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Distribution of eigenfunctions: Quantum ergodicity

(M, g) compact Riemannian manifold:

_Agwn = kgq/)n s HwnHB =1

Shnirelman (74), Zelditch (87), Colin de Verdiere (85), Quantum
Ergodicity: ergodic geodesic flow, then almost all eigenfunctions
equidistribute for k, — oo:

. ' , 2 o '
lim / a(x)[thn; (x)|* dv = / a(x)dv ,
j—=o Jm M

along a subsequence n; of density 1, dv Riemannian measure.

e density 1: limy_ H’Uiﬁ’v}\ —1

e valid for (¢, Op[a]t)s;) with a € C>(S*M)
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Quantum Unique Ergodicity?

Quantum Unique Ergodicity: Does

n—oo

lim /Ma(x)\w,,(x)|2dV:/Ma(x)dy.

hold?

Kurlberg Rudnick '00, Marklof Rudnik '00: Yes for Hecke
eigenbasis of cat maps and for parabolic maps

Faure, Nonnenmacher, De Bievre '03; Chang, Krueger, RS,
Troubetzkoy '08: No for cat maps and other quantised maps
Lindenstrauss '06: Yes Quantum Unique Ergodicity holds for
Hecke eigenbasis on arithmetic surfaces.

Hassell '10: No for Stadium billiards

Anantharaman et.al. '07: lower bounds on the entropy of
quantum limits on manifolds of negative curvature.
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Quantum Graphs

G = (V, E), finite undirected connected graph.

V-vertices, E-edges, E > e=[i,j], i,j €V,

bonds = oriented edges, b = (i,/), then b:= (j,i) # b
Length L € ]R'f': assign to each edge a length L. > 0, identify
e with interval [0, Le].

2(G.L) =P A0, Le]) ,  Hs(G,L) == @ H:((0, Le)) -

ecE ecE

Laplace operator: A : Hy(G,L) — L?(G,L),
f = (f17 f2) e ,ﬁE|) S II_I2(C;7 L), then

Af = (flﬁvf2//7"' ) ‘/é‘) .

need boundary conditions at vertices to define self-adjoint
operator
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S-matrix and Boundary conditions

describe boundary conditions on vertex i of degree d; in terms of
S-matrix S(1): unitary d; X d; matrix

[i,j], j ~ i, edges adjacent to i, oriented away from i:
Solutions to —Af = kf:

fiia(x) = agiye ™ + ae™
° a::” = (a(jl,,-y e aa(jdl.,i))r agt = (‘9(1',]1)7 T 7‘Q(I'Jd,-))'

a?’t = SU(k)al"

1

Boundary conditions classified by Kostrykin Schrader '99
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Examples

Neumann conditions: f. = f. for all e, ¢ meeting at / and

S =0
2

d;
For large d; backscattering dominates!

5(i)e,e’ =

- 6e,e’

Equi-transmitting conditions (Harrison, Smilansky, Winn 07):

. 0 e=¢
st 12 =
| e | dl.l_]_ e # e’

No backscattering!

non-Robin boundary conditions: S independent of k.
Equivalent to S* =S. Then S = Py — P_ where Py
orthogonal projections with P, + P_ =1, P, P_ =0 and
boundary conditions are

Pf=0 P, f =0
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Bond S-matrix and quantisation conditions

e Quantum Graph: (G,L,{S0},cy)
e Bond S-matrix U(k) = (upp): 2|E| x 2|E| matrix defined by

j ikLy; ; ikL
Wi i) = TSy e 0 UK) = S

e Quantisation conditions:
U(kya=a, aecCJEN{0},
if and only if f defined by
fiig) = a(ijye™ + agie’ 9

is eigenfunction.
e eigenvalues determined by secular equation

det(U(k) — 1) =0
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Paths and classical dynamics
e Path of length t € N: v = (b1, b, -+ , bt—_1, bt) where if
bs = (i,J) and bst1 = (k, /) then j = k.
(b, b’)-set of paths connecting b and b’ in t steps
o [(b, b')-set of paths without backtracking: bsi1 # bs.

* Set L'Y = Zbe’y Lb' Sy = H;:l Sbs,bs+1, then

UK = ()l = > s,
vere(b,b)

(t)

; H. _ ikL
if no backscattering: u, p = > cri(bp) 1€

Classical dynamics: Set M = (my, /) with mp pr 1= \Ub,b'|2- M is
doubly stochastic and defines a Markov chain with

X-€e

Mt
* T 20F

e+ Og X(e 'YGt)

for some ¢ >0and e=(1,1,---,1).



Quantum Graphs

Quantum Graphs: History

e introduced independently in different areas: Chemistry,
Physics, Mathematics

e Quantum ergodicity on quantum graphs is open! Partial
results:

Berkolaiko, Keating, Winn (04): No quantum ergodicity on
star graphs

Berkolaiko, Keating, Smilanski (07): Quantum ergodicity for
graphs related to interval maps.

Gnutzman, Keating, Piotet (10): quantum ergodicity under
gap condition, non-rigorous.

Anantharaman, LeMasson (13): quantum ergodicty on
d-regular combinatorial graphs.

Jakobson, Strohmaier, Safarov (13): quantum ergodicity with
ray-splitting

Winn (14, in preparation): quantum ergodicity on d-regular
quantum graphs which large girth.

Colin de Verdiere (14): classification of quantum limits on
finite graphs with Neumann bc: no quantum ergodicity
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Entropy

Let a € CV with ||a|| = 1. Entropy:

N
1
@)= > —lan* Injan/?
n=1

e 0<S5(@)<1
e S(a)=0iffa=ey = (dmn) and S(a) =1 iffa= ﬁe
e ifa=(ay), an=0forne K C{1,2,---, N} then
In(NV — K1)
S S L V)
@)= Ty

Entropy large — a can't be concentrated on small set

Entropy is a measure for the distribution of a
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Entropic Uncertainty Principle
Maassen Uffink '88: Let U = (up,m) € CN*N be unitary, then

In (maxn7m\un7ml2)
In NV

S(a) + S(Ua) > —

> |unm|? = 1: optimal case |uym2 = 1/N, S(a) + S(Ua) > 1
Example: Fourier transform F = (f, m) , fom = ﬁez’“%

S(a) + S(Fa) > 1

Application to eigenvectors: If Ua = a then

1
> _
5@z -5 w

In (rp7?nx]u,,7m|2)

and

(t) )

1 (t) 2 t_
S(a) > 5N In (rp%x|u,,,m\ ), where U= (upm
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Star Graphs, equi-transmitting
Theorem (Kameni, RS 13/14)

Let (G, E) be a star graph with equi-transmitting boundary
conditions, then for any eigenfunction

Lin(JE| —1)+2In2
>Z
S(a)_2 In|E| +1In2

.
2
. eigenfunctions fo(x) = Ae cos (k(x — Le)),
E
S(A) = il Sea ~ AP InlAP A =1

o MSHA = A, (S, = (1~ Gee) iy,

Lin(|E| - 1)
SA) 2 3=

In|E n
° S(a)= In(2||E||)5( )+ mEEy



Results: star graphs and regular graphs

Star Graphs, Neuman

Theorem (Kameni, RS 13/14)

Let (G, E) be a star graph with Neumann boundary conditions, L
rationally independent, and a'™ is the n'th eigenfunction, then the
average entropy (S) 1= limy_co % ZnN:1 S(alM) satisfies

(5(a)) = W + O(|E|AL)

where AL = maxe Le — ming Le and oo = 1.2692....

e proof based on Barra & Gaspard (99), further developed in
Keating, Marklof and Winn (03), Colin de Verdiere (14)

e quantisation condition det(/ — U(k)) = F(kL mod 27),
function on torus T!E! evaluated on trajectory kL mod 27, as
are U(k) and eigenvectors a.

e use Weyl's Theorem (unique ergodicity of ¢*(x) = x + tL

mod 27) to transform energy average in average over torus
TIEl,
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Equi-transmitting versus Neumann, Star Graphs

Entropy ot 6243 eigentunctions ot Equi. Trans. QEO for stargraph with 676 directed bonds Entropy ot i tfor stargrap! bonds
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Figure: 6235 eigenfunctions on Star graph with 338 edges.

Left: Entropy of eigenfunctions with equi-transmitting boundary
conditions.

Right: Entropy of eigenfunctions with Neumann boundary conditions.
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Regular graphs

e G d+ 1 regular graph if every vertex has degree d + 1

« 20E| = (d+1)|V]|

* equi-transmitting boundary conditions: |S. o[> = (1 — de.e)
e Gy = (VWn, En), N € N, graphs with limy_.o|Vy| = o0

e Gy expander if there exits v > 0 such that

-e
e+ Ofe 7t
26 SO

Mya =
Expansion rate uniform in N!
e Gy has large girth if there exist a § > 0 such that the length
Ty of the shortest cycle satisfies

TN Z 26 In(2\EN|)

o If b, b have distance t less then & In(2|E|) then there exist
only one path of length t connecting them.
o Any ball of radius less then §In(2|En|) is a tree.
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Regular graphs: Large girth

Theorem (Kameni, RS 13/14)
Let G be a d + 1 regular graph with girth T¢ = 2Rg + 1, then for
equi-transmitting boundary conditions

1 RgInd
(a) = §|n(GzyE\) ‘

Corollary
Assume Gy has large girth, Tg = 25In(2|E|), then S(a) > 1nd.
Main idea: for t < Rg, we have |[,(b, b')| < 1 hence for t = Rg

) 2
Z SwelkL'Y

vEr(b,b")

1
uS ) = <ls 2=

dt




Introduction Quantum Graphs Entropy Results: star graphs and regular graphs Conclusions

Regular graphs: Large girth and expanding

t large: I,(b, b’) contains exponentially many elements, turn

ugl, = Z s,yeikL”
~el(b,b")
into a sum over random variables by making length L random.
Assumption: L. independent and
e P(Le < 9) =0 with 6 > 0 independent of e and Gy.
o there exits an f(k) € C(R) with limy_, 1 f(k) = 0 such that
|E(eikte)| < f(k) independent of e € Ey and Gy.

Theorem (Kameni, RS 13/14)

Gy = (Vn, En) expanding, large girth, random length and
equi-transmitting. Then for any € > 0 there exist a kg > 0 such
that if k > ko and a is an eigenvector of U(k) we have
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Regular graphs: Large girth and expanding
Proof strategy:

e Chebychev's inequality: ‘”t()?)/| ~ /E( ugtz,\z)

* E(luy ) = T, yeryou s B )
large girth: if v #+/

E(eik(waL,Y/)) < [f(k)] (2R¢)
o Ni(b, b) := [Ti(b, )], |s, |2 = d~*, then

N¢(b, b')

E(|upyl?) < =

(1+ Ne(b, ') [F(K)]*FS))

e expander: there exist u < 1, independent of Gy, such that

N(b,b)) 1,
< .
gt 2 M
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Equi-transmitting versus Neumann, Regular Graphs

Entrpy of 2708 eigentunctions of Equi. Trans. QEO for 6-regular graph with 900 directed bonds Entropy ot 2753 eigentunctions of Neumann QEQ for 6-reguiar graph with 800 direcisd bonds.
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Figure: 2708 eigenfunctions on a 6-regular graph with 450 edges.
Left: Entropy of eigenfunctions with equi-transmitting boundary
conditions.

Right: Entropy of eigenfunctions with Neumann boundary conditions.



Conclusions

Summary

Entropy of eigenfunctions on graphs gives a measure for their
localisation or delocalisation.

We derive lower bounds on the entropy by using the Entropic
Uncertainty Principle.

Main assumptions are large girth and expansion, which allow
to explore the Entropic Uncertainty Principle

For regular graphs with large girth, expanding, and with

random bond-length, we obtain a bound similar to the
Anantharaman bound on manifolds of negative curvature.
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