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Distribution of eigenfunctions: Quantum ergodicity

(M, g) compact Riemannian manifold:

−∆gψn = k2
nψn , ‖ψn‖L2 = 1

Shnirelman (74), Zelditch (87), Colin de Verdiere (85), Quantum
Ergodicity: ergodic geodesic flow, then almost all eigenfunctions
equidistribute for kn →∞:

lim
j→∞

∫
M

a(x)|ψnj (x)|2 dν =

∫
M

a(x) dν ,

along a subsequence nj of density 1, dν Riemannian measure.

• density 1: limN→∞
|{nj≤N}|

N = 1

• valid for 〈ψnj ,Op[a]ψnj 〉 with a ∈ C∞(S∗M)
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Quantum Unique Ergodicity?

Quantum Unique Ergodicity: Does

lim
n→∞

∫
M

a(x)|ψn(x)|2 dν =

∫
M

a(x) dν .

hold?

• Kurlberg Rudnick ’00, Marklof Rudnik ’00: Yes for Hecke
eigenbasis of cat maps and for parabolic maps

• Faure, Nonnenmacher, De Bièvre ’03; Chang, Krueger, RS,
Troubetzkoy ’08: No for cat maps and other quantised maps

• Lindenstrauss ’06: Yes Quantum Unique Ergodicity holds for
Hecke eigenbasis on arithmetic surfaces.

• Hassell ’10: No for Stadium billiards

• Anantharaman et.al. ’07: lower bounds on the entropy of
quantum limits on manifolds of negative curvature.
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Quantum Graphs

• G = (V ,E ), finite undirected connected graph.
V -vertices, E -edges, E 3 e = [i , j ], i , j ∈ V ,
bonds = oriented edges, b = (i , j), then b̂ := (j , i) 6= b

• Length L ∈ R|E |+ : assign to each edge a length Le > 0, identify
e with interval [0, Le ].

L2(G ,L) :=
⊕
e∈E

L2([0, Le ]) , Hs(G ,L) :=
⊕
e∈E

Hs((0, Le)) .

• Laplace operator: ∆ : H2(G ,L)→ L2(G ,L),
f = (f1, f2, · · · , f|E |) ∈ H2(G ,L), then

∆f = (f ′′1 , f
′′

2 , · · · , f ′′|E |) .

• need boundary conditions at vertices to define self-adjoint
operator
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S-matrix and Boundary conditions

describe boundary conditions on vertex i of degree di in terms of
S-matrix S (i): unitary di × di matrix

• [i , j ], j ∼ i , edges adjacent to i , oriented away from i :

• Solutions to −∆f = k2f :

f[i .j](x) = a(j ,i)e
−ikx + a(i ,j)e

ikx

• ain
i := (a(j1,i), · · · , a(jdi

,i)), aout
i := (a(i ,j1), · · · , a(i ,jdi

)).

aout
i = S (i)(k)ain

i

• Boundary conditions classified by Kostrykin Schrader ’99



Introduction Quantum Graphs Entropy Results: star graphs and regular graphs Conclusions

Examples

• Neumann conditions: fe = fe′ for all e, e ′ meeting at i and∑
f ′e = 0.

S (i)
e,e′ =

2

di
− δe,e′

For large di backscattering dominates!

• Equi-transmitting conditions (Harrison, Smilansky, Winn 07):

|S (i)
e,e′ |2 =

{
0 e = e ′

1
di−1 e 6= e ′

No backscattering!

• non-Robin boundary conditions: S independent of k .
Equivalent to S∗ = S . Then S = P+ − P− where P±
orthogonal projections with P+ + P− = I , P+P− = 0 and
boundary conditions are

P−f = 0 P+f ′ = 0
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Bond S-matrix and quantisation conditions

• Quantum Graph: (G ,L, {S (i)}i∈V )

• Bond S-matrix U(k) = (ub,b′): 2|E | × 2|E | matrix defined by

u(i ,j),(k,l) = δjkS
(j)
(i ,j),(j ,l)e

ikL[i,j] , U(k) = eikLS

• Quantisation conditions:

U(k)a = a , a ∈ C2|E |\{0} ,

if and only if f defined by

f[i ,j] = a(i ,j)e
ikxi,j + a(j ,i)e

ikxj,i

is eigenfunction.

• eigenvalues determined by secular equation

det(U(k)− I ) = 0
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Paths and classical dynamics

• Path of length t ∈ N: γ = (b1, b2, · · · , bt−1, bt) where if
bs = (i , j) and bs+1 = (k, l) then j = k .
• Γt(b, b′)-set of paths connecting b and b′ in t steps
• Γ′t(b, b′)-set of paths without backtracking: bs+1 6= b̂s .

• Set Lγ =
∑

b∈γ Lb, sγ =
∏t

s=1 Sbs ,bs+1 , then

U(k)t = (u
(t)
b,b′) u

(t)
b,b′ =

∑
γ∈Γt(b,b′)

sγeikLγ ,

if no backscattering: u
(t)
b,b′ =

∑
γ∈Γ′

t(b,b′) sγeikLγ

Classical dynamics: Set M = (mb,b′) with mb,b′ := |ub,b′ |2. M is
doubly stochastic and defines a Markov chain with

Mtx =
x · e
2|E |

e + OG ,x(e−γG t)

for some γG > 0 and e = (1, 1, · · · , 1).
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Quantum Graphs: History

• introduced independently in different areas: Chemistry,
Physics, Mathematics

• Quantum ergodicity on quantum graphs is open! Partial
results:
• Berkolaiko, Keating, Winn (04): No quantum ergodicity on

star graphs
• Berkolaiko, Keating, Smilanski (07): Quantum ergodicity for

graphs related to interval maps.
• Gnutzman, Keating, Piotet (10): quantum ergodicity under

gap condition, non-rigorous.
• Anantharaman, LeMasson (13): quantum ergodicty on

d-regular combinatorial graphs.
• Jakobson, Strohmaier, Safarov (13): quantum ergodicity with

ray-splitting
• Winn (14, in preparation): quantum ergodicity on d-regular

quantum graphs which large girth.
• Colin de Verdière (14): classification of quantum limits on

finite graphs with Neumann bc: no quantum ergodicity
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Entropy

Let a ∈ CN with ‖a‖ = 1. Entropy:

S(a) :=
1

ln N

N∑
n=1

−|an|2 ln|an|2

• 0 ≤ S(a) ≤ 1

• S(a) = 0 iff a = em = (δm,n) and S(a) = 1 iff a = 1√
N
e

• if a = (an), an = 0 for n ∈ K ⊂ {1, 2, · · · ,N} then

S(a) ≤ ln(N − |K |)
ln N

Entropy large → a can’t be concentrated on small set

Entropy is a measure for the distribution of a
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Entropic Uncertainty Principle
Maassen Uffink ’88: Let U = (un,m) ∈ CN×N be unitary, then

S(a) + S(Ua) ≥ −
ln
(

maxn,m|un,m|2
)

ln N∑
n|un,m|2 = 1: optimal case |un,m|2 = 1/N, S(a) + S(Ua) ≥ 1

Example: Fourier transform F = (fn,m) , fn,m = 1√
N

e2πi nm
N

S(a) + S(Fa) ≥ 1

Application to eigenvectors: If Ua = a then

S(a) ≥ − 1

2 ln N
ln
(

max
n,m
|un,m|2

)
and

S(a) ≥ − 1

2 ln N
ln
(

max
n,m
|u(t)

n,m|2
)
, where Ut = (u

(t)
n,m)
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Star Graphs, equi-transmitting

Theorem (Kameni, RS 13/14)

Let (G ,E ) be a star graph with equi-transmitting boundary
conditions, then for any eigenfunction

S(a) ≥1

2

ln(|E | − 1) + 2 ln 2

ln|E |+ ln 2
>

1

2

• eigenfunctions: fe(x) = Ae cos
(
k(x − Le)

)
,

S(A) := 1
ln|E |

∑|E |
e=1−|Ae |2 ln|Ae |2 , ‖A‖ = 1

• eikLSeikLA = A, |Se,e′ |2 = (1− δe,e′) 1
|E |−1 ,

S(A) ≥ 1

2

ln(|E | − 1)

ln|E |

• S(a) = ln|E |
ln(2|E |) S(A) + ln 2

ln(2|E |)
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Star Graphs, Neuman

Theorem (Kameni, RS 13/14)

Let (G ,E ) be a star graph with Neumann boundary conditions, L
rationally independent, and a(n) is the n’th eigenfunction, then the
average entropy 〈S〉 := limN→∞

1
N

∑N
n=1 S(a(n)) satisfies

〈S(a)〉 =
α

ln |E |
+ O(|E |∆L)

where ∆L = maxe Le −mine Le and α = 1.2692....

• proof based on Barra & Gaspard (99), further developed in
Keating, Marklof and Winn (03), Colin de Verdière (14)

• quantisation condition det(I − U(k)) = F (kL mod 2π),
function on torus T|E | evaluated on trajectory kL mod 2π, as
are U(k) and eigenvectors a.

• use Weyl’s Theorem (unique ergodicity of φt(x) = x + tL
mod 2π) to transform energy average in average over torus
T|E |.
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Equi-transmitting versus Neumann, Star Graphs

Figure: 6235 eigenfunctions on Star graph with 338 edges.
Left: Entropy of eigenfunctions with equi-transmitting boundary
conditions.
Right: Entropy of eigenfunctions with Neumann boundary conditions.
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Regular graphs

• G d + 1 regular graph if every vertex has degree d + 1
• 2|E | = (d + 1)|V |
• equi-transmitting boundary conditions: |Se,e′ |2 = 1

d (1− δe,e′)

• GN = (VN ,EN), N ∈ N, graphs with limN→∞|VN | =∞
• GN expander if there exits γ > 0 such that

M t
Na =

a · e
2|EN |

e + O(e−γt)

Expansion rate uniform in N!
• GN has large girth if there exist a δ > 0 such that the length

TN of the shortest cycle satisfies

TN ≥ 2δ ln(2|EN |)

• If b, b′ have distance t less then δ ln(2|E |) then there exist
only one path of length t connecting them.

• Any ball of radius less then δ ln(2|EN |) is a tree.
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Regular graphs: Large girth

Theorem (Kameni, RS 13/14)

Let G be a d + 1 regular graph with girth TG = 2RG + 1 , then for
equi-transmitting boundary conditions

S(a) ≥ 1

2

RG ln d

ln(2|E |)
.

Corollary

Assume GN has large girth, TG = 2δ ln(2|E |), then S(a) ≥ δ ln d
2 .

Main idea: for t ≤ RG , we have |Γ′t(b, b′)| ≤ 1 hence for t = RG

|u(t)
b,b′ |2 =

∣∣∣∣ ∑
γ∈Γ′

t(b,b′)

sγeikLγ

∣∣∣∣2 ≤ |sγ |2 =
1

d t
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Regular graphs: Large girth and expanding
t large: Γ′t(b, b′) contains exponentially many elements, turn

u
(t)
b,b′ =

∑
γ∈Γ′

t(b,b′)

sγeikLγ

into a sum over random variables by making length L random.
Assumption: Le independent and
• P(Le ≤ δ) = 0 with δ > 0 independent of e and GN .
• there exits an f (k) ∈ C (R) with limk→±∞ f (k) = 0 such that
|E(eikLe )| ≤ f (k) independent of e ∈ EN and GN .

Theorem (Kameni, RS 13/14)

GN = (VN ,EN) expanding, large girth, random length and
equi-transmitting. Then for any ε > 0 there exist a k0 > 0 such
that if k ≥ k0 and a is an eigenvector of U(k) we have

P
(

S(a) ≥ 1− ε
2

)
≥ 1− 4d

|VN |ε



Introduction Quantum Graphs Entropy Results: star graphs and regular graphs Conclusions

Regular graphs: Large girth and expanding
Proof strategy:

• Chebychev’s inequality: |u(t)
b,b′ | ∼

√
E(|u(t)

b,b′ |2)

• E(|u(t)
b,b′ |2) =

∑
γ,γ′∈Γ′

t(b,b′) sγsγ′E(eik(Lγ−Lγ′ ))

large girth: if γ 6= γ′

E(eik(Lγ−Lγ′ )) ≤
[
f (k)

](2RG )

• Nt(b, b′) := |Γ′t(b, b′)|, |sγ |2 = d−t , then

E(|u(t)
b,b′ |2) ≤ Nt(b, b′)

d t

(
1 + Nt(b, b′)

[
f (k)

](2RG ))
• expander: there exist µ < 1, independent of GN , such that

Nt(b, b′)

d t
≤ 1

2|E |
+ µt .
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Equi-transmitting versus Neumann, Regular Graphs

Figure: 2708 eigenfunctions on a 6-regular graph with 450 edges.
Left: Entropy of eigenfunctions with equi-transmitting boundary
conditions.
Right: Entropy of eigenfunctions with Neumann boundary conditions.
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Summary

• Entropy of eigenfunctions on graphs gives a measure for their
localisation or delocalisation.

• We derive lower bounds on the entropy by using the Entropic
Uncertainty Principle.

• Main assumptions are large girth and expansion, which allow
to explore the Entropic Uncertainty Principle

• For regular graphs with large girth, expanding, and with
random bond-length, we obtain a bound similar to the
Anantharaman bound on manifolds of negative curvature.
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