} is $1 / f_{\mathrm{E}}$, with $f_{\mathrm{E}}(t)=d \mu_{\mathrm{E}} / d t$.

Estimating $G_{n n}$

A natural choice of f^{*} is $1 / f_{\mathrm{E}}$, with $f_{\mathrm{E}}(t)=d \mu_{\mathrm{E}} / d t$.
When E is a finite gap set, this choice of f^{*} vanishes like a square root at the band edges.

Estimating $G_{n n}$

A natural choice of f^{*} is $1 / f_{\mathrm{E}}$, with $f_{\mathrm{E}}(t)=d \mu_{\mathrm{E}} / d t$.
When E is a finite gap set, this choice of f^{*} vanishes like a square root at the band edges.
And the $f_{J^{+}}$coming from an element on the isospectral torus either vanishes like $\sqrt{ }$ or blows up like $1 / \sqrt{ }$.

Estimating $G_{n n}$

A natural choice of f^{*} is $1 / f_{\mathrm{E}}$, with $f_{\mathrm{E}}(t)=d \mu_{\mathrm{E}} / d t$.
When E is a finite gap set, this choice of f^{*} vanishes like a square root at the band edges.
And the $f_{J^{+}}$coming from an element on the isospectral torus either vanishes like $\sqrt{ }$ or blows up like $1 / \sqrt{ }$.

Q: Is $f_{\mathrm{E}}(t) f_{J^{+}}(t) \geq C>0$ uniformly for $t \in \mathbf{E}$ and all $J^{\prime} \in \mathcal{T}_{\mathbf{E}}$?

Estimating $G_{n n}$

A natural choice of f^{*} is $1 / f_{\mathrm{E}}$, with $f_{\mathrm{E}}(t)=d \mu_{\mathrm{E}} / d t$.
When E is a finite gap set, this choice of f^{*} vanishes like a square root at the band edges.
And the $f_{J^{+}}$coming from an element on the isospectral torus either vanishes like $\sqrt{ }$ or blows up like $1 / \sqrt{ }$.

Q: Is $f_{\mathbf{E}}(t) f_{J^{+}}(t) \geq C>0$ uniformly for $t \in \mathbf{E}$ and all $J^{\prime} \in \mathcal{T}_{\mathbf{E}}$?

We believe this is true for fat Cantor sets, but do not have a rigorous proof.

Estimating $G_{n n}$

A natural choice of f^{*} is $1 / f_{\mathrm{E}}$, with $f_{\mathrm{E}}(t)=d \mu_{\mathrm{E}} / d t$.
When E is a finite gap set, this choice of f^{*} vanishes like a square root at the band edges.
And the $f_{J^{+}}$coming from an element on the isospectral torus either vanishes like $\sqrt{ }$ or blows up like $1 / \sqrt{ }$.

Q: Is $f_{\mathrm{E}}(t) f_{J^{+}}(t) \geq C>0$ uniformly for $t \in \mathrm{E}$ and all $J^{\prime} \in \mathcal{T}_{\mathbf{E}}$?
We believe this is true for fat Cantor sets, but do not have a rigorous proof.

However, it seems to fail for the simple homogeneous set given by $\alpha_{j}=1 / 2^{j}$ and $\beta_{j}=\alpha_{j}+1 / 2^{j+1}$.

Merci beaucoup pour votre attention!

Some references

- M. Sodin and P. Yuditskii. Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions.
J. Geom. Anal. 7 (1997) 387-435
- F. Peherstorfer and P. Yuditskii. Asymptotic behavior of polynomials orthonormal on a homogeneous set. J. Anal. Math. 89 (2003) 113-154
- C. Remling. The absolutely continuous spectrum of Jacobi matrices. Ann. Math. 174 (2011) 125-171
- J. S. Christiansen. Szegő's theorem on Parreau-Widom sets. Adv. Math. 229 (2012) 1180-1204
- J. S. Christiansen. Dynamics in the Szegő class and polynomial asymptotics.

