On va montrer le résultat suivant: L'ensemble des fonctions continues qui ne sont dérivables en aucun point de [0,1] est dense dans C([0,1]), muni de la norme uniforme.

Devoir maison N°2

On pose

$$O_n = \left\{ f \in C([0,1]) : \ \forall t : \sup_{0 < |h| < 1/n} \left| \frac{f(t+h) - f(t)}{h} \right| > n \right\}.$$

1. Soit $f \in O_n$. Montrer que pour tout $t \in [0,1]$ il existe un $\delta_t > 0$ et un $h_t, 0 < |h_t| < 1/n$ tels que

$$\left| \frac{f(t+h_t) - f(t)}{h_t} \right| > n + \delta_t$$

2. Conclure que pour tout $t \in [0,1]$, il existe un voisinage U_t de t tel que l'estimation

$$\left| \frac{f(s+h) - f(t)}{h} \right| > n + \delta_t$$

reste vraie pour tout $s \in U_t$.

3. Montrer qu'il existent $t_1 ldots t_n$ tels que

$$[0,1] \subset \bigcup_{i=1}^{n} U_{t_i}$$

- 4. On pose $\delta = \min(\delta_{t_1} \dots \delta_{t_n})$ et $h = \min(|h_{t_1}| \dots |h_{t_n}|)$. Montrer que si $g \in C([0,1])$ satisfait l'inégalité $||f g||_{\infty} < h\delta/2$, alors $g \in O_n$. Y a-t-il une propriété topologique de l'ensemble O_n qui en découle?
- 5. On montrera par la suite que pour tout O ouvert non-vide, on a $O \cap O_n \neq \emptyset$. Que peut-on dire des ensembles O_n ?
- 6. Soit $f \in C([0,1])$ et r > 0 tel que $B(f,r) \subset O$. Peut-on trouver un polynôme p tel que $||f-p||_{\infty} < r/2$? Justifiez la réponse.
- 7. Construire une fonction de 'scie' h_m telle que $||h_m||_{\infty} < r/2$ et telle que pour tout $t \in [0, 1]$ et tout $\epsilon > 0$ il y a $s \in [0, 1]$ avec $|t s| < \epsilon$ et $|h_m(t) h_m(s)| > m|t s|$.
- 8. Montrer $f_m = p + h_m \in B(f, r)$
- 9. Montrer que pour $m > n + ||p'||_{\infty}$ on a $f_m \in O_n$.
- 10. Déduire le résultat souhaité en utilisant un théorème du cours.

Devoir à rendre Mercredi, le 2/12/09.