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Let M be an arbitrary smooth m-manifold

One of the most fundamental problems in geometry is the
determination of the spectrum of the Laplace operator
corresponding to a Riemannian metric g on M, in particular

the one of the Hodge-Laplace operator ∆
(j)
g which acts on

differential j-forms

If M is compact, then the spectrum σ(∆
(j)
g ) of ∆

(j)
g consists

of eigenvalues with a finite multiplicity and thus the situation
is (analytically) very simple

If M is noncompact, then σ(∆
(j)
g ) will typically contain some

continuous part which is impossible to control in general
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However, there is a “perturbative” way to control the absolutely

continuous part σac(∆
(j)
g ) of σ(∆

(j)
g ) in the noncompact case:

Assume that there is a quasi-isometric metric g̃ on M such that we
have some good information about the absolutely continuous part

(∆
(j)
g̃ )ac of ∆

(j)
g̃ . Then once we can show that the wave operators

W±
(
∆

(j)
g ,∆

(j)
g̃ , I

)
exist and are complete, they induce unitary

equivalences

(∆
(j)
g̃ )ac ∼ (∆

(j)
g )ac, so that σac(∆

(j)
g̃ ) = σac(∆

(j)
g ).

Here I = Ig ,g̃ : Ω(M, g)→ Ω(M, g̃) is the canonical identification
α 7→ α.
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The question we address here is:

In what sense do g̃ and g have to be close to each other to
ensure that W±

(
∆g ,∆g̃ , I

)
exist and are complete?

From calculating ∆g̃ −∆g in the (particulary important) case
where one metric arises a conformal perturbation of the other, we
expect the correct assumption to be a first order control in the
deviation of g and g̃ .
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no systematic treatment (if at all) for k-forms in the literature

For functions= 0-forms: Classically, people have considered
special topologies M = (0,∞)× Sm−1 with warped metrics.
Then the problem is typically unitarily equivalent to a
scattering problem for Sturm-Liouville operators, which is a
rather old (but not necessarily easy) story

The first entirely global result for functions has been
established by W. Müller/G. Salomonsen. Their result
essentially reads as follows:
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Theorem (Müller/Salomonsen 2007, JFA 253)

Let g, g̃ be complete metrics on M with |secg |, |secg̃ | ≤ L, such
that the covariant C2-deviation x 7→ 2|g − g̃ |g (x) of g from g̃ is
bounded from above by some β : M → (0,∞) of moderate decay,
in a way such that for appropriate constants a, b, c ,C one has

βa ∈ L1(M, g),
∣∣βb(x)ĩnjg (x)c

∣∣ ≤ C for all x ,

where ĩnjg (x) := min
(

π
12
√
L
, injg (x)

)
. Then W±

(
∆

(0)
g ,∆

(0)
g̃ , I (0)

)
exist and are complete.

Although a breakthrough at that time, this result is certainly not
optimal: The required control is of second order in the deviation of
g and g̃ .
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Indeed, using the harmonic radius function (later...) x 7→ rg (x)
with a certain Sobolev control, one can do much better:
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Theorem (Hempel/Weder/Post 2013, JFA 266)

Let g, g̃ be complete quasi-isometric metrics on M with∫
M
d(g , g̃)(x)h−(m+2)(x)µg (dx) <∞, (1)

where d(g , g̃) : M → (0,∞) is a certain function (later...) which
measures a zeroth order deviation of the metrics, and where
h : M → (0, 1] is an arbitrary lower bound on

M 3 x 7−→ max
(

min(rg (x), 1),min(rg̃ (x), 1)
)
∈ (0, 1].

Then W±
(
∆

(0)
g ,∆

(0)
g̃ , I (0)

)
exist and are complete.

This zeroth order result should be the state of the art for functions.
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We were interested in extending the latter result to differential
forms.

Here, for some entirely algebraic reasons, we have restricted
ourselves to conformal perturbations.
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Preparations
Statement and applications of the main result

Given a Riemannian metric g we have

∇g : the Levi-Civita connection

Qg : ∧2TM → ∧2TM the s.a. curvature endomorphism

for a smooth 1-form α, intg (α) = ext†g : ∧T∗M → ∧T∗M is
interior multiplication with α

the codifferential δg := d†g : ΩC∞(M)→ ΩC∞(M)

the Dirac type operator Dg := d + δg : ΩC∞(M)→ ΩC∞(M)

the Hodge-Laplacian ∆g := D2
g : ΩC∞(M)→ ΩC∞(M)

the Friedrichs realization Hg of ∆g in ΩL2(M, g)

the resolvents Rg ,λ := (Hg + λ)−1, λ > 0.

everything filters through the form degree; notation:

ΩL2(M) =
⊕m

j=0 Ω
(j)
L2 (M, g), Hg =

⊕m
j=0 H

(j)
g etc.
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Preparations
Statement and applications of the main result

Our main technical tool will be harmonic coordinates with Sobolev
control:

Definition (Cheeger/Anderson)

Let p ∈ (m,∞), q ∈ (1,∞), x ∈ M. Then the W1,p
g -harmonic

radius at x with Euclidean distortion q, rg (x , p, q) ∈ (0,∞], is
defined to be supremum of all r > 0 such that there is a

∆
(0)
g -harmonic chart Φ : Bg

(
x , r
)
→ U ⊂ Rm which, with respect

to the Φ-coordinates, satisfies the estimates

q−1(δij) ≤ (gij) ≤ q(δij) as symmetric bilinear forms, (2a)

r1−m
p

(∫
U
|∂kgij(y)|pdy

)1/p
≤ q − 1 for all i , j , k ∈ {1, . . . ,m}.

(2b)
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Preparations
Statement and applications of the main result

It is not obvious at all that rg (x , p, q) > 0. Anyway, one has the
following elementary fact:

Proposition (B/G/M)

For any fixed p, q, the function x 7→ min(1, rg (x , p, q)) is
1-Lipschitz w.r.t. g .

The fact that indeed rg (x , p, q) > 0 as claimed in the definition
follows from applying the following results near x :
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Preparations
Statement and applications of the main result

Proposition (Cheeger/Anderson 90%; B/G/M)

Assume that Ricg (x) ≥ − 1
β2 and injg (x) ≥ h̃(x), where β > 0 is a

constant and h̃ : M → (0,∞) is a continuous. Then:

a) If h̃ is g-Lipschitz, then for any p, q there is
C = C (m, p, q) > 0 such that for all x ∈ M one has

min(rg (x , p, q), 1) ≥ C min

(
1,

h̃(x)

1 + ‖dh̃‖∞,g
, β

)
.

b) If there is a x0 ∈ M, and c1 > 0, c2 ≥ 0 such that
h̃ ≥ c1e

−c2dg (·,x0), then for any p, q there is C = C (m, p, q) > 0
such that for all x ∈ M one has

min(rg (x , p, q), 1) ≥ C min
(

1,
c1

ec2
e−c2dg (x ,x0), β

)
.
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Preparations
Statement and applications of the main result

The importance of Sobolev harmonic coordinates: By embedding
theorems, we get a Hölder control on gij . To make an effective use
of this observation in the form-case, we add:

Definition

For any K > 0 and any function h : M → (0, 1], let

MK ,h(M) :=
{
g̃
∣∣∣ g̃ is a complete metric on M with Qg̃ ≥ −K

and min(1, rg (·, p, q)) ≥ h for some p ∈ (m,∞), q ∈ (1,
√

2)
}
.
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Preparations
Statement and applications of the main result

Carleman type resolvent estimate:

Theorem (B/G/M)

Assume that g ∈MK ,h(M) for some pair (K , h). Then for all
n ∈ N with n ≥ m/4 + 2 there is a C = C (m, n) > 0, such that for
all λ > K maxj=0,...,m j(m − j) + 1, the operator Rn

g ,λ is an integral
operator, with a Borel integral kernel

M ×M 3 (x , y) 7−→ Rn
g ,λ(x , y) ∈ Hom

(
∧T∗yM,∧T∗xM

)
which satisfies the estimate∫

M

∣∣Rn
g ,λ(x , y)

∣∣2
J 2 µg (dy) ≤ Ch(x)−m for all x ∈ M.
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Preparations
Statement and applications of the main result

The proof is rather complicated. The key observations are:

V
(j)
g := ∆

(j)
g −∇†g ,j∇g ,j is zeroth order and s.a. by

Weitzenböck’s formula

The Gallot-Meyer estimate states that under Qg ≥ −K one

has V
(j)
g ≥ −K · j(m − j)

Now one can use probabilistic domination results for covariant
Schrödinger semigroups e−t(∇†∇+V ) (e.g. my paper in JFA

262) to control R
(j),n
g ,λ by R

(0),n
g ,1 . The latter can be controlled

by min(1, rg (·, p, q))
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Preparations
Statement and applications of the main result

Given a smooth function ψ : M → R let gψ denote the
conformally equivalent metric gψ := e2ψg . Then g and gψ are
quasi-isometric if and only if ψ is bounded and then we have
the canonical identification operator
I = Ig ,gψ : ΩL2(M, g)→ ΩL2(M, gψ).

Given a Borel function h : M → (0,∞) and a smooth function
ψ : M → R define

d(g , ψ)(x) := max
{

sinh(2|ψ(x)|), |dψ(x)|g
}
, x ∈ M,

dh(g , ψ) :=

∫
M
d(g , ψ)(x)h(x)−(m+2) µg (dx) ∈ [0,∞].

We call ψ a h-scattering perturbation of g , if one has
dh(g , ψ) <∞.
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Preparations
Statement and applications of the main result

Now we can formulate our main result for forms:

Theorem (B/G/M)

Let ψ : M → R be smooth with ψ, |dψ|g bounded, and assume
that g , gψ ∈MK ,h(M) for some pair (K , h), in a way such that ψ
is a h-scattering perturbation of g. Then the wave operators

W±(Hgψ ,Hg , I ) = s lim
t→±∞

eitHgψ I e−itHgPac(Hg )

exist and are complete, and everything filters (a posteriori... 
total forms and Dirac type operators!) through the form degree.
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Preparations
Statement and applications of the main result

Corollary

Assume that g is complete with Qg ≥ −K for some K > 0 and
that g̃ is a metric on M which is conformally equivalent to g and
which coincides with g at infinity. Then the assumptions of our
main result are satisfied.

Indeed, since ψ is compactly supported by assumption, we can take

h(x) := min(1, rg (x , p, q), rgψ(x , p, q)) for all p > m, 1 < q <
√

2,

which is a positive continuous function, to make ψ a h-scattering
perturbation of g .
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Preparations
Statement and applications of the main result

Corollary

Assume that ψ : M → R is smooth and bounded, g is complete
such that |secg |, |secgψ | ≤ L for some L > 0, that there is some
β : [0,∞)→ (0,∞) exponentially bounded from below, and a
point x0 ∈ M such that with β(x) := β(1 + dg (x , x0)) one has:

(i) There are constants b ∈ (0, 1) with βb ∈ L1(M, g), and
C1 > 0 such that for all x ∈ M,

ĩnjg (x) := min
(

π
12
√
L
, injg (x)

)
≥ C1 · β(x)

1−b
m+2 . (3)

(ii) For some constant C > 0 one has

1|g − gψ| := |g − gψ|g + |∇g −∇gψ |g ≤ C · β (4)

Then the assumptions of our main result are satisfied.
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Preparations
Statement and applications of the main result

The latter result can be considered as a generalization in the
conformal case of the initial Müller/Salomonsen result to forms.
Note however that, being a first order result, it is better even on
functions.
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Some steps in the proof of our main result...
An essential tool is to use a decomposition formula (the algebra of
which forced us to restrict ourselves to the conformal case)
efficiently with harmonic coordinates:
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Proposition

Assume that ψ and |dψ|g are bounded, let λ > 0, n ≥ 1 and let g
(and thus gψ) be complete. Then the bounded operator

Rn
gψ ,λ

(Hgψ I − IHg )Rn
g ,λ : ΩL2(M, g) −→ ΩL2(M, gψ)

can be decomposed as

Rn
gψ ,λ

(Hgψ I − IHg )Rn
g ,λ =

Rn
gψ ,λ

(
Dgψ · 2 sinh(2ψ)IDg + Dgψ I (1− e−2ψ)d− d ◦ (1− e2ψ)IDg

+ Dgψ intgψ(dψ) τ I − τ intg (dψ)Dg

)
Rn
g ,λ. (5)

Here τ :=
⊕m

j=0(m − 2j)1∧jT∗M : ∧T∗M −→ ∧T∗M.
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Now we combine the latter decomposition formula with our
Carleman type resolvent estimate and the commutator
relations [A,Rn

g ,λ] = 0, where A ∈ {Dg ,d, δg}, to get that
Rn
gψ ,λ

(Hgψ I − IHg )Rn
g ,λ is trace class for large n  the

assumptions of Belopol’skii-Birman’s theorem are satisfied

The decomposition formula heavily requires that the
underlying Hamiltonians are of the form L∗L. That is why we
work with total forms and the Dirac type operator Dg and
Hg = D2

g = D∗gDg instead of on a fixed form degree. On

functions, all of this is very simple as ∆(0) = d†gd where the
differential d does not depend on the metric (and this leads to
a zeroth order condition in this case).
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I am sure that one can drop our curvature assumption
Qg ≥ −K
I am almost sure that one can drop the restriction to
conformal perturbations. But you have to solve the following
entirely algebraic problem: Give yourself two metrics g and g̃
on M. You can always write the one as a multiplicative
perturbation of the other. But: How do you calculate
δg̃ = Fg̃ ,g (δg )? In the conformal case, there are somewhat
accessible perturbative formulae.

Further studies for functions: Local Dirichlet forms (not clear
at all)? Weighted infinite graphs (this should at least admit a
clear formulation in terms of the edge and vertex weight
functions)?

Batu Güneysu Scattering theory of the Hodge-Laplacian



Introduction
Existing “scalar” results for functions = 0-forms

Our main result for differential forms
Key steps in the proof of our main result

Outlook

I am sure that one can drop our curvature assumption
Qg ≥ −K
I am almost sure that one can drop the restriction to
conformal perturbations. But you have to solve the following
entirely algebraic problem: Give yourself two metrics g and g̃
on M. You can always write the one as a multiplicative
perturbation of the other. But: How do you calculate
δg̃ = Fg̃ ,g (δg )? In the conformal case, there are somewhat
accessible perturbative formulae.

Further studies for functions: Local Dirichlet forms (not clear
at all)? Weighted infinite graphs (this should at least admit a
clear formulation in terms of the edge and vertex weight
functions)?
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Thank you for listening!
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