Atoms in the limiting spectrum of sparse graphs

Justin Salez (lpma)
A graph $G = (V, E)$ can be represented by its adjacency matrix A:

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

The eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|V|}$ capture essential information. It is convenient to encode them into a probability measure on \mathbb{R}:

$$\mu_G = \frac{1}{|V|} \sum_{k=1}^{|V|} \delta_{\lambda_k}.$$

Question: How does μ_G typically look when G is large?
A graph $G = (V, E)$ can be represented by its adjacency matrix:

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

The eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information. It is convenient to encode them into a probability measure on \mathbb{R}:

$$\mu_G = \frac{1}{|V|} \sum_{k=1}^{|V|} \delta_{\lambda_k}.$$
A graph $G = (V, E)$ can be represented by its \textit{adjacency matrix}:

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

The eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information.
EMPIRICAL SPECTRAL DISTRIBUTION OF A GRAPH

A graph $G = (V, E)$ can be represented by its adjacency matrix A_{ij}:

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

The eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information.

It is convenient to encode them into a probability measure on \mathbb{R}:

$$\mu_G = \frac{1}{|V|} \sum_{k=1}^{|V|} \delta_{\lambda_k}.$$
A graph $G = (V, E)$ can be represented by its adjacency matrix:

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

The eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information. It is convenient to encode them into a probability measure on \mathbb{R}:

$$\mu_G = \frac{1}{|V|} \sum_{k=1}^{|V|} \delta_{\lambda_k}.$$

Question: How does μ_G typically look when G is large?
SPECTRUM OF A RANDOM GRAPH ON 10000 NODES
THE SEMI-CIRCLE LAW
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_n
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_n

Theorem (Wigner, 50’s): if $np_n \to \infty$,

What about sparse graphs: $|E| \approx |V|$?
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: \(n \) nodes, edges present with proba \(p_n \)

Theorem (Wigner, 50’s): if \(np_n \to \infty \),

\[
\mu_{G_n} \left(\sqrt{np_n(1 - p_n)} d\lambda \right) \xrightarrow{\mathcal{P}(\mathbb{R}) \atop n \to \infty} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.
\]
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: \(n \) nodes, edges present with proba \(p_n \)

Theorem (Wigner, 50’s): if \(np_n \rightarrow \infty \),

\[
\mu_{G_n} \left(\sqrt{n p_n (1 - p_n)} d\lambda \right) \xrightarrow{n \rightarrow \infty} \frac{\mathcal{P}(\mathbb{R})}{2\pi} \frac{\sqrt{4 - \lambda^2}}{1(|\lambda| \leq 2)} d\lambda.
\]

- Uniformly chosen random \(d_n \)-regular graph on \(n \) nodes.
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with probability p_n

Theorem (Wigner, 50’s): if $np_n \to \infty$,

$$\mu_{G_n} \left(\sqrt{np_n(1 - p_n)} d\lambda \right) \xrightarrow{n \to \infty} \frac{\mathcal{P}(\mathbb{R})}{\mathcal{P}(\mathbb{R})} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.$$

- Uniformly chosen random d_n-regular graph on n nodes.

Theorem (Tran-Vu-Wang, 2010): if $d_n \to \infty$,

$$\mu_{G_n} \left(\sqrt{d_n(1 - d_n/n)} d\lambda \right) \xrightarrow{n \to \infty} \frac{\mathcal{P}(\mathbb{R})}{\mathcal{P}(\mathbb{R})} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.$$

In both cases, graphs are required to be dense: $|E| \gg |V|$.

- What about sparse graphs: $|E| \approx |V|$?
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_n

Theorem (Wigner, 50’s): if $np_n \to \infty$,

$$
\mu_{G_n} \left(\sqrt{np_n(1 - p_n)} d\lambda \right) \xrightarrow[n \to \infty]{\mathcal{P}(\mathbb{R})} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.
$$

- Uniformly chosen random d_n–regular graph on n nodes.

Theorem (Tran-Vu-Wang, 2010): if $d_n \to \infty$,

$$
\mu_{G_n} \left(\sqrt{d_n(1 - d_n/n)} d\lambda \right) \xrightarrow[n \to \infty]{\mathcal{P}(\mathbb{R})} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.
$$

- In both cases, graphs are required to be **dense**: $|E| \gg |V|$
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: \(n \) nodes, edges present with proba \(p_n \)

Theorem (Wigner, 50’s): if \(np_n \to \infty \),

\[
\mu_{G_n} \left(\sqrt{np_n(1 - p_n)}d\lambda \right) \xrightarrow{n \to \infty} \frac{\mathcal{P}(\mathbb{R})}{\sqrt{4 - \lambda^2}} \frac{1}{2\pi \sqrt{4 - \lambda^2}} 1(|\lambda| \leq 2) d\lambda.
\]

- Uniformly chosen random \(d_n \)-regular graph on \(n \) nodes.

Theorem (Tran-Vu-Wang, 2010): if \(d_n \to \infty \),

\[
\mu_{G_n} \left(\sqrt{d_n(1 - d_n/n)}d\lambda \right) \xrightarrow{n \to \infty} \frac{\mathcal{P}(\mathbb{R})}{\sqrt{4 - \lambda^2}} \frac{1}{2\pi \sqrt{4 - \lambda^2}} 1(|\lambda| \leq 2) d\lambda.
\]

- In both cases, graphs are required to be dense: \(|E| \gg |V|\)

- What about **sparse graphs**: \(|E| \asymp |V|\)?
graph with average degree 3 on 1000 nodes
GRAPH WITH AVERAGE DEGREE 3 ON 1000 NODES
GRAPH WITH AVERAGE DEGREE 3 ON 10000 NODES
RANDOM 3-REGULAR GRAPH ON 10000 NODES
RANDOM 3-REGULAR GRAPH ON 10000 NODES
UNIFORM RANDOM TREE ON 250 NODES
For many sequences \(\{G_n\}_{n \geq 1} \) of sparse graphs, the spectrum \(\{\mu_{G_n}\}_{n \geq 1} \) approaches a model-dependent limit \(\mu \):

\[
\mu_{G_n} \xrightarrow{n \to \infty} \mu.
\]

- Random \(d \)-regular graph on \(n \) nodes (Kesten-McKay, 1981)
- Erdős-Rényi \(p \approx c/n \) (Khorunzhy-Shcherbina-Vengerovsky '04)
- Uniform random tree on \(n \) vertices (Bhamidi-Evans-Sen '09)

This phenomenon is just one of the many consequences of the fact that the underlying local geometry converges!
For many sequences \(\{G_n\}_{n \geq 1} \) of sparse graphs, the spectrum \(\{\mu_{G_n}\}_{n \geq 1} \) approaches a \textbf{model-dependent} limit \(\mu \):
For many sequences \(\{ G_n \}_{n \geq 1} \) of sparse graphs, the spectrum \(\{ \mu_{G_n} \}_{n \geq 1} \) approaches a **model-dependent** limit \(\mu \):

\[
\mu_{G_n} \xrightarrow[n \to \infty]{\mathcal{P}(\mathbb{R})} \mu.
\]
For many sequences \(\{ G_n \}_{n \geq 1} \) of sparse graphs, the spectrum \(\{ \mu_{G_n} \}_{n \geq 1} \) approaches a model-dependent limit \(\mu \):

\[
\mu_{G_n} \xrightarrow{\mathcal{P}(\mathbb{R})} \mu.
\]

- Random \(d \)-regular graph on \(n \) nodes (Kesten-McKay, 1981)
For many sequences \(\{ G_n \}_{n \geq 1} \) of sparse graphs, the spectrum \(\{ \mu_{G_n} \}_{n \geq 1} \) approaches a \textbf{model-dependent} limit \(\mu \):

\[
\mu_{G_n} \xrightarrow{\mathcal{P}({\mathbb{R}})} \mu.
\]

- Random \(d \)-regular graph on \(n \) nodes (Kesten-McKay, 1981)
- Erdős-Rényi \(p_n \sim \frac{c}{n} \) (Khorunzhy-Shcherbina-Vengerovsky ’04)
SPECTRA OF SPARSE GRAPHS

For many sequences \(\{G_n\}_{n \geq 1} \) of sparse graphs, the spectrum \(\{\mu_{G_n}\}_{n \geq 1} \) approaches a model-dependent limit \(\mu \):

\[
\mu_{G_n} \xrightarrow{P(\mathbb{R})} \mu.
\]

- Random \(d \)-regular graph on \(n \) nodes (Kesten-McKay, 1981)
- Erdős-Rényi \(p_n \sim \frac{c}{n} \) (Khorunzhy-Shcherbina-Vengerovsky ’04)
- Uniform random tree on \(n \) vertices (Bhamidi-Evans-Sen ’09)
SPECTRA OF SPARSE GRAPHS

For many sequences \(\{G_n\}_{n \geq 1} \) of sparse graphs, the spectrum \(\{\mu_{G_n}\}_{n \geq 1} \) approaches a \textbf{model-dependent} limit \(\mu \):

\[
\mu_{G_n} \xrightarrow{\mathcal{P}(\mathbb{R})} \mu \quad n \to \infty.
\]

- Random \(d \)-regular graph on \(n \) nodes (Kesten-McKay, 1981)
- Erdős-Rényi \(p_n \sim \frac{c}{n} \) (Khorunzhy-Shcherbina-Vengerovsky ’04)
- Uniform random tree on \(n \) vertices (Bhamidi-Evans-Sen ’09)

This phenomenon is just one of the many consequences of the fact that the \textbf{underlying local geometry} converges!
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)

$G_n \xrightarrow{\text{loc.}} \xrightarrow{n \to \infty} \mathcal{L}$

\mathcal{L} describes the local geometry of G_n around a random node.
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)

\[G_n \xrightarrow{\text{loc.}}_{n \to \infty} \mathcal{L} \]

\[\sum_{o \in V_n} 1 \{ BR(G_n, o) \} \xrightarrow{n \to \infty} L(BR(G, o)) \]

\(\triangledown \) describes the local geometry of \(G_n \) around a random node.
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)

$G_n \xrightarrow{loc.\quad n \rightarrow \infty} \mathcal{L}$

\mathcal{L}: probability distribution over locally finite rooted graphs (G, o).
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)

\[G_n \xrightarrow{\text{loc.}} \xrightarrow{n \to \infty} L \]

\(L \): probability distribution over locally finite rooted graphs \((G, o)\).

\[
\frac{1}{|V_n|} \sum_{o \in V_n} 1_{\{B_R(G_n, o) \equiv \bullet\}} \xrightarrow{n \to \infty} L(B_R(G, o) \equiv \bullet).
\]
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)

\[G_n \xrightarrow{\text{loc.}}_{n \to \infty} \mathcal{L} \]

\(\mathcal{L} \): probability distribution over locally finite rooted graphs \((G, o)\).

\[
\frac{1}{|V_n|} \sum_{o \in V_n} 1_{\{B_R(G_n, o) = \bullet\}} \xrightarrow{n \to \infty} \mathcal{L} (B_R(G, o) = \bullet).
\]

\(\mathcal{L} \) describes the local geometry of \(G_n \) around a random node.
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- \(G_n = \) box of size \(n \times \ldots \times n \) in the lattice \(\mathbb{Z}^d \)

- \(G_n = \) random \(d \)-regular graph on \(n \) nodes

- \(L = \) dirac at the \(d \)-regular infinite rooted tree

- \(G_n = \) Erdős-Rényi graph with \(p_n = c \) on \(n \) nodes

- \(L = \) law of a Galton-Watson tree with degree Poisson(\(c \))

- \(G_n = \) random graph with degree distribution \(\nu \) on \(n \) nodes

- \(L = \) law of a Galton-Watson tree with degree distribution \(\nu \)

- \(G_n = \) uniform random tree on \(n \) nodes

- \(L = \) Infinite Skeleton Tree (Grimmett, 1980)

- \(G_n = \) preferential attachment graph on \(n \) nodes

- \(L = \) Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
- $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
- $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$
- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n =$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^d
- $L = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n =$ random $d-$regular graph on n nodes
- $L = \text{dirac at the } d-$regular infinite rooted tree
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree (Grimmett, 1980)}$

- $G_n = \text{preferential attachment graph on } n \text{ nodes}$
 $\mathcal{L} = \text{Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)}$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- \(G_n = \) box of size \(n \times \ldots \times n \) in the lattice \(\mathbb{Z}^d \)
 \(\mathcal{L} = \) dirac at \((\mathbb{Z}^d, 0) \)

- \(G_n = \) random \(d \)–regular graph on \(n \) nodes
 \(\mathcal{L} = \) dirac at the \(d \)–regular infinite rooted tree

- \(G_n = \) Erdős-Rényi graph with \(p_n = \frac{c}{n} \) on \(n \) nodes
 \(\mathcal{L} = \) law of a Galton-Watson tree with degree Poisson\((c)\)
Some Sparse Graphs and Their Local Limits

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 \[L = \text{dirac at } (\mathbb{Z}^d, 0) \]

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 \[L = \text{dirac at the } d-\text{regular infinite rooted tree} \]

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 \[L = \text{law of a Galton-Watson tree with degree Poisson}(c) \]

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n =$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^d
 $\mathcal{L} =$ dirac at $(\mathbb{Z}^d, 0)$

- $G_n =$ random $d-$regular graph on n nodes
 $\mathcal{L} =$ dirac at the $d-$regular infinite rooted tree

- $G_n =$ Erdős-Rényi graph with $p_n = \frac{c}{n}$ on n nodes
 $\mathcal{L} =$ law of a Galton-Watson tree with degree Poisson(c)

- $G_n =$ random graph with degree distribution ν on n nodes
 $\mathcal{L} =$ law of a Galton-Watson tree with degree distribution ν
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree} (\text{Grimmett, 1980})$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree (Grimmett, 1980)}$

- $G_n = \text{preferential attachment graph on } n \text{ nodes}$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree} \ (\text{Grimmett, 1980})$

- $G_n = \text{preferential attachment graph on } n \text{ nodes}$
 $\mathcal{L} = \text{Polya-point graph} \ (\text{Berger-Borgs-Chayes-Sabery, 2009})$
SPECTRAL CONVERGENCE REVISITED

...
SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_G = \frac{1}{|V|} \sum_i \delta_{\lambda_i}$ when G is replaced by \mathcal{L}?
SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_G = \frac{1}{|V|} \sum \delta_{\lambda_i}$ when G is replaced by L?

If $G = (V, E)$ is a graph finite, we have for $z \in \mathbb{C} \setminus \mathbb{R}$

$$\int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_G(d\lambda) = \frac{1}{|V|} \sum_{o \in V} (A_G - z)^{-1}_{oo}.$$
SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_G = \frac{1}{|V|} \sum_i \delta_{\lambda_i}$ when G is replaced by \mathcal{L}?

If $G = (V, E)$ is a graph finite, we have for $z \in \mathbb{C} \setminus \mathbb{R}$

$$\int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_G(d\lambda) = \frac{1}{|V|} \sum_{o \in V} (A_G - z)^{-1}_{oo}.$$

If \mathcal{L} is the law of a random rooted graph (G, o), define $\mu_{\mathcal{L}}$ by

$$\int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_{\mathcal{L}}(d\lambda) = \mathbb{E} \left[\langle e_o | (A_G - z)^{-1} e_o \rangle \right].$$
Can we give a sense to $\mu_G = \frac{1}{|V|} \sum_i \delta_{\lambda_i}$ when G is replaced by \mathcal{L}?

If $G = (V, E)$ is a graph finite, we have for $z \in \mathbb{C} \setminus \mathbb{R}$

$$
\int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_G(d\lambda) = \frac{1}{|V|} \sum_{o \in V} (A_G - z)^{-1}_{oo}.
$$

If \mathcal{L} is the law of a random rooted graph (G, o), define $\mu_{\mathcal{L}}$ by

$$
\int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_{\mathcal{L}}(d\lambda) = \mathbb{E} \left[\langle e_o | (A_G - z)^{-1} e_o \rangle \right].
$$

Fact:

$G_n \xrightarrow{loc.} \mathcal{L} \quad \Rightarrow \quad \mu_{G_n} \xrightarrow{\mathcal{P}(\mathbb{R})} \mu_{\mathcal{L}}$
RECURSION IN THE CASE OF TREES

\[T = T_1 T_2 T_d \]

\[T = 1 2 d \]

\[(A_T - z) - 1 \]

\[\mu_L \]
Recursion in the case of trees

\[(A_T - z)_{oo}^{-1} = \frac{-1}{z + \sum_i (A_{T_i} - z)_{ii}^{-1}} \]
RECURSION IN THE CASE OF TREES

\[T = \begin{pmatrix} 1 & 2 & d \\ T_1 & T_2 & T_d \end{pmatrix} \]

\[(A_T - z)_{oo}^{-1} = \frac{-1}{z + \sum_i (A_{T_i} - z)_{ii}^{-1}} \]

- Explicit resolution for infinite regular trees
RECURSION IN THE CASE OF TREES

\[T = T_1 T_2 T_d \]

\[(A_T - z)^{-1}_{oo} = \frac{-1}{z + \sum_i (A_{T_i} - z)^{-1}_{ii}}\]

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees
Explicit resolution for infinite regular trees
Recursive distributional equation for Galton-Watson trees
In principle, this equation contains everything about μ_L
ILLUSTRATION: THE NULLITY OF SPARSE GRAPHS
Conjecture (Bauer-Golinelli '01). For $G_n : \text{Erdős-Rényi } (n, \frac{c}{n})$,

$$\mu_{G_n}(\{0\}) \xrightarrow{n \to \infty} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.
ILLUSTRATION: THE NULLITY OF SPARSE GRAPHS

Conjecture (Bauer-Golinelli '01). For $G_n :$ Erdős-Rényi $(n, \frac{c}{n})$,

$$
\mu_{G_n}(\{0\}) \xrightarrow{n \to \infty} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,
$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

Theorem (Bordenave-Lelarge-S. '11)
ILLUSTRATION: THE NULLITY OF SPARSE GRAPHS

Conjecture (Bauer-Golinelli '01). For $G_n :$ Erdős-Rényi $(n, \frac{c}{n})$,

$$\mu_{G_n}(\{0\}) \xrightarrow{n \to \infty} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

Theorem (Bordenave-Lelarge-S. '11)

$G_n \xrightarrow{\text{loc.}} \mathcal{L} \implies \mu_{G_n}(\{0\}) \to \mu_{\mathcal{L}}(\{0\})$.
ILLUSTRATION: THE NULLITY OF SPARSE GRAPHS

Conjecture (Bauer-Golinelli '01). For $G_n :$ Erdős-Rényi $(n, \frac{c}{n})$,

$$
\mu_{G_n}(\{0\}) \xrightarrow{n \to \infty} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,
$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

Theorem (Bordenave-Lelarge-S. '11)

1. $G_n \xrightarrow{loc.} \mathcal{L} \implies \mu_{G_n}(\{0\}) \to \mu_{\mathcal{L}}(\{0\})$.
2. When \mathcal{L} is a GW-tree with degree distribution ν,

$$
\mu_{\mathcal{L}}(\{0\}) = \min_{\lambda = \lambda^{**}} \left\{ f'(1)\lambda \lambda^* + f(1 - \lambda) + f(1 - \lambda^*) - 1 \right\},
$$

with $f(z) = \sum_k \nu(k)z^k$ and $\lambda^* = \frac{f'(1-\lambda)}{f'(1)}$.
ILLUSTRATION: THE NULLITY OF SPARSE GRAPHS

Conjecture (Bauer-Golinelli ’01). For $G_n :$ Erdős-Rényi $(n, \frac{c}{n})$,

$$\mu_{G_n}(\{0\}) \underset{n \to \infty}{\longrightarrow} \lambda^* + e^{-c\lambda^*} + c\lambda^* e^{-c\lambda^*} - 1,$$

where $\lambda^* \in [0, 1]$ is the smallest root of $\lambda = e^{-ce^{-c\lambda}}$.

Theorem (Bordenave-Lelarge-S. ’11)

- $G_n \xrightarrow{loc.} \mathcal{L} \implies \mu_{G_n}(\{0\}) \to \mu_{\mathcal{L}}(\{0\})$.
- When \mathcal{L} is a GW-tree with degree distribution $\nu = \text{Poisson}(c)$,

$$\mu_{\mathcal{L}}(\{0\}) = \min_{\lambda = \lambda^{**}} \left\{ f'(1)\lambda \lambda^* + f(1 - \lambda) + f(1 - \lambda^*) - 1 \right\},$$

with $f(z) = \sum_k \nu(k)z^k = e^{c-cz}$ and $\lambda^* = \frac{f'(1-\lambda)}{f'(1)} = e^{-c\lambda}$.
Let's keep things simple: $L = GW$-tree with degree Poisson(c).

$\mu_L = \mu_{pp} + \mu_{sc} + \mu_{ac}$

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag'13): $\mu_{pp}(R) < 1$ as soon as $c > 1$.

We will focus on the pure-point part, i.e. the atoms of μ_L. This question was first raised by Ben Arous (2010).

Remark: every finite tree has positive probability under L.

\forall all tree eigenvalues are atoms of μ_L (e.g. $0, 1, \sqrt{3}, 2 \cos \frac{2\pi}{5},...$)
SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let’s keep things simple: $\mathcal{L} = \text{GW-tree with degree Poisson}(c)$.

[Theorem (Bordenave-Sen-Virag'13): $\mu_{pp}(R) < 1$ as soon as $c > 1$.]
Let’s keep things simple: \(\mathcal{L} = \text{GW-tree with degree Poisson}(c) \).

\[
\mu_\mathcal{L} = \mu_{pp} + \mu_{sc} + \mu_{ac}
\]
Let’s keep things simple: $\mathcal{L} = \text{GW-tree with degree Poisson}(c)$.

$$\mu_{\mathcal{L}} = \mu_{pp} + \mu_{sc} + \mu_{ac}$$

Open problem: determine the support of each type of spectrum.
SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let's keep things simple: \(\mathcal{L} = \) GW-tree with degree Poisson(c).

\[\mu_\mathcal{L} = \mu_{pp} + \mu_{sc} + \mu_{ac} \]

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag’13): \(\mu_{pp}(\mathbb{R}) < 1 \) as soon as \(c > 1 \)
SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let’s keep things simple: $\mathcal{L} = GW$-tree with degree Poisson(c).

$$\mu_\mathcal{L} = \mu_{pp} + \mu_{sc} + \mu_{ac}$$

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag’13): $\mu_{pp}(\mathbb{R}) < 1$ as soon as $c > 1$

We will focus on the pure-point part, i.e. the atoms of $\mu_\mathcal{L}$. This question was first raised by Ben Arous (2010).
Let’s keep things simple: \(\mathcal{L} = \text{GW-tree with degree Poisson}(c) \).

\[
\mu_{\mathcal{L}} = \mu_{pp} + \mu_{sc} + \mu_{ac}
\]

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag’13): \(\mu_{pp}(\mathbb{R}) < 1 \) as soon as \(c > 1 \)

We will focus on the pure-point part, i.e. the atoms of \(\mu_{\mathcal{L}} \). This question was first raised by Ben Arous (2010).

Remark: every finite tree has positive probability under \(\mathcal{L} \).
Let’s keep things simple: $\mathcal{L} = GW$-tree with degree Poisson(c).

$$\mu_\mathcal{L} = \mu_{pp} + \mu_{sc} + \mu_{ac}$$

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag’13): $\mu_{pp}(\mathbb{R}) < 1$ as soon as $c > 1$

We will focus on the pure-point part, i.e. the atoms of $\mu_\mathcal{L}$. This question was first raised by Ben Arous (2010).

Remark: every finite tree has positive probability under \mathcal{L}.

▷ all tree eigenvalues are atoms of $\mu_\mathcal{L}$ (e.g. $0, 1, \sqrt{3}, 2 \cos \frac{2\pi}{5}, \ldots$)
SPECTRUM OF INTEGER MATRICES

A = \{symmetric integer matrices with spectral norm \leq \Delta\}.

Theorem (Lück'02, Veselić'05, Abért-Thom-Virág'11). Fix \(\lambda \in \mathbb{R}\).

\[
\sup_{A \in A} \left| \mu_A(\lambda - \epsilon, \lambda + \epsilon) - \mu_A(\{\lambda\}) \right| \xrightarrow{\epsilon \to 0} 0.
\]

Corollary. If \(G_n \xrightarrow{\text{loc}} L\), then not only \(\mu_{G_n} \xrightarrow{\text{loc}} \mu_L\) but also

\[
\forall \lambda \in \mathbb{R}, \mu_{G_n}(\{\lambda\}) \xrightarrow{n \to \infty} \mu_L(\{\lambda\}).
\]

In particular, \(\mu_L(\{\lambda\}) = 0\) unless \(\lambda\) is a totally real algebraic integer (= root of some real-rooted monic integer polynomial).
SPECTRUM OF INTEGER MATRICES

\[\mathcal{A} = \{ \text{symmetric integer matrices with spectral norm } \leq \Delta \} . \]
A = \{\text{symmetric integer matrices with spectral norm } \leq \Delta\}.

Theorem (Lück’02, Veselić’05, Abért-Thom-Virág’11). Fix $\lambda \in \mathbb{R}$.

$$\sup_{A \in \mathcal{A}} \left| \mu_A ([\lambda - \varepsilon, \lambda + \varepsilon]) - \mu_A (\{\lambda\}) \right| \xrightarrow{\varepsilon \to 0} 0.$$
SPECTRUM OF INTEGER MATRICES

$A = \{\text{symmetric integer matrices with spectral norm } \leq \Delta\}$.

Theorem (Lück’02, Veselić’05, Abért-Thom-Virág’11). Fix $\lambda \in \mathbb{R}$.

$$\sup_{A \in A} \left| \mu_A ([\lambda - \varepsilon, \lambda + \varepsilon]) - \mu_A (\{\lambda\}) \right| \xrightarrow{\varepsilon \to 0} 0.$$

Corollary. If $G_n \xrightarrow{\text{loc.}} \mathcal{L}$, then not only $\mu_{G_n} \xrightarrow{n \to \infty} \mu_{\mathcal{L}}$ but also
\[\mathcal{A} = \{ \text{symmetric integer matrices with spectral norm } \leq \Delta \} . \]

Theorem (Lück’02, Veselić’05, Abért-Thom-Virág’11). Fix \(\lambda \in \mathbb{R} \).

\[
\sup_{A \in \mathcal{A}} \left| \mu_A ([\lambda - \varepsilon, \lambda + \varepsilon]) - \mu_A(\{\lambda\}) \right| \longrightarrow_{\varepsilon \to 0} 0.
\]

Corollary. If \(G_n \xrightarrow{\text{loc.}} L \), then not only \(\mu_{G_n} \xrightarrow{n \to \infty} \mu_L \) but also

\[
\forall \lambda \in \mathbb{R}, \quad \mu_{G_n}(\{\lambda\}) \xrightarrow{n \to \infty} \mu_L(\{\lambda\}).
\]
SPECTRUM OF INTEGER MATRICES

\[A = \{ \text{symmetric integer matrices with spectral norm } \leq \Delta \} . \]

Theorem (Lück’02, Veselić’05, Abért-Thom-Virág’11). Fix \(\lambda \in \mathbb{R} \).

\[
\sup_{A \in A} \left| \mu_A \left(\left[\lambda - \varepsilon, \lambda + \varepsilon \right) \right) - \mu_A(\{\lambda\}) \right| \xrightarrow{\varepsilon \to 0} 0.
\]

Corollary. If \(G_n \xrightarrow{\text{loc.}} L \), then not only \(\mu_{G_n} \xrightarrow{n \to \infty} \mu_L \) but also

\[
\forall \lambda \in \mathbb{R}, \quad \mu_{G_n}(\{\lambda\}) \xrightarrow{n \to \infty} \mu_L(\{\lambda\}).
\]

In particular, \(\mu_L(\{\lambda\}) = 0 \) unless \(\lambda \) is a **totally real algebraic integer** (= root of some real-rooted monic integer polynomial).
We are left with the following (crude) inner and outer-bounds:

\{ \text{tree eigenvalues} \} \subseteq \text{Atoms} (\mu_L) \subseteq \{ \text{totally real alg. integers} \}

Theorem (S. 2013): the inner and outer-bounds coincide!

Remark: the weaker assertion that every totally real algebraic integer is an eigenvalue of some symmetric integer matrix is known as Hofmann's conjecture (1975). It was proved by Estes (1992).

Corollary: many graph limits have the set of totally real algebraic integers as atomic support. This includes all Galton-Watson trees with \(\text{supp}(\nu) = N \), as well as the Infinite Skeleton Tree.
SUMMING UP

We are left with the following (crude) inner and outer-bounds:

\[
\{\text{tree eigenvalues}\} \subseteq \text{Atoms}(\mu_L) \subseteq \{\text{totally real alg. integers}\}
\]
SUMMING UP

We are left with the following (crude) inner and outer-bounds:

\[\{ \text{tree eigenvalues} \} \subseteq \text{Atoms}(\mu_L) \subseteq \{ \text{totally real alg. integers} \} \]

Theorem (S. 2013): the inner and outer-bounds coincide!

Remark: the weaker assertion that every totally real algebraic integer is an eigenvalue of some symmetric integer matrix is known as Hofmann's conjecture (1975). It was proved by Estes (1992).

Corollary: many graph limits have the set of totally real algebraic integers as atomic support. This includes all Galton-Watson trees with \(\text{supp}(\nu) = N \), as well as the Infinite Skeleton Tree.
SUMMING UP

We are left with the following (crude) inner and outer-bounds:

\{\text{tree eigenvalues}\} \subseteq \text{Atoms}(\mu_L) \subseteq \{\text{totally real alg. integers}\}

Theorem (S. 2013): the inner and outer-bounds coincide!

Remark: the weaker assertion that *every totally real algebraic integer is an eigenvalue of some symmetric integer matrix* is known as Hofmann's conjecture (1975). It was proved by Estes (1992).

Corollary: many graph limits have the set of totally real algebraic integers as atomic support. This includes all Galton-Watson trees with $\text{supp}(\nu) = N$, as well as the Infinite Skeleton Tree.
SUMMING UP

We are left with the following (crude) inner and outer-bounds:

\{\text{tree eigenvalues}\} \subseteq \text{Atoms}(\mu_L) \subseteq \{\text{totally real alg. integers}\}

Theorem (S. 2013): the inner and outer-bounds coincide!

Remark: the weaker assertion that every totally real algebraic integer is an eigenvalue of some symmetric integer matrix is known as Hofmann’s conjecture (1975). It was proved by Estes (1992).

Corollary: many graph limits have the set of totally real algebraic integers as atomic support. This includes all Galton-Watson trees with \(\text{supp}(\nu) = \mathbb{N} \), as well as the Infinite Skeleton Tree.
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function $f_T(x) := 1 - \Phi_T(x) x \Phi_T/o(x)$ with

$$\Phi_T(x) = \det(x - A_T).$$

$\Delta \lambda \neq 0$ is a tree eigenvalue $\iff 1$ can be generated from 0 by repeated applications of $(x_1, \ldots, x_d) \mapsto \lambda_2 \sum_{i=1}^{d} 1 - x_i(x)$ for $d \in \mathbb{N}$.
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \frac{\Phi_T(x)}{x\Phi_{T\setminus o}(x)} \quad \text{with} \quad \Phi_T(x) = \det(x - A_T).$$
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree \(T \) with root \(o \), associate a rational function

\[
\mathcal{f}_T(x) := 1 - \frac{\Phi_T(x)}{x\Phi_{T\setminus o}(x)} \quad \text{with} \quad \Phi_T(x) = \det(x - A_T).
\]
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \frac{\Phi_T(x)}{x \Phi_{T \setminus o}(x)}$$ \quad \text{with} \quad \Phi_T(x) = \det(x - A_T).$$

$T = \begin{array}{c}
\text{T1} \\
\text{T2} \\
\text{d}
\end{array}$

$$f_T(x) = \frac{1}{x^2} \sum_{i=1}^{d} \frac{1}{1 - f_{T_i}(x)}$$
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree \(T \) with root \(o \), associate a rational function

\[
f_T(x) := 1 - \frac{\Phi_T(x)}{x \Phi_{T \setminus o}(x)} \quad \text{with} \quad \Phi_T(x) = \det(x - A_T).
\]

\(\triangledown \lambda \neq 0 \) is a tree eigenvalue
To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \frac{\Phi_T(x)}{x\Phi_{T\setminus o}(x)} \quad \text{with} \quad \Phi_T(x) = \det(x - A_T).$$

$\lambda \neq 0$ is a tree eigenvalue \iff 1 can be generated from 0 by repeated applications of $(x_1, \ldots, x_d) \mapsto \frac{1}{x^2} \sum_i \frac{1}{1-f_{T_i}(x)}$ ($d \in \mathbb{N}$).
EXAMPLE: THE GOLDEN RATIO

\[\lambda = 1 + \sqrt{\frac{5}{2}} \]

Remark: \(\lambda \) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1 \).

Question: is \(\lambda \) a tree eigenvalue?

Iterating three times \(x \mapsto 1 + \lambda x - x \) successively gives:

\[
0 \rightarrow 1 \lambda^2 \rightarrow 1 \lambda^2 \times 1 \lambda - 1 \lambda^2 = 1 \\
1 \lambda^2 \rightarrow 1 \lambda^2 \times 1 \lambda - 1 \lambda^2 = 1
\]

Conclusion: \(\lambda \) is an eigenvalue of \(T = \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} \)
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]

Remark: \(\lambda \) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1 \).
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]

Remark: \(\lambda \) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1 \).

Question: is \(\lambda \) a tree eigenvalue?
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]

Remark: \(\lambda \) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1 \).

Question: Is \(\lambda \) a tree eigenvalue?

Iterating three times \(x \mapsto \frac{1}{\lambda^2} \frac{1}{1-x} \) successively gives:
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]

Remark: \(\lambda \) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1 \).

Question: is \(\lambda \) a tree eigenvalue?

Iterating three times \(x \mapsto \frac{1}{\lambda^2} \frac{1}{1-x} \) successively gives:

0
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]

Remark: \(\lambda \) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1 \).

Question: is \(\lambda \) a tree eigenvalue?

Iterating three times \(x \mapsto \frac{1}{\lambda^2} \frac{1}{1-x} \) successively gives:

\[
\begin{align*}
0 & \rightarrow \frac{1}{\lambda^2} \\
& \rightarrow \frac{1}{1-\frac{1}{\lambda^2}} \\
& \rightarrow \frac{1}{1-\frac{1}{1-\frac{1}{\lambda^2}}}
\end{align*}
\]
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]

Remark: \(\lambda \) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1 \).

Question: is \(\lambda \) a tree eigenvalue?

Iterating three times \(x \mapsto \frac{1}{\lambda^2} \frac{1}{1-x} \) successively gives:

\[
0 \quad \rightarrow \quad \frac{1}{\lambda^2} \quad \rightarrow \quad \frac{1}{\lambda^2} \times \frac{1}{1 - \frac{1}{\lambda^2}} = \frac{1}{\lambda}
\]
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]

Remark: \(\lambda\) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1\).

Question: is \(\lambda\) a tree eigenvalue?

Iterating three times \(x \mapsto \frac{1}{\lambda^2} \frac{1}{1-x}\) successively gives:

\[0 \rightarrow \frac{1}{\lambda^2} \rightarrow \frac{1}{\lambda^2} \times \frac{1}{1 - \frac{1}{\lambda^2}} = \frac{1}{\lambda} \rightarrow \frac{1}{\lambda^2} \times \frac{1}{1 - \frac{1}{\lambda}} = 1 \]
EXAMPLE: THE GOLDEN RATIO

\[\lambda = \frac{1 + \sqrt{5}}{2} \]

Remark: \(\lambda \) is a totally real algebraic integer since \(\lambda^2 = \lambda + 1 \).

Question: is \(\lambda \) a tree eigenvalue?

Iterating three times \(x \mapsto \frac{1}{\lambda^2} \frac{1}{1-x} \) successively gives:

\[
\begin{align*}
0 & \rightarrow \frac{1}{\lambda^2} \\
& \rightarrow \frac{1}{\lambda^2} \times \frac{1}{1 - \frac{1}{\lambda^2}} = \frac{1}{\lambda} \\
& \rightarrow \frac{1}{\lambda^2} \times \frac{1}{1 - \frac{1}{\lambda}} = 1
\end{align*}
\]

Conclusion: \(\lambda \) is an eigenvalue of \(T = \bullet ---- \bullet ---- \bullet ---- \bullet ---- \bullet \)
GENERAL CASE

- Fix a totally real algebraic integer $\lambda \neq 0$.
- Consider the smallest set $F \subseteq \mathbb{R}$ satisfying:
 1. $0 \in F$
 2. $x \in F \setminus \{1\} \Rightarrow x\lambda^2 (1-x) \in F$
 3. $x, y \in F \Rightarrow x + y \in F$

Theorem (S. 2013):
F is the field generated by λ^2.

Corollary:
λ is a tree eigenvalue!
GENERAL CASE

Fix a totally real algebraic integer $\lambda \neq 0$.

Theorem (S. 2013): F is the field generated by λ^2.

Corollary: λ is a tree eigenvalue!
GENERAL CASE

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
2. $x \in \mathcal{F} \{1\} \Rightarrow 1 - x^2 \in \mathcal{F}$
3. $x, y \in \mathcal{F} \Rightarrow x + y \in \mathcal{F}$

Theorem (S. 2013): \mathcal{F} is the field generated by λ^2.

Corollary: λ is a tree eigenvalue!
GENERAL CASE

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
GENERAL CASE

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
2. $x \in \mathcal{F} \setminus \{1\} \implies \frac{1}{\lambda^2(1-x)} \in \mathcal{F}$

Theorem (S. 2013): \mathcal{F} is the field generated by λ^2.

Corollary: λ is a tree eigenvalue!
GENERAL CASE

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
2. $x \in \mathcal{F} \setminus \{1\} \implies \frac{1}{\lambda^2(1-x)} \in \mathcal{F}$
3. $x, y \in \mathcal{F} \implies x + y \in \mathcal{F}$

Theorem (S. 2013): \mathcal{F} is the field generated by λ^2.

Corollary: λ is a tree eigenvalue!
GENERAL CASE

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
2. $x \in \mathcal{F} \setminus \{1\} \implies \frac{1}{\lambda^2(1-x)} \in \mathcal{F}$
3. $x, y \in \mathcal{F} \implies x + y \in \mathcal{F}$

Theorem (S. 2013): \mathcal{F} is the field generated by λ^2.

$$\mathcal{F} = \left\{ \frac{p(\lambda^2)}{q(\lambda^2)} : p, q \in \mathbb{Z}[X], q(\lambda^2) \neq 0 \right\}.$$
GENERAL CASE

Fix a totally real algebraic integer \(\lambda \neq 0 \).

Consider the smallest set \(\mathcal{F} \subseteq \mathbb{R} \) satisfying

1. \(0 \in \mathcal{F} \)
2. \(x \in \mathcal{F} \setminus \{1\} \implies \frac{1}{\lambda^2(1-x)} \in \mathcal{F} \)
3. \(x, y \in \mathcal{F} \implies x + y \in \mathcal{F} \)

Theorem (S. 2013): \(\mathcal{F} \) is the field generated by \(\lambda^2 \).

\[
\mathcal{F} = \left\{ \frac{p(\lambda^2)}{q(\lambda^2)} : p, q \in \mathbb{Z}[X], q(\lambda^2) \neq 0 \right\}.
\]

Corollary: \(\lambda \) is a tree eigenvalue!
Thank you for your attention!
Thank you for your attention!