Feuille d'exercices N. 1 : Topologie sur \mathbb{R}^d

Par défaut, l'espace en question est \mathbb{R}^d muni de la norme euclidienne.

Exercice 1. Soient A, B, C des ensembles, $A, B, C \subset X$. Rappelons que $A^c = X \setminus A$. Démontrer que

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C), \ (A \cap B) \cup C = (A \cup C) \cap (B \cup C),$$
$$(A \cup B)^c = A^c \cap B^c, \ (A \cap B)^c = A^c \cup B^c.$$

Que peut-on dire de $(\bigcup_{i\in I} A_i)^c$ et $(\bigcap_{i\in I} A_i)^c$?

Exercice 2. Soit $A \subset \mathbb{R}^2$ l'un des ensembles suivants

- $-\ B((1,0),2),\ B(0,2)\backslash B(0,1),\ \{(x,y):x\in [0,2],y\in]-1,1[\}=[0,2]\times]-1,1[,$
- $\{(1/n, 1/m) : n, m \in \mathbb{N}^*\} = (1/n)_{n \in \mathbb{N}^*} \times (1/n)_{n \in \mathbb{N}^*}, \ \{(1/n, y) : n \in \mathbb{N}^*, y \in [0, 1]\} = (1/n)_{n \in \mathbb{N}^*} \times [0, 1],$
- $\{(p,q): p,q \in \mathbb{Q} \cap [0,1]\} = (\mathbb{Q} \cap [0,1]) \times (\mathbb{Q} \cap [0,1]).$

Dessinez-le. L'ensemble A est-il ouvert? fermé? Donnez \bar{A} , A° et Fr(A).

Exercice 3. Les assertions suivantes sont-elles vraies? (Démonstration ou contre-exemple selon les cas.)

- 1. Toute partie non ouverte de \mathbb{R}^d est fermée.
- 2. Une union quelconque d'ouverts de \mathbb{R}^d est ouverte.
- 3. Une intérsection quelconque de fermés de \mathbb{R}^d est fermé.
- 4. Une union quelconque de fermés de \mathbb{R}^d est fermée.
- 5. L'ensemble $\{(x,y) \in \mathbb{R}^2 : x^2 + 3y^4 < 1\}$ est ouvert? fermé? borné?
- 6. L'ensemble $\{(x,y) \in \mathbb{R}^2 : x + 3y^2 \le 1\}$ est ouvert? fermé? borné?

Exercice 4.

- 1. Montrer que toute boule ouverte (fermée) est un ouvert (fermé).
- 2. Montrer que l'adhérence de la boule ouverte B(a,r) est la boule fermée $\bar{B}(a,r)$ et que $B(a,r) = (\bar{B}(a,r))^{\circ}$.

Exercice 5. Soit $A \subset \mathbb{R}^d$.

1. Montrer que $x \in A^{\circ}$, l'intérieur de A, si et seulement si (**abréviation :** "si et seulement si" = "ssi") il existe r > 0 tel que $B(x,r) \subset A$. Par conséquent, A est ouvert ssi $A = A^{\circ}$.

- 2. Montrer que $x \in \bar{A}$, l'adhérence de A, ssi pour tout r > 0 on a $B(x,r) \cap$ $A \neq \emptyset$. D'où A est fermé ssi $\bar{A} = A$.
- 3. Démontrer que $x \in \bar{A}$ ssi il existe une suite $(x^n) \subset A$ telle que $x^n \to x$.
- 4. Montrer que $a \in Fr(A)$ ssi pour tout r > 0 on a $B(a,r) \cap A \neq \emptyset$ et $B(a,r) \cap A^c \neq \emptyset$.

Exercice 6. (Trois normes classiques sur \mathbb{R}^d)

Soit $d \in \mathbb{N}^*$. On définit pour $x = (x_1, ..., x_d) \in \mathbb{R}^d$ les trois nombres suivants :

$$||x||_1 = \sum_{i=1}^d |x_i|, \quad ||x||_2 = \sqrt{\sum_{i=1}^d x_i^2}, \quad ||x||_\infty = \max_{1 \le i \le d} |x_i|.$$

- 1. Prouver que $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ définissent des normes sur \mathbb{R}^d . Dessiner les boules unités associées à ces trois normes dans \mathbb{R}^2 .
- 2. Prouver que pour tout $x \in \mathbb{R}^d$,

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le \sqrt{d} \, ||x||_2 \le d \, ||x||_{\infty}.$$

Exercice 7. (Les normes $\|\cdot\|_p$ sur \mathbb{R}^d) Soit p un réel > 1. Pour $x \in \mathbb{R}^d$ on pose

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}.$$

Le but de l'exercice est de montrer que $\|\cdot\|_p$ est une norme sur \mathbb{R}^d , et que ses valeurs sont des fonctions décroissantes de p.

1. Montrer que

$$\forall s \in [0, +\infty[, \ \forall t \in [0, +\infty[, \ st \leqslant \frac{1}{p}s^p + \frac{1}{q}t^q])$$

où q est défini par $\frac{1}{p}+\frac{1}{q}=1$. (On pourra fixer t et étudier la fonction $s\mapsto st-\frac{1}{p}s^p-\frac{1}{q}t^q$.)

2. Soient $x = (x_1, ..., x_d)$ et $y = (y_1, ..., y_d)$. On note $\alpha = ||x||_p$ et $\beta =$ $||y||_q$. Montrer que pour tout $i \in \{1, ..., d\}$ on a

$$\frac{|x_i y_i|}{\alpha \beta} \leqslant \frac{|x_i|^p}{p \alpha^p} + \frac{|y_i|^q}{q \beta^q}$$

et en déduire l'inégalité de Hölder :

$$|\sum_{i=1}^d x_i y_i| \le ||x||_p ||y||_q.$$

- 3. En écrivant que $|x_i + y_i|^p \leq |x_i + y_i|^{p-1}|x_i| + |x_i + y_i|^{p-1}|y_i|$, montrer que $\|\cdot\|_p$ vérifie l'inégalité triangulaire.
- 4. Montrer que $\|\cdot\|_p$ est une norme sur \mathbb{R}^d .
- 5. Montrer que si r > p > 1, on a pour tout $x \in \mathbb{R}^d : ||x||_r \leqslant ||x||_p$ et que l'inégalité est stricte si x a au moins deux composantes non nulles. (On pourra se ramener au cas où $||x||_p = 1$ et utiliser le fait qu'alors $|x_i| \leqslant 1$ pour tout i.)

Exercice 8. (Normes sur des fonctions)

Soit E l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . On définit, pour $f \in E$,

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|, \qquad ||f||_1 = \int_0^1 |f(t)| dt.$$

- 1. Vérifier que $||f||_{\infty}$ et $||f||_{1}$ sont des réels bien définis pour tout $f \in E$.
- 2. Vérifier que $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$ sont des normes sur E.
- 3. Montrer que : $\forall f \in E, \|f\|_1 \leq \|f\|_{\infty}$.
- 4. En utilisant la suite de fonctions $f_n(x) = x^n$, prouver que les normes $\|\cdot\|_{\infty}$ et $\|\cdot\|_1$ ne sont pas équivalentes.

Exercice 9. Soit $d \in \mathbb{N}^*$. Parmi les assertions suivantes, lesquelles sont vraies? (Démonstration ou contre-exemple selon les cas.)

- 1. Toute suite divergente dans \mathbb{R}^d est une somme de deux suites divergentes.
- 2. Toute suite convergente dans \mathbb{R}^d est une somme de deux suites divergentes.
- 3. Si les suites (u_n) et (v_n) sont telles que $(u_n + v_n)$ et $(u_n v_n)$ convergent, alors (u_n) et (v_n) convergent.

Exercice 10. (Topologie de $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, l'espace produit) Soient $X = \mathbb{R}^{d_1}, Y = \mathbb{R}^{d_2}$ et $||.||_1, ||.||_2$ les normes (euclidiennes) correspondantes.

- 1. Expliquez pourquoi $X \times Y$ est un espace vectoriel. Explicitez les opérations de l'espace (la somme de deux vecteurs, un vecteur fois scalaire).
- 2. Pour $z = (x, y) \in X \times Y$, on considère

$$||z|| = ||(x,y)|| = \max\{||x||_1, ||y||_2\},\$$

montrer que ||.|| ainsi définie est une norme.

3. Supposons $A \subset X$ et $B \subset Y$. Démontrer que $A \times B$ est un ouvert (fermé) si et seulement si A, B sont ouverts (fermés).

4. * Reprendre les questions 2, 3, pour

$$||z|| = ||(x,y)|| = ||x||_1 + ||y||_2.$$

Exercice 11.

1. Les ensembles suivants sont-ils compacts

$$\begin{split} \bar{B}(a,r), \quad B(a,r), \\ \Pi_1 &= [a,b] \times [c,d] = \{(x,y) : x \in [a,b], y \in [c,d]\}, \\ \Pi_2 &= [a,b] \times]c, d[= \{(x,y) : x \in [a,b], y \in]c, d[\}? \end{split}$$

2. Soit (x^n) une suite convergente dans \mathbb{R}^d , de limite x. Soit $A=\{x^n:n\in\mathbb{N}\}$. Montrer que $A\cup\{x\}$ est compact.