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LLL Introduction |

Recall:

A lattice is a finitely generated abelian group L together with a map
g : L — R such that for all x,y € L and all r € R we have

> x#0 = q(x) #0

> q(x +y)+q(x —y) =2q(x) + 2q(y)

» VreR, {x €L:q(x)<r}is finite
Giving (L, g) is equivalent to giving a discrete subgroup of a Euclidean
space. ((x,y) = Lq(x+y)+ Lq(x—y))

The rank of a lattice is its rank as an abelian group. We denote by d(L)
the discriminant of L (the volume spanned by a basis of L).



LLL Introduction Il

» In many applications of lattice theory one is interested in finding
“short” vectors in a given lattice.

» This stems from the fact that in many cases, by constructing an
appropriate lattice, one can read off solutions of the given problem
from these short vectors.

> In this direction the main theoretical result is Minkowski's theorem:

Each lattice L of positive rank n contains a non-zero element x with

q(x) < fr(l +n/2)2/"d(L)>/" < n-d(L)¥".
™



LLL Introduction Il

» Every lattice has a basis consisting of optimally short vectors (take
the smallest ball containing a basis).

» LLL is a family of polynomial time algorithms that from an arbitrary
basis constructs a c-reduced basis which is “nearly” optimal by
successively applying “rank 2" reductions at each step.

» The parameter c is a real number > 4/3 encoding more or less the
quality of this basis (how smaller the ¢ the better the quality).



Lattices of rank 2

Let L be a lattice of rank 2 and {by, bo} a basis of L. We say L is
reduced if

q(b1) = L q(x)  q(b2) = min q(x).

If one defines
a—= q(bl) b:2<b17b2> Cc = q(b2)
then {by, by} is reduced if and only if

bl <a<ec.



Reduced basis

If by = (1,0) then {b1, bo} is reduced if b, lies in the shaded region

Q>



Lattice basis reduction in rank 2

The following procedure is due to Gauss. Given a basis {b;, bo} of L it
computes a reduced basis.

1. m« [{b1, b2)/q(b1)] (nearest integer)
2. by < by — mby (we now have 2|(by, by)| < q(b1))
3. if q(b2) < q(b1) swap by, b, and iterate else output {by, by}

That this procedure is correct follows from the inequalities |b| < a < ¢
mentioned before. It terminates since the norm of b; decreases through
the process.



Reduction in general rank

The idea now is to apply one step of the above procedure to a rank 2
sublattice of our lattice L of rank n at each step.

First, given a basis {by,...,b,} of L let {b},..., b’} be the associated
Gram-Schmidt basis and define

j
Li=) Zb and ¢ =d(Lj/Lj-1) (= [[b]]]).
i=1

Let ¢ > 1. A basis {b1,..., by} is c-reduced if for all 0 < j < n and all
i < j we have

> 2|(b}, b;)| < q(b}) (size-reducedness)
> €2 cé



What is size-reducedness?

by 5
b5~
”””””””””””””” b1 = b?
* 1 *
(b7 )1 < Sa(5).




Reduction in general rank

We can now summarize a possible approach as follows:

1.
2.

size-reduce {by, ..., b,}
if {j: c£J2-+1 < €J2} # & choose j in this set, swap b;, bj+1 and
iterate, else output by, ..., b,

Size-reducedness is easily accomplished by a direct generalization of
the rank 2 case.

It is not clear that this yields a polynomial time algorithm (in fact
this is an open problem for ¢ = 4/3).

The classical LLL described in [1] takes the minimum j in step 2.
This allows us to size-reduce as needed.

The output of this procedure is clearly a c-reduced basis.



What about ¢?

As expected a lattice basis which is “nearly” orthogonal is also “nearly”
optimal (in size).

Denote by A;(L) the ith-successive minimum of L, that is,

Ai(L) =inf{r e R:3{x1,...,x;} C L lin. indep. with q(x;) < r}.

Theorem
Let ¢ > 4/3 and let {b1,...,b,} be a c-reduced basis of L. Then for
1 < i< nwe have

In particular for the shortest vector (i = 1) we have

q(b1) < c"IA(L).



Example: computing kernels & images

Let F be the matrix representing f : Z" — Z™ and r = rank(F). Choose

F > max|Fj] c>4/3 N> c"Yr+1)rF?.
l’J

Consider the lattice (Z", q) where
q(x) = [IxI[> + NIIF ()12

Then a c-reduced basis of this lattice satisfies the following.
(a). {b1,...,bn_,} forms a basis for ker f
(b). {f(bp—rs1),.-.,f(b,)} forms a basis for f(Z") in Z™.

We only show that g(b;) < N for 1 < i< n—r. Denote by F; the
columns of F.



Applications - Linear algebra over 7Z

Suppose for simplicity that the first r columns of F are linearly

independent.
» For r < h < n we have a linear dependency among F1,..., F, and
Fh.
» This dependency, say x = (x;), satisfies x € ker f, x5 # 0 and x; =0
fori>r, i # h.

» Cramer’s rule implies that the x; are (r x r) minors of F hence
|xi| < r'/2F" by Hadamard's inequality. Therefore,

q(x) = [Ix|[> < (r + 1)r"F?".

» The n — r vectors obtained in this way are independent so by
c-reducedness we have

q(b)) < " IN(L) < " Hr+ ) FY < N.



Linear algebra over Z

» Solving linear systems

Given F as before and b € Z™ we want to solve Fx = b.

We let N > M > 1 be suitable large numbers and consider the lattice
L =7" x Z with g given by

q(x,z) = ||x||* + M||z[|* + N||Fx — zb||*.

Given a c-reduced basis {w, ...} one has the following.
» Vectors w; = (x;, z;) with g(w;) < M form a basis for kerF.
» Ix: Fx = b <= 3w; = (xj,z)) with M < q(w;) < 4M.

> In this case z; = 1, x; is a solution and all solutions are of the form
x; + Z,-<J- Cixi, i € 7.



The idea of the Layered setting

» As M, N — oo the reduced basis computed give us the desired
solution.

> These constants are “weights” we give to certain directions of the
lattice of special interest.

» With big enough weights we get solutions. But to give a lower
bound for them is not easy in general.

> Further, being big, they can produce memory overhead.
» We could just as well work with “symbols” that are big enough.

» This is the ideas of the layered setting: We substitute these weights
by symbols or, more precisely, infinities in a structured manner.



Totally ordered vector spaces

First step: generalize our ambient spaces, that is, Euclidean spaces.

Totally ordered vector spaces

Let V be a real vector space of finite dimension and > a total order on
V. We say that V is a totally ordered vector space if the following holds.

» Forall u,v,w € V with u > v we have u+w > v + w.
» Forallue V, u>0andall A € Ry we have Au > 0.

Example
Let V = R? with the antilexicographical order.

Theorem: Every total order on V is of the “above form", i.e., there is a
basis {v;} s.t. v; — e; is an o-isomorphism. We denote V; = &;<;Rv;.



Layered Euclidean spaces

Layered Euclidean spaces
A layered Euclidean space is a triple (E, V, (-,-)) where E and V are
finite dimensional real vector spaces, V is totally ordered and
(-,-) : Ex E — V is a bilinear, symmetric map satisfying:
» For all x € E,x # 0, we have (x,x) > 0.
» For all x,y € E, there is a A € R such that

(x,y) <Xy, y)



Layered Euclidean spaces

Example
Let £ = R?, V = R? with the antilexicographical order and define

<Xay> :(X'Bl)/aX'BQy)

10 0 0
%=(o0)m=(57)

One computes: (ej,e1) = (1,0), (e, &) =(0,1). So,

where

YAER : g(he) < g(e)



Layered Euclidean spaces

Layers

» Such a flag induces a filtration {0} = Ey C - --
subspaces which we call the layers of E:

N

En

E on E by

Ei={x€E : {x,x) eV}

» An important fact is that (E;/Ei—1, V;/Vi_1,(:,+)) is a Euclidean
space once we identify V;/V;_; ~R.



Layered Euclidean spaces

Next, we look at the Gram-Schmidt process on which the concept of LLL
reducedness depends.

> Perpendicularity: x Ly <= VA€ Rsq, [(x,¥)| < Xy,y).

» This amounts to say that (x, y) is an "order of magnitude” smaller

than (y,y).
» Note that, in general, we can have x L y but y } x:



Layered Euclidean spaces

Example
Let E = R?, V = R? with the antilexicographical order and define

(x,y) = (x - B1y,x - Bay)

11 00
Bl_<1 1)’32_(0 1>

One calculates: (e, e1) = {e1, &) = (1,0) and (e, &) = (1,1) so
e1 L e bute [ e.

where



Layered Euclidean spaces

Thus, we have two related concepts:
» Perpendicularity: x Ly <= VX € Rso, [(x,¥)| < Ay,y).
» Orthogonality: xIIy <= x L yandy | x.
Gram-Schmidt
In the layered setting there is a trade-off: given a basis of E we can:

» Preserve the flag induced by that basis and achieve perpendicularity
among the vectors of the resulting basis.

or:

» Achieve orthogonality if the flag structure is not important.



Layered lattices

Layered lattices
A layered lattice is a triple (L, V/, q) where L is a finitely generated
abelian group, V a finite dimensional, totally ordered, real vector space

and g : L — V is a map satisfying:
» For all x # 0, we have g(x) # 0.
» Forall x,y € L, g(x +y) + g(x — y) = 2q(x) + 2q(y) holds.
> The set q(L) C V is well-ordered.



Layered lattices

Theorem:

» Every layered lattice can be embedded in a layered Euclidean space.

» Reciprocally, a basis of E compatible with the layer structure of E
induces a layered lattice.

Such a basis we call a layered basis.



Layered lattices

Counterexample
Take as in our first example E = R?, V = R? with the antilexicographical
order and (x,y) = (x - B1y, x - Boy) where

10 0 0
%=(o0)m=(5 1)

The vectors b = (1,v/2) and e, form a basis for E but their Z-span is not
a layered lattice since for m,n € Z,

q(mb, ney) = (m?, (n + mv/2)?)

so g(L) is not well-ordered.



Linear algebra over Z revisited

Recall: we have a matrix F € M,,,xn(Z) representing an homomorphism
f:Z" — 7™ of groups. We want to compute the kernel and image of F.
Let V =R3 and define g : Z"® Z — V by

v

q(x,2) = (IIxIP 1121, [|Fx — zb]|?).

A reduced basis in the layered setting is just a layered basis which is
reduced in each layer.

An algorithm that computes an reduced basis in this setting solves
our problem.

The classical LLL algorithm and its invariants (size, successive
distance, etc...) can be generalized to this setting.

We already now that the corresponding algorithm is correct and
finishes. We are now attempting to prove it is polynomial time.
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