Chapitre 1

Intégration et calcul de primitives

1.1 Définitions

Définition 1.1.1.

 $Si \ a < b, f \ continue \ sur \ [a,b]$

- positive : $\int_a^b f(x)dx$ est l'aire (en unité d'aire) de la surface limitée par les droites d'équations y=0, x=a et x=b et la courbe représentative de la fonction f sur [a,b]
- de signe quelquonque $\int_a^b f(x)dx$ est l'aire algébrique de cette même surface.

$$Si \ a > b \int_a^b f(x)dx := - \int_a^b f(x)dx$$

Examples 1.1.2.

$$-\int_{-2}^{1} x dx = -1 + \frac{1}{2} = \frac{-1}{2}$$
$$-\int_{-2}^{1} |x| dx = 1 + \frac{1}{2} = \frac{3}{2}$$

1.2 Propriétés

Propriété 1.2.1 (Linéarité de l'intégrale).

Si f, g fonctions continues sur [a, b] et $k \in \mathbb{R}$ alors $\int_a^b f(x)dx = \int_a^b f(x)dx + k \int_a^b g(x)dx$

Propriété 1.2.2 (Relation de chasles).

Si f fonction continue sur I contenant a, b et c alors $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^d f(x)dx$

1.3 Notion de primitive

Définition 1.3.1.

Soient f et F deux fonctions définies sur I intervalle, on suppose, de plus que F est dérivable sur I. F est une primitive de f sur I si $\forall x \in I$, F'(x) = f(x)

Remarque 1.3.2. F primitive de f sur I alors pour tout réèl c, F + c est une primitive de f sur I.

Théorème 1.3.3 (Lien entre intégrale et primitive).

Soient f continue sur I intervalle et $a \in I$

- 1. La fonction F définie sur I par $F(x) = \int_a^x f(t)dt$ est une primitive de f sur I
- 2. Soit G une primitive de f sur I alors $\forall x \in I$, $\int_a^x f(t)dt = G(x) G(a)$

Conséquences 1.3.4. 1. Toute fonction continue admet une primitive sur un intervalle.

2. Si on connait une primitive de f alors le calcul de $\int_a^b f(t)dt$ se fait à l'aide de cette primitive. En particulier, si g est dérivable sur [a, b], $\int_a^b g'(x)dx = g(b) - g(a)$

Remarque 1.3.5.

- $-x \mapsto \int_a^x f(t)dt$ est la primitive de f sur I qui s'annule en a.
- $-\int f(x)dx$ désignera une primitive de f

1.4 Tableau de primitives usuelles

Par lecture inverse du tableau des dérivées

F	f	f'
x + c	1	0
$\frac{x^{n+1}}{n+1}$	x^n sur \mathbb{R}	$nx^{n-1}, \ n \ge 1$
$-\frac{1}{n-1}\frac{1}{x^{n-1}} + c, \ n \ge 1$	$\frac{1}{x^n} sur] - \infty, 0[ou]0, +\infty[$	$-n\frac{1}{x^{n+1}}, \ n \ge 1$
ln x +c	$\frac{1}{x} sur] - \infty, 0[ou]0, +\infty[$	$-\frac{1}{x^2}$
$e^x + c$	e^x sur $\mathbb R$	e^x
$\frac{1}{1+\alpha}x^{\alpha+1}+c$	x^{α} sur]0, $+\infty$ [$\alpha x^{\alpha-1}$
$\sin x + c$	$\cos x sur \mathbb{R}$	-sin x
$-\cos x + c$	$sin \ x \ sur \ \mathbb{R}$	cos x

Primitive et composition:

f	F	
u'(x)exp(u(x))	exp(u(x))	
$\frac{u'(x)}{u(x)}$	ln u(x)	
$u'(x)\frac{1}{\sqrt{u(x)}}$	$2\sqrt{u(x)}$	
$u'(x)(u(x))^n$	$\frac{(u(x))^{n+1}}{n+1}\dots$	
u'(x)g(u(x))	$G(\mathbf{u}(\mathbf{x}))$ où G primitive de g	

${\bf Exercices}\ {\bf d'application}:$

Calculer les intégrales suivantes :

1.
$$\int_{-1}^{2} (x+3)dx$$

2.
$$\int_{-1}^{2} x^2 dx$$

3.
$$\int_{\frac{\Pi}{2}}^{\Pi} \cos x dx$$

$$4. \int_1^2 \frac{1}{1+x} dx$$

5.
$$\int_{1}^{2} \frac{1}{\sqrt{x+1}} dx$$

6.
$$\int_0^1 2e^{2x-1} dx$$

7.
$$\int_0^{\Pi} 2\cos(2x) dx$$

1.5 Méthodes de calculs de primitives

1.5.1Formule d'intégration par parties

On se donne I un intervalle contenant a et b, u et v fonctions de classe C^1 sur I La formule d'intégration par parties est donc :

$$\int_{a}^{b} (uv)'(x)dx = [uv]_{a}^{b} - \int_{a}^{b} (u'v)(x)dx$$
$$= (uv)(b) - (uv)(a) - \int_{a}^{b} (u'v)(x)dx$$

Remarque 1.5.1.

On note que la formule provient simplement du fait que (uv)' = u'v + uv'on a $\int uv'dx = uv - \int u'vdx$

Examples 1.5.2.

$$\int_0^{\Pi} x \sin x dx = \begin{bmatrix} -x \cos x \end{bmatrix}_0^{\Pi} - \int_0^{\Pi} -\cos x dx$$
$$= \Pi + [\sin x]_0^{\Pi} = \Pi$$

avec

$$u = x$$
 $u' = 1$
 $v' = \sin x$ $v = -\cos x$

Exercices d'application courant :

- Calculer $\int_0^1 x^2 e^x dx$. Calculer $\int_0^{\frac{\Pi}{2}} \cos x e^{-x} dx$.

Formule de changement de variable 1.5.2

On se donne I un intervalle contenant a et b, u de classe C^1 sur I, f continue sur I = u(I) alors

$$\int_{a}^{b} f(u(x))u'(x)dx = \int_{u(a)}^{u(b)} f(t)dt$$

Démonstration. Si F désigne une primitive de f alors $F \circ u$ est une primitive de $(f \circ u) \times u'$ donc

$$\int_{a}^{b} f(u(x))u'(x)dx = F(u(b)) - F(u(a)) = \int_{u(a)}^{u(b)} f(t)dt$$

Remarque 1.5.3. Dans le cas particulier où u(x) = ax + b la primitive de $x \mapsto f(u(x)) = f(ax + b)$ est $x \mapsto \frac{1}{a}F(ax + b)$

Examples 1.5.4.

$$\int_{0}^{\frac{\Pi}{4}} tan \ x dx = \int_{0}^{\frac{\Pi}{4}} \frac{\sin x}{\cos x} dx = -\int_{0}^{\frac{\Pi}{4}} \frac{\cos' x}{\cos x} dx$$

$$= -\int_{\cos 0}^{\cos \frac{\Pi}{4}} \frac{dt}{t} = -\int_{1}^{\frac{\sqrt{2}}{2}} \frac{dt}{t}$$

$$= \int_{\frac{\sqrt{2}}{2}}^{\frac{1}{2}} \frac{dt}{t} = \ln 1 - \ln(\frac{\sqrt{2}}{2})$$

$$= 0 - \ln(\frac{1}{\sqrt{2}}) = \frac{\ln 2}{2}$$

Intégrale généralisée 1.6

Définition 1.6.1.

- 1. Soit f une fonction continue sur $[a, +\infty]$. On pose $I(T) := \int_a^T f(x)dx$. Si $\lim_{T \to \infty} I(T)$ existe alors $\int_a^{+\infty} f(x)dx = \lim_{T \to +\infty} I(T)$.
- 2. Si f est continue sur $]-\infty,a],$ $\int_{-\infty}^a f(x)dx = \lim_{R \to \infty} \int_R^a f(x)dx.$
- 3. Si f est continue sur \mathbb{R} , soit $a \in \mathbb{R}$ alors $\int_{-\infty}^{+\infty} f(x)dx = \lim_{T \to +\infty} \int_{a}^{T} f(x)dx + \lim_{T \to +\infty} \int_{P}^{a} f(x)dx$ (indépendant de a).

Exercice d'application : Calcule $\int_0^{+\infty} exp(-2x)dx$