▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Entropy of Eigenfunctions on Quantum Graphs

Roman Schubert Bristol joint work with Lionel Kameni, Bristol

Spectral Theory and its Applications Bordeaux, October 9, 2014

Introduction

Quantum Graphs

Entropy

Results: star graphs and regular graphs

Conclusions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Distribution of eigenfunctions: Quantum ergodicity

(M,g) compact Riemannian manifold:

$$-\Delta_g \psi_n = k_n^2 \psi_n , \qquad \|\psi_n\|_{L^2} = 1$$

Shnirelman (74), Zelditch (87), Colin de Verdiere (85), Quantum Ergodicity: ergodic geodesic flow, then almost all eigenfunctions equidistribute for $k_n \rightarrow \infty$:

$$\lim_{j\to\infty}\int_M a(x)|\psi_{n_j}(x)|^2\,\mathrm{d}\nu=\int_M a(x)\,\mathrm{d}\nu\,\,,$$

along a subsequence n_i of density 1, $d\nu$ Riemannian measure.

- density 1: $\lim_{N\to\infty} \frac{|\{n_j \leq N\}|}{N} = 1$
- valid for $\langle \psi_{n_j}, \operatorname{Op}[a]\psi_{n_j}
 angle$ with $a \in C^\infty(S^*M)$

Conclusions

Quantum Unique Ergodicity?

Quantum Unique Ergodicity: Does

$$\lim_{n\to\infty}\int_M a(x)|\psi_n(x)|^2\,\mathrm{d}\nu=\int_M a(x)\,\mathrm{d}\nu\,\,.$$

hold?

- Kurlberg Rudnick '00, Marklof Rudnik '00: **Yes** for Hecke eigenbasis of cat maps and for parabolic maps
- Faure, Nonnenmacher, De Bièvre '03; Chang, Krueger, RS, Troubetzkoy '08: No for cat maps and other quantised maps
- Lindenstrauss '06: **Yes** Quantum Unique Ergodicity holds for Hecke eigenbasis on arithmetic surfaces.
- Hassell '10: **No** for Stadium billiards
- Anantharaman et.al. '07: lower bounds on the entropy of quantum limits on manifolds of negative curvature.

Quantum Graphs

- G = (V, E), finite undirected connected graph. V-vertices, E-edges, $E \ni e = [i, j]$, $i, j \in V$, bonds = oriented edges, b = (i, j), then $\hat{b} := (j, i) \neq b$
- Length L ∈ ℝ^{|E|}₊: assign to each edge a length L_e > 0, identify e with interval [0, L_e].

$$L^2(G,\mathbf{L}):=\bigoplus_{e\in E}L^2([0,L_e]), \quad H_s(G,\mathbf{L}):=\bigoplus_{e\in E}H_s((0,L_e)).$$

• Laplace operator: $\Delta : H_2(G, \mathbf{L}) \to L^2(G, \mathbf{L}), f = (f_1, f_2, \cdots, f_{|E|}) \in H_2(G, \mathbf{L}),$ then

 $\Delta f = (f_1'', f_2'', \cdots, f_{|E|}'')$.

 need boundary conditions at vertices to define self-adjoint operator

S-matrix and Boundary conditions

describe boundary conditions on vertex *i* of degree d_i in terms of S-matrix $S^{(i)}$: unitary $d_i \times d_i$ matrix

- $[i, j], j \sim i$, edges adjacent to i, oriented away from i:
- Solutions to $-\Delta f = k^2 f$:

$$f_{[i,j]}(x) = a_{(j,i)} e^{-ikx} + a_{(i,j)} e^{ikx}$$

• $\mathbf{a}_i^{in} := (a_{(j_1,i)}, \cdots, a_{(j_{d_i},i)}), \ \mathbf{a}_i^{out} := (a_{(i,j_1)}, \cdots, a_{(i,j_{d_i})}).$
 $\mathbf{a}_i^{out} = S^{(i)}(k) \mathbf{a}_i^{in}$

Boundary conditions classified by Kostrykin Schrader '99

Introduction

Examples

• Neumann conditions: $f_e = f_{e'}$ for all e, e' meeting at i and $\sum f'_e = 0$.

$$S^{(i)}_{e,e'} = \frac{2}{d_i} - \delta_{e,e'}$$

For large d_i backscattering dominates!

• Equi-transmitting conditions (Harrison, Smilansky, Winn 07):

$$|S^{(i)}_{e,e'}|^2 = \begin{cases} 0 & e = e' \\ \frac{1}{d_i - 1} & e \neq e' \end{cases}$$

No backscattering!

 non-Robin boundary conditions: S independent of k. Equivalent to S* = S. Then S = P₊ - P₋ where P_± orthogonal projections with P₊ + P₋ = I, P₊P₋ = 0 and boundary conditions are

$$P_{-}\mathbf{f}=0 \qquad P_{+}\mathbf{f}'=0$$

Introduction

Bond S-matrix and quantisation conditions

- Quantum Graph: $(G, \mathbf{L}, \{S^{(i)}\}_{i \in V})$
- Bond S-matrix $\mathcal{U}(k) = (u_{b,b'})$: $2|E| \times 2|E|$ matrix defined by

$$u_{(i,j),(k,l)} = \delta_{jk} S^{(j)}_{(i,j),(j,l)} \mathrm{e}^{\mathrm{i}k \mathsf{L}_{[i,j]}} , \quad \mathcal{U}(k) = \mathrm{e}^{\mathrm{i}k \mathsf{L}} S^{(j)}$$

• Quantisation conditions:

$$\mathcal{U}(k)\mathbf{a} = \mathbf{a} \;, \quad \mathbf{a} \in \mathbb{C}^{2|E|} ackslash \{\mathbf{0}\} \;,$$

if and only if f defined by

$$f_{[i,j]} = a_{(i,j)} \mathrm{e}^{\mathrm{i}kx_{i,j}} + a_{(j,i)} \mathrm{e}^{\mathrm{i}kx_{j,i}}$$

is eigenfunction.

eigenvalues determined by secular equation

 $\det(\mathcal{U}(k)-I)=0$

Paths and classical dynamics

- Path of length $t \in \mathbb{N}$: $\gamma = (b_1, b_2, \cdots, b_{t-1}, b_t)$ where if $b_s = (i, j)$ and $b_{s+1} = (k, l)$ then j = k.
 - $\Gamma_t(b, b')$ -set of paths connecting b and b' in t steps
 - $\Gamma'_t(b, b')$ -set of paths without backtracking: $b_{s+1} \neq \hat{b}_s$.
- Set $L_{\gamma} = \sum_{b \in \gamma} L_b$, $s_{\gamma} = \prod_{s=1}^t S_{b_s, b_{s+1}}$, then

$$\mathcal{U}(k)^t = (u_{b,b'}^{(t)}) \quad u_{b,b'}^{(t)} = \sum_{\gamma \in \Gamma_t(b,b')} s_\gamma \mathrm{e}^{\mathrm{i} k L_\gamma} \ ,$$

if no backscattering: $u_{b,b'}^{(t)} = \sum_{\gamma \in \Gamma'_t(b,b')} s_{\gamma} e^{ikL_{\gamma}}$

Classical dynamics: Set $M = (m_{b,b'})$ with $m_{b,b'} := |u_{b,b'}|^2$. *M* is doubly stochastic and defines a Markov chain with

$$M^{t}\mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{e}}{2|E|} \,\mathbf{e} + O_{G,\mathbf{x}}(\mathrm{e}^{-\gamma_{G}t})$$

for some $\gamma_{\mathcal{G}} > 0$ and $\mathbf{e} = (1, 1, \cdots, 1)$.

・ロト・西ト・ヨト・ヨー シック

Quantum Graphs: History

- introduced independently in different areas: Chemistry, Physics, Mathematics
- Quantum ergodicity on quantum graphs is open! Partial results:
 - Berkolaiko, Keating, Winn (04): No quantum ergodicity on star graphs
 - Berkolaiko, Keating, Smilanski (07): Quantum ergodicity for graphs related to interval maps.
 - Gnutzman, Keating, Piotet (10): quantum ergodicity under gap condition, non-rigorous.
 - Anantharaman, LeMasson (13): quantum ergodicty on d-regular combinatorial graphs.
 - Jakobson, Strohmaier, Safarov (13): quantum ergodicity with ray-splitting
 - Winn (14, in preparation): quantum ergodicity on d-regular quantum graphs which large girth.
 - Colin de Verdière (14): classification of quantum limits on finite graphs with Neumann bc: no quantum ergodicity

Entropy

Let $\mathbf{a} \in \mathbb{C}^N$ with $\|\mathbf{a}\| = 1$. Entropy:

$$S(\mathbf{a}) := \frac{1}{\ln N} \sum_{n=1}^{N} -|a_n|^2 \ln|a_n|^2$$

•
$$0 \le S(\mathbf{a}) \le 1$$

• $S(\mathbf{a}) = 0$ iff $\mathbf{a} = \mathbf{e}_m = (\delta_{m,n})$ and $S(\mathbf{a}) = 1$ iff $\mathbf{a} = \frac{1}{\sqrt{N}}\mathbf{e}$
• if $\mathbf{a} = (a_n)$, $a_n = 0$ for $n \in K \subset \{1, 2, \cdots, N\}$ then
 $S(\mathbf{a}) \le \frac{\ln(N - |K|)}{\ln N}$

Entropy large \rightarrow **a** can't be concentrated on small set Entropy is a measure for the distribution of **a**

Entropic Uncertainty Principle

Maassen Uffink '88: Let $U = (u_{n,m}) \in \mathbb{C}^{N imes N}$ be unitary, then

$$S(\mathbf{a}) + S(U\mathbf{a}) \geq -\frac{\ln\left(\max_{n,m}|u_{n,m}|^2\right)}{\ln N}$$

 $\sum_{n} |u_{n,m}|^2 = 1$: optimal case $|u_{n,m}|^2 = 1/N$, $S(\mathbf{a}) + S(U\mathbf{a}) \ge 1$ Example: Fourier transform $F = (f_{n,m})$, $f_{n,m} = \frac{1}{\sqrt{N}} e^{2\pi i \frac{nm}{N}}$

$$S(\mathbf{a}) + S(F\mathbf{a}) \ge 1$$

Application to eigenvectors: If $U\mathbf{a} = \mathbf{a}$ then

$$S(\mathbf{a}) \geq -rac{1}{2 \ln N} \ln \left(\max_{n,m} |u_{n,m}|^2
ight)$$

and

$$S(\mathbf{a}) \geq -\frac{1}{2 \ln N} \ln \left(\max_{n,m} |u_{n,m}^{(t)}|^2 \right)$$
, where $U^t = (u_{n,m}^{(t)})$

Star Graphs, equi-transmitting

Theorem (Kameni, RS 13/14)

Let (G, E) be a star graph with equi-transmitting boundary conditions, then for any eigenfunction

$$S(\mathbf{a}) \ge \frac{1}{2} \frac{\ln(|E|-1) + 2\ln 2}{\ln|E| + \ln 2} > \frac{1}{2}$$

• eigenfunctions:
$$f_e(x) = A_e \cos(k(x - L_e))$$
,
 $S(\mathbf{A}) := \frac{1}{\ln|E|} \sum_{e=1}^{|E|} -|A_e|^2 \ln|A_e|^2$, $\|\mathbf{A}\| = 1$
• $e^{ik\mathbf{L}} S e^{ik\mathbf{L}} \mathbf{A} = \mathbf{A}$, $|S_{e,e'}|^2 = (1 - \delta_{e,e'}) \frac{1}{|E| - 1}$,
 $S(\mathbf{A}) \ge \frac{1}{2} \frac{\ln(|E| - 1)}{\ln|E|}$

•
$$S(\mathbf{a}) = \frac{\ln|E|}{\ln(2|E|)}S(\mathbf{A}) + \frac{\ln 2}{\ln(2|E|)}$$

Star Graphs, Neuman

Theorem (Kameni, RS 13/14)

Let (G, E) be a star graph with Neumann boundary conditions, L rationally independent, and $\mathbf{a}^{(n)}$ is the n'th eigenfunction, then the average entropy $\langle S \rangle := \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} S(\mathbf{a}^{(n)})$ satisfies

$$\langle S(\mathbf{a}) \rangle = \frac{\alpha}{\ln |E|} + O(|E|\Delta L)$$

where $\Delta L = \max_{e} L_{e} - \min_{e} L_{e}$ and $\alpha = 1.2692...$

- proof based on Barra & Gaspard (99), further developed in Keating, Marklof and Winn (03), Colin de Verdière (14)
- quantisation condition $det(I U(k)) = F(k\mathbf{L} \mod 2\pi)$, function on torus $\mathbb{T}^{|E|}$ evaluated on trajectory kL mod 2π , as are $\mathcal{U}(k)$ and eigenvectors **a**.
- use Weyl's Theorem (unique ergodicity of $\phi^t(\mathbf{x}) = \mathbf{x} + t\mathbf{L}$ mod 2π) to transform energy average in average over torus $\mathbb{T}^{|E|}$

Equi-transmitting versus Neumann, Star Graphs

Figure: 6235 eigenfunctions on Star graph with 338 edges. Left: Entropy of eigenfunctions with equi-transmitting boundary conditions.

Right: Entropy of eigenfunctions with Neumann boundary conditions.

Regular graphs

- G d + 1 regular graph if every vertex has degree d + 1
 - 2|E| = (d+1)|V|
 - equi-transmitting boundary conditions: $|S_{e,e'}|^2 = \frac{1}{d}(1 \delta_{e,e'})$
- $\mathcal{G}_N = (\mathcal{V}_N, \mathcal{E}_N), \ N \in \mathbb{N}, \ \text{graphs with } \lim_{N o \infty} |\mathcal{V}_N| = \infty$
 - G_N expander if there exits $\gamma > 0$ such that

$$M_N^t \mathbf{a} = \frac{\mathbf{a} \cdot \mathbf{e}}{2|E_N|} \, \mathbf{e} + O(\mathrm{e}^{-\gamma t})$$

Expansion rate uniform in N!

• G_N has large girth if there exist a $\delta > 0$ such that the length T_N of the shortest cycle satisfies

$T_N \geq 2\delta \ln(2|E_N|)$

- If b, b' have distance t less then δ ln(2|E|) then there exist only one path of length t connecting them.
- Any ball of radius less then $\delta \ln(2|E_N|)$ is a tree.

Regular graphs: Large girth

Theorem (Kameni, RS 13/14)

Let G be a d + 1 regular graph with girth $T_G = 2R_G + 1$, then for equi-transmitting boundary conditions

$$S(\mathbf{a}) \geq rac{1}{2} rac{R_G \ln d}{\ln(2|E|)}$$

Corollary

Assume G_N has large girth, $T_G = 2\delta \ln(2|E|)$, then $S(\mathbf{a}) \ge \frac{\delta \ln d}{2}$. Main idea: for $t \le R_G$, we have $|\Gamma'_t(b, b')| \le 1$ hence for $t = R_G$

$$|u_{b,b'}^{(t)}|^2 = \left|\sum_{\gamma \in \Gamma_t'(b,b')} s_{\gamma} \mathrm{e}^{\mathrm{i}kL_{\gamma}}\right|^2 \leq |s_{\gamma}|^2 = rac{1}{d^t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Regular graphs: Large girth and expanding t large: $\Gamma'_t(b, b')$ contains exponentially many elements, turn

 $u_{b,b'}^{(t)} = \sum_{\gamma \in \Gamma'_t(b,b')} s_{\gamma} \mathrm{e}^{\mathrm{i}kL_{\gamma}}$

into a sum over random variables by making length ${\sf L}$ random. Assumption: L_e independent and

- $\mathbb{P}(L_e \leq \delta) = 0$ with $\delta > 0$ independent of e and G_N .
- there exits an $f(k) \in C(\mathbb{R})$ with $\lim_{k \to \pm \infty} f(k) = 0$ such that $|\mathbb{E}(e^{ikL_e})| \le f(k)$ independent of $e \in E_N$ and G_N .

Theorem (Kameni, RS 13/14)

 $G_N = (V_N, E_N)$ expanding, large girth, random length and equi-transmitting. Then for any $\varepsilon > 0$ there exist a $k_0 > 0$ such that if $k \ge k_0$ and **a** is an eigenvector of U(k) we have

$$\mathbb{P}\left(S(\mathbf{a}) \geq rac{1-arepsilon}{2}
ight) \geq 1 - rac{4d}{|V_{\mathcal{N}}|^{arepsilon}}$$

Conclusions

Regular graphs: Large girth and expanding Proof strategy:

- Chebychev's inequality: $|u_{b,b'}^{(t)}| \sim \sqrt{\mathbb{E}(|u_{b,b'}^{(t)}|^2)}$
- $\mathbb{E}(|u_{b,b'}^{(t)}|^2) = \sum_{\gamma,\gamma' \in \Gamma'_t(b,b')} s_{\gamma} s_{\gamma'} \mathbb{E}(e^{ik(L_{\gamma} L_{\gamma'})})$ large girth: if $\gamma \neq \gamma'$

$$\mathbb{E}(\mathrm{e}^{\mathrm{i}k(L_{\gamma}-L_{\gamma'})}) \leq \left[f(k)\right]^{(2R_G)}$$

•
$$N_t(b,b'):=|\Gamma_t'(b,b')|$$
, $|s_\gamma|^2=d^{-t}$, then

$$\mathbb{E}(|u_{b,b'}^{(t)}|^2) \leq \frac{N_t(b,b')}{d^t} (1 + N_t(b,b') [f(k)]^{(2R_G)})$$

• expander: there exist $\mu < 1$, independent of G_N , such that

$$rac{N_t(b,b')}{d^t} \leq rac{1}{2|E|} + \mu^t \; .$$

Equi-transmitting versus Neumann, Regular Graphs

Figure: 2708 eigenfunctions on a 6-regular graph with 450 edges. Left: Entropy of eigenfunctions with equi-transmitting boundary conditions.

Right: Entropy of eigenfunctions with Neumann boundary conditions.

- Entropy of eigenfunctions on graphs gives a measure for their localisation or delocalisation.
- We derive lower bounds on the entropy by using the Entropic Uncertainty Principle.
- Main assumptions are large girth and expansion, which allow to explore the Entropic Uncertainty Principle

• For regular graphs with large girth, expanding, and with random bond-length, we obtain a bound similar to the Anantharaman bound on manifolds of negative curvature.