

ANNE UNIVERSITAIRE 2011/2012 Première Session d'Automne

ETAPE: PY300 UE: MP1PY3W01

Épreuve: Mathématiques Date: 3 janvier 2012

Heure: 8H30 Durée:1H30 Épreuve de Monsieur Augé Jean-Matthieu

Tous Documents Interdits

Toutes les réponses doivent être argumentées. On pourra utiliser sans démonstration les tables de Laplace fournies avec le sujet.

Exercice 1

- 1. Rappeler pour quelles valeurs réelles de α l'intégrale $\int_1^{+\infty} \frac{1}{t^{\alpha}} dt$ converge.
- 2. Quelle est la nature (absolument convergente? convergente?) de $\int_1^{+\infty} \frac{\cos t}{t^2} dt$.
- 3. En déduire que $\int_1^{+\infty} \frac{\sin t}{t} dt$ converge.

Exercice 2

A l'aide de la transformée de Laplace, résoudre l'équation différentielle

$$y''(t) + 2y'(t) + y(t) = e^{-t}$$

avec les conditions y(0) = y'(0) = 0.

Exercice 3

On rappelle que $L^1(\mathbb{R})$ désigne l'ensemble des fonctions continues par morceaux sur \mathbb{R} telles que $\int_{-\infty}^{+\infty} |f(t)| dt$ converge. Pour $f \in L^1(\mathbb{R})$, on désignera par $\mathcal{F}f$ la transformée de Fourier de f. Pour a>0, on note f_a la fonction définie par

$$f_a(t) = \frac{1}{a\sqrt{2\pi}}e^{-\frac{t^2}{2a^2}} \quad (t \in \mathbb{R}).$$

- I.1. Montrer que f_a et $(t\mapsto tf_a(t))$ sont des fonctions de $L^1(\mathbb{R})$. I.2. On admet que $\int_{-\infty}^{+\infty} e^{-u^2} du = \sqrt{\pi}$. En déduire la valeur de $\mathcal{F}f_a(0)$.
- II.1. Trouver une relation simple entre f_a et f'_a .
- II.2. En déduire que $\mathcal{F}f_a$ vérifie l'équation différentielle : $y'(x) = -a^2xy(x)$.
- II.3. Établir que $\mathcal{F}f_a(x) = e^{-\frac{a^2x^2}{2}}$.
- III.1. Montrer que pour a,b>0, $\mathcal{F}(f_a*f_b)=\mathcal{F}f_{\sqrt{a^2+b^2}}$.
- III.2. Que vaut $f_a * f_b$?