Devoir à la maison N. 1

A rendre le 6/10/2009.

Exercice 1 Soit (E, d) un espace métrique. Montrer que les assertions suivantes sont équivalentes.

- (a) E est complet.
- (b) Toute suite $(x_n)_n$ telle que $\sum_n d(x_n, x_{n+1}) < +\infty$ est convergente.
- (c) Toute suite $(x_n)_n$ telle que pour tout n, $d(x_n, x_{n+1}) \leq 2^{-n}$ est convergente. Indication: Observez que (b), (c) impliquent que la suite (x_n) est Cauchy.

Exercice 2 Soit E un espace métrique et (K_n) une suite décroissante de compacts non-vides de E.

- (a) Montrer que $\bigcap_n K_n \neq \emptyset$.
- (b) Si Ω est un ouvert contenant l'intersection des K_n , montrer qu'il existe un n tel que $K_n \subseteq \Omega$.

Exercice 3 L'un des buts de l'exercice est de démontrer le théorème du point fixe : soit (E,d) un espace métrique complet, et $f:E\to E$ un application avec la propriété

$$d(f(x), f(y)) < \rho d(x, y), \quad \forall x, y \in E; 0 \le \rho < 1.$$

Alors la solution de l'équation x = f(x) (*) existe et elle est unique. Le point x s'appelle le point fixe de l'application f.

(a) Pour un $x_0 \in E$ arbitraire, posons

$$x_1 = f(x_0), x_2 = f(x_1), \dots, x_k = f(x_{k-1}), \dots$$

Montrez que la suite (x_k) est Cauchy. Sa limite existe-t-elle?

- (b) Satisfait-elle l'équation (*)?
- (c) Montrez l'unicité de la solution de l'équation (*).
- (d) * Supposons maintenant que E est compact et $f: E \to E$ est telle que

$$d(f(x), f(y)) < d(x, y), \quad \forall x \neq y \in E.$$

En considérant $\phi(x) = d(x, f(x))$ montrer que f admet un point fixe.

(e) * La conclusion de (d) reste-t-elle vraie sans l'hypothèse de compacité? Exemple le cas écheant.