Devoir Surveillé du 28/11/2017.

Documents non-autorisés, durée: 1h 20.

Par défaut, l'espace en question est \mathbb{R}^d muni de la norme euclidienne. Vos réponses doivent être justifiées (= démontrées ou bien validées par un contre-exemple).

Exercice 1. (Questions du cours)

- 1. Soit $O \subset \mathbb{R}^d$ un ouvert et $f: O \to \mathbb{R}^{d_1}$ une application. Donner la définition de la différentielle de f au point $x^0 \in O$; de la différentiabilite de f sur O tout entier.
- 2. Soit $v \in \mathbb{R}^d \setminus \{0\}$. Donner la définition de $D_v f(x^0)$, la dérivée de f au point x^0 en direction de v.
- 3. La différentiabilité de f au point x^0 implique-t-elle l'existence de $D_v f(x^0)$ pour tout $v \in \mathbb{R}^d \setminus \{0\}$? L'implication inverse est-elle vraie?
- 4. Soit f différentiable au point x^0 . Exprimer la dérivée directionnelle $D_v f(x^0)$ en fonction de la différentielle $D f(x_0)$ de la fonction.

Exercice 2. Considérons l'application

$$F(x) = (x, x) : \mathbb{R}^d \to \mathbb{R}_+,$$

où (.,.) désigne le produit scalaire réel usuel.

- 1. En utilisant la définition, étudier la différentiabilité de F sur \mathbb{R}^d et calculer sa différentielle.
- 2.* Soit maintenant

$$G(x) = \sin(x, x) : \mathbb{R}^d \to \mathbb{R}.$$

En utilisant la question précédente, étudier la différentiabilité de G et calculer sa différentielle.

Exercice 3. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Considérons

$$g(x,y) = f(\sin x + 2\cos y) + \cos x : \mathbb{R}^2 \to \mathbb{R}.$$

- 1. Étudier la différentiabilité de g et calculer sa différentielle.
- 2. Démontrer que g satisfait l'équation différentielle suivante

$$(2\sin y)\frac{\partial g}{\partial x} + (\cos x)\frac{\partial g}{\partial y} = 2\sin x \sin y.$$

Exercice 4. Soit

$$F(x,y) = \begin{cases} \frac{x^2y - y^2x}{x^2 + y^2} &, & (x,y) \neq (0,0), \\ 0 &, & (x,y) = (0,0). \end{cases}$$

- 1. Etudier la continuité de F sur \mathbb{R}^2 .
- 2. Montrer que F admet des dérivées partielles en tout point de \mathbb{R}^2 et les calculer.
- 3. Enoncer le critère d'appartenance d'une application à la classe C^1 en termes de ses dérivées partielles.
- 4. L'application F est-elle de classe C^1 sur $\mathbb{R}^2 \setminus \{0\}$? sur \mathbb{R}^2 tout entier?
- $5.^*$ Etudier la différentiabilité de l'application ${\cal F}$ au point (0,0).

FIN