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1 Metric spaces

1.1 Definitions

Definition 1.1 (Distance). Given a set X, we say that a function d : X × X → R+ is a
distance on X if

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. For any x, y, z ∈ X, d(x, y) 6 d(x, z) + d(y, z).

Then we say that (X, d) is a metric space.

For any x in X and any r > 0, we denote

B(x, r) := {y ∈ X : d(x, y) < r} (resp. B(x, r) := {y ∈ X : d(x, y) 6 r})

the open (resp. closed) ball of center x and radius r. A subset is said to be bounded if it is
contained in a ball of finite radius.
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Definition 1.2 (Open/closed sets). We say that

1. U ⊂ X is open if for any x ∈ U , there exists r > 0 such that B(x, r) ⊂ X,

2. V ⊂ X is a neighbourhood of x ∈ X if there is U ⊂ V which contains x,

3. F is closed if X \ U is open.

Remark 1.1. The set of all the open sets U ⊂ X is called the topology associated with the
metric space (X, d).

Definition 1.3 (Interior and closure). Given a set A ⊂ X, we define

1. the interior of A by A◦ := {x ∈ A : there exists U open such that x ∈ U ⊂ A};

2. the closure of A by A := {x ∈ X : for any U open with x ∈ U, then U ∩A 6= ∅}.

We say that x ∈ A is an adherent point and x ∈ A◦ an interior point.

Let us observe that A◦ ⊂ A ⊂ A.

Definition 1.4 (Density). Given a set A ⊂ X, we say that A is dense in X if A = X.

Definition 1.5 (Limit of a sequence). We say that a sequence (xn)n∈N ⊂ X converges to x
in X if for any open set U with x ∈ U , there exists n0 ∈ N such that xn ∈ U for all n > n0.

Proposition 1.1. The following statements hold:

1. A sequence (xn)n∈N ⊂ X converges to x in X if and only if for every ε > 0, there exists
n0 ∈ N such that for all n > n0, then d(x, xn) < ε;

2. A subset F of X is closed if and only if for every sequence (xn)n∈N ⊂ F converging to x
in X, then x ∈ F .

Definition 1.6 (Continuity). Given two metric spaces (X1, d1) and (X2, d2), we say that a
map f : X1 → X2 is continuous at x1 ∈ X1 if for all open set U in X2 such that f(x1) ∈ U ,
then f−1(U) is an open set in X1.

Proposition 1.2. Let (X1, d1) and (X2, d2) be two metric spaces, f : X1 → X2 and x1 ∈ X1.
Then the following statements are equivalent:

1. f is continuous at x1;

2. For any ε > 0, there exists δ > 0 such that if x ∈ X1 is such that d1(x1, x) < δ, then
d2(f(x1), f(x)) < ε;

3. For any sequence (xn)n∈N ⊂ X1 converging to x1, the sequence (f(xn))n∈N converges to
f(x) in X2.

Definition 1.7 (Uniform continuity). Let (X1, d1) and (X2, d2) be two metric spaces. We
say that an map f : X1 → X2 is uniformly continuous if for any ε > 0, there exists δ > 0 such
that if x and y ∈ X1 satisfy d1(x, y) < δ, then d2(f(x), f(y)) < ε.

It is clear from the definitions above that uniform continuity implies continuity. We will see
in Theorem 1.2 that the converse statement holds true when the space (X1, d1) is compact.

Let us now see a particular case of metric space.

2



Definition 1.8 (Normed vector space). A normed vector space over R is a pair (V, ‖ · ‖)
where V is a real vector space and ‖·‖ is a norm on X that is a function from X to R+ satisfying

1. ‖u‖ = 0 if and only u = 0 (positive definiteness),

2. for any u in V , for any λ ∈ R, ‖λu‖ = |λ|‖u‖ (positive homogeneity),

3. for any u, v in V , ‖u+ v‖ 6 ‖u‖+ ‖v‖ (triangle inequality or subadditivity).

If the first item above is not satisfied then ‖ · ‖ is called a seminorm.

Remark 1.2. We define in a similar way a normed vector space over C by considering a
complex vector space and by extending the second property above to any λ ∈ C.

Remark 1.3. We can easily associate a distance with the norm of a normed vector space,
through the formula d(u, v) := ‖u− v‖.

1.2 Completeness

Completeness is an important notion in topology and in functional analysis because it enables
one to characterize converging sequences without the knowledge of their limit. We first define
the Cauchy property.

Definition 1.9 (Cauchy sequence). Given a metric space (X, d), we say that a sequence
(un)n∈N ⊂ X is a Cauchy sequence if for any ε > 0, there exists n0 ∈ N such that for all n,
n′ > n0 then d(un, un′) < ε.

Definition 1.10 (Completeness). A metric space (X, d) is complete if any Cauchy sequence
converges in X.

Let us give as a first example the set R endowed with the usual metric d(x, y) := |x− y|. It
is also useful to notice that a closed subset of a complete metric space is complete.

An important application of the notion of completeness is given by the following theorem.

Theorem 1.1 (Banach, Picard). Given a complete metric space (X, d) and f : X → X.
Assume that f is a contraction, i.e. that there exists a constant θ ∈ (0, 1) such that for all x
and y ∈ X, then d(f(x), f(y)) 6 θd(x, y). Then there exists a unique fixed point x∗ ∈ X such
that f(x∗) = x∗.

Proof. Let x0 ∈ X and let (xn)n∈N the associated sequence defined by the relation

xn+1 = f(xn). (1)

By iteration we have
d(xn+1, xn) 6 θnd(x1, x0).

For any n′ > n,

d(xn′ , xn) 6
n′−n∑
k=1

d(xn+k, xn+k−1) 6 d(x1, x0)
n′−n∑
k=1

θn+k−1 6
θn

1− θ
d(x1, x0).

Therefore (xn)n∈N is a Cauchy sequence, and by completeness, it converges to an element
x∗ ∈ X. Since f is continuous, we have f(x∗) = x∗ by passing to the limit in (1). The
uniqueness follows from the contraction assumption.
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The previous theorem is useful in the proof of the Cauchy-Lipschitz theorem in the theory
of ordinary differential equations, and also in the proof of the local inversion theorem.

Definition 1.11 (Banach space/algebra). Let (V, ‖ · ‖) be a normed vector space. If V is
complete then we say that (V, ‖ · ‖) is a Banach space. If in addition V is an associative algebra
whose multiplication law is compatible with the norm in the sense that ‖u · v‖ 6 ‖u‖ · ‖v‖ for
any u, v in V , then we say that (V, ‖ · ‖) is a Banach algebra.

1.3 Compactness

Several notions of compactness are available. Let us start with the following one.

Definition 1.12 (Compactness). We say that a metric space (X, d) is compact if any open
cover has a finite subcover, i.e. for every arbitrary collection {Ui}i∈I of open subsets of X such
that X ⊂ ∪i∈IUi, there is a finite subset J ⊂ I such that X ⊂ ∪i∈JUi.

It is a good exercise to prove the following theorem in order to understand the power of the
previous definition.

Theorem 1.2 (Heine). Every continuous image of a compact set is compact. Moreover a
continuous function on a compact set is uniformly compact.

Definition 1.13 (Limit point). Let S be a subset of a metric space X. We say that a point
x ∈ X is a limit point of S if every open set containing x also contains a point of S other than x
itself. It is equivalent to requiring that every neighbourhood of x contains infinitely many points
of S.

Let us also define what we mean by a totally bounded space.

Definition 1.14 (Totally boundedness). We say that a metric space (X, d) is totally bounded
if for every ε > 0, there exists a finite cover of X by open balls of radius less than ε.

Since for every ε > 0, ∪x∈XB(x, ε) is an open cover of X, it follows from Definitions 1.12
and 1.14 that a compact metric space is totally bounded.

Proposition 1.3. A metric space is compact if and only if every sequence has a limit point.

Next proposition gives another criterion of compactness for metric spaces.

Proposition 1.4. A metric space is compact if and only if it is complete and totally bounded.

1.4 Separability

Definition 1.15 (Separability). We say that a metric space (X, d) is separable if it contains
a countable dense subset, i.e., there exists a sequence (xn)n∈N of elements of X such that every
nonempty open subset of the space contains at least one element of the sequence.

Any metric space which is itself finite or countable is separable. An important example
of uncountable separable space is the real line (with its usual topology), in which the rational
numbers form a countable dense subset.

Proposition 1.5. Every compact metric space is separable.

Proof. Let (X, d) be a compact metric space. For any k ∈ N∗, ∪x∈XB(x, 1/k) is a open cover
of X. By compactness, there exists xk1, . . . , x

k
nk
∈ X such that X = ∪nk

j=1B(xknj
, 1/k). Then the

collection
⋃
k∈N∗

⋃nk
j=1{xknj

} is a countable dense subset of X.
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Let us finish with the following useful criterion for a metric space to be not separable.

Proposition 1.6. If a metric space (X, d) contains a uncountable subset Y such that δ :=
inf{d(y, y′) : y, y′ ∈ Y, y 6= y′} > 0, then X is not separable.

Proof. We argue by contradiction. Let us assume that (X, d) is separable and therefore contains
a countable dense subset (xn)n∈N. We can then define a map by associating to any y ∈ Y the
smallest n ∈ N such that d(y, xn) < δ/3. This map turns out to be injective because if
d(y, xn) < δ/3 and d(y′, xn) < δ/3, then d(y, y′) < 2δ/3 which is possible (when y and y′ ∈ Y )
only if y = y′. We deduce that Y is countable which is the absurd.

2 Spaces of continuous functions

2.1 Basic definitions

Definition 2.1 (Bounded and continuous functions). Let be given two metric spaces
(X1, d1) and (X2, d2). We denote by

B(X1;X2) := {f : X1 → X2 : f(X1) is a bounded subset of X2}, (2)

Cb(X1;X2) := {f ∈ B(X1;X2) which are continuous}. (3)

For any f1 and f2 ∈ B(X1;X2), we denote the uniform distance by

du(f1, f2) := sup
x∈X1

d2(f1(x), f2(x)). (4)

Endowed with the distance du, B(X1;X2) is a metric space. When (X1, d1) is compact, a
continuous mapping f : X1 → X2 is bounded thanks to Heine’s theorem (Theorem 1.2). In this
case we simply denote C(X1;X2) instead of Cb(X1;X2).

Proposition 2.1. The space Cb(X1;X2) is closed in B(X1;X2).

Proof. Let (fn)n∈N be a sequence in Cb(X1;X2) converging to f in B(X1;X2). Let us prove
that f is continuous at x in X1. By Proposition 1.2, it suffices to consider a sequence (xn)n∈N
in X1 converging to x and to prove that f(xn) converges to f(x). Let ε > 0. There exists n0
such that for any n > n0, du(f, fn) < ε/3. Since fn is continuous there exists δ > 0 such that
for any y in X1 with d(x, y) < δ, then d(fn(x), fn(y)) < ε/3. For n large enough, d(xn, x) < δ,
so that by the triangle inequality we get d(f(x), f(xn)) < ε. Hence f is continuous at x.

2.2 Completeness

Theorem 2.1. Let (X1, d1) and (X2, d2) be two metric spaces, the latter being complete. Then
B(X1;X2) and Cb(X1;X2) are complete.

Proof. Since by Proposition 2.1 Cb(X1;X2) is closed in B(X1;X2) it suffices to prove that the
latter is complete to prove the result. Let (fn)n∈N be a Cauchy sequence in B(X1;X2). It follows
from the definition of du that for any x in X1, the sequence (fn(x))n∈N is a Cauchy sequence
in X2. Since X2 is complete the sequence (fn(x))n∈N has a limit that we call f(x). It then
remains to verify that it defines a function f in B(X1;X2) and that (fn)n∈N actually converges
to f in B(X1;X2). Since (fn)n∈N is a Cauchy sequence in B(X1;X2), there exists n0 such that
for any n, n′ > n0, du(fn, fn′) < 1. Passing to the limit n → +∞ yields du(f, fn′) < 1. Since
fn′ is in B(X1;X2) there exists x2 ∈ X2 and r > 0 such that fn′(X1) ⊂ B(x2, r). Therefore
f(X1) ⊂ B(x2, r+1) and thus f ∈ B(X1;X2). To prove that (fn)n∈N converges to f in B(X1;X2)
it is sufficient to pass to the limit in the Cauchy property.
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2.3 Compactness

The following result gives some sufficient conditions for a collection of continuous functions on
a compact metric space to be relatively compact (i.e. whose closure is compact). In particular
this could allow to extract an uniformly convergent subsequence from a sequence of continuous
functions. The main condition is the equicontinuity which was introduced at around the same
time by Ascoli (1883− 1884) and Arzelà (1882− 1883).

Theorem 2.2 (Ascoli). Let (X1, d1) be a compact metric space and (X2, d2) be a complete
metric space. Let A be a subset of C(X1;X2) such that

1. A is uniformly equicontinuous: for any ε > 0, there exists δ > 0 such that if d1(x, y) < δ,
then supf∈A d2(f(x), f(y)) < ε;

2. A is pointwise relatively compact, i.e., for all x ∈ X1, the set {f(x) : f ∈ A} is compact
in X2.

Then A is a compact subset of C(X1;X2).

3 Continuous linear maps

3.1 Space of continuous linear maps

This section is devoted to Lc(X,Y ) the space of the bounded linear operators between normed
linear spaces X and Y . Let us recall that a linear operator T is bounded if one of the following
assertion is satisfied:

1. T is bounded on every ball,

2. T is bounded on some ball,

3. T is continuous at every point,

4. T is continuous at some point.

5. T is uniformly continuous.

6. T is Lipschitz.

Theorem 3.1. If X and Y are some normed linear spaces, then Lc(X,Y ) is a normed linear
space with the norm

‖T‖Lc(X,Y ) := sup
x6=x′∈X

‖Tx− Tx′‖Y
‖x− x′‖X

= sup
x∈X\0

‖Tx‖Y
‖x‖X

,

= sup
‖x‖X61

‖Tx‖Y ,

= sup
‖x‖X=1

‖Tx‖Y .

If moreover Y is a Banach space then Lc(X,Y ) is a Banach space.
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If T ∈ Lc(X,Y ) and U ∈ Lc(Y,Z), then UT = U ◦ T ∈ Lc(X,Z) and ‖UT‖Lc(X,Z) ≤
‖U‖Lc(Y,Z)‖T‖Lc(X,Y ). In particular, Lc(X) := Lc(X,X) is a algebra, i.e., it has an additional
“multiplication” operation which makes it a non-commutative algebra, and this operation is
continuous.

The dual space of X is X ′ := Lc(X,R) (or Lc(X,C) for complex vector spaces). According
to the previous proposition it is a Banach space (whether X is or not).

Definition 3.1 (Weak and strong onvergences). Given some normed linear spaces X and
Y , and a sequence (un)n a sequence in Lc(X,Y ), we say that

1. (un)n converges strongly to u in Lc(X,Y ) if ‖un − u‖Lc(X,Y ) → 0 when n→∞,

2. (un)n converges weakly* to u in Lc(X,Y ) if for any x ∈ X, (un(x))n converges to u(x) in
Y .

3.2 Uniform boundedness principle–Banach-Steinhaus theorem

Proposition 3.1. Let X be a normed vector space and Y be a Banach space. Consider a dense
subset A of X and (un)n a sequence in Lc(X,Y ) such that

1. supn ‖un‖Lc(X,Y ) <∞,

2. for any x in A, (un(x))n converges.

Then there exists a unique u in Lc(X,Y ) such that (un)n converges weakly* to u in Lc(X,Y ).
Moreover

‖u‖Lc(X,Y ) 6 lim inf
n→∞

‖un‖Lc(X,Y ). (5)

Theorem 3.2 (Uniform boundedness principle). Let X be a Banach space and Y be a
normed vector space. Suppose that B is a collection of continuous linear operators from X to
Y . The uniform boundedness principle states that if for all x in X we have

sup
u∈B
‖u(x)‖Y <∞. (6)

Then
sup
u∈B
‖u‖Lc(X,Y ) <∞. (7)

We infer from Theorem 3.2 the following corollary.

Corollary 3.1 (Banach-Steinhaus). Let X be a Banach space and Y be a normed vector
space. If (un)n is a sequence of Lc(X,Y ) which converges weakly* to u, then u is in Lc(X,Y )
and ‖u‖Lc(X,Y ) 6 lim infn→∞ ‖un‖Lc(X,Y ).

In the particular case where Y is R or C, we denote by X ′ := Lc(X,Y ), and we call X ′ the
dual space of X. Applying the uniform boundedness principle yields the following result:

Corollary 3.2. Let X be a Banach space. Then any weakly* converging sequence in X ′ is
bounded.

One advantage of the weak* convergence is that the following partial converse is available.

Theorem 3.3. Let X be a separable Banach space. Then any bounded sequence in X ′ admits
a weakly* converging subsequence.

Proof. Let (un)n be a bounded sequence of X ′. Let (xk)k∈N a dense sequence in X. Using
Cantor’s diagonal argument there exists a subsequence (unj )j of (un)n such that (unj (xk))j
converges for any k ∈ N. We then apply Proposition 3.1.
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4 Hilbert analysis

A Hilbert space, named after David Hilbert, is a vector space possessing the structure of an
inner product which is complete for the norm associated with its inner product. It generalizes
the notion of Euclidean space. In particular the Pythagorean theorem and parallelogram law
hold true in a Hilbert space.

4.1 Inner product space

In the real case an inner product on a vector space is a positive definite, symmetric bilinear form
from X ×X to R. In the complex case it is positive definite, Hermitian symmetric, sesquilinear
form from X ×X to C.

Definition 4.1 (Inner product). Let X be a vector space on K = R or C. We say that a
map (·, ·) from X ×X to K is a inner product if

1. ∀u, v, w ∈ X, ∀α, β in K, (αu+ βv,w) = α(u,w) + β(v, w),

2. ∀u, v ∈ X, (u, v) = (v, u),

3. ∀u ∈ X \ {0}, (u, u) > 0.

Endowed with (·, ·), X is a inner product space (or pre-Hilbert space).

The following lemma is quite famous.

Lemma 4.1 (Cauchy-Schwarz inequality). Let X be a pre-Hilbert space. Then

∀u, v ∈ X, |(u, v)| 6
√

(u, u)
√

(v, v). (8)

Proof. Let θ be a real number such that (u, v) = |(u, v)|eiθ. Let us define ũ := e−iθu. Let
P (λ) := (ũ + λv, ũ + λv) for every λ ∈ R. Since P > 0, the discriminant of the quadratic
equation P (λ) = 0 is nonpositive. Since

P (λ) = (ũ, ũ) + 2λ<(ũ, v) + λ2(v, v) = (u, u) + 2λ|(u, v)|+ λ2(v, v),

this yields the Cauchy-Schwarz inequality.

Next lemma states that an inner product gives rise to a norm. An inner product space is
thus a special case of a normed linear space.

Lemma 4.2. Let X be a pre-Hilbert space. Then the map ‖ · ‖ : u ∈ X 7→
√

(u, u) defined a
norm on X.

Proof. The main point is to prove the triangle inequality, what can be done thanks to the
Cauchy-Schwarz inequality: for any u, v ∈ X, we have

‖u+ v‖2 = ‖u‖2 + 2<(u, v) + ‖v‖2, (9)

6 ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.

Conversely the following polarization identities expresses the norm of an inner product space
in terms of the inner product.

8



Proposition 4.1. For real (respectively complex) inner product spaces we have for any u, v ∈ X,

(u, v) =
1

4
(‖u+ v‖2−‖u− v‖2), resp. (u, v) =

1

4
(‖u+ v‖2 + i‖u+ iv‖2−‖u− v‖2− i‖u− iv‖2).

Proof. It suffices to apply (9) to v, −v, iv and −iv and to combine the resulting equalities.

In inner product spaces we also have (straightforwardly) the following parallelogram law.

Proposition 4.2. Let X be a real or complex inner product space, then for any u, v ∈ X,

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

This gives a criterion for a normed space to be an inner product space. Any norm coming
from an inner product satisfies the parallelogram law and, conversely, if a norm satisfies the
parallelogram law, we can show (but not so easily) that the polarization identity defines an
inner product, which gives rise to the norm. This is a result by von Neumann.

Now, let see a few general properties satisfied by an inner product space.

Lemma 4.3. Let X be a pre-Hilbert space. In addition the scalar product is a continuous
bilinear mapping from X ×X to C.

Definition 4.2 (Orthonormal sequence). A family (ei)i∈I in X is said an orthonormal
sequence if for any i, j ∈ I, (ei, ej) = δi,j .

Let us continue with the following Pythagore equality.

Lemma 4.4. Let X be a inner product space and (en)n∈N be an orthonormal sequence in X
and (αn)n∈N some complex numbers. Then, for any n,m ∈ N with n > m,∥∥∥∥∥

n∑
k=m

αkek

∥∥∥∥∥
2

=

n∑
k=m

|αk|2.

The proof, quite easy, is left to the reader. We now give the following result.

Lemma 4.5. Let X be a inner product space and (en)n∈N be an orthonormal sequence in X.
Then, for any u ∈ X,

1. for any k ∈ N,

‖u‖2 =

k∑
n=0

|(u, en)|2 + ‖u−
k∑

n=0

(u, en)en‖2,

2. Bessel’s inequality:
∞∑
n=0

|(u, en)|2 6 ‖u‖2.

Proof. We have, using Lemma 4.4,

‖u−
k∑

n=0

(u, en)en‖2 = (u−
k∑

n=0

(u, en)en, u−
k∑

n=0

(u, en)en)

= ‖u‖2 − 2

k∑
n=0

|(u, en)|2 +
∑

06n6k

|(u, en)|2

= ‖u‖2 −
k∑

n=0

|(u, en)|2,
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what yields (1). To obtain (2) it suffices to pass to the limit in the inequality
∑k

n=0 |(u, en)|2 6
‖u‖2.

Remark 4.1. Note that in general the sequence u−
∑k

n=0(u, en)en does not converge to 0 when
n goes to infinity. We will go back to this issue in the next section with two more assumptions.

Remark 4.2. Let E be an orthonormal set of arbitrary cardinality. It follows from Bessel’s
inequality that for ε > 0 and u ∈ X, { e ∈ E : (u, e) ≥ ε } is finite, and hence that { e ∈ E :
(u, e) > 0 } is countable. We can thus extend Bessel’s inequality to an arbitrary orthonormal
set:

∑
e∈E(u, e)

2 6 ‖u‖2, where the sum is just a countable sum of positive terms.

4.2 Hilbert spaces

Definition 4.3 (Hilbert space). A Hilbert space is an inner product space which is complete.

A Hilbert space is therefore a special case of a Banach space.

Theorem 4.1. Let X be a Hilbert space and (en)n∈N be an orthonormal sequence in X. The
series

∑
n∈N αnen converges in X if and only if the sequence (αn)n∈N belongs to `2(N). Moreover

when the series
∑

n∈N αnen converges in X, then∥∥∥∥∥∑
n∈N

αnen

∥∥∥∥∥
2

=
∑
∈N
|αn|2. (10)

Proof. Since the space X is complete, the series
∑

n∈N αnen converges in X if and only if it
satisfies the Cauchy property. Therefore using Lemma 4.4, we obtain that

∑
n∈N αnen satisfies

the Cauchy property in X if and only if the series
∑n

k=0 |αk|2 satisfies the Cauchy property in
R. Since R is also complete, this yields the first part of the result.

To prove (10) it is sufficient to use the continuity of the norm and the Pythagore equality:∥∥∥∥∥∑
n∈N

αnen

∥∥∥∥∥
2

=

∥∥∥∥∥ lim
k→∞

k∑
n=0

αnen

∥∥∥∥∥
2

= lim
k→∞

∥∥∥∥∥
k∑

n=0

αnen

∥∥∥∥∥
2

= lim
k→∞

k∑
n=0

|αn|2 =
∑
n∈N
|αn|2.

Combining Lemma 4.5 (2) and Theorem 4.1 we obtain the following result.

Corollary 4.1. Let (en)n∈N be an orthonormal sequence in a Hilbert space X, and let u ∈ X.
Then the series

∑
n∈N(u, en)en converges in X.

Given an orthonormal sequence (en)n∈N in X, we define the linear mapping

Φ : u ∈ X 7→ ((u, en))n∈N ∈ `2(N).

Notice that the range of Φ is contained in `2(N) according to (1). Combining Lemma 4.3 and
Corollary 4.1 we get that if u ∈ X satisfies u =

∑
n∈N αnen, then Φ(u) = (αn)n∈N.

Definition 4.4 (Hilbert basis). An orthonormal sequence (en)n∈N in X is said total or a
Hilbert basis if Φ is injective, i.e., if (u, en) = 0 for every n ∈ N implies that u = 0.

Let us observe that it follows from the continuity of the scalar product that for every u ∈ X,
Φ(u) = Φ(

∑
n∈N(u, en)en).

10



Theorem 4.2. Let (en)n∈N be an orthonormal family in an Hilbert space X. Then the following
statements are equivalent:

(i) The family (en)n∈N is total;

(ii) For every u ∈ X, u =
∑

n∈N(u, en)en;

(iii) For every u ∈ X, ‖u‖2 =
∑

n∈N |(u, en)|2.

Proof. Let us first assume (i). Since Φ is injective by assumption, (ii) follows. Let us now
assume that (ii) holds. Then, using Pythagore’s equality, we obtain that for every u ∈ X,

‖u‖2 =

∥∥∥∥∥ lim
k→∞

k∑
n=0

(u, en)en

∥∥∥∥∥
2

= lim
k→∞

∥∥∥∥∥
k∑

n=0

(u, en)en

∥∥∥∥∥
2

= lim
k→∞

k∑
n=0

|(u, en)|2 =
∑
n∈N
|(u, en)|2.

Finally we assume that (iii) holds. Then, if u ∈ X is such that (u, en) = 0 for every n ∈ N then
clearly u = 0.

As a consequence of Zorn’s lemma, every Hilbert space admits an orthonormal basis; fur-
thermore, any two orthonormal bases of the same space have the same cardinality, called the
Hilbert dimension of the space.

4.3 Projection on a closed convex set

An essential property of Hilbert space is that the distance of a point to a closed convex set is
alway attained.

Theorem 4.3. Let X be a Hilbert space, K a closed convex subset, and u ∈ X. Then there
exists a unique ū ∈ K such that

‖u− ū‖ = inf
v∈K
‖u− v‖.

Moreover ū is the unique element of K which satisfies <(u− ū, v − ū) 6 0 for any v ∈ K.

Proof. Translating, we may assume that u = 0, and so we must show that there is a unique
element of K of minimal norm. Let d = infv∈K ‖v‖ and chose un ∈ K with ‖un‖ → d. Then
the parallelogram law gives∥∥∥∥un − um2

∥∥∥∥2 =
1

2
‖un‖2 +

1

2
‖um‖2 −

∥∥∥∥un + um
2

∥∥∥∥2 6 1

2
‖un‖2 +

1

2
‖um‖2 − d2,

where we have used convexity to infer that (un + um)/2 ∈ K. Thus (un) is a Cauchy sequence
and so has a limit ū, which must belong to K, since K is closed. Since the norm is continuous,
‖ū‖ = limn ‖un‖ = d.

For uniqueness, note that if ‖ū‖ = ‖ũ‖ = d, then ‖(ū+ ũ)/2‖ = d and the parallelogram law
gives

‖ū− ũ‖2 = 2‖ū‖2 + 2‖ũ‖2 − ‖ū+ ũ‖2 = 2d2 + 2d2 − 4d2 = 0.

Let now prove the characterization of ū through obtuse angles. Let v be in K, λ ∈ (0, 1)
and let z := (1− λ)ū+ λv which is in K by convexity. Therefore

‖u− ū‖2 6 ‖u− z‖2 = ‖(u− ū)− λ(v − ū)‖2 = ‖u− ū‖2 + 2λ<(u− ū, ū− v) + λ2‖v − ū‖2.
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Thus,
2<(u− ū, v − ū)− λ‖v − ū‖2 6 0

and then, by letting λ tend to 0+, we obtain that <(u− ū, v − ū) 6 0 for any v ∈ K.
Conversely if ū is an element of K which satisfies <(u − ū, v − ū) > 0 for any v ∈ K, then

we have
‖(1− λ)ū+ λv − u‖2 > ‖u− ū‖2 + λ2‖v − ū‖2.

Letting λ goes to 1 yields ‖v − u‖2 > ‖v − ū‖2 .

The unique nearest element to u in K is often denoted PKu, and referred to as the projection
of u onto K. It satisfies PK ◦ PK = PK , the definition of a projection. This terminology is
especially used when K is a closed linear subspace of X, in which case PK is a linear projection
operator.

Theorem 4.4. Let X be a Hilbert space, Y a closed subspace, and x ∈ X. Then there exists a
continuous linear mapping PY from X onto Y with ‖PY ‖ 6 1 such that for any v ∈ Y ,

‖u− PY u‖ = inf
v∈Y
‖u− v‖.

Moreover PY u is the unique element of Y which satisfies (u− PY u, v) = 0 for any v ∈ Y .

We say that PY is the orthogonal projection onto Y .

Proof. The existence of PY is given by the previous theorem. We now prove the characterization
of PY u as the unique element of Y which satisfies (u − ū, v) = 0 for any v ∈ Y . Using the
characterization of the previous theorem with v + PY u instead of v, we have that PY u satisfies
<(u − PY u, v) 6 0 for any v ∈ Y . Using this last inequality with −v, iv and −iv instead of
v yields (u − PY u, v) = 0 for any v ∈ Y . The converse is straightforward: if an element ū in
Y satisfies (u − ū, v) = 0 for any v ∈ Y then it satisfies the characterization of the previous
theorem so it is the projection of u onto Y .

From this characterization we infer that PY is linear. Now to prove that PY is continuous
with ‖PY ‖ 6 1 it suffices to apply the Cauchy-Schwarz inequality to the characterization with
v = PY u.

Definition 4.5 (Orthogonal space). If S is any subset of a inner product space X, let

S⊥ = {u ∈ X : (u, s) = 0 for all s ∈ S }.

Then we have the following.

Lemma 4.6. We have

1. S⊥ is a closed subspace of X,

2. S ∩ S⊥ = 0,

3. S ⊂ S⊥⊥,

4. if S1 ⊂ S2 then S⊥2 ⊂ S⊥1 .

Proof. The first point follows from the continuity of the inner product. We have that S ∩S⊥ =
{0} since u ∈ S ∩ S⊥ implies ‖u‖2 = (u, u) = 0. The third point is a consequence of the
(hermitian) symmetry of an inner product and the fourth is straightforward.
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Now if we assume that the space is complete we get the following.

Lemma 4.7. If X is a Hilbert space and S is a closed subspace of X, then X = S
⊕
S⊥.

Proof. In addition for any u in X, u = PSu+ (u− PSu) provides a decomposition in S
⊕
S⊥,

according to the previous theorem.

Corollary 4.2. If X is a Hilbert space and S is a subspace of X, then S = X if and only if
S⊥ = {0}.

Proof. Suppose that S = X and let u be in S⊥. Then there exists (un)n in S converging to u.
For any n, we have (un, u) = 0, and since the scalar product is continuous, passing to the limit
yields ‖u‖2 = (u, u) = 0.

Conversely if we assume now that S⊥ = {0} then from the previous lemma applied to S we

infer that X = S
⊕
S
⊥

. But S
⊥

= {0} so that S = X.

4.4 Duality and weak convergence

The identification of the dual space of Hilbert spaces is easy.

Theorem 4.5 (Riesz Representation Theorem). If X is a real Hilbert space, define j :
X → X ′ by jy(x) = (x, y). This map is a linear isometry of X onto X ′. For a complex Hilbert
space it is a antilinear (or conjugate-linear) isometry (it satisfies jαy = ᾱjy for any α ∈ C).

Proof. It is easy to infer from the Cauchy-Schwarz inequality that j is an isometry of X into
X ′. Therefore the main issue is to show that any f ∈ X ′ can be written as jy for some y. We
may assume that f 6= 0, so ker(f) is a proper closed subspace of X. Let y0 ∈ [ker(f)]⊥ be of
norm 1 and set y = f(y0)y0. For all x ∈ X, we clearly have that f(y0)x− f(x)y0 ∈ ker(f), so

jy(x) = (x, y) = (x, f(y0)y0) = (f(y0)x, y0) = (f(x)y0, y0) = f(x).

Via the map j we can define an inner product on X ′, so it is again a Hilbert space. The
Riesz map j actually identifies X and X ′.

Proposition 4.3. If X is a real Hilbert space, then its dual space X ′ is also a Hilbert space.
Moreover a sequence (un)n in X weakly converges to u if and only for any v in X, (un, v) →
(u, v).

Then as a consequence of Corollary 3.1 (respectively Theorem 3.3), we have the following
results:

Proposition 4.4. Let X be a Hilbert space and (un)n be a weakly converging sequence in X.
Then (un)n is bounded.

Theorem 4.6. Let X be a Hilbert space and (un)n be a bounded sequence in X. Then there
exists a subsequence (unk

)k which weakly converges to some u in X.

Proof. Let us introduce Y := Vect (un)n∈N which is, for the topology induced by X, a separable
Hilbert space. Therefore since (un)n is a bounded sequence in Y , there exists a subsequence
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(unk
)k which weakly converges to u in Y . Let us now consider the orthogonal projection P on

Y . We have, for any v in X,

(un, v) = (un, Pv) + (un, (Id− P )v)

= (un, Pv) since (Id− P )v ∈ Y ⊥

→ (u, Pv) when n→ +∞
= (u, v).
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